
Chapter 2
Edge of the World: When Are Manifolds
Metrisable?

Abstract This chapter might seem odd in that it lists a huge number of topological
properties and connections between them. What it shows is that the requirement that
a manifold be metrisable is extremely versatile. We list over 100 conditions each of
which is equivalent to metrisability of a manifold. At one extreme, metrisability of a
manifold implies that it may be embedded as a closed subset of some Euclidean space
while at the other extreme knowing that every open cover of the form {Uα / α < ω1}
withUα ⊂ Uβ whenever α < β has an open refinement which is point countable on a
dense subset is sufficient to guarantee that a manifold is metrisable. Space precludes
giving full details of the proofs. Instead we give brief ideas of the proofs and refer the
interested reader to original sources for complete proofs. The content of this chapter
is taken from [21].

2.1 Definitions

Firstly we must list all of the definitions needed for our grand theorem. Throughout
this section X is a topological space andF a family of subsets of X .

• X is paracompact (respectively metacompact, paraLindelöf and metaLindelöf ) if
every open coverU has a locally finite (respectively point finite, locally countable,
and point countable) open refinement, i.e. there is another open cover V such
that each member of V is a subset of some member of U and each point of X
has a neighbourhood meeting only finitely (respectively lies in only finitely, has a
neighbourhoodmeeting only countably, and lies in only countably)manymembers
of V ;

• X is strongly paracompact if every open coverU has a star-finite open refinement
V , i.e. for any V ∈ V the set {W ∈ V / V ∩ W �= ∅} is finite. If in addition,
givenU , there is an integer m such that {W ∈ V / V ∩ W �= ∅} contains at most
m members then X is star finitistic;

• X is screenable (respectively σ -metacompact and σ -paraLindelöf ) if every open
cover U has an open refinement V which can be decomposed as V = ∪n∈ωVn

such that each Vn is disjoint (respectively point finite and locally countable);
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• X is (linearly) [ω1-]Lindelöf if every open cover (which is a chain) [which has
cardinality ω1] has a countable subcover;

• X is (nearly) [linearly ω1-]metaLindelöf if every open cover U of X [for which
|U | = ω1 and U is a chain] has an open refinement which is point-countable
(on a dense subset);

• X is almost metaLindelöf if for every open coverU there is a collectionV of open
subsets of X such that eachmember ofV lies in somemember ofU , that each point
of X lies in atmost countablymanymembers ofV , and that X = ⋃ {

V / V ∈ V
}
;

• X is (strongly) hereditarily Lindelöf if every subspace (of the countably infinite
power) of X is Lindelöf;

• X is k-Lindelöf provided every open k-cover (i.e. every compact subset of X lies
in some member of the cover, but X itself is not a member of the cover) has a
countable k-subcover;

• X is an ℵ0-space [29, p. 493] provided that it has a countable k-network, i.e. a
countable collection N such that if K ⊂ U with K compact and U open then
K ⊂ N ⊂ U for some N ∈ N ;

• X is cosmic if there is a countable family C of closed subsets of X such that for
each point x ∈ X and each open set U containing x there is a set C ∈ C such that
x ∈ C ⊂ U ;

• X is an ℵ-space [29, p. 493] provided that it has a σ -locally finite k-network;
• X is hemicompact if there is an increasing sequence 〈Kn〉 of compact subsets of

X such that for any compact K ⊂ X there is n such that K ⊂ Kn ;
• X is Hurewicz if for each sequence 〈Un〉 of open covers of X there is a sequence

〈Vn〉 such that Vn is a finite subset of Un for each n ∈ ω and ∪n∈ωVn covers
X (note the alternative definition of Hurewicz, [11]: X is Hurewicz if for each
sequence 〈Un〉 of open covers of X there is a sequence 〈Vn〉 such that Vn is a finite
subset ofUn and for each x ∈ X we have x ∈ ∪Vn for all but finitely many n ∈ ω.
For a manifold these two conditions are equivalent.);

• X is selectively screenable, [1], if for each sequence 〈Un〉 of open covers of X
there is a sequence 〈Vn〉 such that Vn is a family of pairwise disjoint open sets
refining Un for each n ∈ ω and ∪n∈ωVn covers X ;

• X is Polish if X is a separable, complete metric space;
• X is Lašnev if it is the image of a metrisable space under a closed map;
• X is M1 if it has a σ -closure preserving base (i.e. a base B such that there is
a decomposition B = ∪∞

n=1Bn where for each n and each F ⊂ Bn we have
∪F = ∪ {

F̄ / F ∈ F
}
;

