Probabilistic Modeling and Statistical
Characteristics of Aggregate Wind Power

H. Louie and J. M. Sloughter

Abstract The stochasticity of the electrical power output by wind turbines poses
special challenges to power system operation and planning. Increasing penetration
levels of wind and other weather-driven renewable resources exacerbate the
uncertainty and variability that must be managed. This chapter focuses on the
probabilistic modeling and statistical characteristics of aggregated wind power in
large electrical systems. The mathematical framework for probabilistic models—
accounting for geographic diversity and the smoothing effect—is developed, and
the selection and application of parametric models is discussed. Statistical char-
acteristics from several real systems with high levels of wind power penetration
are provided and analyzed.

Keywords Copulas - Correlation - Geographic diversity - Smoothing effect -
Wind generators + Wind power modeling

1 Introduction

Wind turbines are classified as weather-driven renewable resources due to the
dependency of their power output on local meteorological conditions [1]. These
conditions are inherently transient and often erratic. Consequently, the power
output by wind turbines—hereafter also simply referred to as “wind power”—is
appropriately characterized as being variable and uncertain. Variability refers to
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the unintentional tendency for wind power to change—perhaps rapidly—from one
moment to the next, whereas uncertainty refers to the wide range of unknown
future values of wind power.

The stochasticity of wind power is a concern for system operators, as the legacy
electric grid was designed to be operated with primarily deterministic sources
[2, 3]. Although stochastic, wind power often exhibits identifiable patterns and
quantifiable statistical distributions, which can be modeled and exploited to better
manage the system. These models, whether mathematically formalized or tacitly
understood, have applications in several areas, including wind power forecast
systems, stochastic unit-commitment programs, risk analysis, and Monte Carlo-
based simulations for resource planning and research [4-6].

This chapter focuses on the aggregate system-wide wind power, rather than the
wind power from individual wind plants or turbines. We are motivated to take this
macro-level view because for many system operators it is the aggregate—not
individual—wind power that is of utmost concern. Our goal is to identify and
develop probabilistic models of aggregate wind power and analyze its statistical
characteristics. More specifically, we use parametric distributions—probability
density functions (pdf) and cumulative distribution functions (cdf)—to model the
instantaneous and moment-to-moment variations of aggregate wind power.

The remainder of this chapter is organized as follows. Section 2 describes the
general characteristics of aggregate wind power. Section 3 formulates an idealized
probabilistic model of wind power output from an individual wind plant. Aspects
of geographic diversity including correlation, dependency structures, and practical
considerations are discussed in Sect. 4, leading to probabilistic models for
instantaneous and moment-to-moment wind power variation in Sect. 5. Aggregate
wind power data from four large systems are analyzed and discussed in Sect. 6.
The concluding remarks are given in Sect. 7.

2 General Characteristics of Aggregate Wind Power

Aggregate wind power is defined as the sum of the real power delivered by all
wind plants in a system as measured at their point of interconnection with the grid.
We are concerned with both the instantaneous and moment-to-moment variations
of aggregate wind power. The statistical characteristics of instantaneous aggregate
wind power provide information about the uncertainty, whereas the statistical
characteristics of moment-to-moment variation of aggregate wind power provide
information about the variability. Rather than formulating models in the power
domain, it is more useful to do so in the normalized power domain. This facilitates
easier comparison and allows the models to be scaled to the desired capacity level,
increasing their applicability. The units in the normalized power domain are per-
unit (p.u.), where the normalization is done with respect to the total capacity of the
wind plants in the system.
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The characteristics of aggregate wind power are derived from—but different
than—the characteristics of wind power from individual wind plants. Aggregate
wind power is strongly influenced by the geographic diversity of the wind plants in
the system. Geographic diversity is a term describing the tendency for wind plants
in different wind regimes and separated by large distances to exhibit low corre-
lation in their instantaneous wind power and moment-to-moment variations.

Many aspects of geographic diversity have been widely explored in the liter-
ature [7-21]. All other things being equal, a system with high geographic diversity
has lower variability and uncertainty than one with low geographic diversity. The
reduction of variability caused by geographic diversity is also known as the
smoothing effect. The benefits of high geographic diversity include less frequent
occurrences of extremely high and low power output; less frequent ramp events;
and improved accuracy of wind power forecasts. The results are greater economy
and reliability, decreased reserve requirements, and more efficient commit-
ment and dispatch of generators [22].

2.1 Uncertainty of Aggregate Wind Power

We first consider the uncertainty characteristics of aggregate wind power. The
definition of uncertainty can be subjective, with several appropriate interpretations
possible, depending on the application or situation. For example, a system operator
may be concerned about the probability of extremely high or low aggregate wind
power. In this case uncertainty is best measured using quantiles. Another operator
may be interested in the general spread of potential values of aggregate wind
power, in which case the standard deviation is an appropriate measure. Rather than
strictly defining uncertainty, our approach is to recognize that the uncertainty
information of aggregate wind power is contained in its probability density
function, from which the quantiles, standard deviation, and other metrics of
uncertainty can be measured or computed.

The shape of the probability density function can be approximated by con-
structing an empirical histogram of instantaneous aggregate wind power. Figure la
shows a typical histogram of wind power from an individual wind plant and is
provided for comparison purposes. Figure 1b—d shows aggregate wind power from
three large systems. We will discuss the specific details of these systems and others
in greater detail in Sect. 6. For now it suffices to know that each system has over
4 GW of installed wind capacity—a considerable amount. The computed standard
deviation is provided with each plot. From inspection of Fig. 1, we make two
important observations: (1) the modality of the wind power from an individual
wind plant is different from that of wind power aggregated across a large system,
and (2) different systems exhibit different uncertainty characteristics.

By most measures, the system corresponding to Fig. 1b has higher uncertainty
than other systems. The standard deviation is greater than in other systems, and
there are more frequent occurrences of zero and near rated (1.0 p.u.) power
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Fig. 1 Histograms of normalized wind power from an individual wind plant (a), and from large
systems (b—d) with standard deviation displayed. a Single wind plant, b Lower diversity,
¢ Medium diversity and d Higher diversity

production. These characteristics are similar to those of the individual wind plant,
and as such the system can be described as having low geographic diversity. The
wind plants in systems with low geographic diversity are often in close proxim-
ity—perhaps separated by 200 km or less—and are in the same or similar wind
regime. The Bonneville Power Administration (BPA) is an example of a system
with low geographic diversity.

The system corresponding to Fig. 1c exhibits less uncertainty than Fig. 1b. The
standard deviation and occurrences of low output are reduced, and the maximum
power output rarely exceeds 0.75 p.u. Figure 1d exhibits the lowest uncertainty of
the systems, which is characteristic of a system with appreciable geographic
diversity. Episodes of extremely low and high production are rare, and the standard
deviation is lower than the others. Systems with this level of geographic diversity
tend to have wind plants spread over very large territories. The Midwest ISO
(MISO) and PIM systems are examples of systems with higher geographic
diversity.

It is evident that there is no proto-typical histogram or probability density
function of instantaneous aggregate wind power, and so the uncertainty will vary
depending on system specifics—mainly the level of geographic diversity. Our
approach, therefore, is to seek a flexible multi-parametric model capable of rep-
resenting the commonly exhibited probability density function shapes by systems
with various levels of geographic diversity.
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Fig. 2 Normalized hourly variability in wind power from an individual wind plant (a) and
a large system (b) over the course of 1 year

2.2 Variability of Aggregate Wind Power

Instantaneous wind power values provide us with information on uncertainty, but
we are also interested in wind power variability. The variability of wind power is
examined through the statistical characteristics of wind power variation. Wind
power variation is defined as the difference in instantaneous wind power at two
points in time, usually 1 h: AP[t] = P[t] — P[t — ¢q] where AP is the variation of
wind power, ¢ is the time, and ¢ is the variation period. Similar to our approach
with uncertainty, the variability of aggregate wind power is assessed by consid-
ering the probability density function of AP, as well as its statistical characteristics
such as standard deviation and quantiles. We will see that variability in aggregate
wind power is strongly influenced by geographic diversity.

