Preface

The concept of a topological manifold has been around since the middle of the
nineteenth century: in his doctoral thesis “Grundlagen fiir eine allgemeine Theorie
der Functionen einer verdnderlichen complexen Grosse” of 1851, Bernhard Rie-
mann introduced what he called “Mannigfaltigkeit,” translated into English as
“manifold.” He discussed the concept further in his famous 1854 inaugural lecture
Ueber die Hypothesen, welche der Geometrie zu Grunde liegen.

In those early days topological concepts were still being developed, especially
around cardinality and infinite sets so such concepts as second countability would
only be vague notions if thought of at all. In the early 1880s, Georg Cantor broke
significant new ground in his rigorous discussion of cardinality and he surely intro-
duced the first non-metrisable manifold, the long ray, in his 1883 paper Ueber un-
endliche lineare Punktmannichfaltigkeiten, Mathematische Annalen 21 pp 545-586.

While connected manifolds of dimension 1 and compact manifolds (surfaces) of
dimension 2 were well understood by the end of the nineteenth century, manifold
theory as a legitimate area of study really got off the ground with Henri Poincaré’s
conjectured homological characterisation of the 3-sphere in 1900. Of course Po-
incaré himself provided a counterexample to his original conjecture, but he tight-
ened his conjecture by assuming a homotopy condition and kept mathematicians
very busy studying compact manifolds in all dimensions for the next 100 years.

Non-metrisable manifolds did not get so much attention during the first half of
the twentieth century, though new examples, such as the Priifer manifold, were
discovered. With the discovery that the Continuum Hypothesis is independent of
the usual axioms of Set Theory in the early 1960s, those interested in non-metri-
sable manifolds began to realise that Set Theory provided not only an impediment
but also another tool in the study of non-metrisable manifolds. This was cemented
into place by the theorem of Mary Ellen Rudin that perfectly normal manifolds are
metrisable in certain Set Theories and the counterexample to this theorem described
by Rudin and Phillip Zenor; both in the 1970s.

Following on from the work of Rudin and Rudin/Zenor, Set Theoretic Topology
really took off and the use of Set Theory as a further tool in the study of non-
metrisable manifolds has been shown to be invaluable.
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Prior to the 1970s, topologists had thought about non-metrisable manifolds, even
if they were only to dismiss them. Most books on topology will at least mention the
long line as a useful counterexample to a number of propositions. In his 1969 MIT
Lecture Notes, found at http://www.foliations.org/surveys/FoliationLectNotes_
Milnor.pdf, John W. Milnor had this to say on page seven when introducing a
codimension one foliation of a 3-manifold in which there is only one leaf:

The main object of this exercise is to imbue the reader with a suitable respect for non-
paracompact’ manifolds.

Later, in 1976, Morris W. Hirsch on page 32 of his book “Differential Topology,”
had this to say to justify his convention to restrict his attention to paracompact
manifolds:

Manifolds that are not paracompact are amusing, but they never occur naturally. What is
perhaps worse, it is difficult to prove anything about them.

In a very brief discussion of manifolds, at Weisstein, Eric W. “Topological
Manifold.” From MathWorld—A Wolfram Web Resource. http://mathworld.
wolfram.com/TopologicalManifold.html there is this comment about non-metrisa-
ble manifolds:

Nonparacompact manifolds are of little use in mathematics. ..

In Appendix A to volume 1 of his “A comprehensive introduction to Differential
Geometry,” Michael Spivak devotes almost 20 pages to a study of the long line and
the Priifer manifold and some of their properties (including construction of a dif-
ferential structure on the former). By 1984, sufficient theory had been developed for
Peter Nyikos to write a 50-page chapter entitled “Non-metrizable manifolds” for the
Handbook of Set-Theoretic Topology in which he included his structure theorem
(the “Bagpipe Theorem”) for a natural non-metrisable generalisation of compact
surfaces, as well as many other interesting results and examples.

