
Chapter 2
Single Species Gene Finding

A gene finding model usually consists of a main algorithm that serves as a kind
of “umbrella” algorithm for a large number of rather complex submodels. The
submodels represent various features of a gene, such as exons, introns, and splice site
models. Each submodel scores the probability, or likelihood, that each given sequence
region constitutes the corresponding gene feature, and then these scores are passed
on up to the main algorithm. The main algorithm uses these scores as foundation
for parsing the entire input sequence into complete gene structures that adhere to the
biological rules implemented in the model. This chapter covers a range of mathe-
matical models commonly used as main algorithms in single species gene finding.
Similar models used for comparative gene finding are presented in Chap. 4, while the
various kinds of submodels used for specific gene features are presented in Chap. 5.

2.1 Hidden Markov Models (HMMs)

One reason for the popularity of Markov models is that, due to their flexibility,
most processes can be approximated by a Markov chain. Markov theory is a well-
studied technique and includes a machinery of powerful algorithms to be used in data
analysis. The word “chain” may indicate that the random process generates a discrete
chain of events, but a Markov chain can evolve both in discrete and continuous time,
and have either a discrete or continuous state space. The Markov chains we will
consider here, however, will all have a discrete, finite state space. Moreover, since
most Markov models presented in this book will be of discrete-time type, this will
be our main focus in this section. But since continuous-time Markov models will be
mentioned in connection with substitution models in pairwise alignments (Sect. 3.1),
we give a brief account of that theory as well. For more details, see [16].

A powerful extension of the Markov theory are the hidden Markov models
(HMMs). HMMs were originally developed for speech recognition, with one of
the best references being the introduction by Rabiner [30]. Nowadays, HMMs have
become an integral part of bioinformatics with applications including modeling the

© Springer-Verlag London 2015
M. Axelson-Fisk, Comparative Gene Finding, Computational Biology 20,
DOI 10.1007/978-1-4471-6693-1_2

29

http://dx.doi.org/10.1007/978-1-4471-6693-1_4
http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_3

30 2 Single Species Gene Finding

periodic patterns occurring in a gene, the sequence alignment pairing of nucleotides
and amino acids, and the point mutation process of sequence evolution. For a deeper
and more general description of HMMs applied to bioinformatics, see [18].

2.1.1 Markov Chains

A random process, also called a stochastic process, is basically the evolution in time
of some random variable. For instance, the mutation process in evolution can be
seen as a random process. What makes the process random is that it jumps randomly
between different states in a state space. A Markov chain is a random process which
is “memoryless” in the sense that the next jump only depend on the current state, and
not the past of the process. This property, called the Markov property, is described
in more detail below.

We typically write a random process as a sequence of indexed random variables
(X1, X2, . . .), where Xt is the state of the random process at time index t ∈ T . If the
index set T is finite or countable, such as the integers, we call the process a discrete-
time random process. If the indices come from a continuous set, such as an interval on
the real line, the process is a continuous-time random process. The process evolves
by jumping between the states in a state space S. Just as with the time index, the state
space can be finite, countable, or continuous. Note that there is no initial assumption
about independence between the random variables in the process. Different settings
on the index set T , the state space S, and various interdependencies between the
indices in the process make up a wide variety of random processes. Markov chains
are thus a special case of this.

Discrete-Time Markov Chains

Consider a physical process that at any instant in time will reside in one of N possible
states, call them S = {s1, . . . , sN }. Assume that the process jumps between states
at discrete time points t = 1, 2, 3, . . ., and let Xt denote the state at time t . Using
the definition of conditional probabilities, the probability of any sequence of random
variables (X1, . . . , XT) can be for states i1, . . . , iT ∈ S be decomposed as

P(X1 = i1, . . . , XT = iT) = (2.1)

= P(XT = iT |XT −1 = iT −1, XT −2 = iT −2, . . . , X1 = i1)

· P(XT −1 = iT −1|XT −2 = iT −2, . . . , X1 = i1)

· · ·
· P(X2 = i2|X1 = i1)

· P(X1 = i1).

The conditional probabilities in (2.1) represent the probabilities to jump from state
Xt to Xt+1, possibly conditioning on all the past states. What characterizes a Markov

2.1 Hidden Markov Models (HMMs) 31

chain, however, is that it is “memoryless”. That is, given the current state, the future
and the past of the process are independent. This feature, called the Markov property,
can be formalized as follows:

Definition 2.1 The process (X1, X2, . . .) is a Markov chain if it for i, j, i1, . . . ,

it−2 ∈ S satisfies the Markov property

P(Xt = j |Xt−1 = i, Xt−2 = it−2, . . . , X1 = i1) = P(Xt = j |Xt−1 = i). (2.2)

The probability of a sequence (X1, . . . , XT), generated by a Markov chain, thus
becomes

P(X1 = i1, . . . , XT = iT) = P(X1 = i1)

T∏

t=2

P(Xt = it |Xt−1 = it−1). (2.3)

Definition 2.2 The probability of the first state X1 is determined by the initial dis-
tribution π = {π1, . . . , πN }, where

πi = P(X1 = i), i ∈ S
N∑

i=1

πi = 1. (2.4)

The chain proceeds according to the transition matrix A = (ai j)i, j∈S , which is an
(N × N)-matrix consisting of transition probabilities

ai j = P(Xt = j |Xt−1 = i), i, j ∈ S. (2.5)

The transition matrix is stochastic, meaning that all entries are nonnegative ai j ≥ 0,
and each row adds up to one

N∑

j=1

ai j = 1. (2.6)

A Markov chain with transition probabilities as in (2.5) is said to be of first order, due
to its dependency on only the previous state. This can be generalized, however, such
that each state depends on several of the previous states. For instance, a second-order
Markov chain depends on the previous two states, and has transition probabilities on
the form

a(2)
i jk = P(Xt = k|Xt−1 = j, Xt−2 = i), i, j, k ∈ S. (2.7)

Just as in the first-order case, the transition probabilities are nonnegative and the
rows sum up to one

32 2 Single Species Gene Finding

n∑

k=1

ai jk = 1. (2.8)

To generalize further, a kth-order Markov chain depends on the k previous states and
is defined as

a(k)
i j = P(Xt = j |Xt−1 = i1, Xt−2 = i2, . . . , Xt−k = ik). (2.9)

where i = (i1, . . . , ik) and i1, . . . , ik, j ∈ S. The sequence Xt−1, . . . , Xt−k is some-
times referred to as the context of Xt . Note that while a first-order Markov chain of N
states has an (N × N) transition matrix, a kth-order Markov chain has an (N k × N)

transition matrix, with one row for each of the N k possible contexts. A Markov chain
of zeroth-order has no context and only consists of independent state frequencies πi .

Example 2.1 Building a Markov chain from data
As a toy-example, consider a machine that generates a DNA sequence according
to a first-order Markov chain. The state space S={A,C,G,T} is illustrated in Fig. 2.1
where the states are represented as circles, and the arrows between them represent
the transitions. The machine starts in some state according to the initial distribution
π = {πA, πC , πG , πT }, generates the corresponding DNA base, and then jumps to
a new state according to the transition probabilities ai j , i, j ∈ S.

Assume that the machine generated a DNA sequence of length T = 24,

CCTCCCGGACCCTGGGCTCGGGAC

By noting that

ai j = P(Xt = j |Xt−1 = i) = P(Xt−1 = i, Xt = j)

P(Xt−1 = i)
, (2.10)

we can deduce that a first-order Markov chain on S={A,C,G,T} models dinucleotide
frequencies {AA, AC, AG, AT,…, TG, TT}. Thus, by counting the number of times
nucleotide i is followed by nucleotide j for all i, j ∈ S in our sequence, we can
estimate the model parameters by

π̂i = ci∑
k ck

âi j = ci j

ci
, (2.11)

Fig. 2.1 The state space of a
DNA sequence generating
machine

A C

G T

2.1 Hidden Markov Models (HMMs) 33

Table 2.1 The frequency
counts and estimated model
parameters

To (j)

ci j A C G T ci

From (i) A 0 2 0 0 2

C 0 5 2 3 11

G 2 1 5 0 8

T 0 2 1 0 3

where ci is the frequency count of the single residue i , and ci j is the frequency
count of the dinucleotide {i j} for i, j ∈ S. The dinucleotide frequency counts of the
observed sequence above are shown in Table 2.1. Note that since the sequence ends
with a C, the C-row will not add up.
The estimated model parameters thus become

π̂ = (0.08, 0.46, 0.33, 0.13), Â =

⎛

⎜⎜⎝

0.00 1.00 0.00 0.00
0.00 0.56 0.22 0.22
0.25 0.12 0.62 0.00
0.00 0.67 0.33 0.00

⎞

⎟⎟⎠ . (2.12)

Using the estimated model we can predict the next nucleotide in the sequence. For
instance, given that XT = C, there is an estimated 56 % chance that the next symbol
is ‘C’. Similarly, an entire new sequence can be scored based on this model. For
instance

p(CCTG) = (2.13)

= P(X1 = C)P(X2 = C|X1 = C)P(X3 = T |X2 = C)P(X4 = G|X3 = T)

= πC · aCC · aCT · aTG
= 0.0167.