• X is stratifiable or M3 if there is a function G which assigns to each n ∈ ω and
closed set A ⊂ X an open set G(n, A) containing A such that A = ∩nG(n, A)

and if A ⊂ B then G(n, A) ⊂ G(n, B);
• X is finitistic (respectively strongly finitistic) if every open cover of X has an open
refinementV and there is an integerm such that each point of X lies in (respectively
has a neighbourhood which meets) at most m members of V (finitistic spaces have
also been called boundedly metacompact and strongly finitistic spaces have also
been called boundedly paracompact);
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• X is a Moore space if it is regular and has a development, i.e. a sequence 〈Un〉 of
open covers such that for each x ∈ X the collection {st (x,Un) : n ∈ ω} forms a
neighbourhood basis at x ;

• X is θ -refinable if every open cover can be refined to an open θ -cover, i.e. a cover
U which can be expressed as ∪n∈ωUn where each Un covers X and for each
x ∈ X there is n such that ord(x,Un) < ω;

• X is subparacompact if every open cover has a σ -discrete closed refinement;
• X is perfectly normal if for every pair A, B of disjoint closed subsets of X there
is a continuous function f : X → R such that f −1(0) = A and f −1(1) = B;

• X is monotonically normal if for each open U ⊂ X and each x ∈ U it is possible
to choose an open set μ(x, U ) such that x ∈ μ(x, U ) ⊂ U and such that if
μ(x, U ) ∩ μ(y, V ) �= ∅ then either x ∈ V or y ∈ U ;

• X is extremely normal if for each open U ⊂ X and each x ∈ U it is possible
to choose an open set ν(x, U ) such that x ∈ ν(x, U ) ⊂ U and such that if
ν(x, U ) ∩ ν(y, V ) �= ∅ and x �= y then either ν(x, U ) ⊂ V or ν(y, V ) ⊂ U ;

• X is weakly normal if for every pair A, B of disjoint closed subsets of X there is
a continuous function f : X → S, for some separable metric space S, such that
f (A) ∩ f (B) = ∅;

• X has a regular Gδ-diagonal if the diagonal Δ is a regular Gδ-subset of X2, i.e.
there is a sequence 〈Un〉 of open subsets of X2 such that Δ = ∩Un = ∩Un ;

• X has a quasi-regular Gδ-diagonal if there is a sequence 〈Un〉 of open subsets of
X2 such that for each (x, y) ∈ X2−Δ there is n with (x, x) ∈ Un but (x, y) /∈ Un ;

• X has a G∗
δ -diagonal if there is a sequence 〈Gn〉 of open covers of X such that for

each x, y ∈ X with x �= y there is n with st(x,Gn) ⊂ X − {y};
• X has a quasi-G∗

δ -diagonal if there is a sequence 〈Gn〉 of families of open subsets of
X such that for each x, y ∈ X with x �= y there is n with x ∈ st(x,Gn) ⊂ X −{y};

• X is submetrisable if there is a metric topology on X which is contained in the
given topology;

• X is jointly metrisable on compacta or a JCM-space [3], provided that there is
some metric d on X such that for each compactum K ⊂ X the restriction of d to
K generates the subspace topology inherited from X ;

• X has the Moving Off Property [31], provided that every familyK of non-empty
compact subsets of X large enough to contain for each compact C ⊂ X a dis-
joint K ∈ K has an infinite subfamily with a discrete open expansion (a family
{Sα / al ∈ I } of subsets of a topological space has a discrete open expansion
provided there is a family {Uα / al ∈ I } of open sets such that Sα ⊂ Uα and
∀x ∈ X, ∃U ⊂ M open such that x ∈ U and U meets at most one of the sets Uα);

• X has property pp, [35], provided that each open cover U of X has an open
refinement V such that for each choice function f : V → X with f (V ) ∈ V for
each V ∈ V the set f (V ) is closed and discrete in X ;

• X is a q-space if each point admits a sequence of neighbourhoods Qn such that
xn ∈ Qn implies that 〈xn〉 clusters;

• X is Fréchet or Fréchet-Urysohn if whenever x ∈ A there is a sequence 〈xn〉 in A
that converges to x ;
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• X is countably tight if for each A ⊂ X and each x ∈ Ā there is a countable B ⊂ A
for which x ∈ B̄;

• X is countably fan tight if whenever x ∈ ∩n∈ω An there are finite sets Bn ⊂ An

such that x ∈ ∪n∈ω Bn ;
• X is countably strongly fan tight if whenever x ∈ ∩n∈ω An there is a sequence 〈an〉
such that an ∈ An for each n and x ∈ {an / n ∈ ω};

