Preface

Even though this domain seems to be classic, because of the last two decades
of remarkable progress in computational technique, many open problems in Dio-
phantine Analysis made a vigorous comeback with the hope that this increased
power in computation will shade new light on them. The distinctive dynamic of
Diophantine Analysis is expressively reflected in the well-known review journals:
“Mathematical Reviews” (USA) and “Zentralblatt fiir Matematik” (now zbMATH)
(Germany), the following AMS Subject Classification 2000 being designated to
it: 11Dxx (Diophantine equations), 11D09 (Quadratic bilinear equations), 11AS55
(Continued fractions), 11J70 (Continued fractions and generalizations), 11Y65
(Continued fraction), 11B37 (Recurrences), 11B39 (Fibonacci and Lucas numbers
and polynomials and generalizations), 11R27 (Units and factorization). While in
1912 a first monograph [224] dedicated to this subject synthesized the important
results known by then, a variety of papers and doctoral theses in Diophantine Analy-
sis followed. Some of them are very recent, and we mention here just the monograph
[32], published in 2003 and the syntheses [111] and [226], published in 2002.

The volume has seven chapters and moves gradually from the history and
motivation of quadratic Diophantine equations to more complicated equations and
their applications. The accessibility has also been taken into account, in the sense
that some material could be understood even by nonspecialists in the field. In many
sections the history of the advances and the problems that still remain open are also
given, together with comments. Throughout this work, complete proofs are given
and the sign [J denotes the end of a proof.

Chapter 1, entitled “Why Quadratic Diophantine Equations?,” describes the
motivation of studying quadratic Diophantine equations. It contains ten short
sections, each of them illustrating an important problem whose solution reduces
to solving such an equation. Section 1.1 introduces the famous theorem of A. Thue
[62] that reduces a Diophantine equation of the form F(x,y) = m to a quadratic
one, pointing out the importance of the quadratic case. Section 1.2 reviews Hilbert’s
tenth problem, which asks, in essence, for a finite algorithm to solve a general
multivariable Diophantine equation. The proof of the impossibility of determining
such an algorithm was found by Yu. Matiyasevich, who used the results of M.
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Davis, H. Putnam, and J. Robinson. A crucial point in Matiyasevich’s proof is
the consideration of the solutions to the equations x> — (a? — 1)y?> = 1, where
a > 2. Section 1.3 presents the connection between Euler concordant forms and
elliptic curves, the determination of the ranks of Mordell-Weil groups, and Frey
curves, problems that lead to studying the solutions to two simultaneous Pell’s
equations. Section 1.4 makes the connection with the spectrum of the Laplace—
Bertrami operator whose spectrum description involves solving a general Pell’s type
equation. In Section 1.5, a quadrature formula in the s-dimensional unit cube is
considered, where the determination of parameters that minimize the remainder also
reduces to solving some special Pell’s type equations. The last five sections of this
chapter briefly review: reduction algorithms of “threshold” phenomena in arbitrary
lattices, the study of Einstein type Riemann metrics on homogeneous manifolds
generated by the action of a semisimple Lie group, the problem of counting the
number of autointersection points of the geodesics closed in the modular group
SL(2,7Z), Hecke groups and their connection with continued fractions, as well
as (m,n) type sets in the projective plane, all of these representing examples of
problems from various areas of mathematics, whose solutions require solving Pell’s
type equations. Clearly, the list of such problems can be continued.

Chapter 2, “Continued Fractions, Diophantine Approximation and Quadratic
Rings,” presents two basic instruments of investigation in Diophantine Analysis.
The theory of continued fractions plays an important part in pure Mathematics and
has multiple applications. The main results of this theory, which are necessary in
developing efficient algorithms in Diophantine Analysis, are given in Section 2.1.
Among the references used, we mention here: [1, 46, 141, 159, 164, 183, 208].
The following aspects are introduced: the Euclid algorithm and its connection with
continued fractions, the problem of uniqueness of a continued fraction developing,
infinite continued fractions and their connection with irrational numbers, the
approximation of irrational numbers by continued fractions, the problem of the best
approximation and Hurwitz’s Theorem, periodic continued fractions. The second
important tool in studying problems in Diophantine Analysis is the theory of
quadratic rings. The fundamental concepts, the units and norms defined in a natural
way in this context are featured in Section 2.2. From the rich bibliography devoted
to this subject, we mention [95, 171, 198].