Perhaps what delayed the study of non-metrisable manifolds is the need for two
main tools in their study. Whereas much of the success resulting in the tremendous
strides in the study of metrisable manifolds was the application of Algebraic
Topology, that tool on its own seems to be inadequate for non-metrisable mani-
folds. The second important tool (indeed, it seems currently to be of more use than
Algebraic Topology) is Set Theory but the realisation of its importance did not
really come until the 1970s.

In this book, like Spivak and Nyikos, we prefer to follow Milnor’s philosophy.
Non-metrisable manifolds are interesting and you can prove things about them.
Mostly, we do not use Set Theory seriously but do make use especially of prop-
erties of the countable ordinals. This book also shows bias towards the study of
non-metrisable manifolds undertaken by the author and his students at Auckland as
well as collaborators in the Northern Hemisphere. It is aimed at an audience of

' As we shall see in Chap. 2, paracompactness and metrisability are equivalent for Hausdorff
manifolds.


http://www.foliations.org/surveys/FoliationLectNotes_Milnor.pdf
http://www.foliations.org/surveys/FoliationLectNotes_Milnor.pdf
http://mathworld.wolfram.com/TopologicalManifold.html
http://mathworld.wolfram.com/TopologicalManifold.html
http://dx.doi.org/10.1007/978-981-287-257-9_2

Preface ix

people who have perhaps encountered manifolds as topological objects and are
curious about what happens beyond the wall of metrisability.

Chapter 1 introduces manifolds and presents some standard constructions of
non-metrisable manifolds, especially of Priifer, Moore and Nyikos. We also discuss
some basic properties of the long line.

Chapter 2 explores the frontier between metrisable and non-metrisable mani-
folds. Not surprisingly, when we confine our attention to manifolds many topo-
logical properties which are distinct in wider contexts coincide. At one extreme, if a
manifold is metrisable (and connected) then it embeds properly in some euclidean
space. At the other extreme, a very weak form of paracompactness called linear w;-
metalindel6fness is sufficient to ensure metrisability. In the 1960s, Milnor intro-
duced the concept of a microbundle but the theory came to a halt when James Kister
showed that microbundles are fibre bundles; we include in this chapter the result
that Kister’s equivalence holds precisely when the underlying manifold is metri-
sable. We also relate metrisability to properties of function spaces on the manifold
and topological games played on the manifold or its function spaces.

Chapter 3 brings together some useful geometric tools which are also of use for
those working in metrisable manifolds: Morton Brown’s result that a countable
union of open n-cells is an open n-cell and his collaring theorem; and a brief
discussion of handlebodies.

Chapter 4 looks at a large class of manifolds called Type I by Nyikos in his 1984
chapter before specialising to his Bagpipe Theorem: that every w-bounded surface
is made up of a standard compact surface with boundary (the bag) together with
finitely many long pipes. The w-bounded property is equivalent to compactness in a
metric space so w-bounded surfaces might be seen as a natural extension of
compact surfaces to the non-metrisable context. While our proof follows Nyikos’s
proof loosely our use of handlebodies and homology theory does open up the
possibility of its generalisation to higher dimensions. We complete the chapter by
showing that there are 2% many such surfaces, which contrasts with the compact
case where there are only countably many.

Chapter 5 looks at dynamics on non-metrisable manifolds, especially discrete
dynamics, i.e., homeomorphisms. Emphasis is on homeomorphisms of powers of
the long line where there is a significant contrast with powers of the real line. The
diagonals y = £x in the long plane form significant barriers to the behaviour of a
homeomorphism of the long plane, with similar constraints being imposed in higher
dimensions. Perhaps also surprising is the fact that any homeomorphism of the long
plane maps arbitrarily large squares to themselves, again with similar results in
higher dimensions. As a result we can classify homeomorphisms of powers of the
long plane up to isotopy.

Chapter 6 addresses the question, dating back to the 1930s, whether perfectly
normal manifolds need be metrisable. We give details of the construction of the
Rudin-Zenor surface mentioned above: it is a perfectly normal, non-metrisable
surface and requires the Continuum Hypothesis for its construction. We also present
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Rudin’s proof that perfectly normal manifolds are metrisable when one assumes
Martin’s Axiom and the negation of the Continuum Hypothesis.