• X is analytic if it is the continuous image of a Polish space (equivalently of the
irrational numbers);

• X is sequential if for each A ⊂ X , the set A is closed whenever for each sequence
of points of A each limit point is also in A;

• X is radial [12] provided for any A ⊂ X and any x ∈ Ā, there is a transfinite
sequence 〈xα〉 in A which converges to x ;

• X is weakly α-favourable if there is a winning strategy for player α in the Banach-
Mazur game (defined below);

• X is strongly α-favourable if there is a stationary winning strategy for player α in
the Choquet game (defined below);

• X is pseudocomplete provided that it has a sequence 〈Bn〉 of π -bases
(B ⊂ 2X − {∅} is a π -base if every non-empty open subset of X contains
some member of B) such that if Bn ∈ Bn and Bn+1 ⊂ Bn for each n, then⋂

n∈ω Bn �= ∅;
• X is Baire provided that the intersection of any countable collection of dense Gδ

subsets is dense;
• X is strongly Baire provided that X is regular and there is a dense subset D ⊂ X
such that β does not have a winning strategy in the game GS(D) (defined below)
played on X ;

• X is Volterra [25], provided that the intersection of any two dense Gδ subsets is
dense;

• X is a k-space if A is closed whenever A ∩ K is closed for every compact subset
K ⊂ X ;

• for each x ∈ X the star of x inF is st (x,F ) = ∪{F ∈ F / x ∈ F};
• F is point-star-open if for each x ∈ X the star st (x,F ) is open.

Next we introduce some topological games. Usually a topological game involves
two ‘players’ playing on a topological space X , alternately choosing subsets, perhaps
points, of X and subject to certain rules. Finitely or infinitelymany (even uncountably
many for some games) moves may be allowed and there is a rule to determine which
player wins, if any.

• The Banach-Mazur game has two players α and β whose play alternates. Player β
begins by choosing a non-empty open subset of X . After that the players choose
successive non-empty open subsets of their opponent’s previous move. Player α

wins iff the intersection of the sets is non-empty; otherwise player β wins.
• The Choquet game has two players α and β whose play alternates. Player β begins
by choosing a point in an open subset of X , say x0 ∈ V0 ⊂ X . After that the players
alternate with α choosing an open set Un ⊂ X with xn ∈ Un ⊂ Vn then β chooses
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a point xn+1 and an open set Vn+1 with xn+1 ∈ Vn+1 ⊂ Un . Player α wins iff the
intersection of the sets is non-empty; otherwise player β wins.

• Gruenhage’s game Go
K ,L(X) [30], has, at the nth stage, player K choose a com-

pactum Kn ⊂ X after which player L chooses another compactum Ln ⊂ X so
that Ln ∩ Ki = ∅ for each i ≤ n. Player K wins if 〈Ln〉n∈ω has a discrete open
expansion.

• For a dense subset D ⊂ X the game GS(D) has two players α and β whose
play alternates. Player β begins by choosing a non-empty open subset Vn of X .
After that the players choose successive non-empty open subsets of their oppo-
nent’s previous move, β choosing sets Vn and α choosing sets Un . Player α wins
iff the intersection of the sets is non-empty and each sequence 〈xn〉, for which
xn ∈ Un ∩ D, clusters in X ; otherwise player β wins.

• For an ordinal k and families A and B of collections of subsets of a space X let
Gk

c(A,B) be the game played as follows [4]: at the lth stage of the game, l < k,
Player One chooses a memberAl ∈ A then Player Two chooses a pairwise disjoint
family Tl which refines Al . The play A0,T0, . . . ,Al ,Tl , . . . l < k is won by
Player Two provided that ∪l<kTl ∈ B; otherwise Player One wins. The game
Gω

c (A,B) is denoted by Gc(A,B).
• When players α and β play a topological game, a strategy for α is a function which
tells α what points or sets to select given all the previous points and sets chosen
by β. A stationary strategy for α is a function which tells α what points or sets to
select given only the most recent choice of points and sets chosen by β. A winning
(stationary) strategy for α is a (stationary) strategy which guarantees that α will
win whatever moves β might make.

Closely related to topological games are selection principles. Typically these involve
two families A and B of subsets of some set. The challenge is to find for each
sequence 〈An〉 of members ofA another sequence 〈Bn〉 satisfying certain conditions
such that Bn ⊂ An for each n and

⋃
n∈ω Bn ∈ B.