Such scoring can be used to examine how characteristic a new sequence is to the
given model and, for instance, to distinguish a coding sequence from a noncoding
sequence. This is discussed further in Example 2.2. Probabilities of indices at longer
distances in the process can be determined similarly by using

P(XT +2 = C|XT = C) = (2.14)

=
∑

k∈S

P(XT +2 = C|XT +1 = k) P(XT +1 = k|XT = C)

=
∑

k∈S

aCk akC

= 0.00 · 0.00 + 0.56 · 0.56 + 0.22 · 0.12 + 0.22 · 0.67

= 0.49. �

34 2 Single Species Gene Finding

In general, the n-step transition matrix A(n) = (ai j (n))i, j∈S , corresponding to the
nth power of A represents the transitions from i to j in n steps, where

ai j (n) =
∑

k∈S

ak j aik(n − 1). (2.15)

The previous example is an example of a Markov chain that does not vary over time.
The transition probabilities are the same regardless of where we are in the sequence,
that is, Xt is independent of how long the process has run.

Definition 2.3 A Markov chain is said to be time-homogeneous (or just homoge-
neous) if the following condition holds

P(Xt = j |Xt−1 = i) = P(Xh = j |Xh−1 = i) for t �= h. (2.16)

and inhomogeneous otherwise.

Example 2.2 Markov chain classification of E. coli
The single most powerful method of discriminating between coding and noncoding
sequences is to use the statistical differences in sequence patterns. We use the same
model as in Example 2.1 with the state space shown in Fig. 2.1.

Assume that we want to use this model to discriminate between coding and non-
coding sequences in the bacteria Escherichia coli. First, we use a training set of known
coding and noncoding sequences to estimate the model parameters. Table 2.2 shows
the dinucleotide frequencies and base counts for coding and noncoding sequences in
the E. coli strain O157:H7 [26].
The probability of a new sequence (X1, . . . , XT) is given by

P(X1 = i1, . . . , XT = iT) = πi1

T −1∏

t=1

ait ,it+1 . (2.17)

The probabilities π and ai j can be estimated as in (2.11) using the frequency counts
in Table 2.2. Now, in order to test if the given sequence is coding or not, we can

Table 2.2 The dinucleotide frequency counts in E. coli O157:H7 coding and noncoding sequences

Coding to (j) Noncoding to (j)

ci j A C G T ci ci j A C G T ci

From (i) A 0.310 0.224 0.199 0.268 0.245 A 0.321 0.204 0.200 0.275 0.262

C 0.251 0.215 0.313 0.221 0.243 C 0.282 0.233 0.269 0.215 0.239

G 0.236 0.308 0.249 0.207 0.273 G 0.236 0.305 0.235 0.225 0.240

T 0.178 0.217 0.338 0.267 0.239 T 0.207 0.219 0.259 0.314 0.259

2.1 Hidden Markov Models (HMMs) 35

calculate the probability in (2.17) for two different models, coding and noncoding,
using the corresponding frequency counts in Table 2.2.
The two probabilities are then compared using a likelihood-ratio test, or a log-odds
ratio decision rule

S(X) = log
PC (X1 = i1, . . . , XT = iT)

PN (X1 = i1, . . . , XT = iT)

{
> η ⇒ coding,

< η ⇒ noncoding,
(2.18)

where PC is the probability when the parameters have been estimated using coding
frequencies, and PN the corresponding probability using noncoding frequencies. The
threshold value η is chosen to satisfy a desired significance level (e.g., α = 0.05). It
is customary in sequence analysis to use logarithms of the probabilities to prevent the
probabilities of long sequences from falling below computer precision and become
numerically unstable. As a positive side effect products are transformed into sums,
which results in a more efficient computation.

The decision rule in (2.18) is of course very crude. The (length-normalized) log-
odds scores of coding versus noncoding sequences in E. coli are illustrated in Fig. 2.2.
We see that while the peaks of the two distributions are separated, which is necessary
in order to discriminate between the models, the overlap is significant, making it hard
to separate coding sequence from noncoding sequence based on this score alone.
Several improvements to the decision rule would be possible already at this early
stage. For one thing, a more sensitive approach would utilize the fact that coding
sequences are organized in codons. Thus, a quick fix would be to upgrade the above
model to a second-order Markov chain, using transition probabilities trained on
triplets rather than on dinucleotides.

Moreover, it is a known fact that the probability of a triplet in a coding region
depends on its position with respect to the reading frame of the sequence. Thus,
an even better model would be an inhomogeneous second-order Markov chain. We
would then train four different Markov chains, one for each coding frame and one
for noncoding sequences. An example of this is given in Sect. 5.3.5. �

Fig. 2.2 Distribution of
log-odds ratio scores of
length-normalized coding
(dark gray) and noncoding
(light gray) sequences
in E. coli

log−odds

se

qs

500

100

200

300

400

−0.04 0 0.02−0.02 0.04

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

36 2 Single Species Gene Finding

Example 2.2 illustrates a strategy for classifying an unknown DNA sequence into
coding or noncoding. What we really want, however, is to extract one or several
coding regions from a longer sequence consisting of intermediate stretches of non-
coding regions. Furthermore, in organisms where splicing may occur, we would like
to combine the coding regions into complete gene structures if possible. The Hidden
Markov Model (HMM) theory, presented in the next section, provides a suitable
framework for this.

Stationarity and Reversibility

An important question of Markov theory is the limit behavior of the chain. What are
the characteristics of a process that has run for a long time? Although the chain itself
will never converge toward a specific state (unless aii = 1 for some i ∈ S), the state
distribution may still stabilize. More specifically, what is the probability of state i
occurring when time goes to infinity? Will the behavior of the chain converge? We
call a distribution over the state space τ = {τ1, . . . , τN } a stationary distribution if

(a) τi ≥ 0 for all i , and
∑

i τi = 1.
(b) τ = τA, which is to say that τ j = ∑N

i=1 τi ai j for all j ∈ S.

The stationary distribution is sometimes called the invariant, equilibrium, or steady
state distribution. The concept of stationarity is central in Markov theory, since
convergence toward a stationary distribution somehow guarantees that the process is
well-behaved in some respect. The stationary distribution may or may not exist, and
even if it exists, the process may or may not ever reach it. We need a couple of more
concepts before we can state the requirement for a stationary distribution to exist.

Definition 2.4 We say that state i ∈ S communicates with state j ∈ S, writing
i → j , if, starting from i , the probability of ever reaching state j is positive. That
is, if ai j (m) > 0 for some m ≥ 0. We say that i and j intercommunicates if i → j
and j → i . Furthermore, we say that the state space is irreducible if all its states
intercommunicate.

Definition 2.5 We call a state recurrent if the probability of eventually returning
is 1. That is, if

P(Xt = i for some t > 1|X1 = i) = 1. (2.19)

If this probability is strictly less than 1, we say that the state is transient.

Note that although we will return to a recurrent state with probability one, the
expected time of return may very well be infinite. To make sure the expected return
time is finite, we need an additional restriction on the recurrence. Starting in state
X1 = i , let Ti be the time until the first return to state i

Ti = min{t > 1 : Xt = i |X1 = i}. (2.20)

2.1 Hidden Markov Models (HMMs) 37

Definition 2.6 We say that a recurrent state is positive if the expected time of return
is finite E[Ti] < ∞.

Now we can state the following important result:

Theorem 2.1 An irreducible chain has a stationary distribution τ if and only if all
states are positive recurrent. In that case, τ is unique and is given by τi = 1/E[Ti].
However, just because the stationary distribution exists, it is not guaranteed that the
chain ever reaches it. For this we need an extra condition.

Definition 2.7 A state i is said to have period d(i) if any return to the state must
occur in multiples of d(i) time steps. Formally, the period of state i is defined as

d(i) = gcd{n : aii (n) > 0}, (2.21)

where ‘gcd’ stands for the ‘greatest common divisor’. We say that state i is periodic
if d(i) > 1 and aperiodic otherwise. That is to say that aii (n) = 0 unless n is a
multiple of d(i). Furthermore, a Markov chain is said to be aperiodic if at least one
of its states is aperiodic.

Theorem 2.2 If the chain is irreducible and aperiodic, then for all i, j ∈ S

ai j (n) → 1

E[Ti] as n → ∞. (2.22)

Note that the limit in Eq. 2.22 is what gives the stationary distribution in Theorem 2.1.
Thus, if the chain is irreducible and aperiodic with positive recurrent states, the
transition probabilities converge to the stationary distribution.