Figure 2 shows typical normalized hour-to-hour wind power variation in an
individual wind plant (a) and system (b) over a period of 1 year. Note that for
clarity the ordinate is logarithmically scaled. The trace for the individual wind
plant is much broader than for the system aggregate, indicating more frequent
extreme variability. Aggregation, therefore, tends to smooth wind power vari-
ability. In Fig. 2a, b, the nearly linear decrease in occurrences on the logarith-
mically scaled ordinate suggests that an appropriate parametric model will have an
exponential form. The slope of the decrease is influenced by the geographic
diversity of the system, as well as the variation period, with shorter periods having
steeper slopes.

In the above we have briefly described typical uncertainty and variability
characteristics of aggregate wind power. These characteristics depend on the
geographic diversity in a system, as well as the characteristics of the constituent
individual wind plants. Therefore in order to thoughtfully propose aggregate wind
power models, we must begin by modeling individual wind plants and then
establishing the mathematical framework for geographic diversity’s effect on
uncertainty and variability.
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3 Individual Wind Plant Model

The characteristics of aggregate wind power—especially at low levels of geo-
graphic diversity—depend on the characteristics of the system’s constituent wind
plants. We first derive an analytic model of wind plant power output under ide-
alized conditions: that the wind speed follows a parametric probability density
function and the energy conversion process is deterministic, among other
assumptions. We conclude the section by considering non-idealities in wind plant
power production.

The power delivered by a wind plant P; is the sum of the real power produced
by its constituent wind turbines, less collector system losses:

M
PiZZPWTA,j—PL,i (1)
=

where M is the number of wind turbines in the wind plant, Py ; is the real power
generated by the jth wind turbine and Py ; is the ith wind plant’s collector system
losses at the current operating state.

Although (1) appears straightforward, wind turbines are nonlinear energy
conversion devices whose power output is primarily dependent on wind speed,
which is a random variable. This implies that P; will be stochastic, and that a
probabilistic model of P; can be derived by transforming the probability density
function of the wind speed.

3.1 Probabilistic Wind Speed Model

Let v be a random variable representing the wind speed at a certain wind turbine
with corresponding probability density function f,(v). The presence of the tilde
indicates that the variable is random. We can approximate f,(v) by the repeated
independent sampling of v. These samples can be binned into a histogram and
scaled to approximate f, (V). Two typical, yet specific, scaled histograms of wind
speed are shown in Fig. 3.

Although histograms are helpful visual approximations of probability density
functions, it is often desirable to represent them using a parametric function. Let
£,(¥,8) be the model of f,(v) with parameters arranged in the vector @. For the
sake of brevity, we will suppress @ in all distributions hereafter, so that, for
example, f, (V) represents the parametric model of f, (7).

Returning to Fig. 3, we see that each histogram is asymmetric with a distinctly
positive skewness, indicating that high wind speeds are less frequent than low
wind speeds. These characteristics can be modeled using the three-parameter
Generalized Gamma distribution [23]. However, estimating the parameters of this
distribution can be difficult. Instead, the two-parameter Weibull distribution, which
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Fig. 3 Histograms of wind speed from two locations with fit Weibull probability density
functions. a wind speed distribution for location 1, b wind speed distribution for location 2

is a special case of the Generalized Gamma distribution, is commonly used. The
Weibull probability density function [24] is

<! <

H() = {% (%)k*})e—(a/;,)" ;g (2)
where k and A are the shape and scale parameters, respectively. The parameters can be
estimated from sampled data using the maximum likelihood estimation (MLE)
method or the method of moments, though for the Weibull distribution these methods
can be mathematically cumbersome [25, 26]. Examples of Weibull distributions with
parameters estimated using MLE are shown as the solid traces in Fig. 3. In each case,
the parametric function is a reasonable approximation to the data.

The two-parameter Weibull model can often be simplified to a single parameter
model without appreciably sacrificing accuracy. For locations with wind regimes
suitable for wind plant development, the estimated shape parameter of the Weibull
distribution is often near 2.0. Therefore, the Weibull distribution can be reduced to
the Rayleigh distribution [24]. A useful feature of the Rayleigh distribution is that
its parameter can be estimated with the method of moments using only the mean of
the wind speed, which is sometimes the only quantity available.

3.2 Idealized Wind Turbine Power Curve

We next examine the effect of the wind turbine in shaping the wind power
probability density function. Wind turbines convert a portion of the kinetic energy
into a mass of moving air to electrical energy by way of electric generator. The
electrical power output by a wind turbine is computed from:

~ 1
PWT = ECpApf/S (3)
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where C;, is the dimensionless power coefficient, A is the area swept by the rotor
blades in m?, and p and 7 are the density and velocity of the air mass incident to the
wind turbine, in kg/m3 and m/s, respectively [27]. The power coefficient represents
the overall efficiency of the energy conversion process, which depends on turbine
design and operating state. If a constant C,, can be maintained, then the wind speed
and wind power are cubically related. Under low or high wind speed conditions the
wind turbine is operated such that C, is zero, for reasons discussed later. Although
(3) is useful, a more common and illustrative way to show the relationship between
wind speed and wind turbine power output is with the power curve.

A power curve deterministically maps each wind speed to the corresponding
power output of a wind turbine. An example of an idealized power curve is shown
in Fig. 4. In general, there are four regions of operation.

3.2.1 Below Cut-in Wind Speed (v <v;)

At low wind speeds no electrical power is produced and C, is zero. The power in
the wind is not enough to either overcome the friction of the drivetrain, or to result
in positive net power production. The threshold wind speed at which power
generation begins is known as the cut-in wind speed (v).

3.2.2 Between Cut-in and Rated Wind Speed (v <v<v,)

When the wind speed is between the cut-in and rated wind speed (v,), the wind
turbine generates power. In this region, the turbine is designed or controlled to
maximize C,, and a nearly cubic wind speed-turbine power relationship is
observed. This relationship can be approximated as

PWT = av3 — bPr (4)

where a and b are coefficients and P, is the rated power of the wind turbine [27].
The coefficients can be determined by enforcing P, = av? — bP, and 0 =
avy, — bP, and then numerically solving the resulting set of equations.
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3.2.3 Between Rated and Cut-out Wind Speed (v, <v<v,)

At wind speeds above rated and below cut-out (v.,), the wind turbine is controlled
to maintain constant power production. As the wind speed increases over this
region constant power is maintained by reducing C, through active pitch control or
passive stall design.

3.2.4 At and Above Cut-out Wind Speed (v, <v)

At excessively high wind speeds, the wind turbine is in danger of mechanical
failure. The turbine is aerodynamically slowed and stopped, and then mechanically
locked into place to prevent rotation. C, is zero over this region.

The effect of the varying power coefficient can be implicitly accounted for by
expressing (3) as the piecewise function Pwrt = g(v), where g(v):

0 V<V
3
. ) av’ —=bP. v <v<w
Pwr = g(v) = P, Py < V< Ve (5)
0 Veo SV

As previously mentioned, the power curve in Fig. 4 and expressed as (5) are
idealized. Most utility-scale wind turbine manufacturers develop the power curve
for a particular wind turbine model under carefully controlled conditions according
to accepted standards [28]. Field performance of wind turbines can be inconsistent
and appreciably differ from the manufacturer-supplied power curve. These non-
idealities are discussed in detail in Sect. 3.4.