• For families A and B of subsets of some set consider the selection principles
(cf [8, 42]):

– S1(A,B): for each sequence 〈An〉 of members of A there is a sequence 〈bn〉
such that bn ∈ An for each n and {bn / n ∈ ω} ∈ B;

– S f in(A,B): for each sequence 〈An〉 of members of A there is a sequence 〈Bn〉
of finite sets such that Bn ⊂ An for each n and

⋃
n∈ω Bn ∈ B.

For a topological space X consider the following examples of families A or B:

– O, the family of open covers of X ;
– Λ, the family of large covers of X , i.e. those open covers U for which X /∈ U
and every point of X is contained in infinitely many members of U ;

– Ω , the family of ω-covers of X , i.e. those open covers U for which X /∈ U
and every finite subset of X is contained in some member of U ;

– K, the family of k-covers (see page 22);
– Γ , the family of γ -covers of X , i.e. those infinite open covers U for which

X /∈ U and each point of X belongs to all but finitely many members of U .
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Denote by H (X) the space of homeomorphisms of X with the compact-open
topology.

We will denote by Ck(X, Y ) (respectively C p(X, Y )) the space of all continuous
functions from X to Y with the compact-open topology (respectively the topology of
pointwise convergence). We drop the subscript k or p when we are not interested in
the topology on C(X, Y ) and, when Y = R, denote by C∗(X, R) the set of bounded
continuous functions on X .

Wewill denote by $ the space {0, 1}with the Sierpinski topology {∅, $, {0}}. Then
for any space X we denote by [X, $] the space of continuous functions from X to $
with the upper Kuratowski topology, i.e. that in which a subset F ⊂ [X, $] is open
if and only if

(i) for each f ∈ F and each g ∈ [X, $] if g ≤ f then g ∈ F ;
(ii) if G ⊂ [X, $] is such that inf G ∈ F then there is a finite subfamily G ′ ⊂ G

with inf G ′ ∈ F .

In this definition we are using the usual ordering on {0, 1} when discussing ≤ and
inf. Of course identifying a closed subset of X with its characteristic function gives
a bijective correspondence between [X, $] and the collection of closed subsets of X .
This topology is also variously known as the cocompact topology and the upper Fell
topology, especially when looked at as a topology on the set 2X of non-empty closed
subsets of X . Letting U+ = {

C ∈ 2X / C ⊂ U
}
for U ⊂ X , this topology has

as subbasis
{
U+ / U is open in X and X \ U is compact

}
. The Fell topology [14],

denoted by τfell, has as subbasis

{
U+ / U is open inXand X \ U is compact

} ∪ {U− / U is open in X},

where U− = {
C ∈ 2X / C ∩ U �= ∅

}
.

Following [15] we say that a family Φ ⊂ C(X, R) is generating* for X with
respect to a set M of continuous functions mapping subsets of euclidean space to
euclidean space if each f ∈ C∗(X, R) can be written as a composition of functions
from Φ, M and C(R, R). The set M is called a set of operations.

The notion of microbundle is introduced in [36, p. 54] as a diagram B
i→ E

j→ B
where B and E are topological spaces and i and j are continuous functions such
that j i is the identity map and for each b ∈ B there are open neighbourhoods U of
b and V of i(b) with i(U ) ⊂ V and j (V ) ⊂ U such that there is a homeomorphism
hb : V → U × R

n for some fixed n such that the diagram

U ×R
n

U U

V
i U j V

×0 p1

hb

commutes, where ×0 denotes the map u �→ (u, 0) and p1(u, x) = u. [36, Lemma

2.1] shows that for a manifold M the diagram M
Δ→ M × M

p1→ M is a microbundle,
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called the tangent microbundle, where Δ(x) = (x, x) and p1(x, y) = x . The paper
[36]was followed soon after by [34]; apparently as a resultMicrobundles Part II never
appeared and the theory of microbundles did not develop far. However, as noted in
Theorem 2.1(51) below, Kister’s assumption that his base spaces are paracompact is
vital: the only manifolds to which his result applies for the tangent microbundle are
metrisable.

2.2 Conditions Equivalent to Metrisability

Here we present 119 conditions which are equivalent to metrisability on a manifold
along with an indication of the proofs of the equivalence.