Another useful property is time reversibility. Let X1, . . . , XT be an irreducible,
positive recurrent Markov chain with initial probabilities π and transition matrix A.
Let Y1, . . . , YT be the chain running in reverse, that is

Yt = XT −t . (2.23)

Then Y is a Markov chain as well, with transition probabilities bi j say.

Definition 2.8 We say that X is time eversible if ai j = bi j for all i, j ∈ S.

Thus, since

bi j = P(Yt = j |Yt−1 = i)

= P(XT −t = j |XT −(t−1) = i)

= P(XT −(t−1) = i |XT −t = j)P(XT −t = j)

P(XT −(t−1) = i)

= a ji
π j

πi
, (2.24)

it holds that X is time reversible if and only if πi ai j = π j a ji .

38 2 Single Species Gene Finding

Theorem 2.3 For an irreducible chain, if there exists a distribution π such that

0 ≤ πi ≤ 1,
∑

i

πi = 1, πi ai j = π j a ji for all i, j,

then the chain is time reversible, positive recurrent, and stationary with stationary
distribution π .

The interpretation of time reversibility is that it is not possible to determine the
direction of the process, or the order of states, just by observing the state sequence.
This is a very useful property for substitution models in sequence alignment (see
Sect. 3.1) as it allows us to model the distance between two evolutionary-related
sequences by analyzing the process of evolving one into the other, rather than making
inferences about the distance to some unknown common ancestor in between.

Continuous-Time Markov Chains

A continuous-time Markov chain is very similar to its discrete counterpart. It jumps
between states in a state space S = {s1, . . . , sN } and is parametrized by its initial
distribution and transition probabilities. The main difference is that instead of making
the jumps at discrete time points, the chain makes a transition after having spent a
continuous amount of time in the state. The time spent in a state is called the holding
time, or waiting time. The holding time in discrete-time chains is thus always equal
to 1, while for continuous-time processes the holding time is a continuous random
variable.

Let {X (t) : t ≥ 0} be a continuous random process, indexed by the positive real
numbers, and with a discrete state space S = {s1, . . . , sN }. The process is Markov
if it satisfies the Markov property, which for continuous-time processes translates to

P(X (tn) = j |X (t0) = i0, . . . , X (tn−1) = in−1) = P(X (tn) = j |X (tn−1) = in−1),

(2.25)
for a sequence of times t1 < t2 < · · · tn and for all j, i0, i1, . . . , in−1 ∈ S. Just as
in the discrete case, the first state X (t0), (t0 = 0), is given by an initial distribution
π = {π1, . . . , πN }, but the transition probabilities now need to be parametrized by
time as well. We denote the probability of making a transition from state i to state j
between time points s and t , where s < t , as follows

ai j (s, t) = P(X (t) = j |X (s) = i), s < t. (2.26)

When the transition probabilities are independent of how long the process has run,
we call the chain time-homogeneous (or just homogeneous).
That is, for a homogeneous Markov process it holds that

ai j (s, t) = ai j (0, t − s) for all i, j, s < t. (2.27)

http://dx.doi.org/10.1007/978-1-4471-6693-1_3

2.1 Hidden Markov Models (HMMs) 39

Henceforth, we write ai j (t) = ai j (0, t) for the transition probability of a homoge-
neous chain over time period t , and let A(t) = (

ai j (t)
)

i, j∈S denote the transition
matrix for this time period. As in the discrete-time case the rows of the transition
matrix sum to one

N∑

j=1

ai j (t) = 1, (2.28)

and a time interval can be split up in smaller segments by

ai j (s + t) =
N∑

k=1

aik(s)akj (t) =
N∑

k=1

aik(t)akj (s) if s, t ≥ 0. (2.29)

If we assume that the transition probabilities ai j (t) are continuous functions of t , we
can assume that for an infinitely small time interval “nothing happens.” That is, as
h ↓ 0

ai j (h) →
{

1 if i = j,

0 if i �= j,
(2.30)

and the transition matrix reduces to the identity matrix

A(t) → I as t ↓ 0. (2.31)

A difficulty that arises with continuous-time Markov chains is that we no longer
have a clear notion of the rates of change. In the discrete-time theory the transition
probabilities both represent the changes over unit times, as well as the rates of change
between states. In a continuous setting, however, a time interval can be divided into
infinitely many subintervals, such that while the transition probability ai j (t) gives
us the probability of changing from state i to state j in time t , it does not tell us how
many changes that have occurred in between.

We need some notion of the “instantaneous” rates of change. That is, assuming
that X (t) = i , we would like to know the behavior of the process in a small time
interval (t, t + h), where h > 0 is very close to 0. Various things may happen during
that time, but for a small enough h the events reduce to one of the two possibilities:

• Nothing happened with probability aii (h) + o(h), implying that the state is the
same at time t as at t + h.

• The chain made a single move to a new state with probability ai j (h) + o(h).

The o(h) (little-o) is an error term that accounts for any extra, unobserved, transitions
during the time interval. The term o(h) basically states that for small enough h the
probability of any extra events becomes negligible, and the probability of a particular
transition is approximately proportional to h.

40 2 Single Species Gene Finding

That is, there exist constants {μi j : i, j ∈ S} such that

ai j (h) ≈
{

μi j h if i �= j,

1 + μi i h if i = j.
(2.32)

The matrix Q = (μi j)i, j is called the transition rate matrix, also known as the
generator of the transition matrix A(t). Note that μi j ≥ 0 if i �= j , and μi i ≤ 0.
The elements μi j for i �= j models the rate at which the chain enters state j from
i , while −μi i models the rate at which the chain leaves state i . Moreover, when the
chain leaves state i (with rate −μi i), it must enter one of the other states, giving

μi i = −
∑

j �=i

μi j , (2.33)

with the result that the rows of Q sum to 0. The relation between the rate matrix Q
and the transition matrix A(t) can be deduced using the forward equations

dai j (t)

dt
=
∑

k∈S

aik(t)qkj , (2.34)

or, similarly, using the backward equations

dai j (t)

dt
=
∑

k∈S

qikak j (t). (2.35)

Subject to the boundary condition A(0) = I, where I is the identity matrix, the
forward and backward equations are given by

A(t) = eQt =
∞∑

n=0

tn

n!Qn, (2.36)

where Qn is the nth power of Q. The properties of the transition rate matrix can be
summarized as follows:

• The non-diagonal elements qi j correspond to the probability per unit time of
jumping from state i to state j .

• The row sums of the non-diagonal elements qi = −qii correspond to the total
transition rate out of state i .

• The total transition rate qi is also the rate at which the time to the next jump
decreases. That is, the holding time of state i is exponentially distributed with
parameter qi .

• The number of jumps in a time interval is Poisson distributed with parameter qi .

2.1 Hidden Markov Models (HMMs) 41

The transitions of a continuous-time Markov process can be viewed as an embedded
discrete-time Markov chain, also known as the jump process.
The transition probability ai j of the jump process, is the conditional probability of
jumping from state i to state j , given that a transition occurs, and is given by

ai j =
⎧
⎨

⎩

qi j

qi
if i �= j,

0 if i = j.
(2.37)

Analogously to the discrete case, a distribution τ = {τ1, . . . , τN } on the state space
is a stationary distribution if τi ≥ 0,

∑
i τi = 1, and τ = τA(t) for all t ≥ 0. In

terms of the rate matrix, τ is a stationary distribution if and only if

τ Q = 0. (2.38)

Theorem 2.4 Let X be an irreducible Markov chain with transition matrix A(t).

(a) If there exists a stationary distribution τ , it is unique and ai j (t) → τ j as t → ∞.
(b) If there is no stationary distribution then ai j (t) → 0 as t → ∞.

2.1.2 Hidden Markov Models

While the observed output in a standard Markov model is simply the sequence of
states, a hidden Markov model (HMM) is comprised of two interrelated random
processes, a hidden process and an observed process. The hidden process is a Markov
chain jumping between states as before, but it can only be observed via the observed
process. The observed process generates output through random functions associated
with the underlying hidden states, and is generally not Markov. In other words, given
the current state the hidden process is independent of the observed process. The
observed process, however, typically depends both on its previous outputs and on
the hidden process. For our purposes we only need to treat HMMs with a finite
state space and a discrete, finite-valued observed process producing a finite output
sequence, but it may be noted that the theory is applicable to more general situations.