Chapter 7 looks at differential structures, especially on the long line and the long
plane. As already noted, Spivak explored differential structures on the long line in
one of his books introducing Differential Geometry. Nyikos took this a lot further
with a long paper looking at various ways of constructing differential structures on
the long line. While we do not give all of the details we do discuss Nyikos’s result
that there are 2% many mutually non-diffeomorphic differential structures on the
long line. The chapter also describes exotic differential structures on the long plane,
and again there are 2% many of them. Exotic differential structures were first
described by Milnor, on the 7-sphere. More recently exotic differential structures
were described by Donaldson, Freedman, Kirby et al. on R*. Since metrisable
manifolds of dimension at most three carry essentially unique differential structures
there can be no exotic structures on metrisable manifolds of dimension at most
three.

Chapter 8 looks at foliations in the non-metrisable context. We exhibit a
2-dimensional foliation of a 3-manifold which has only a single leaf, something
which is impossible when we confine our attention to metrisable manifolds, or, as
we show, when the leaves are 1-dimensional. However, most of Chap. 8 is in the
context of the long plane. As for homeomorphisms of the long plane, the diagonals
y = £x form significant barriers. Whereas the real plane carries infinitely many
distinct foliations, the long plane carries only two, or six if we puncture the long
plane.

In Chap. 9 we relax the hypothesis that our manifolds must be Hausdorff. Here I
would agree with Hirsch that it is hard to prove anything about them. Indeed,
whereas in dimension 1 there are only four connected 1-manifolds, relax the
Hausdorff condition and there is no limit. We discuss some possibilities. Hausdorff
manifolds are homogeneous in the sense that for any two points there is a
homeomorphism sending one point to the other (and even interchanging them if the
dimension is at least two), but we exhibit a non-Hausdorff 1-manifold which is rigid
in the sense that the only self-homeomorphism is the identity. There is a close
connection between non-Hausdorff 1-manifolds and foliations of the plane. Our
rigid 1-manifold leads to the description of a 1-dimensional foliation of the plane
which is rigid in the sense that any homeomorphism which respects the foliation
maps each leaf to itself.

The book is rounded out with two appendices, one giving an overview of the
topological background assumed and the other some Set Theory.

There are many people I should thank for this work. First off must be the Set-
Theoretic topologist supreme, the late Professor Mary Ellen Rudin. I was only
vaguely aware of what was going on in the area until she visited Auckland during
the winter of 1988 and gave very inspiring and stimulating lectures on Set Theory
and manifolds. Later, she welcomed me to Madison and introduced me to my first
research problem in the area. Peter Nyikos of the University of South Carolina has
also been a helpful stimulus, during many visits to Auckland as well as welcoming
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me to Columbia. Those who have listened to my talks at conferences and seminars
in various locations and have offered valuable criticism also deserve my thanks.
Much of the work on foliations was undertaken in Geneva and I thank Mathieu
Baillif and Alexandre Gabard for their kindness as hosts as well as the stimulating
conversations. Satya Deo welcomed me to India, as well as visiting me in Auckland
and I thank him for our interesting discussions. Locally, I want to thank especially
my colleague and former Ph.D. student Sina Greenwood as well as my other
Ph.D. students who have been involved in aspects of this work, including Abdul
Mohamad, Sunanda Dikshit, and Afshin Mardani.

In addition to support from the University of Auckland I want to acknowledge
the Marsden Fund of the Royal Society of New Zealand and the New Zealand
Institute of Mathematics and its Applications for financial support for some parts of
the work undertaken.

Last, but not least, I thank my wife Rachel for the support, both moral and
intellectual (such as listening attentively to my attempts to verbalise ideas as we
tramped along mountain tracks or streams), she has given me during the long
drawn-out writing of this book.

Kohimarama, June 2014 David Gauld
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