Theorem 2.1 Let Mm be a manifold. Then the following are equivalent:

1. M is metrisable;
2. M is paracompact;
3. M is strongly paracompact;
4. M is screenable;
5. M is metacompact;
6. M is σ -metacompact;
7. M is paraLindelöf;
8. M is σ -paraLindelöf;
9. M is metaLindelöf;

10. M is nearly metaLindelöf;
11. M is Lindelöf;
12. M is linearly Lindelöf;
13. M is ω1-Lindelöf;
14. M is ω1-metaLindelöf;
15. M is nearly linearly ω1-metaLindelöf;
16. M is almost metaLindelöf;
17. M is hereditarily Lindelöf;
18. M is strongly hereditarily Lindelöf;
19. M is k-Lindelöf;
20. M is an ℵ0-space;
21. M is cosmic;
22. M is an ℵ-space;
23. M has a star-countable k-network;
24. M has a point-countable k-network;
25. M has a k-network which is point-countable on some dense subset of M;
26. M is second countable;
27. M is hemicompact;
28. M is σ -compact;
29. M is Hurewicz;
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30. M satisfies the selection criterion S1(K,Γ );
31. Player Two has a winning strategy in the game Gn+1

c (O,O) played on M;
32. Player Two has a winning strategy in the game Gc(O,O) played on M;
33. M is selectively screenable;
34. only countably many coordinate charts are needed to cover M;
35. M may be embedded in some euclidean space;
36. M may be embedded properly in some euclidean space;
37. M is Polish;
38. there is a continuous discrete map f : M → X where X is Hausdorff and

second countable;
39. there is a surjective immersion f : R

m → M;
40. there is a continuous surjection f : R

n → M for some n;
41. there is a continuous surjection f : R

n → M for all n;
42. M is Lašnev;
43. M is an M1-space;
44. M is stratifiable;
45. M is finitistic;
46. M is strongly finitistic;
47. M is star finitistic;
48. there is an open cover U of M such that for each x ∈ M the set st (x,U ) is

homeomorphic to an open subset of R
m;

49. there is a point-star-open cover U of M such that for each x ∈ M the set
st (x,U ) is Lindelöf;

50. there is a point-star-open cover U of M such that for each x ∈ M the set
st (x,U ) is metrisable;

51. the tangent microbundle on M is equivalent to a fibre bundle;
52. M is a normal Moore space;
53. M is a normal θ -refinable space;
54. M is a normal subparacompact space;
55. M is a normal space which has a σ -discrete cover by compact subsets;
56. M × M is perfectly normal;
57. M is a normal space which has a sequence 〈Un〉n∈ω of open covers with

∩nst (x,Un) = {x} for each x ∈ M;
58. M is separable and monotonically normal;
59. M × M is monotonically normal;
60. M is monotonically normal and of dimension ≥ 2 or M ≈ S

1 or R;
61. M is extremely normal;
62. M is perfectly normal and there is a sequence 〈Un〉n∈ω of families of open sets

such that ∩n∈C(x)st (x,Un) = {x} for each x ∈ M, where

C(x) = {n ∈ ω / ∃U ∈ Un with x ∈ U };

63. M is separable and there is a sequence 〈Cn〉n∈ω of point-star-open covers such
that ∩nst (x,Cn) = {x} for each x ∈ M and for each x,y ∈ M and each n ∈ ω

we have y ∈ st (x,Cn) if and only if x ∈ st (y,Cn);
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64. M is separable and there is a sequence 〈Cn〉n∈ω of point-star-open covers such
that ∩nst (x,Cn) = {x} for each x ∈ M and for each x ∈ M and each n ∈ ω,
ord(x,Cn) is finite;

65. M is separable and hereditarily normal and there is a sequence 〈Cn〉n∈ω of
point-star-open covers such that ∩nst (x,Cn) = {x} for each x ∈ M;

66. M is separable and there is a sequence 〈Un〉n∈ω of families of open sets such
that ∩n∈C(x)st (x,Un) = {x} for each x ∈ M, and ord(x,Cn) is countable for
each x ∈ M and each n ∈ ω;

67. M × M has a countable sequence 〈Un : n ∈ ω〉 of open subsets, such that for
all (x, y) ∈ M × M \Δ, there is n ∈ ω such that (x, x) ∈ Un but (x, y) /∈ Un;

68. For every subset A ⊂ M there is a continuous injection f : M → Y , where Y
is a metrisable space, such that f (A) ∩ f (M \ A) = ∅;

69. For every subset A ⊂ M there is a continuous f : M → Y , where Y is a space
with a quasi-regular-Gδ-diagonal, such that f (A) ∩ f (M \ A) = ∅;

70. M is weakly normal with a G∗
δ -diagonal;

71. M has a quasi-G∗
δ -diagonal and for every closed subset A ⊂ M there is a

countable family G of open subsets such that, for every x ∈ A and y ∈ X \ A,
there is a G ∈ G with x ∈ G, y /∈ G;