Example 2.3 A simple HMM
Assume we have two dice, A and B. Die A has six sides and generates numbers
between 1 and 6, while die B only has four sides and generates numbers between
1 and 4 (Fig. 2.3). Assume that we roll the dice, one at a time, and switch between
the dice according to a Markov chain. The state space of the Markov chain is thus
S = {A, B}, and the observed outputs are the numbers we produce by rolling the
die. Die A emits each number with probability 1/6, and die B emits each number
with probability 1/4. We generate numbers from this model as follows:

42 2 Single Species Gene Finding

Fig. 2.3 A two-state HMM,
where the hidden states are
the dice, and the observed
outputs are the roll outcomes

πA = 2/3 πB = 1/3

A B

2/3

1/3

3/4

1/4

1. Choose initial die according to distribution {πA, πB} = {2/3, 1/3}.
2. Roll the die and observe the outcome.
3. Choose next die according to the transition probabilities ai j , where i is the row

and j the column index in the table below.

ai j A B
A 2/3 1/3
B 1/4 3/4

4. Continue from 2.

Assume now that we only know the observed sequence of numbers, and know noth-
ing about in which sequence the dice were rolled. Thus, the die sequence (state
sequence) is hidden from us, and the die numbers are our observed sequence gener-
ated through random functions depending on the hidden state. The HMM algorithms
can help us determine the most likely state sequence for the observed sequence, given
our model. �

We let {Xt }T
t=1 denote the Markov process as before with state space S = {s1,

. . . , sN }, initial probabilities π = {π1, . . . , πN }, and transition probabilities ai j ,
i, j ∈ S. At each step t , the process emits an observation Yt , where {Yt }T

t=1 denotes
the observed process, taking values in some symbols set V = {v1, . . . , vM }. Each
variable Yt depends on the current (hidden) state Xt , and possibly on the previous
outputs Y1, . . . , Yt−1. For simplicity we will use the shorthand Y b

a = Ya, . . . , Yb for
a subsequence between time indices a and b. We denote the emission distribution of
Y as

b j (Yt |Y t−1
1) = P(Yt |Y t−1

1 , Xt = j). (2.39)

To summarize, our HMM is characterized by the state space S, the emission alphabet
V and the initial, transition and emission probabilities {πi , ai j , b j : i, j ∈ S}.

One way to more easily understand the procedure of a Markov model is to view
it as a “sequence generating machine”, by which the observed sequence could be
generated as in Algorithm 1.

2.1 Hidden Markov Models (HMMs) 43

Algorithm 1 Generating output from a standard HMM
t = 1
Choose Xt according to π

while t < T do
Emit Yt according to bXt (Yt |Y t−1

1)

Jump to state Xt+1 according to aXt ,Xt+1

t = t + 1
end while

The joint probability of the hidden and the observed process is determined by noting
the following:

P(Xt = j, Yt |Xt−1 = i, Xt−2
1 , Y t−1

1) =
= P(Xt = j |Xt−1 = i)P(Yt |Xt , Y t−1

1)

= ai j b j (Yt |Y t−1
1). (2.40)

Using the same notation as Rabiner in [30], we let θ = {π, A, B} denote the model,
where π is the initial distribution, and A and B represent the transition and emis-
sion probabilities, respectively. Then the joint probability of the entire hidden and
observed sequence, under the model can be written as

P(X T
1 , Y T

1 |θ) = πX1 bX1(Y1)

T∏

t=2

aXt−1,Xt bXt (Yt |Y t−1
1). (2.41)

In what follows, while always conditioning on the model, we omit θ in the notation.
Thus far we have described the model, generating the hidden state sequence, that is

underlying our observations. In gene finding, or in any other situation of classification,
we are sitting at the other end. Typically, we are faced with an observed sequence
that we would like to assign state labels to. In other words, we would like to classify,
or parse, the observed sequence. In order to do so in the framework of HMMs, we
need means to:

1. Estimate the parameters of the model.
2. Validate the model.
3. Use the model as a predictive tool.

In the first step, called the training step, we build our model by estimating its para-
meters from a set of training data. That is, we use a set of sequences that are rep-
resentative for the patterns we are looking for, and where we know the state labels
for each observed symbol. The second step, called the evaluation step, is a check
that our model is a reasonable representation of reality. In this step we calculate the
probability that the observed data was produced by our model.

The main difficulty, when going from a standard Markov chain to HMMs,
is that there is no unique correspondence between the state sequence and the
observed sequence. An observed sequence could be achieved by many different state

44 2 Single Species Gene Finding

sequences, or many different paths through the state space. The goal of the third
step, called the parsing step, is to determine the most likely state sequence that could
have generated the observed sequence. We say that we parse, classify, annotate, or
decode the observed sequence by attaching state labels to each observed symbol.
The resulting state sequence then corresponds to the most probable path through the
model.

By means of dynamic programming, described below, we can efficiently solve
these problems. The corresponding HMM algorithms, utilizing the dynamic pro-
gramming method, are called the forward algorithm, the backward algorithm, and
the Viterbi algorithm. The evaluation and the decoding steps are solved directly
using these algorithms. The solution to the training problem is more complicated
and involves using a variant of the expectation–maximization (EM) algorithm called
the Baum–Welch algorithm, described in Sect. 6.5.

2.1.3 Dynamic Programming

Many optimization problems have a recursive structure, or an optimal substructure,
where the optimal solution can be divided into subproblems, which themselves have
optimal solutions. Example 2.4 illustrates the concept of breaking a recursive struc-
ture into substructures.

Example 2.4 Fibonacci numbers
As an example of a recursive structure, consider the Fibonacci numbers, where each
subsequent number in the series is the sum of the previous two numbers:

f (n) =

⎧
⎪⎨

⎪⎩

0 if n = 0,

1 if n = 1,

f (n − 1) + f (n − 2) if n > 1.

(2.42)

Although not an optimization problem, it illustrates how redundant a naive imple-
mentation of f (n) would be. If we, for instance, were to compute f (5), using a
direct (top-down) approach, we would call f (2) three times, and f (3) two times
(see Fig. 2.4), and the number of computations needed to calculate f (n) would grow
exponentially with n. Such a problem, where the recursive solution contains a rel-
atively small number of distinct subproblems repeated many times, is said to have
overlapping subproblems. By representing each subproblem by one node only, we
get a directed acyclic graph (DAG) (see Fig. 2.5), instead of the much redundant tree
representation. Instead of having an exponentially growing number of computations,
the problem grows linearly in n, since we only have to calculate each f (n) once.

�

An efficient solution to problems such as that in Example 2.4 is the dynamic pro-
gramming algorithm, which has attained a central role in computational sequence
analysis [13]. Dynamic programming is a general recursive decomposition technique

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

2.1 Hidden Markov Models (HMMs) 45

f (5)

f (4)

f (3)

f (2)

f (1) f (0)

f (1)

f (2)

f (1) f (0)

f (3)

f (2)

f (1) f (0)

f (1)

Fig. 2.4 A recursive tree illustrating the sub-calculations needed to determine f (5)

Fig. 2.5 A directed acyclic
graph of the computation of
the Fibonacci number f (5)

f (5)

f (4)

f (3)

f (2)

f (1)

f (0)

for global optimization problems, exhibiting the properties of optimal substructures
and overlapping subproblems. The word ‘programming’ does not refer to the process
of coding up a computer program for the purpose, but to the tabular mode of the com-
putation. The trick used in dynamic programming is to store (or cache) and reuse the
solutions to the subproblems, an approach called memoization (not memorization)
in computing. The standard dynamic programming approach has three components:

1. The recurrence relation.
2. The tabular computation.
3. The traceback.

In the recurrence relation we establish the recursive relationships between the vari-
ables, such as in (2.42). In the tabular computation the calculations are organized in
a table that is filled in one column at a time (see Fig. 2.6). There are in general two
approaches to do this:

• In a top-down approach the problem is broken down into subproblems, which
are calculated the first time they are called and then stored for further calls. This
approach combines recursion and memoization. Figure 2.4 illustrates a top-down
calculation of the Fibonacci algorithm. The contribution of dynamic programming
is that the calculation of each subproblem is stored and a map function is used to
keep track of which subproblems already have been calculated.

46 2 Single Species Gene Finding

Fig. 2.6 The tabular
computation goes through
the table column by column

1 T

1

N

St
at

e

Observation

• In a bottom-up approach all subproblems are calculated and stored in advance.
This is more efficient than the previous, but is less intuitive as it may be difficult
in certain applications to figure out all subproblems needed for the calculation in
advance. A bottom-down calculation of f (5) would simply calculate all Fibonacci
numbers subsequently, f (0), f (1), f (2), f (3), f (4), f (5).

The bottom-up approach is what is commonly used in HMM algorithms and sequence
alignment, and is what we will consider from now on. Once the table of subproblems
have been filled (bottom-up), we traceback through the table to obtain the optimal
solution. In the Fibonacci example, the calculation is finished already in the tabular
calculation, but in other situations such as in sequence alignment we still need to
figure out the optimal solution to the global problem using the table of subproblem
solutions. The easiest way to facilitate the traceback is to store pointers during the
tabular computation from each cell in the table to the optimal previous position. These
pointers are then followed in the traceback to determine the optimal path through the
table. In the following sections we will show how dynamic programming is employed
in HMMs.