Chapter 3, “Pell’s Equation,” is divided into six sections. The first is a compre-
hensive historical introduction to Pell’s equation. Section 3.2 considers the problem
of finding the general solution to Pell’s equation by using elementary methods.
The proof of the main theorem is based on our papers [13—15]. The main forms
of writing the general solution are given: by recursive sequences, in matrix form,
explicitly, etc. In Section 3.3, the general solution to Pell’s equation is obtained
by using the method of continued fractions. In Section 3.4, following the papers
[171] and [95], the same problem is solved by using the theory of quadratic fields.
Section 3.5 contains original contributions to the study of the more general equation
ax? — by? = 1. Theorem 3.5.2 shows how one can determine the general solution
to this equation, in case of solvability. The proof is the one given in our papers
[13-15]. We note the fact that from our explicit form we found for the general
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solution to this equation (Remark 2) one gets immediately the result in [219], which
is obtained there by a very complicated and unnatural method. The last section is
dedicated to the negative Pell’s equation x> — Dy? = —1. It is studied as a special
case of the equation in the previous section and the central result concerning it
is contained in Theorem 3.6.1. The formulas (3.6.3) and (3.6.4) give the general
solution explicitly. The presentation follows again our papers [13—15]. Using now
our paper [18], in Theorem 3.6.4 it is given a family of negative Pell’s equations,
solvable only for a single value of the positive integral parameter k. The section
ends with the presentation of the current stage of the problem of solvability of the
negative Pell’s equation, an open problem that is far from being settled, and one of
the most difficult in Diophantine analysis. In this respect, partial results, as well as
recent conjectures, are mentioned.

The main goal of Chapter 4, “General Pell’s Equation,” is to present the
general theory and major algorithms regarding the equation x> — Dy? = N. This
chapter contains nine sections. In Section 4.1, the theory is exposed in a personal
manner; the classes of solutions are defined, and Theorems 4.1.1, 4.1.2, and 4.1.3
give classical bounds for the fundamental solutions. These bounds were recently
improved in [76] (L. Panaitopol, personal communication, December 2001). The
section ends with our results concerning a problem proposed in [37], problem
that we solve completely (see [16]). In addition, we present a final description
of the set of all rational solutions to the Pell’s equation, from which one can see
clearly the complexity of the problem of determining this set explicitly. Also,
an interesting result proved in [72] about the solvability of some general Pell’s
equation is mentioned. Section 4.2 contains results about the solvability of the
general Pell’s equation, and it is organized into five subsections dealing with the
following aspects: Pell Decision Problem and the Square Polynomial Problem, the
Legendre test, Legendre unsolvability tests, modulo n unsolvability tests, extended
multiplication principle. Section 4.3 contains an algorithm for determining the
fundamental solutions to the general Pell’s equation, based on continued fractions.
This algorithm is known as the LMM method. Numerical examples that probe the
efficiency of the algorithm are also included. Section 4.4 deals with the problem of
solving the general Pell’s equation by using the PQa algorithm, derived from the
theory of continued fractions, as well. A variant of the PQa algorithm for solving
the negative Pell’s equation, and the special Pell’s equations x> — Dy? = +4 are
also given. Later in this section, the problem of the structure of the solutions to
the general Pell’s equation is taken on. By using the PQa algorithm, we study
the problem of determining the fundamental solutions in the case N < /D and
then consider several numerical examples that illustrate how this algorithm works.
In some of these examples, one compares the efficiency of the algorithm PQa
versus the one of the LMM’s method. Section 4.5 is dedicated to the study of
the solvability and unsolvability of the equation ax?> — by? = c. All results here
belong to us and are based on our papers [13, 14, 17]. Two general methods for
solving the above-mentioned equation are presented, and a complete answer to
the problem posed in the recent paper [114] is given. An original point of view
is contained in Theorem 4.5.2, where the solvability of this equation is linked to
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the solvability of two other quadratic equations. In Theorem 4.5.3, a large class
of solvable equations ax?> — by?> = c is given. Section 4.6 deals with the problem
of solving the general Pell’s equation by using the theory of quadratic rings. One
obtains a different algorithm for solving the general Pell’s equation than the one
described in Section 4.7. The main goal of Section 4.8 is to discuss the more general
equation ax® + bxy + cy?> = N. Recently, this equation captured the attention of
mathematicians (see, for example, the doctoral thesis [157]). The last section in this
chapter is dedicated to the connection between the Thue’s theorem (Theorem 4.9.1)
and the equations x> — Dy? = +N. We discuss here the equation of this form
with D = 2,3, 5,6, 7, the working method being directly obtained from the Thue’s
theorem.