72. M has a regular Gδ-diagonal;
73. M is submetrisable;
74. M is a JCM-space;
75. M has the Moving Off Property;
76. M has property pp;
77. every open cover of M has an open refinement V such that for every choice

function f : V → M the set f (V ) is closed in M;
78. every open cover of M has an open refinement V such that for every choice

function f : V → M the set f (V ) is discrete in M;
79. M is a point-countable union of open subspaces each of which is metrisable;
80. M has a point-countable basis;
81. M is separable and Mω is a countable union of metrisable subspaces;
82. H (M) is a q-space;
83. H (M) is separable and metrisable;
84. selection principle S1(K,K) holds on M;
85. selection principle S f in(Ω,Ω) holds on M;
86. selection principle S f in(Λ,Λ) holds on M;
87. selection principle S f in(O,O) holds on M;
88. selection principle S f in(K,O) holds on M;
89. Ck(M, R) is Polish;
90. Ck(M, R) is completely metrisable;
91. Ck(M, R) is first countable;
92. Ck(M, R) is second countable;
93. Ck(M, R) is a q-space;
94. Ck(M, R) is Fréchet;
95. Ck(M, R) is countably tight;
96. Ck(M, R) has countable strong fan tightness;
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97. Ck(M, R) is an ℵ0-space;
98. Ck(M, R) is cosmic;
99. Ck(M, R) is analytic;

100. C(M, R) satisfies the selection criterion S1

(
Ωk

0 ,Σ
p
0

)
: for each sequence

〈Fn〉 of subsets of C(M, R) whose compact-open closures contain the constant
function 0 there is a sequence 〈 fn〉, infinitely many members of which are
distinct, with fn ∈ Fn for all n and 〈 fn〉 converges pointwise to 0;

101. C p(M, R) has countable tightness;
102. C p(M, R) has countable fan tightness;
103. C p(M, R) is analytic;
104. C p(M, R) is hereditarily separable;
105. C p(M, R) (equivalently Ck(M, R)) is separable;
106. [M, $] is first countable;
107. [M, $] is countably tight;
108. [M, $] is sequential;
109. (2X , τfell) is metrisable;
110. (2X , τfell) is countably tight;
111. (2X , τfell) is sequential;
112. (2X , τfell) is radial;
113. K has a winning strategy in Gruenhage’s game Go

K ,L(M);
114. Ck(M, R) is strongly α-favourable;
115. Ck(M, R) is weakly α-favourable;
116. Ck(M, R) is pseudocomplete;
117. Ck(M, R) is strongly Baire;
118. Ck(M, R) is Baire;
119. Ck(M, R) is Volterra;
120. M has a countable generating* family with respect to a countable set of

operations.

Proof (Outline) The diagrambelow showshow items 1–34 are related. In the diagram
we use the following notation.

m = metrisable; sc = second countable; shL = strongly hereditarily Lin-

delöf; hL = hereditarily Lindelöf; σc = σ -compact; hc = hemicompact;

H =Hurewicz; SKΓ = satisfiesS1(K, Γ ); cch = countablymanycharts cover;

ℵ0 = ℵ0-space; ℵ = ℵ-space; skn = has a star-countable k-network;

pkn = has a point-countable k-network; npkn = has a k-network which is point-

countable on a dense subset; kL = k-Lindelöf; c = cosmic; L = Lindelöf;

lL = linearly Lindelöf; ω1L = ω1-Lindelöf; spc = strongly paracompact;

pc = paracompact; mc = metacompact; s = screenable; ss = selectively

screenable; pL = paraLindelöf; σmc = σ -metacompact; σpL = σ -para-

Lindelöf; mL = metaLindelöf; amL = almost metaLindelöf; nmL = nearly

metaLindelöf; ω1mL = ω1-metaLindelöf; nlω1mL = nearly linearly
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ω1-metaLindelöf; G(n + 1) = Player Two has a winning strategy in the game

Gn+1
c (O,O); Gω = Player Two has a winning strategy in the game Gc(O,O).

m

pc

mc

σmc

pL

σpL

s

mL

nmL

spc

L

lL

ω1L

ω1mL

nlω1mL

cch

H

hc

σc

Γ

amL

sc

0

c

shL

hL

skn

pkn

npkn

kL

(n+1)