3.3 Idealized Wind Plant Model

A basic model of power from a wind plant is
P; = MPyr = Mg () (6)

where P; is the total real power from the M wind turbines of wind plant i. This
model makes several assumptions, such as all wind turbines experience the same
wind speed and have the same power curve. We will discuss the reasonableness of
these assumptions in Sect. 3.4. However, for the following, we will assume that (6)
holds. Since P; is a random variable, we can characterize it with a probability
density function or cumulative distribution function (cdf).

Let the cdf of the wind speed be F,(¥) and let the cdf of the wind power from
the wind plant be Fp(P;). The cdf of the power from the wind plant is the
piecewise function:
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Fy(vei) +1 = Fu(veo) Pi=0
Fo(P) = Fu(s7 (Pifyg) ) + 1= Fulvee) O<Pyi<MP, (7)
1 P; = MP,

where g~ '(Pwr) is the inverse power curve.
We can see that this gives us the following probabilities:

Pr{P; =0} = F,(vsi) + 1 — F,(veo)
Pr{0<P,<MP,} = F,(v;) — F,(vei) (8)
Pr{P; = MP,} = F,(veo) — F,(v)

As there is a measurable probability of wind power being exactly equal to either
0 or MP,, we do not have a purely continuous distribution function. We instead
have a mixed discrete/continuous distribution function.

Our pdf for wind power, then, will need to use the Dirac delta function J(-) to
address the probabilities of wind power being exactly equal to either O or MP,. For
all other values of wind power, we can calculate the pdf using the traditional
change-of-variables method. Using (5), the inverse power curve for the region
between 0 and MP, is

13
Pwr + bP,
L) (9)

v=2g ' (Pwr) = <

a

The corresponding probability density function of wind power for this region is
found by taking the derivative of (7) with respect to P; so that:

fo(P) = dFp(P;) dFV(g—l(i’i/M)) Fu(s ( ))'dg—l(P[/M>

dpP; dpP; dg- (P /M> dP;
Ry % (Pm)
v dp;

(10)

We note that

dg D s just the pdf of the wind speed f,(7) evaluated at v =

g ! (Pi/M) and that

. 23
) Piiropr
dg71 (P,/M) _ a
_ (11)
dPi 3aM

For the specific case of a Weibull wind speed distribution (10) becomes:
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P, —28
) . BaM)\ /mM+bPr
oy [ () ) e -
wB) =17\ ‘ 3aM (12)

We now have closed-form algebraic expressions for the probability density
function of wind power when 0 <13,< <MP,.

Applying (6), the idealized individual wind plant model for a Weibull distri-
bution of wind speed is therefore:

P, —28
. [N IM+bPr
e (e (Pim) —(‘ (P )) a
fp(Pi) - 7 A ¢ 3aM

+ (Fy(vei) +1 = Fy(veo))3(P;) + (Fu(veo) — Fu(v,))8(P; — MP,)
(13)

For 0 < P; <MP,, and 0 everywhere else. For a Rayleigh distribution of wind
speed:

P, A
) e /M+bPr
) ¢! (P’/M) <R (212/ ) > a
we)=| (=5 ) s

+ (Fy(vei) +1 = Fy(veo))3(P;) + (Fu(veo) — Fu(v,))8(P; — MP,)
(14)

again for 0 < P; <MP,, and 0 everywhere else.

The models of individual wind plant power output in (13) and (14) were ana-
lytically derived and are dependent only on a small number of wind speed and
power curve parameters. Figure 5 shows an example of the pdf and cdf of a wind
plant. We note that the pdf shown is similar in appearance to that of Fig. 1a, which
is reassuring. However, there are differences, particularly near rated power. Our
analytic model overestimates the probability of rated power production from the
wind plant. This discrepancy is an artifact of the idealized assumptions implied by
(6). Despite the differences the derived model has utility—it serves as a reasonable
starting point in the absence of additional data, and it allows for further analytic
manipulation, as we will see later.
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Fig. 5 Analytic pdf (a) and cdf (b) of wind power from an individual wind plant with power
curve in Fig. 4 and a Rayleigh distribution of wind speed with scale parameter 2 = 5

3.4 Non-idealized Wind Plant Modeling

The derived probability density functions in (14) and (15) are idealized models of
wind power under several assumptions implied by (6), including:

. the collector system is lossless;

. all wind turbines are in service;

. the power curves are deterministic for each wind turbine;

. the wind speed and air density are the same at each wind turbine.

AW N =

The first and second assumptions allow the wind plant to reach 100 % rated
output. However, collector system losses are nonzero—usually between 1 and 5 %
[29]—and wind turbines are routinely taken out of service due to scheduled
maintenance or malfunction. A typical wind turbine requires regularly scheduled
maintenance at 6 month intervals, although online condition monitoring may yield
more optimal schedules [30]. Maintenance and malfunction-related outages can
last several hours or longer, with offshore wind turbines generally requiring longer
outages. For these reasons, a large wind plant may have one or more wind turbines
out of service at any given time. Although rated power is not achieved, occur-
rences of near rated power may be common, as shown in Fig. la.

The third assumption, while greatly simplifying the model, is not substantiated
by empirical data. Even after correcting for air density, power production strays
from the manufacturer-supplied power curve for several reasons, including:
dependency of power output on wind direction; forced curtailment; wind shear and
turbulence; manufacturing and installation defects; efficiency degradation over
time; and internal power consumption for control systems, lighting, pumps, and
other functions. These effects are illustrated by an empirical power curve. An
empirical power curve is constructed by plotting repeated in situ simultaneous
measurements of wind speed and wind power, as shown in Fig. 6. It is clear from
this figure that the idealized power curve model in (5) does not capture the true
in situ relationship between wind speed and wind power.
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The fourth assumption implied by (6) is naive, though often used. In reality,
wind turbines can be separated by several kilometres and installed in varying
terrain. The wind turbines almost never simultaneously experience the same wind
speed. In other words, there is geographic diversity within each wind plant that
must be accounted for. Over the years, several approaches to more realistically
account for non-idealities in power curves have been proposed [32-34]. Some
involve creating sub-groups of wind turbines, where each sub-group has its own
wind speed. Other methods involve creating data-driven wind plant power curves
using statistical methods. Provided they are well-defined, wind plant power curves
can be used in place of (5) to analytically derive a probabilistic model of wind
power using the same steps detailed in Sect. 3.3.

To summarize our progress, we started by identifying suitable parametric
probabilistic models of wind speed: Rayleigh or Weibull. We then developed pdfs
and cdfs for individual wind plant power output by transforming the wind speed
models using an idealized power curve, as in (13) and (14). This method can be
used to account for non-idealities using a wind plant power curve if desired. We
are now poised to consider the aggregate power production from a fleet of wind
plants in a common system. To do this, we must model the correlation and
dependency of wind power among the wind plants. In other words, we must model
the geographic diversity.

4 Geographic Diversity

The most important influencer of the uncertainty and variability of aggregate wind
power is the geographic diversity of the system. A system’s geographic diversity is
a reference to the general level of dependence between the wind power from its
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constituent wind plants. Dependence is often quantified using a correlation coef-
ficient, with lower correlation generally resulting in decreased uncertainty and
variability. The goal of this section is to formulate the mathematic basis for this
phenomenon, discuss factors influencing correlation and dependency, as well as to
comment on practical considerations.

4.1 Theoretical Basis

Aggregate wind power can mathematically be represented as

N 1 NP
Pagg:NZE (15)

where i’agg is the normalized aggregate wind power, N is the number of wind
plants considered, and C; and P; are the capacity and real power delivered by the
ith wind plant.

Hereafter, subscripts are used to associate a variable with a specific wind plant,
so that x,, pertains to the nth wind plant. We start with the idealized assumption
that the wind speed at each wind plant v, ..., vy are independent random vari-
ables. Consequently, 131, .. .,PN will also be independent random variables, and
are therefore uncorrelated.