2.1.3.1 Silent Begin and End States

Before we proceed to describe the HMM algorithms, we need to explain the notion
of silent states. A silent state is a state with no output. Since the first state of a Markov
chain follows a special initial distribution, adding a silent begin state X0 to the model
will simplify the formula in (2.41)

P(X T
1 , Y T

1) =
T∏

t=1

aXt−1,Xt bXt (Yt |Y t−1
1), (2.43)

2.1 Hidden Markov Models (HMMs) 47

where now
aX0,X1 = πX1 . (2.44)

Similarly, we can model the end of the sequence by adding a silent end state XT +1,
such that

P(XT +1|XT) = axT ,XT +1 . (2.45)

The end state is usually not included in a general Markov chain, where the length
of the chain may be undetermined and the end can occur anywhere in the sequence
[11]. But since we will deal exclusively with finite sequences, adding an end state
will enable the modeling of the sequence length distribution. Moreover, as we will
see in Sect. 2.2.4, the inclusion of a silent begin and end state can become a valuable
means to reduce computational complexity.

2.1.4 The Forward Algorithm

The forward algorithm is used to calculate the probability (or likelihood) of the
observed data under the given model. The recurrence relation in dynamic program-
ming is represented by the forward variables, defined as the joint probability of the
hidden state at time t = 1, . . . , T and the observed sequence up to that time,

αi (t) = P(Y t
1, Xt = i)

=
∑

j∈S

P(Y t
1, Xt = i, Xt−1 = j)

=
∑

j∈S

P(Yt , Xt = i |Y t−1
1 , Xt−1 = j)P(Y t−1

1 , Xt−1 = j)

=
∑

j∈S

P(Xt = i |Xt−1 = j)P(Yt |Y t−1
1 , Xt = i)P(Y t−1

1 , Xt−1 = j)

=
∑

j∈S

a ji bi (Yt |Y t−1
1)α j (t − 1). (2.46)

For initialization we add a silent state X0, where

αi (0) = πi , i ∈ S, (2.47)

and for termination we add a silent end state XT +1, where

αi (T + 1) = P(Y T
1 , XT +1 = i) =

∑

j∈S

α j (T)a ji . (2.48)

48 2 Single Species Gene Finding

Fig. 2.7 Each node is a sum
of the forward variables at
the previous position

...

state

1

2

N

α j(t −1)

i

bi(Yt)

αi(t)

a1i

a2i

aNi

The desired probability of the observed data, given the model, is then given by

P(Y T
1) =

∑

i∈S

P(Y T
1 , XT +1 = i) =

∑

i∈S

αi (T + 1). (2.49)

The forward variables are efficiently calculated using the tabular computation in
dynamic programming. The calculations are organized in a table as in Fig. 2.6, that
is filled in one column at a time for increasing state and time indices. The name
forward in the forward algorithm comes from the fact that we move forward through
the data. That is, each variable αi (t) at time t is a (weighted) sum over all variables
at time t − 1 (see Fig. 2.7).
The implementation of the forward algorithm is illustrated in Algorithm 2.

Algorithm 2 The forward algorithm
t = 1
Choose X1 according to π

while t < T do
Emit Yt according to bXt (Yt |Y t−1

1)

Jump to state Xt+1 according to aXt ,Xt+1

t = t + 1
end while

2.1.5 The Backward Algorithm

There is a useful HMM algorithm closely related to the forward, called the backward
algorithm, which is used in particular when solving the training problem in Sect. 6.5.
As the recursion in the forward algorithm proceeds in a forward direction with respect
to time, the recursion for the backward variables goes in the opposite direction. The
backward variable βi (t) is the probability of all observed data after time t , given the
observed data up to this time and given that the state at time t is Xt = i . As with the

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

2.1 Hidden Markov Models (HMMs) 49

forward, we initialize by using a silent state, but since we are going backwards the
initial state of the algorithm is the end state XT +1 of the chain

βi (T + 1) = 1, i = 1, . . . , N . (2.50)

For t = T, T − 1, . . . , 1 we define the backward variables as

βi (t) = P(Y T
t+1|Y t

1, Xt = i)

=
∑

j∈S

P(Y T
t+1, Xt+1 = j |Y t

1, Xt = i)

=
∑

j∈S

P(Xt+1 = j |Xt = i)P(Yt+1|Y t
1, Xt+1 = j)P(Y T

t+2|Y t+1
1 , Xt+1 = j)

=
∑

j∈S

ai j b j (Yt+1|Y t
1)β j (t + 1). (2.51)

We finish in the silent begin state X0, but this does not need special treatment for
the backward algorithm. The algorithm simply terminates upon calculation of βi (0),
for 1 ≤ i ≤ N . Note that, similarly to the forward algorithm, we can calculate the
probability of the observed sequence using the backward algorithm as well.

P(Y T
1) =

∑

i∈S

P(Y T
1 , X1 = i)

=
∑

i∈S

P(Y T
2 |Y1, X1 = i)P(Y1|X1 = i)P(X1 = i)

=
∑

i∈S

πi bi (Y1)βi (1). (2.52)

2.1.6 The Viterbi Algorithm

The purpose of using HMMs in biological sequence analysis is to utilize their
strengths as a predictive tool. That is, given that we have a model and have trained
its parameters, we would like to use it to classify, or decode, an unlabeled sequence
of observations. In other words, we would like to find the optimal state sequence
for the given observations and the given model. However, the solution to this prob-
lem depends on our definition of “optimal”. As discussed in [30], depending on the
optimality criterion chosen, the solution might not even be valid. For instance, one
natural criterion would be to choose the sequence of states that are individually most
likely, a method commonly referred to as posterior decoding and discussed further in
Sect. 2.1.7.1. This approach maximizes the number of correct individual states, but
as soon as some state transitions in the state space have probability zero, we stand
the risk of ending up with a state sequence that is indeed optimal in the sense that it

50 2 Single Species Gene Finding

reaches the highest likelihood, but that is impossible to achieve. In the end, what we
would like to find is the single best state sequence among all valid ones. The HMM
procedure that achieves this is called the Viterbi algorithm. The Viterbi algorithm
formulation is essentially the same as the forward algorithm, except sums are replaced
by maxima, and we need a little extra bookkeeping to track the maximizing terms.

We would like to optimize the probability of the hidden state sequence, given
the observed data P(X T

1 |Y T
1). Note, however, that this probability is maximized at

the same point as the joint probability P(X T
1 , Y T

1). Therefore, we define the Viterbi
variables as the joint probability of hidden and observed data up to time t , maximized
over all valid state sequences. The initial conditions for the recurrence relation are
the same as for the forward algorithm. The Viterbi variables for the initial silent state
X0 are given by

δi (0) = πi , i = 1, . . . , N . (2.53)

The tabular computation proceeds for t = 1, . . . , T using the recurrence relation

δi (t) = max
Xt−1

1

P(Y t
1, Xt−1

1 , Xt = i)

= max
Xt−2

1 , j
P(Y t

1, Xt−2
1 , Xt−1 = j, Xt = i)

= max
Xt−2

1 , j
P(Y t−1

1 , Xt−2
1 , Xt−1 = j)P(Xt = i |Xt−1 = j)P(Yt |Y t−1

1 , Xt = i)

= max
1≤ j≤N

δ j (t − 1)a ji bi (Yt |Y t−1
1). (2.54)

As a result, each δi (t) represents the highest probability of all paths up to time t ,
ending in state i . To facilitate the traceback we store pointers from the current position
to the optimal previous position,

ψi (t) = argmax
1≤ j≤N

a ji bi (Yt |Y t−1
1)δ j (t − 1). (2.55)

These pointers will be used to retrieve the optimal path through the state space. As
for the forward algorithm, the computation is terminated by calculating the Viterbi
variables for the silent end state XT +1

δi (T + 1) = max
X T

1

P(Y T
1 , X T

1 , XT +1 = i)

= max
1≤ j≤N

a ji δ j (T). (2.56)

The probability of the most likely state sequence is then given by

P(most likely state sequence) = max
1≤i≤N

δi (T + 1). (2.57)

2.1 Hidden Markov Models (HMMs) 51

1 T −2 T−1 T

1

2

3

N

St
at

e

Observation

...
...

...
...

···

···

···

···

X∗
T

Fig. 2.8 The traceback starts in X∗
T and moves back through the state space, following the stored

pointers ψi (t)

To extract the actual state sequence giving rise to this probability, we start the trace-
back in the silent end state giving rise to the highest value on its Viterbi variable,

X∗
T +1 = argmax

1≤i≤N
δi (T + 1), (2.58)

and backtrack recursively through the dynamic programming table (see Fig. 2.8)
using

X∗
t = ψX∗

t+1
(t + 1), t = T, T − 1, . . . , 0. (2.59)

The resulting state sequence, X∗
0, X∗

1, . . . , X∗
T +1 is then the optimal, or most prob-

able, state sequence for the given observations and given model, and represents a
parse or an annotation of the observed sequence. The implementation of the Viterbi
algorithm is illustrated in Algorithm 3.