ω

ss

All arrows denote implications. Downward sloping arrows show an implication
which holds in an arbitrary topological space. Upward sloping arrows require one or
more properties of manifolds to realise the implication. mL ⇒ L in every locally

separable and connected space. amL ⇒ L in every regular, locally separable

and connected space, [23]. nmL ⇒ mL in every locally hereditarily separable

space. L ⇒ spc in every T3 space. ω1L ⇒ L in every locally metrisable

space, [2]. L ⇒ sc in every locally second countable space. L ⇒ hc in

every locally compact space. cch ⇒ L (Visser) because a countable union of
Lindelöf sets is Lindelöf. sc ⇒ m in every T3 space (Urysohn’s metrisation
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theorem). m ⇒ G(n + 1) in every space having covering dimension at most n,

[4, Theorem 2.4]. ω1mL ⇒ mL in every locally second countable space, [27].

nlω1mL ⇒ ω1mL in every locally hereditarily separable space, [27].

pkn ⇒ mL in every regular Fréchet space. npkn ⇒ pkn in every regular,
locally compact, locally hereditarily separable space.

By [39, Proposition 7.3.9] we conclude that a metrisable n-manifold, being sep-
arable and of covering dimension n, embeds in R

2n+1, so 1 ⇒ 35. By choosing
a proper continuous real-valued function on M we can add a further coordinate to
embed M in R

2n+2 so that the image is closed, i.e. the embedding is proper, hence
1 ⇒ 36. It is clear that 36 ⇒ 37.

Every second countable Hausdorff space satisfies 38 so 26 ⇒ 38. Conversely,
given the situation of 38, if B is a countable base for the topology on X then the
Poincaré-Volterra Lemma of [16, Lemma 23.2] asserts that

{
U ⊂ M/ U is second countable and

there is V ∈ B such that U is a component of f −1(V )
}

is a countable base for M .
[9, Theorem 1] asserts that 1 ⇒ 39 while 39 ⇒ 40 is trivial. 40 ⇒ 41 because if

R
p → M is a continuous surjection then we can construct a continuous surjection

R → M by use of a Peano curve R → R
p and for any other n we may project R

n

onto R (or go directly to R
p if n > p). The continuous image of a σ -compact space

is σ -compact so 41 ⇒ 28.
Clearly every metrisable space is Lašnev so 1 ⇒ 42. The implication 42 ⇒ 43

is [29, Theorem 5.5]. It is easy to show that 43 ⇒ 44. The implication 44 ⇒ 2 is
[29, Theorem 5.7].

The conditions 1, 45, 46 and 47 are shown to be equivalent in [10].
The equivalence of conditions 1 and 48–51 is established as follows: 1 ⇒ 48

is reasonably straightforward making use of the fact that metrisable manifolds are
σ -compact. Then 48 ⇒ 49 is trivial. 49 ⇒ 50 requires use of Urysohn’s metrisation
theorem to deduce that the Lindelöf stars are metrisable. 50 ⇒ 11 requires some
delicate manoeuvres; see [24]. 51 ⇒ 48 is also found in [24] while 1 ⇒ 51 is
[34, Corollary 2].

The implication 1 ⇒ 52 holds in every topological space while its converse
holds provided that the space is locally compact and locally connected, [40] or [41,
Theorem 3.4]. The equivalence of 52 and 53 comes from [45, Theorem 3], while the
equivalence of 52, 53, 54 and 55 is discussed in [38, Theorem 8.2].

The equivalence of conditions 1, 56 and 57 is referred to briefly in [19]. The
implications 1 ⇒ 56 ⇒ 57 hold in any topological space and the implication
57 ⇒ 1 uses some properties of a manifold.

Every metric space is monotonically normal and every metrisable manifold is
second countable, hence separable, so 1 ⇒ 58. To get the converse implication
58 ⇒ 2 use is made of the fact that every monotonically normal space is
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hereditarily collectionwise normal ([32]), and hence no separable monotonically
normal space contains a copy of ω1. On the other hand in [4, Theorem I] it is shown
that a monotonically normal space is paracompact if and only if it does not contain
a stationary subset of a regular uncountable ordinal.

If M is metrisable, so is M × M , so that M × M is monotonically normal and
hence 1 ⇒ 59. The converse follows from a metrisability result of [32] as manifolds
are locally countably compact.

The criterion 60 is [4, corollary 2.3(e)], except that we have listed all of the
metrisable 1-manifolds.

Every metrisable space is extremely normal. The implication 61 ⇒ 2 is found in
[44].