As a result of the assumption of independence, the probability distribution of
the aggregate power output is found through convolution and change-of-variables:

fPagg (i)agg) = (NZ Ci)fP| (i)l) * - % fpy, (i)N) (16)
i=1

where * is the convolution operator.
By the Central Limit Theorem, as N increases fp,, (Pag) Will approach the
Gaussian distribution so that:

(Pagg —rage )2

) 1 B
agg) =

Gage V2T

where [l,ge and 0,4, are the mean and standard deviation of fp,, (Pag). The
transformation of the probability density function to a Gaussian distribution
according to the Central Limit Theorem has important implications to the
uncertainty of aggregate wind power.

froe (P e e N —inf (17)
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Fig. 7 Probability density functions of normalized aggregate wind power for systems with 2 (a),
4 (b), 6 (c) and 8 (d) wind plants under assumption of independence

4.2 Uncertainty and Variability Reduction

The normalized aggregate wind power’s statistical variance will decrease as more
wind plants are added to the system according to

| &
Uggg = ﬁ;aiz (18)

where 67 is the variance of the normalized power output of the ith wind plant. The
decrease in variance causes the Gaussian distribution to contract, which can be
interpreted as a decrease in the uncertainty of the wind power.

The evolution of fp,, (i’agg) to a Gaussian distribution can be noticeable even
for small values of N. This is illustrated in Fig. 7 where fp,, (Pyge) for N =2, 4,6,
and 8 are plotted using numerical convolution based on the pdf in Fig. 5a and
assuming independence in power output. Note how the distribution contracts as
more wind plants are aggregated, resulting in decreased standard deviation and
decreased probability of extremely high or low power output. In other words, the
uncertainty decreases.

The effects of geographic diversity also apply to the moment-to-moment var-
iation in aggregate wind power: under the assumption of independence, as more
wind plants are aggregated the moment-to-moment variation approaches a
Gaussian distribution with decreasing variance.
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The preceding derivation showed the mathematical mechanism by which
geographic diversity reduces uncertainty and variability in aggregate wind power.
Its foundation is the assumption that the wind speed (and power) at all N wind
plants are independent, and hence not correlated, but how realistic and restrictive
is this assumption? It is intuitive that a pair of wind plants in close proximity will
experience similar wind conditions. However, if they are separated by several
hundred kilometres, the same claim becomes unreasonable. In other words, wind
power tends to exhibit high spatial dependency of its correlation. It is these fea-
tures that ultimately determine the geographic diversity of a system.

4.3 Correlation of Instantaneous Wind Power

The dependency of two random variables can be quantified by correlation coef-
ficients. The correlation coefficient does not fully capture the underlying depen-
dency structure between the variables as the joint distribution would, but
nonetheless it is useful in quantifying the dependency. Among the most used
correlation coefficients are Pearson’s p and Kendall’s 7. Pearson’s p measures
linear correlation, whereas Kendall’s T measures rank correlation [35]. There is no
compelling reason to believe that wind power would be linearly correlated, and it
has been argued that Kendall’s 7 is a more suitable metric for wind speed or power
[36]. Nonetheless, many studies to date have focused strictly on Pearson’s p.
Whichever metric is used, it is widely recognized that there exists a strong rela-
tionship between separation distance and correlation coefficient [10-16].

Empirical studies have shown that the relationship between separation distance
and correlation coefficient can be modeled as

T=e (19)

where r is the so-called decay constant, s is the stretching coefficient, and d is the
distance between wind plants in kilometers [7, 16]. Figure 8 shows the computed
Kendall’s t for various randomly sampled wind plant pairings obtained from the
NREL Eastern Wind Integration Data Set [37]. Similar traces have been reported
for Pearson’s p [7, 14]. The solid trace is for hourly averaged data; the dashed
trace is for daily-averaged data. The decay and stretching coefficients for the
hourly averaged data are 0.0037 and 0.92, respectively; and 0.0096 and 0.81 for
the daily averaged data, respectively. In general, longer averaging periods result in
larger correlation coefficients. Zero correlation in wind power among wind plant
pairs does occur but is rare, and when it does occur it is usually at separation
distances greater than 1,000 km.
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4.4 Correlation of Wind Power Variation

Geographic diversity tends to have more pronounced effect on the moment-to-
moment variation of wind power than on instantaneous wind power. Figure 9
shows the rank correlation coefficient for variation periods of 1 h (solid) and 6 h
(dashed) for the same 100 wind plant pairs that were considered in the previous
section. As before, an equation of the form of (19) suitably fits the data. The decay
and stretching coefficients are 0.108 and 0.532 for the hourly variation, and 0.029
and 0.692 for the 6-hourly variation, respectively. From Fig. 9, and in general,
longer variation periods tend to have higher correlation than short ones.

When compared to instantaneous power, the correlation coefficients of wind
power variations are smaller and decay faster with distance. Near-zero correlation
is exhibited at closer distances, around 750 km. The reduction of variation
(smoothing effect), therefore, is noticeable in many systems.

4.5 Other Factors Influencing Correlation

Correlation of wind power is not solely dependent on separation distance. Other
variables influencing correlation of wind power are:

e Terrain. Wind plants located close to each other but in different terrain may
experience different wind regimes, which may decrease correlation.
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e Averaging and variation period. Shorter periods tend to exhibit less correlation.
Compare, for example, the solid and dashed lines in Figs. 8 and 9.

e Direction of the separation. For example, many North America wind plants with
East-West separation have greater correlation than those with North—South
separation [38].

e Number of wind turbines. Correlation between aggregate wind power in systems
tends to be higher than the correlation between wind plants of individual wind
turbines [16]. High frequency fluctuations tend to be uncorrelated and are fil-
tered by dispersed wind turbines.

It is also notable that the correlation coefficient itself may exhibit erratic var-
iation. Wind plant pairs may exhibit high correlation one day, and low correlation
the next [15, 18].

4.6 Wind Power Dependency Structures

The correlation coefficient, while useful in quantifying dependence, does not
provide sufficient information to construct the pdf of aggregate wind power from a
pair of wind plants. Rather, information on the dependency structure of the wind
power contained in the pair’s joint distribution is needed.

The dependency structure of wind power is best explained visually and by
considering the bi-variate case. Figure 10 shows typical, yet specific, contour plots
of joint probability density functions for four different wind plant pairs, each with
different rank correlation coefficients. The darker shading indicates greater density.
The marginal histograms are shown on the top and right side of each plot.

Inspecting Fig. 10 shows how rank correlation tends to influence the joint
distribution of wind power. At the lowest levels of correlation (Fig. 10a), mutually
high power output is rare. Mutually low power output does occur, but that is an
artifact of the marginal distributions having increased density at low power output.

At correlation levels in Fig. 10b—around 0.25—a concentration of higher
density appears in the area of mutually high power output, but the density at
mutually lower power remains. As correlation increases (Fig. 10c, d), the density
begins to align along the diagonal, with areas of increased density at the extremes.

The normalized power output from each wind plant pair can be summed to
examine the aggregate wind power in each of the four cases. The resulting his-
tograms of aggregate power are shown in Fig. 11. Note that the power has been re-
normalized by dividing the aggregate power by two, using a simplifying
assumption that the capacities of each wind plant are identical.

As can be expected from its near-zero correlation, Fig. 11a resembles a system
with higher geographic diversity. The standard deviation is lower than the others,
and there is decreased probability of extreme power output. As correlation
increases in Fig. 11b—d, so does the standard deviation and propensity for extreme
power output. In Fig. 11d, the histogram appears similar to that of an individual
wind plant, which is a signature of low geographic diversity.
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Figure 11 also illustrates that the wind plants in a system do not need be
uncorrelated to realize the benefits of geographic diversity. Rather, uncertainty and
variability are decreased even if the wind plants exhibit higher correlation—
although not as noticeably as if the wind plants are uncorrelated.