While the Viterbi algorithm is very efficient at finding the single best path, and
is suitable to use when one path clearly dominates, it is less effective when several
paths have similar near-optimal probabilities. In such cases posterior decoding might
work better, even though it is not guaranteed to produce a valid solution. Posterior
decoding is discussed further in Sect. 2.1.7.1.

52 2 Single Species Gene Finding

Algorithm 3 The Viterbi algorithm
/* Initialize */

for i = 1 to N do
Initialize: δi (0) = πi

end for

/* The tabular computation */

for t = 1 to T do
for i = 1 to N do

δi (t) = 0
for j = 1 to N do

if a ji δ j (t − 1) > δi (t) then
δi (t) = δ j (t − 1)a ji
ψt (i) = j

end if
end for
δi (t) = bi (Yt |Y t−1

1)δi (t)
end for

end for

2.1.7 EasyGene: A Prokaryotic Gene Finder

The gene finding problem in prokaryotes is quite different from that in eukaryotes. In
particular, the prokaryotic genomes are much more dense, with much less intergenic
regions and with rarely any splicing. As a result, while eukaryote genomes may
contain less than 10 % of coding sequence, prokaryotes tend to be very gene rich
with as much as 90 % of the sequence being coding. Moreover, the prokaryotic
binding sites are usually located in direct vicinity of the protein-coding regions, and
can be included in the model and thereby strengthen the gene signal. In contrast,
eukaryotes binding sites can be located long distances from the actual gene and
are often difficult to associate with the corresponding genes. However, although
much simpler, the gene finding task is far from trivial even in prokaryotes, and is
complicated by several issues.

Gene finding in prokaryotes is usually conducted by looking for open reading
frames (ORFs). That is, long stretches of potentially coding sequences surrounded
by a pair of candidate in-frame start and stop codons, but void of in-frame stop
codons in between. The issue that arises in such an approach is that of separating
real genes from ‘spurious’, or random, ORFs. The shorter the sequences considered,
the more difficult this task becomes. Therefore, it is common to apply a minimum
length threshold on the ORFs considered in these searches. Sharp and Cowe [37]
suggested a threshold of 100 amino acids as a good trade-off between the number
of missed short genes and the number of predicted spurious ORFs. It turns out,
however, that such a threshold is very crude. Prokaryotic genomes contain plenty
of spurious ORFs above that size, and a significant amount of true genes below it
[40]. Another issue, much more prevalent in prokaryotes than in eukaryotes, is the

2.1 Hidden Markov Models (HMMs) 53

B Null RBS Start Astart Bstop Stop Astop Null E

X
10-19 3 3

X X X

3 3 6
X

Fig. 2.9 The EasyGene gene model. The numbers above the boxes represent the number of bases
modeled by that submodel, where ‘X’ indicates a variable number. B and E are begin and end states,
the NULL-states cover intergenic region before and after the gene, the RBS state include the RBS
and the spacer bases to the next state, Start and Stop model the start and stop codons, Astart, Bstop
and Astop explicitly model the codons directly after the start codon and surrounding the stop codon

problem of overlapping genes, which makes the accurate detection of translation
start sites notoriously difficult.

EasyGene [20] is an HMM-based prokaryotic gene finder, that attempts to address
these issues. EasyGene is fully automated in that it extracts training data from a raw
genomic sequence, and estimates the states for coding regions and ribosomal binding
sites (RBS) used to score potential ORFs. The EasyGene state space is illustrated
in Fig. 2.9. The B and E states are silent begin and end states of the HMM, and
the NULL-states model everything that is not part of the gene, and not in direct
vicinity of the gene. The RBS state includes the RBS as well as the bases between
the RBS and the next state, and the START and STOP states correspond to the start
and stop codons of the gene, respectively. While eukaryotic genes almost always
start with ATG, prokaryotes use a number of alternative start codons. E. coli (K-12
strain), for instance, uses ATG in about 83 % of its genes, GTG in 14 % and TTG
in 3 % of the cases, and an additional one or two very rare variants [4]. The stop
codons are typically TAA, TAG, and TGA in both eukaryotes and prokaryotes, even
if alternatives are known to exist [15]. The codons directly after the start codon and
the codons surrounding the stop codon tend to follow a distribution different from the
rest of the gene [38], a feature that can be used to strengthen the start and stop signals.
This feature is explicitly modeled in the ASTART, BSTOP, and ASTOP states.

The model for the internal codons consists of 3 parallel submodels, allowing
the HMM to keep separate statistics for atypical genes. Each submodel, consists
of a series of 3 codon models, where each codon model is a 4th-order Markov
model consisting of three states, one for each DNA base of the codon, capturing the
codon position dependency of coding sequences. As a result the length distribution
becomes negative binomial with parameters (n, p), where n is the number of serial
codon models, and p the probability of transitioning out of the specific codon model.
This model allows for more general length distributions than the geometric, which

54 2 Single Species Gene Finding

would be the result of using one codon model alone (this issue is discussed further
in Sect. 2.2).

2.1.7.1 Posterior Decoding

As a consequence of using duplicated codon states, the length of an ORF is only
realized as the sum over many HMM paths. While the Viterbi algorithm is a very
efficient decoding algorithm when one path dominates, it is not appropriate when
several paths have similar probabilities. Therefore, EasyGene uses posterior cod-
ing instead, also known as the forward–backward algorithm [30], where the indi-
vidually most likely sequence of states is computed. The details on the forward–
backward algorithm are given in Sect. 6.5, but in short we use the probabilities of
being in a given state si ∈ S at time t , given the observed sequence to determine the
individually most likely state sequence. The forward–backward variables are defined
as

γt (i) = P(Xt = si |Y T
1) = αi (t)βi (t)

P(Y T
1)

, (2.60)

and the resulting optimal state sequence is given by

X∗
t = argmax

si ∈S
γt (i), 1 ≤ t ≤ T . (2.61)

Assuming that there are no frameshifts or sequencing errors in the sequence, there
is exactly one stop codon for each start codon, and, thus, the probability of a gene
is equivalent to the posterior probability of its gene start. As a consequence, we
can easily extract all possible start codons for a gene in the case of several similar
scores. Moreover, in the case of overlapping genes the Viterbi algorithm would only
report the highest scoring, while using posterior decoding each gene is scored and
reported separately. However, posterior decoding merely bunches together indepen-
dent underlying states, without checking that the parse is valid. Although this is not a
big problem in prokaryotic gene finding, we still need to be careful when interpreting
the output of posterior decoding.

2.1.7.2 Statistical Significance of Predictions

Along with its gene predictions, EasyGene reports a measure of statistical signifi-
cance for each ORF. The measure is based on a comparison of the predicted ORFs to
the expected number of ORFs in a random sequence. The random sequence model,
called the NULL-model (different from the NULL-states in the main model), is a
third-order Markov chain using the same base frequencies as the overall genome
in question. It consists of a third-order state for intergenic regions, and a reverse
codon model to capture genes on the reverse strand (see Fig. 2.10). The significance

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

2.1 Hidden Markov Models (HMMs) 55

Fig. 2.10 The NULL-model
in EasyGene is used to
model random sequence with
the same background
statistics as the overall
genome. The state space
consists of a third-order
intergene state and a reverse
codon model to capture
genes on the reverse strand

measure is based on a log-odds score between the model and the NULL-model,

β = log
P(Y |M)

P(Y |N)
, (2.62)

where P(Y |M) is the probability that sequence Y contains an ORF under the model,
and P(Y |N) the same probability for the NULL-model. This score is different from
that reported by Genscan, which reports posterior exon probabilities based on the
HMM (see Sect. 2.2.4.3).

2.2 Generalized Hidden Markov Models (GHMMs)

A major problem with standard HMM is the intrinsic modeling of state duration.
Outputting exactly one observation per jump leads to a length distribution that is
exponentially decaying, something that often is unsuitable for many applications.
The solution to this problem is called a hidden semi-Markov model, or a generalized
HMM (GHMM). The word ‘generalized’ comes from this fact, that instead of having
geometric length distributions we can use a length distribution of our choice.

2.2.1 Preliminaries

A standard HMM makes a transition at each time unit t , such that the transition
time is always equal to one, and the observed output is exactly one symbol per
unit. However, by making a number of self-transitions into the same state, we can
observe a coherent subsequence emitted from the same state. We call the length of
such a sequence the duration of the state. Due to the Markov property, rendering the
process memoryless, the duration follows a geometric distribution (see Sect. 5.2.1).
Hence, using a standard HMM for the purpose of gene finding, for instance, would
impose a geometric distribution on each state. It has been noted, however, that exons

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

56 2 Single Species Gene Finding

in particular tend to follow a length distribution that is statistically very different
from the geometric distribution. Thus forcing such a model on the sequence data
may lead to bad predictions.