The equivalence of conditions 1 and 62–65 is discussed in [37].
Proofs of the equivalence of 1 and 66 may be found in [18] and of 1 and 67–71

may be found in [17].
The implication 72 ⇒ 1 holds in every locally compact, locally connected space

([29, Theorem 2.15(b)]) and, as noted in [29, p. 430], every submetrisable space has
a regular Gδ-diagonal so 73 ⇒ 72.

Clearly every metrisable space is a JCM-space so 1 ⇒ 74. On the other hand a
manifold which is a JCM-space is submetrisable and hence 74 ⇒ 73. We give more
details of the proof of this fact because it is not apparently in the literature. Suppose
that the manifold M is a JCM-space, say d is a metric on M whose restriction to
each compact subset of M induces the subspace topology inherited from M . We
claim that d exhibits the submetrisability of M . Suppose that U ⊂ M is open in the
metric space (M, d), and let x ∈ U . Then there is a chart (V, ϕ) on M such that
ϕ(V ) = R

n , where n is the dimension of M , and ϕ(x) = 0. By the JCM property,
U ∩ ϕ−1

(
B

n
)
is open in ϕ−1

(
B

n
)
and hence is a neighbourhood of x in M . Thus U

is a neighbourhood of x in M so U is open in M .
The equivalence of conditions 1, 75 and 118 is discussed in [5].
It is readily shown that every T1-space which is paracompact has property pp.

We now obtain the implication 76 ⇒ 5, again giving more details because the proof
does not appear to be in the literature. Suppose that U is an open cover of M . Use
the property pp to find an open refinement V such that for each choice function
f : V → M with f (V ) ∈ V for each V ∈ V the set f (V ) is closed and discrete.
We will show that V is point-finite. Suppose to the contrary that x ∈ M is such
that {V ∈ V / x ∈ V } is infinite; let 〈Vn〉 be a sequence of distinct members of V
each of which contains x . Because M is a manifold, hence first countable, we may
choose a countable neighbourhood basis {Wn / n ∈ ω} at x . Note that for each n,
Vn ∩ Wn \ {x} �= ∅ as M has no isolated points. Choose a function f : V → M as
follows: if V ∈ V but V �= Vn for each n then choose f (V ) ∈ V − {x} arbitrarily;
if V = Vn choose f (Vn) ∈ Vn ∩ Wn \ {x}. Then x ∈ f (V ) \ f (V ) so that f (V ) is
not closed, contrary to the choice of V . Thus V is point-finite so M is metacompact.

It is easy to show that conditions 77 and 78 are equivalent to each other, and hence
also to 76; cf [20, Lemma 2.3].

Details for the implication 79⇒ 9 appear in [24], while details for the implication
80 ⇒ 1 appear in [13]. Of course 26 ⇒ 80.
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The implication 81 ⇒ 1 is a consequence of the more general result that if the
countable power of a topological space X is a countable unionofmetrisable subspaces
and in X discrete families of open sets are countable then X is metrisable, [28].

The equivalence of 1 and conditions 82 and 83 is shown in [28, Theorem 4.2].
The equivalence of the selection principles 84, 85, 86, 87 and 88 to metrisability

of a manifold is the content of [22, Theorems 1.3 and 1.4].
The equivalence of conditions 1 and 89 to 101, excluding 91, 96 and 100, is

shown in [26]. A number of properties of manifolds are required, including that every
manifold is a q-space and a k-space, and some of the equivalences to metrisability
already proved.

Conditions 91 and 96 are shown to be equivalent to condition 11 in [8, Theorem 6]
using Hausdorffness, local compactness and first countability of manifolds.

In [8, Theorem 15] there is a proof that in a Tychonoff space 30 and 100 are
equivalent.

The equivalence of condition 1 and conditions 109, 110, 111 and 112 is established
in [7, Theorem 3.3].

The implication 1 ⇒ 114 follows from 89 and [33, Theorem 8.17]. 114 ⇒ 115
is trivial. 115 ⇒ 113 is [30, Lemma 4.3]. 113⇒ 2 is [30, Theorem 4.1].

Complete metrisability implies pseudocompleteness in any space and in turn
pseudocompleteness implies α-favourability in a regular space, so 90⇒ 116⇒ 115.

The implications 37 ⇒ 117 and 117 ⇒ 28 are shown in [5, Theorem 2.2].
The equivalence of 118 was already considered above in the context of 75.
Clearly every Baire space is Volterra and the converse holds in any locally convex

topological vector space, [6, Theorem 3.4] so 118 ⇔ 119.
The equivalence of 1 and 120 is contained in [15, Theorem 4], noting for the

implication 1 ⇒ 120 that by 1⇔ 26 every metrisable manifold is secondcountable,
hence separable. �
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