4.7 Multivariate Models and Simulation

In the special case that aggregate and individual wind power need to be modeled or
simulated, a multivariate model is required. For example, a Monte Carlo simu-
lation can be performed by sampling from the joint distribution of the power from
the wind plants. However, a proper joint distribution model must be identified.

Returning to Fig. 10, we see that the joint distributions do not obviously con-
form to any common parametric functions, and are certainly not Gaussian. One
reason for this is that the marginal distributions add complexity to the overall
structure. It is possible to decouple the influence of the marginal distributions from
the joint by transforming the data from the wind power domain to the rank/uniform
domain by way of the cdf of the individual wind plants. The result is uniform
marginal distributions, with a joint distribution that is more amenable to para-
metric modeling. The resulting dependency structure can be modeled using cop-
ulas [39]. Though beyond the scope of this chapter, other works have shown that
Gumbel and Gaussian copulas are appropriate for multi-variate wind power
dependency modeling [40, 41]. The selection of a specific copula depends on the
number of wind plants and the desired rank correlation.

One method of Monte Carlo simulation of wind power using copulas is: (1)
identify the separation distances of the wind plants to be modeled; (2) using (19),
compute the corresponding rank correlation matrix; (3) select an appropriate multi-
variate copula to model the dependency structure, using the correlation coefficient
to determine the copula’s parameters; (4) randomly draw the desired number of
samples from the copula in the rank/uniform domain; (5) transform the samples to
the wind power domain using the inverse cdf of (7). See [40, 41] for additional
implementation details.

4.8 Practical Considerations

Geographic diversity can theoretically reduce uncertainty and variability of aggre-
gate wind power. However, in many systems, the perceived benefits of geographic
diversity have failed to materialize. There are four main reasons for this [16]:

1. In many electricity markets, the system-wide benefits of reduced uncertainty
and variability do not directly translate into gains for individual wind plants—
they do not have compelling economic reasons to seek geographic diversity.
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2. Wind plants tend to have greater capacities, resulting in high concentrations of
wind turbines.

3. There is limited access to suitable transmission limits the number of geo-
graphically diverse regions that can be interconnected.

4. There is only so much geographic diversity that can be had. In a given region,
as wind plants are added, the benefits of geographic diversity saturate. Addi-
tionally, large-scale forces such as insolation similarly influence very wide
areas (e.g., the continental United States).

In this section we have shown that geographic diversity, particularly in the
separation distance between wind plants, reduces dependency and correlation. This
in turn leads to a transformation of the probability density function of instanta-
neous and moment-to-moment variations in aggregate wind power toward a
Gaussian distribution, with decreased standard deviation, and hence less uncer-
tainty and variability. However, geographic diversity can and should not be viewed
as a panacea for eliminating variability and uncertainty. Wind plants exhibit sta-
tistically significant correlation at large separation distances, and there are several
practical reasons for geographic diversity not to occur. The prospects for vari-
ability reduction, however, are better as the correlation of wind power variability
rapidly decreases with separation distance.

5 Aggregate Wind Power Models

In many cases, especially in the absence of transmission congestion, we are less
concerned about the power from individual wind plants, and more concerned about
the aggregate wind power. In these cases, we need not model the individual wind
plants, and instead focus only on the aggregate wind power.

In this section we identify appropriate parametric models of the probability
density functions of aggregate instantaneous wind power and wind power varia-
tion. Parametric approximation has several advantages including: fewer data
points are needed to “fill out” the distribution; analytic calculations are more
tractable; and the model can be expressed with fewer pieces of information—
hopefully just one or two parameters.

5.1 Instantaneous Aggregate Wind Power Model

The shape of the histograms of aggregate wind power in Fig. 1 suggests that we
seek a model with two parameters—one controlling the shape at low wind power,
the other at high wind power.

One promising candidate is the Beta probability density function:
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Fig. 12 Examples of Beta probability density functions with various « and f§ parameters

o Pl (1= Py’
fr(Pagg) = — XB((OC, B) < (20)

where B(o, ff) is the Beta function:

1
B(o,f) = [ u*" x (1 —u)f"du (21)
[

and o and f are shape parameters and u is the variable of integration. The domain
of the Beta pdf is [0, 1], thereby necessitating the use of normalized aggregate
wind power values. A wide range of shapes are possible by careful selection of «
and f, as shown in Fig. 12.

5.2 Beta Distribution Parameter Selection

An important advantage of using the Beta pdf to model aggregate wind power is
that its parameters lend themselves to meaningful interpretation [42]. Values of «
that are less than 1 indicate an increasing probability density of O or near-zero
power output; whereas « values greater than 1 indicate decreasing probability
density over this range. The f§ values have a similar interpretation. If § is greater
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than 1, then the probability density decreases toward full power output; whereas if
it is less than 1, there is increasing probability density.

In the absence of specific information, heuristic guides can be followed for
modeling aggregate wind power. For low diversity, o and f§ are both greater than 1;
for medium diversity o > 1 and f# < 1; and for higher diversity « < 1, f <1 ora
Gaussian distribution can be used. Specific values for the parameters can be
selected from estimations of the mean and variance.

The shape parameters are related to the mean as

(22)

The mean wind power considered over a length of time is also known as the
capacity factor, which ranges between 20 and 40 % for most systems. Therefore
the ratio of o to f§ from 1:1.5 to 1:4 is reasonable. The parameters are related to the
variance as

o = o (23)

(a4 B (a+p+1)

Typical variance values range from about 0.02 to 0.10.
The parameters of the Beta pdf can be estimated using the method of moments

according to
)
o= [ <T — 1) (24)

b= (M) 25)

where ji and 67 are the sampled mean and variance of the wind power data. There

is no closed-form MLE of & and Zf but numerical methods can be used to compute
them [43].

Traces of the Beta pdf with parameters fit using MLE to aggregate wind power
data from four large systems in different years are found in Figs. 13 and 14. In
each case the Beta pdf is able to reasonably approximate the data. A rigorous
evaluation of the fit of Beta distributions to aggregate wind power is found in [42].

5.3 Aggregate Wind Power Variation Model

Wind speed and wind power tend to exhibit large autocorrelation coefficients at

short time lags. As such AP tends to be near-zero, with only rare occurrences of
extreme deviations. The trend is that of symmetric and exponential decay.
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Fig. 15 Normalized aggregate wind power hourly variations in 2012 and fit Laplace probability
density functions. a BPA, b MISO, ¢ PJM and d 50 Hz

An appropriate distribution for these features is the Laplace distribution, also
known as the double exponential distribution. The Laplace pdf is

7 % I APyoe—a /b
fAPugg (APagg> = E e | agg / | (26)
where Ai’agg is normalized aggregation power output variation and a and b are the

location and scale parameters, respectively. The scale parameter is an indicator of
the variability, where a larger scale parameter indicates greater variability.

5.4 Laplace Distribution Parameter Selection

The parameters of the Laplace distribution can be fit using MLE method where a is
equal to the sample median, which is usually zero, and b is computed from

I LA X
b= N; |AP gy — a (27)

The scale parameter is generally between 0.015 and 0.04 for 1 h variation
periods. The scale parameter tends to increase with longer variation periods.
Traces of the Laplace pdf with parameters fit using MLE to hourly aggregate wind
power variation data are found in Figs. 15 and 16. In each case the Laplace pdf is
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Fig. 16 Normalized aggregate wind power hourly variations in 2008 and fit Laplace probability
density functions. a BPA, b MISO, ¢ PIM and d 50 Hz

able to reasonably approximate the data. A rigorous evaluation of the fit of Laplace
distributions to aggregate wind power is found in [44].