A semi-Markov model, has the same structure as a standard HMM, except that
the process stays in each state a random amount of time before its next transition, as
opposed to standard HMMs, where the time in each state always equals one (note that
we are only considering discrete-time processes here). More formally, a semi-Markov
process is a process W whose state sequence is generated by a Markov process X as
before, but whose transition times are given by another process ζ that may depend
on both the current state and the next. Thus, since properties of ζ may depend on the
next state in X , the process W is in general not Markovian. The associated process
(X, ζ), however, is a Markov process, hence the name semi-Markov.

In a hidden semi-Markov model, or a generalized hidden Markov model as we
will call it henceforth, there is a duration distribution associated with each state.
When a state emits output, first a duration is chosen from the duration distribution,
and then the corresponding length of output is generated. This generalization can

improve performance by allowing for more accurate modeling of the typical duration
of each particular state. As a result, the indices of the hidden and the observed process
will start to differ as soon as a state has a duration that is longer than 1. For example,
assume that the model generated the following output:

Hidden: X1: X2: X3:
Observed: Y1Y2Y3 Y4Y5 Y6Y7Y8Y9

In order to handle this, we separate the time index notation in the state sequence and
in the observed sequence as follows. Given that the hidden process is in state Xl , let
dl denote the duration of Xl chosen from a length distribution fXl (dl). To keep track
of the indices in the hidden versus the observed sequences, we introduce partial sums
for the number of emitted symbols up to (and including) state Xl

pl =
l∑

k=1

dk, and p0 = 0. (2.63)

We let L denote the length of the Markov process, X L
1 , and T the length of the

observed process, Y T
1 . For simplicity we assume that pL = T , meaning that all

of the observed output generated in the final state X L is included in the observed
sequence. Now the state sequence X L

1 , the duration sequence d L
1 , and the length of

the state sequence L , are hidden from the observer, and the observed data remains
to be the observation sequence Y T

1 . The joint probability of the hidden and observed
data becomes

P(Y T
1 , X L

1 , d L
1) =

L∏

l=1

aXl−1,Xl fXl (dl)bXl (Y
pl
pl−1+1|Y pl−1

1), (2.64)

2.2 Generalized Hidden Markov Models (GHMMs) 57

where X0 is the silent begin state as before, with

aX0,X1 = πX1 . (2.65)

One drawback with GHMMs is that statistical inference is harder than for stan-
dard HMMs. In particular, the Baum–Welch algorithm for parameter training is not
applicable. The Baum–Welch algorithm is a generalized EM-algorithm (expectation–
maximization), that uses counts of transition–emission pairs to update the expectation
part of the algorithm. Details on the Baum–Welch algorithm, and on how to train
GHMMs, can be found in Chap. 6.

2.2.2 The Forward and Backward Algorithms

One of the attractive features of using a generalized HMM for gene finding is that it
provides a natural way of computing the posterior probability of a predicted gener-
alized state, given the observed data. How this is done is described in Sect. 2.2.4.3,
in the framework of the gene finding software Genscan [7]. First, we need to adjust
the forward and backward algorithms in (2.46) and (2.51), respectively, to fit the
GHMM framework.

The Forward Variables

Recall that the forward variables are defined as the joint probability of observed
sequence up to time t , and the hidden state at time t . In a GHMM, however, we
need to adjust the definition slightly, since each state can have variable durations. We
define the forward variables αi (t) as the probability of the observed data, and that
the hidden state i at time t actually ended at time t . This is to say that Xl = i and
pl = t for some 1 ≤ l ≤ L . In what follows we let D be the maximum duration of
a state.

αi (t) = P
(

Y t
1, {some hidden state i ends at t}

)

= P
(

Y t
1,

L⋃

l=1

(
Xl = i, pl = t

))

=
∑

j∈S

D∑

d=1

P
(

Y t
1,

L⋃

l=1

(
Xl = i, pl = t, dl = d

)
,

L⋃

l=1

(
Xl = j, pl = t − d

))

=
∑

j∈S

D∑

d=1

[
P
(

Y t−d
1 ,

L⋃

l=1

(
Xl = j, pl = t − d

))
(2.66a)

·P
(L⋃

l=1

(
Xl = i, pl = t, dl = d

)∣∣∣
L⋃

l=1

(
Xl = j, pl = t − d

))
(2.66b)

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

58 2 Single Species Gene Finding

· P
(

Y t
t−d+1

∣∣∣Y t−d
1 ,

L⋃

l=1

(
Xl = i, pl = t, dl = d

)
,

L⋃

l=1

(
Xl = j, pl = t − d

))]
(2.66c)

The first term (2.66a) is simply α j (t − d). To handle the conditioning on unions
in the second (2.66b) and third (2.66c) terms, we make use of the following two
lemmas.

Lemma 2.1 If sets A, B, and C satisfy B ∩ C = ∅ and P(A|B) = P(A|C), then
P(A|B ∪ C) = P(A|B).

Lemma 2.2 If for set A and disjoint sets B1, . . . , Bn we have that P(A|Bi) =
P(A|B1) for all 1 ≤ i ≤ n, then P(A|⋃n

i=1 Bi) = P(A|B1).

As a result, for the second term (2.66b) we get

P
(L⋃

l=1

(
Xl = i, pl = t, dl = d

)∣∣∣
L⋃

l=1

(
Xl = j, pl = t − d

))

= P
(L⋃

l=1

(
Xl = i, pl = t, dl = d

)|X1 = j, p1 = t − d
)

= P(X2 = i, p2 = t, d2 = d|X1 = j, p1 = t − d)

= a ji fi (d). (2.67)

Similarly, the third term (2.66c) becomes

P
(

Y t
t−d+1

∣∣∣Y t−d
1 ,

L⋃

l=1

(
Xl = i, pl = t, dl = d,

)
,

L⋃

l=1

(
Xl = j, pl = t − d

))

= P(Y t
t−d+1|Y t−d

1 , p1 = t − d, d2 = d, X2 = i).

= bi (Y
t
t−d+1|Y t−d

1). (2.68)

Thus, the forward algorithm results in

αi (t) =
∑

j∈S

D∑

d=1

a ji fi (d)bi (Y
t
t−d+1|Y t−d

1)α j (t − d). (2.69)

We initialize and terminate as before with

αi (0) = πi , (2.70)

αi (T + 1) = P(Y T
1 , X L

1 , X L+1 = i) =
∑

j∈S

α j (T)a ji . (2.71)

2.2 Generalized Hidden Markov Models (GHMMs) 59

Just as in the non-generalized case, the probability of the observed sequence, given
the model, is given by summing over the terminal forward variables

P(Y T
1) =

∑

i∈S

αi (T + 1). (2.72)

The Backward Variables

The backward variable βi (t) denotes the probability of all the observed data after
time t , given the observed data up to time t and given that the hidden state i ended
at time t . Skipping the details, the backward variables for GHMMs are given by

βi (t) = P
(

Y T
t+1|

L⋃

l=1

(Xl = i, pl = t)
)

=
∑

j∈S

D∑

d=1

ai j f j (d)b j (Y
t+d
t+1 |Y t

1)β j (t + d). (2.73)

The backward algorithm is initiated as before, using βi (T + 1) = 1 for all i ∈ S,
and is terminated upon calculation of βi (0).

2.2.3 The Viterbi Algorithm

Now that we know what the GHMM forward algorithm looks like, adjusting the
Viterbi algorithm of the standard HMM as straightforward. Recall from Sect. 2.1.6
that the conditional probability P(X T

1 |Y T
1) of the state sequence given the observed

data is maximized by the same state sequence as the joint probability P(Y T
1 , X T

1). The
same holds in the GHMM situation; the state sequence and the associated durations
that maximizes P(X L

1 , d L
1 |Y T

1) also maximizes the joint probability P(Y T
1 , X L

1 , d L
1)

given in (2.64). As for the standard HMMs, the Viterbi algorithm only differs from
the forward algorithm in that the sums are replaced by maxima. Therefore, skipping
the technical details, the tabular computation of the GHMM Viterbi algorithm for
t = 1, . . . , T becomes

δi (t) = max
l,Xl−1

1 ,dl
1

P(Y t
1, Xl−1

1 , Xl = i, pl = t)

= max
j,d

δ j (t − d)a ji fi (d)bi (Y
t
t−d+1|Y t−d

1). (2.74)

60 2 Single Species Gene Finding

The Viterbi algorithm is initiated and terminated by

δi (0) = πi , (2.75)

δi (T + 1) = max
j

δ j (T − 1)a ji . (2.76)

The probability of the most likely sequence of states and durations is given by

P(most likely sequence of states and durations) = max
1≤i≤N

δi (T + 1). (2.77)

As we evaluate δi (t) we record the values of the optimal previous position in the
dynamic programming table, which now includes two values. In addition to knowing
the most likely previous state ψi (t) we need to know the most likely duration of that
state, in order to jump back to the right previous cell in the table. That is, we record
the previous state and its duration in the pair of variables

(
ψi (t), φi (t)

) = argmax
j,d

δ j (t − d)a ji fi (d)bi (Y
t
t−d+1|Y t−d

1), (2.78)

where now ψi (t) corresponds to the maximizing previous state j , and φi (t) to the
maximizing duration d of that state. The most probable state sequence thus ends in
a state i∗ which has duration φi∗(T + 1) and is preceded by state ψi∗(T + 1), and
the whole sequence is unraveled by backtracking using the φ’s and the ψ’s.