Chapter 5 is called “Equations Reducible to Pell’s Type Equations.” In Sec-
tion 5.1, we present the equations x> —kxy?+y* = 1 and x2 —kxy?+y* = 4, the main
results being contained in Theorems 5.1.1, 5.1.7, and 5.1.9. Section 5.2 is dedicated
to the equation x?* — Dy? = 1 and the central results are given in Theorems 5.2.3
and 5.2.4. Two special equations that finally lead to Pell’s type equations are studied
in Sections 5.3 and 5.4. Our point of view contained in section 5.5 encompasses in a
unitary class several equations dispersed in the literature, for instance the equations
in the titles of subsections 5.5.1, 5.5.2, 5.5.3, and 5.5.4. Section 5.6 points out other
quadratic equations with infinitely many integral solutions. In subsection 5.6.1, we
rely on our paper [12]. The main result concerning the equation x> + axy + y? = 1
is given in Theorem 5.6.1. In subsection 5.6.2, we study the equation (5.6.8), our
results correcting the ones in [173]. Other interesting equations of this type, both
solvable, are (5.6.13) and (5.6.14). The equation (5.6.15) is studied in our paper
[8], where five distinct infinite families of solutions are displayed. Based on our
paper [9], we find nine different infinite families of positive integral solutions to the
equation (5.6.18). The main idea of the paper [9] was used in [79] to generate six
infinite families of positive integral solutions to the equation (5.6.24). By using a
result in our paper [10], in the last subsection of Section 5.6 we prove that equation
(5.6.24) has in certain conditions infinitely many integral solutions.

In Chapter 6, “Diophantine Representations of Some Sequences,” we study a first
class of applications of some theoretical results presented in the previous chapters.
In Section 6.1, we define the concept of Diophantine r-representability, making
the connection with the papers [27, 28] and the doctoral Dissertation [47]. From
Theorem 6.1.1, in Section 6.2 we then obtain as special cases some properties
concerning Fibonacci’s, Lucas’, and Pell’s sequences, given in (6.2.1), (6.2.2),
and (6.2.3). In Section 6.3, we reconsider in an original manner the study of the
equations x> + axy + y?> = +1. The central result is contained in Theorem 6.3.1
and its proof is based on solving the special Pell’s equation u? — 50% = —4. All
results in Section 6.4, concerning the equation (6.4.1) and its connection with the
Diophantine representation of the Fibonacci, Lucas, and Pell sequences are original.
The method we employ is different, more natural, and simpler than the one in the
doctoral dissertation [47]. Section 6.5 deals with the Diophantine representation of
the generalized Lucas sequences, defined by us in (6.5.1). The main results, given in
Theorems 6.5.1 and 6.5.2, generalize the ones in Section 6.4. Some special cases are
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considered in the papers [96, 97, 134] and [61], while a particular definition of Lucas
sequences is given in [91]. Important results spelling out the conditions in which the
solutions to the equation (6.5.8) are linear combinations with rational coefficients of
Fibonacci and Lucas classic sequences are contained in Theorems 6.5.4 and 6.5.5.
These results belong to us as well and appear in our papers [19] and [20].

The last chapter, “Other Applications,” contains five sections. Based on our
papers [13] and [14], we extend the results in [122] and [123] concerning the
conditions in which the numbers an + b and cn + d are simultaneously perfect
squares for infinitely many values of the positive integer n. The main result is given
in Theorem 7.1.1 and is based on Theorem 4.5.3. Several special cases appear in
[25, 199] and [40]. Section 7.2 is dedicated to the study of some special properties
of the triangular numbers. In Theorem 7.2.1, one determines all such numbers that
are perfect squares, while in Theorem 7.2.2 one studies an equation solvable in the
set of triangular numbers. The fact that the asymptotic density of the triangular
numbers is equal to 0 is proved in what follows. Theorem 7.2.3 specifies that
equation (7.2.9) is solvable for infinitely many triples (m, n, p) of positive integers
and unsolvable for infinitely many triples (m, n, p) of positive integers. In [170], it
is shown (Theorem 7.2.4) that any positive rational number r with \/r ¢ Q can be
written as a ratio of two triangular numbers. The proof of this theorem uses in an
essential way our result contained in Theorem 4.5.3. Also in this section, we solve
completely the problem of finding all triangular numbers Ty, T, such that T,,/T, is
the square of a positive integer. Our approach generalizes the method given in [139]
and [101]. In Section 7.3, we study some properties of the polygonal numbers that
generalize the ones concerning triangular numbers (Theorem 7.3.1). In Section 7.3
we present some important results about powerful numbers. Recall that a positive
integer r is a powerful number if p? divides r whenever the prime p divides r. We
prove the theorem of asymptotic behavior of the function k(x), where k(x) is the
number of powerful numbers less than or equal to x and, finally, we present results
concerning consecutive powerful numbers and the possible distances between two
powerful numbers. These results are also based on the general theory of quadratic
equations.

In the last section, we present the solution to an open problem involving matrices
in the ring M5 (Z). The approach uses the properties of some quadratic Diophantine
equations, and it was given in the recent paper [29].
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