5.5 Influence of Variation Period

An important factor influencing the pdf of wind power variation is the variation
period. As discussed in Sect. 4.4, the variation in wind power from wind plants
exhibits greater correlation as the variation period increases. Additionally, there is
also more time for the wind power to change, so there is greater potential for
extreme variation. Figure 17 shows histograms and fit Laplace pdfs for hourly and
4-hourly variation periods. It is clear that a longer variation period results in a
broader distribution, and hence, more variability that must be managed. The
Laplace distribution is able to reasonably fit the data at both variation periods
mainly by adjusting its scale parameter.

6 Statistical Characteristics of Aggregate Wind Power

It has only been within the last several years that aggregate wind power data sets
have been made widely available to the research community. In this section we
analyze several data sets with the goal of documenting and discussing statistical
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Table 1 Data set descriptions

System 2008 start 2008 end 2012 start 2012 end
capacity (MW) capacity (MW) capacity (MW) capacity (MW)

BPA 1,301 1,671 4,131 4711

MISO 2,462 4,327 10,514 12,270

PIM 1,150 1,277 5,318 6,457

50 Hz 9,091 9,493 11,570 12,420

characteristics of aggregate wind power, as well as seeking additional insight into
geographic diversity.

6.1 Data Set Descriptions

Four data sets of aggregate wind power are considered: Bonneville Power Adminis-
tration (BPA), Midwest ISO (MISO), PIM Interconnection (PJM), and S0 Hz [45-438].
BPA’s territory is located in the Pacific Northwest of the United States, primarily in
Washington State and Oregon. MISO has territory in 12 states in the midwest of the
United States and in the Canadian province of Manitoba. PJM’s territory covers all or
parts of 13 statesin the eastern portion of the U.S. 50 Hz s territory is in the northern and
eastern portion of Germany. Each system has a large amount of wind plant capacity.

The data correspond to hourly averages for the years 2008 and 2012. The data
have been normalized to reported system-wide wind capacity. However, these
reports are infrequently issued. To overcome this, linear interpolation between
reporting dates was used. This inherently introduces some error in the analysis, and
so the reported statistics must be interpreted with this in mind. The capacities at
the start and end of 2008 and 2012 are provided in Table 1.
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Table 2 Instantaneous aggregate wind power statistical information for 2012

System Mean (p.u.) Standard Q(l) Q(10) QC0) QE0) QEB0) QMO QM9
deviation (p.u.) (p.u.) (p.u) (puw) (pu) (pu) (pu) (pu)
BPA  0.26 0.26 0.00 0.01 0.02 0.16 052 0.68 0.85
MISO 0.31 0.19 0.02 0.08 0.13 0.28 0.51 0.58 0.72
PIM 0.25 0.17 0.01 0.05 0.09 0.21 0.39 0.50 0.68
50 Hz 0.18 0.17 0.00 0.02 0.04 0.12 0.28 0.41 0.78

Table 3 Instantaneous aggregate wind power statistical information for 2008

System Mean  Standard Q1) QU0O) Q0) Q(0) Q(80) QO0) Q99
(p.u.) deviation (p.u.) (p.u.) (pu) (pu) (pu) (pu) (pu) (pu)
BPA 032 0.29 0.00 0.01 0.03 0.25 0.64 0.76 0.88
MISO 0.30 0.19 0.02  0.08 0.12 0.27 0.49 0.58 0.71
PIM 0.33 0.22 0.01  0.07 0.12 0.30 0.53 0.64 0.89
50 Hz 0.20 0.20 0.01 0.03 0.05 0.13 0.35 0.52 0.80

6.2 Statistical Analysis of Uncertainty

Several statistical quantities of instantaneous aggregate wind power for each
system for 2012 and 2008 are provided in Tables 2 and 3, respectively. In addition
to the mean and standard deviation, several quantiles were computed, where, for
example, Q(50) refers to the median.

The mean values range between 0.18 and 0.33 p.u., and the standard deviation
ranges from 0.17 to 0.29 p.u. These typical ranges of mean and standard deviation
can be used to construct models of aggregate wind power, as discussed in
Sect. 5.2. The Q(99) quantiles indicates the magnitude of rare wind power events.
For example, for BPA in 2012, in 99 % of the hours the aggregate wind power was
less than or equal to 85 % of the rated capacity. This means that 1 % of year—
approximately 88 h—the power was greater than 0.85 p.u. For all systems, the
values corresponding to the 99 % quantile ranged between 0.68 and 0.88 p.u.
Extremely low values were common: the 10 % quantile is 0.08 p.u. or less in all
cases. In other words, in each system the power output is less than 8 % of rated
capacity for nearly 876 h each year. The relatively high frequency of low power
output has system-wide generation capacity implications. In general, the systems
have very different levels of uncertainty that must be managed by their operators.
By several measures, MISO, PIM, and 50 Hz have less uncertainty than BPA.

6.3 Statistical Analysis of Variability

The statistics for hour-to-hour variation for each system in 2012 and 2008 are
provided in Tables 4 and 5, respectively. The variations of aggregate wind power
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Table 4 Aggregate wind power hourly variation for 2012

System Standard Kurtosis Q(1) Q(10) QR0) QBO0) QEBD) QM0 QM)
deviation (puw) (puw) (pu) (pu) (pu) (pu) (pu)
(p-u.)

BPA  0.048 7.0 —0.130 —0.053 —0.029 0.00 0.026 0.057 0.144

MISO 0.030 4.4 —-0.79 —-0.036 —0.022 0.00 0.021 0.036 0.083

PIM 0.032 28.2 —0.84 —0.035 —0.022 0.00 0.021 0.037 0.083

50 Hz 0.024 6.5 —0.66 —0.027 —0.015 0.00 0.014 0.027 0.072

Table 5 Instantaneous aggregate wind power hourly variation for 2008

System Standard Kurtosis Q(1) Q(10) Q200 Q(50) Q(80) QM0) Q99
deviation (pu)  (pu) (pu) (pu) (pu) (pu) (pu)
(p-u.)

BPA  0.054 8.2 —0.138 —0.061 —0.034 0.00 0.030 0.061 0.167

MISO 0.034 5.0 —0.093 —0.041 —0.024 0.00 0.024 0.040 0.089

PIM 0.049 7.3 —0.128 —0.055 —0.032 0.00 0.031 0.055 0.131

50 Hz 0.026 7.0 —0.075 —0.027 —0.015 0.00 0.015 0.029 0.073

in large systems tend to be symmetric, with near-zero mean and median. In most
system, the variations are less than 0.06 p.u. in magnitude for over 80 % of the
hours. Extreme outliers corresponding to changes of + 0.08 to 0.17 p.u. do occur,
but are rare. The standard deviations range from 0.024 to 0.054 p.u. In each
system, the variations are leptokurtic, indicating a higher occurrence of “tail
event” variations. In general, MISO, PJM, and 50 Hz have less variability than
BPA.

6.4 Effect of Capacity on Uncertainty and Variability

The effect of capacity and capacity increases on aggregate wind power uncertainty
and variability are often of interest as system operators anticipate and plan for
increased amounts of wind plants in their system. The specifics of how the
uncertainty and variability associated with aggregate wind power are related to
capacity depend on the build-out of the wind plants in the system, and are difficult
to analytically derive. However, based on the available data and past experience,
there are several general observations that can be made:

1. Systems with larger installed capacities do not necessarily exhibit less uncer-
tainty and variability in aggregate wind power than systems with smaller
capacities.

2. Additions of wind plant capacity to a system tend reduce uncertainty and
variability.

3. Within a given system, the benefits of geographic diversity can become satu-
rated and insensitive to increases in capacity.
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As an example of the first observation, we compare the statistics of instantaneous
power in PJM and BPA. At the end of 2012, there was 4.7 GW of installed wind
capacity in BPA. At the end of 2008 in PJM there was 1.3 GW of installed wind
capacity. It would seem that BPA should have less uncertainty given its much
higher installed capacity and therefore greater opportunity for geographic diversity.
However, the standard deviation of PJM (0.22 p.u.) was less than that of BPA
(26 p.u.). BPA also generally exhibited more occurrences of extremely low and
high power production, as shown by the quantiles in Tables 2 and 3. A similar
example for variability can be made by comparing 2008 MISO data with 2008 BPA
data. These cases should not be misinterpreted as evidence that systems with higher
capacities of wind plants have greater uncertainty and variability than those with
lower capacities. Rather, they are simply examples that the contrary is not always
the case. The important concept is that different systems experience different build-
outs of wind plants—some lead to appreciable geographic diversity, others do not.

The second observation—that additions of wind plant capacity to a system tend
reduce uncertainty and variability—is observed by comparing the statistics of each
system in 2008-2012. In each system, the standard deviation of the instantaneous
power and power variation decreased from 2008 to 2012. The exception is MISO,
whose standard deviation of instantaneous power remained the same. Regardless,
the data support the general notion that wind plant capacity additions decrease
uncertainty and variability.

The final observation—that the benefits of uncertainty and variability reduction
can become saturated—is supported by examining the sensitivity of uncertainty and
variability to capacity addition. For BPA, PJM and 50 Hz, for every 1 GW of new
wind plant installations, the standard deviation of instantaneous wind power
decreased by just one percentage point, based upon year-end capacity values. For
MISO, the standard deviation did not change, despite an increase in 8 GW of wind
power. The quantiles in many systems also showed modest changes despite large
capacity additions. The modest effects of capacity additions on uncertainty can be
seen by inspecting Figs. 13 and 14. The histograms and approximated probability
density functions of the system do not appear appreciably different in 2012 than
they did in 2008, despite several thousand megawatts of wind plant installations in
each system. The histograms and probability density functions of variations in
Figs. 15 and 16, however, have more noticeable differences.

The sensitivity of variability to changes in capacity are mixed. The standard
deviation of wind power variability in BPA and PIM decreased by approximately
0.25 % point for each 1 GW of new capacity. A change in percentage point of this
magnitude is appreciable since the standard deviations of variation are all less than
6 %. However, both MISO and 50 Hz exhibited small changes to their standard
deviation between 2008 and 2012.
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7 Conclusions

Many power systems around the world now have total installed wind plant
capacities in excess of several gigawatts. System operators must manage the
inherent uncertainty and variability of the aggregate wind power in their systems
in order to maintain reliability and economic efficiency. The characteristics of
aggregate wind power can be quite different from individual wind plants,
depending on the level of geographic diversity in the system. Tools such as wind
power forecast systems, stochastic unit commitment, and resource planning
require reasonable and practical probabilistic models of aggregate wind power and
wind power variation as inputs.

This chapter demonstrated that the uncertainty and variability exhibited by
aggregate wind power can be reasonably represented using parsimonious para-
metric models. More specifically, the two-parameter Beta distribution is well
suited for modeling instantaneous aggregate wind power and the two-parameter
Laplace distribution is well suited for modeling moment-to-moment variation.

Several aspects of geographic diversity were explored. Among the main con-
clusions are that geographic diversity should not be viewed as a panacea for the
challenges of wind integration. Reduction in variability—the smoothing effect—is
noticeable, but reduction in uncertainty requires exceedingly large geographic
areas. Appreciable correlation of instantaneous power amongst wind plants can
exist at distances approaching 1,000 km. Clustering and other practical consid-
erations also limit the amount of geographic diversity that occurs in many systems.
Analysis of several systems showed that the effects of geographic diversity, par-
ticularly on uncertainty, saturate when installations of wind plants reach several
gigawaltts in total.

References

1. Burton T, Sharpe D, Jenkins N, Bossanyi E (2001) Wind energy handbook. Wiley, West
Sussex

2. Smith JC, Milligan M, DeMeo EA, Parsons B (2007) Utility wind integration and operating
impact state of the art. IEEE Trans Power Syst 22:900-908. doi:10.1109/TPWRS.2007.
901598

3. Smith JC, Thresher R, Zavadil R, DeMeo EA, Piwko R, Ernst B, Ackerman T (2009) A
mighty wind. IEEE Power Energy Mag 7:41-51. doi:10.1109/MPE.2008.931492

4. Tuohy A, Meibom P, Denny E, O’Malley M (2009) Unit commitment for systems with
significant wind penetration. IEEE Trans Power Syst 24:592-601. doi:10.1109/TPWRS.2009.
2016470

5. Ruiz P, Philbrick CR, Zak E, Cheung K, Sauer P (2008) Applying stochastic programming to
the unit commitment problem. In: Probabilistic methods applied to power systems; 2008

6. Pinson P, Kariniotakis G (2010) Conditional prediction intervals of wind power generation.
IEEE Trans Power Syst 25:1845-1856

7. Hasche B (2010) General statistics of geographically dispersed wind power. Wind Energy
13:773-784. doi:10.1002/we.397


http://dx.doi.org/10.1109/TPWRS.2007.901598
http://dx.doi.org/10.1109/TPWRS.2007.901598
http://dx.doi.org/10.1109/MPE.2008.931492
http://dx.doi.org/10.1109/TPWRS.2009.2016470
http://dx.doi.org/10.1109/TPWRS.2009.2016470
http://dx.doi.org/10.1002/we.397

50

10.

11.

12.

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

H. Louie and J. M. Sloughter

. EnerNex Corporation (2011) Eastern wind integration and transmission study. Technical

report NREL/SR-5500-47078, NREL, Golden, CO, USA

. GE Energy (2010) Western wind and solar integration study. Technical report NREL/SR-

550-47434, NREL, Golden, CO, USA 2010

McNerney G, Richardson R (1992) The statistical smoothing of power delivered to utilities
by multiple wind turbines. IEEE Trans Energy Convers 7(4):644—647. doi:10.1109/60.
182646

Archer C, Jacobson M (2003) Spatial and temporal distributions of U.S. winds and wind
power at 80 m derived from measurements. J Geophys Res 108(D9):10-1-10-20

Wan Y (2004) Wind power plant behaviors: analyses of long-term wind power data.
Technical report NREL/TP-500-36551

. Holttinen H (2005) Hourly wind power variations in the Nordic countries. Wind Energy

8:173-195

Ernst B, Wan Y, Kirby B (1999) Short-term power fluctuation of wind turbines: analyzing
data from the German 250-MW measurement program from the ancillary services viewpoint.
Technical report NREL/CP-500-26722

Wan Y, Milligan M, Parsons B (2003) Output power correlation between adjacent wind
power plants. J Sol Energy Eng 125:551-555

Louie H (2013) Correlation and statistical characteristics of aggregate wind power in large
transcontinental systems. Wind Energy. doi:10.1002/we.1597

Tastu J, Pinson P, Kotwa E, Madsen H, Nielsen H (2011) Spatio-temporal analysis and
modeling of short-term wind power forecast errors. Wind Energy 14:43-60. doi:10.1002/we.
401

Nanahara T, Asari M, Maejima T, Sato T, Yamaguchi K, Shibata M (2004) Smoothing
effects of distributed wind turbines. Part 2. Coherence among power output of distant wind
turbines. Wind Energy 7:75-85. doi:10.1002/we.108

Krich A, Milligan M (2005) The impact of wind energy on hourly load following
requirements: an hourly and seasonal analysis. Technical report NREL/CP-500-38061

Wan Y (2011) Analysis of wind power ramping behavior in ERCOT. Technical report
NREL/TP-5500-49218 2011

Gibescu M, Brand A, Kling W (2008) Estimation of variability and predictability of large-
scale wind energy in the Netherlands. Wind Energy 12:241-260. doi:10.1002/we.291
Milligan M (2000) Modelling utility-scale wind power plants. Part 2: Capacity credit. Wind
Energy 3:167-206. doi:10.1002/we.36

Sloughter JM, Gneiting T, Raftery AE (2010) Probabilistic wind speed forecasting using
ensembles and Bayesian model averaging. ] Am Stat Assoc 105:25-35. doi:10.1198/jasa.
2009.ap08615

Papoulis A, Pillai SU (2002) Probability, random variables and stochastic processes, 4th edn.
McGraw-Hill, New York

Justus CG, Hargraves WR, Mikhail A, Graber D (1978) Methods for estimating wind speed
frequency distributions. J Appl Meteorol 17:350-353

Tuzuner A, Yu Z (2008) A theoretical analysis on parameter estimation for the weibull wind
speed distribution. IEEE PES General Meeting 2008

Twidell J, Weir T (2006) Renew Energy Res, 2nd edn. Taylor & Francis, London
International Electrotechnical Commission (2005), Power performance measurements of
electricity producing wind turbines. Standard 61400-12-1

Camm EH, Behnke MR, Bolado O et al (2009) Wind power plant substation and collector
system redundancy, reliability and economics. IEEE PES general meeting 2009

Fischer K, Besnard F, Bertling L (2012) Reliability-centered maintenance for wind turbines
based on statistical analysis and practical experience. IEEE Trans Energy Convers
27(184):195. doi:10.1109/TEC.2011.2176129

Potter CW, Gil H, McCaa J (2007) Wind power data for grid integration studies. IEEE PES
general meeting


http://dx.doi.org/10.1109/60.182646
http://dx.doi.org/10.1109/60.182646
http://dx.doi.org/10.1002/we.1597
http://dx.doi.org/10.1002/we.401
http://dx.doi.org/10.1002/we.401
http://dx.doi.org/10.1002/we.108
http://dx.doi.org/10.1002/we.291
http://dx.doi.org/10.1002/we.36
http://dx.doi.org/10.1198/jasa.2009.ap08615
http://dx.doi.org/10.1198/jasa.2009.ap08615
http://dx.doi.org/10.1109/TEC.2011.2176129

Probabilistic Modeling and Statistical Characteristics 51

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43

44,

45.

46.

47.

48.

Hayes B, Ilie I, Porpodas A, Djokic S, Chicco G. Equivalent power curve model of a wind
farm based on field measurement data. In: IEEE PowerTech; 2011

Jin T, Tian Z (2010) Uncertainty analysis for wind energy production with dynamic power
curves. In: Probabilistic methods applied to power systems; 2010

Collins J, Parkes J, Tindal A (2009) Forecasting for utility-scale wind farms—the power
model challenge. In: CIGRE/IEEE joint symposium on integration of wide-scale renewable
resources into the power delivery system 2009

Kendall M (1938) A new measure of rank correlation. Biometrika 30:81-89

Louie H (2012) Evaluating Archimedean copula models of wind speed for wind power
modeling. Power Africa 2012:1-5. doi:10.1109/PowerAfrica.6498610

Wind integration datasets (2011) National Renewable Energy Laboratory. http://www.nrel.
gov/wind/integrationdatasets. Accessed 1 July 2013

Osborn D, Hendersen M, Nickell B, Lasher W, Liebold C, Adams J, Caspary J (2011)
Driving forces behind wind. Power Energy Mag 9:60-74

Nelsen R (2006) An introduction to copulas, 2nd edn. Springer, New York

Louie H (2012) Evaluation of bivariate Archimedean and elliptical copulas to model wind
power dependency structures. Wind Energy. doi:10.1002/we.1571

Diaz G (2013) A note on the multivariate Archimedean dependence structure in small wind
generation sites. Wind Energy. doi:10.1002/we.1633

Louie H (2010) Characterizing and modelling aggregate wind plant power output in large
systems. IEEE PES general meeting; 2010, pp 1-8

. Beckman RJ, Tietjen GL. Maximum likelihood estimation for the beta distribution. J Stat

Comput Simul 7:253-258

Louie H (2010) Evaluation of probabilistic models of wind plant power output
characteristics. In: Probabilistic methods applied to power systems; 2010, pp 442-447, doi:
10.1109/PMAPS.2010.5528963

McManus B (2013) Wind generation & total load in the BPA balancing authority. Bonneville
Power Administration. http://www.transmission.bpa.gov/Business/Operations/Wind/default.
aspx. Accessed 1 July 2013

Market reports (2013). MISO. https://www.midwestiso.org/Library/MarketReports/. Acces-
sed 1 July 2013

Operational analysis (2013). PIM interconnection www.pjm.com/markets-and-operations/
ops-analysis.aspx. Accessed 1 July 2013

Archive wind power (2013). 50 Hertz. http://www.50hertz.com/en/1983.htm. Accessed 1
July 2013


http://dx.doi.org/10.1109/PowerAfrica.6498610
http://www.nrel.gov/wind/integrationdatasets
http://www.nrel.gov/wind/integrationdatasets
http://dx.doi.org/10.1002/we.1571
http://dx.doi.org/10.1002/we.1633
http://dx.doi.org/10.1109/PMAPS.2010.5528963
http://www.transmission.bpa.gov/Business/Operations/Wind/default.aspx
http://www.transmission.bpa.gov/Business/Operations/Wind/default.aspx
https://www.midwestiso.org/Library/MarketReports/
http://www.pjm.com/markets-and-operations/ops-analysis.aspx
http://www.pjm.com/markets-and-operations/ops-analysis.aspx
http://www.50hertz.com/en/1983.htm

2 Springer
http://www.springer.com/978-981-4585-29-3

Large Scale Renewable Power Generation

Advances in Technologies for Generation, Transmission
and Storage

Hossain, |.; Mahmud, 4, (Eds.)

2014, Xll, 462 p. 285 illus., 170 illus. in color.,
Hardcover

ISBEM: 978-981-4585-29-3



	2 Probabilistic Modeling and Statistical Characteristics of Aggregate Wind Power
	Abstract
	1…Introduction
	2…General Characteristics of Aggregate Wind Power
	2.1 Uncertainty of Aggregate Wind Power
	2.2 Variability of Aggregate Wind Power

	3…Individual Wind Plant Model
	3.1 Probabilistic Wind Speed Model
	3.2 Idealized Wind Turbine Power Curve
	3.2.1 Below Cut-in Wind Speed \left( {v \lt v_{\rm{ci}} } \right) 
	3.2.2 Between Cut-in and Rated Wind Speed \left( {v_{\rm{ci}} \le v \lt v_{r} } \right) 
	3.2.3 Between Rated and Cut-out Wind Speed \left( {v_{r} \le v \lt v_{\rm{co}} } \right) 
	3.2.4 At and Above Cut-out Wind Speed \left( {v_{\rm{co}} \le v} \right) 

	3.3 Idealized Wind Plant Model
	3.4 Non-idealized Wind Plant Modeling

	4…Geographic Diversity
	4.1 Theoretical Basis
	4.2 Uncertainty and Variability Reduction
	4.3 Correlation of Instantaneous Wind Power
	4.4 Correlation of Wind Power Variation
	4.5 Other Factors Influencing Correlation
	4.6 Wind Power Dependency Structures
	4.7 Multivariate Models and Simulation
	4.8 Practical Considerations

	5…Aggregate Wind Power Models
	5.1 Instantaneous Aggregate Wind Power Model
	5.2 Beta Distribution Parameter Selection
	5.3 Aggregate Wind Power Variation Model
	5.4 Laplace Distribution Parameter Selection
	5.5 Influence of Variation Period

	6…Statistical Characteristics of Aggregate Wind Power
	6.1 Data Set Descriptions
	6.2 Statistical Analysis of Uncertainty
	6.3 Statistical Analysis of Variability
	6.4 Effect of Capacity on Uncertainty and Variability

	7…Conclusions