2.2.4 Genscan: A GHMM-Based Gene Finder

Genscan [7] is probably one of the most popular single species gene finders of all
times, and included several novel improvements when it first was published. The
novel features include:

• The ability to predict multiple genes in a sequence.
• The ability to predict partial genes at the end of the sequence.
• The ability to predict genes on both strands simultaneously.
• Binning the parameter set into several submodels, depending on the G+C content

of the input sequence.
• Modeling long-range internal dependencies in splice sites using Maximal Depen-

dence Decomposition (MDD).

While most gene predictors up to that point assumed the existence of exactly one
complete gene in the sequence to be analyzed, Genscan allows the recognition of
both multiple and partial genes. Moreover, the gene prediction is efficiently per-
formed on both strands simultaneously, by simply adding a mirror image of the state
space, connected via the intergenic state (see Fig. 2.11). Other improvements include
G+C dependent model parameters. Typically, the gene density is higher and the gene

2.2 Generalized Hidden Markov Models (GHMMs) 61

E0,0 E0,1 E0,2 E1,0 E1,1 E1,2 E2,0 E2,1 E2,2

Intron0 Intron1 Intron2

EI,0 EI,1 EI,2 Esing E0,T E1,T E2,T

Intergene

Fig. 2.11 A simplified version of the Genscan state space, modeling only the forward strand and
consisting of E-states and I -states alone. The diamond-shaped I -states are non-generalized states
emitting one symbol at a time, while the circular E-states are complex submodels with generalized
length distributions and including the splice site models

structure is more compact in regions of higher G+C content (see Sect. 5.3.1). Since
this directly affects the model parameters, Genscan separates the training sequences
into four sets; sequences of less than 43 % GC-content, 43–51%, 51–57%, and more
than 57 % G+C content. When a sequence is to be analyzed, the G+C content is
first calculated, and the corresponding set of parameters is applied in the predic-
tion process. Another novel feature in Genscan is the splice site predictor. Signal
sequences in general, and splice sites in particular exhibit significant internal depen-
dencies between nonadjacent positions, something that is not easily captured by
common weight matrices, or even with higher order Markov models. Genscan uses
the Maximal Dependence Decomposition (MDD) model for modeling splice sites.
The MDD breaks down the splice site sequence into its specific positions and creates
a decision tree arranged by the position dependencies in the order of importance.
The MDD is described in more detail in Sect. 5.4.3. The improvements introduced in
Genscan were quickly adapted by the gene finding community, and now constitute
an integral part of most modern gene finders.

A simplified version of the Genscan state space is illustrated in Fig. 2.11. The
figure only shows the forward strand and only includes exons (E-states), introns,
and intergene (I -states). The full state space consists of 27 separate states, 13 for
each strand, and a joint intergene state. The additional states include promoters,
UTR-states, and polyA-signals as well. However, the identification of such regions

http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_5

62 2 Single Species Gene Finding

T T G A A T G G A TGC C

T T G A A G G A TG TC C G C

G C

T T G A A G T G G A TC C G C
Intron0

Intron1

Intron2

Ei,0

Ei,1

Ei,2

E0, j

E1, j

E2, j

Fig. 2.12 Illustrating the notion of exon and intron phase. Intron j comes between exon Ei, j and
exon E j,k , j = 0, 1, 2

is significantly more difficult than the E- and I -states, leading to much less reliable
predictions in comparison to the protein-coding portion of the genes. The reverse
strand can be included in the state space by adding a mirror image of the forward
states, joined by a common intergenic state. The diamond-shaped I -states are sim-
ple, non-generalized states with geometrically distributed durations. The circular
E-states are more complex: they include codon compositions, a generalized length
distribution, and exon boundary models (splice sites, start or stop). Four types of
exons are defined, depending on which boundaries that contain them: single exons
(start to stop), initial exons (start to donor), internal exons (acceptor to donor), and
terminal exons (acceptor to stop). The introns and internal exons are separated into
three groups, corresponding to the phase of the surrounding exons. Exons can be
spliced anywhere in the reading frame; exactly between two complete codons, after
the first base of the codon, or after the second base (see Fig. 2.12). If an internal intron
appears exactly between two complete codons, it has phase 0, while if it occurs after
the first or second nucleotide, it has phase 1 or 2, respectively. The internal exons
are indexed correspondingly, with Ei, j signifying that the previous exon ended with
i extra bases (and the preceding intron has phase i), and the current exon ends with
j extra bases. The notion of phase is discussed further in Sect. 5.1.1. At a first glance
it may seem unnecessary to include such a large number of exon and intron states,
but it turns out to be computationally efficient, as it allows us to keep track of the
phase without requiring anything more than a first-order Markov chain.

It is typically the exon states that need to be generalized in the gene finding state
space, since their length distributions differ significantly from the geometric distri-
bution. Also, the length distribution tend to differ between different exon types as
well (see Sect. 5.2 for details). Therefore, Genscan uses separate empirical length
distributions for single, initial, internal, and terminal exons. The introns and inter-
genic regions, however, seem to follow the geometric length distribution fairly well
provided that a certain minimum threshold is exceeded. Also, the 5′UTR and 3′UTR
state lengths are modeled using geometric distribution.

2.2.4.1 Sequence Generation Algorithm

Consider generating a genomic sequence from the Genscan model. Say that we start
off in the intergenic state and do a number of self-transitions. The state duration of

http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_5

2.2 Generalized Hidden Markov Models (GHMMs) 63

the intergene and the introns in each step is always dl ≡ 1. Thus, each time we
visit the intergenic state, a single-base Yt is generated according to some distribution
bIG(Yt |Y t−1

1). The output may depend on all of the preceding sequence, but most
models only include contexts of a few bases back. Eventually, after some geometri-
cally distributed time t we make a transition into a different state, for instance the
EI,2 state. The EI,2 state represents an initial exon including the two first bases of
its last codon. An exon duration d is generated according to some generalized length
distribution fEI,2(d), where fEI,2(d) = 0 if (d mod 3) �= 2. We generate d bases

Y t+d
t+1 according to emission distribution bEI,2(Y

t+d
t+1 |Y t

1), and jump with probability
1 to intron I2. Note that while the exon sequence may depend on the entire previous
sequence as well, it is typically modeled as independent of the preceding I -state.
In intron I2 we continue as in the intergene state, executing a geometric number of
self-transitions and emitting a state-specific base in each step, before jumping to one
of the internal exons E2,i or the terminal exon E2,T . The exon sequence will finish off
the last codon of the previous exon, before continuing to generate complete codons.
It should be clear by now that the length of each specific exon state is fixed mod 3.

The algorithm for generating a sequence of predetermined length from the Gen-
scan model is summarized in Algorithm 4. The last state of the algorithm is trun-
cated appropriately to ensure that pL = T , meaning that the observed sequence ends
exactly at the last base of the last state.

Note that we left out any mentioning of the splice sites surrounding the introns.
While the I -states are simple, non-generalized states, the exons are themselves com-
plex submodels. Each exon submodel consists of its length distribution, the model for
the coding sequence as well as the exon boundaries (start, stop, donor, and acceptor
signals). Details on the exon submodels are given in Chap. 5.

Naturally, using Markov models as sequence generators are only a approxima-
tion of the reality. The process at which real genes are generated is bound to be far
more complex than any kind of mathematical model. However, using such models
as approximations of the real processes provide a powerful tool for the identification
of genes and enables us to reconstruct highly complex gene structures. Some limi-
tations of the Genscan model, however, include: (1) Only protein-coding genes are
considered, as the pattern for RNA genes are quite different and would need separate
models to be detected [32]. (2) Only introns in between protein-coding exons are
modeled, and not UTR introns for example. (3) Overlapping and alternatively spliced
genes are not handled.

2.2.4.2 Reducing Computational Complexity

Gene prediction, as well as sequence analysis in general, involves dealing with large
quantities of data, and an important question is how feasible the calculations of the
HMM algorithms are in practice. We can address this by estimating the number of
multiplications (or additions, if we use logarithms) required for each forward and
backward variable. The emission distribution bi (Y

t+d
t+1 |Y t

1) is commonly calculated

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

64 2 Single Species Gene Finding

Algorithm 4 The Genscan model
/* Initialize */

l = 1
p0 = 0
Choose X1 according to π

Choose state duration d1 according to fX1 (·)
p1 = d1

/* Generate sequence */

while pl ≤ T do
Emit Y pl

pl−1+1 according to bXl (·|·)
Jump to state Xl+1 according to aXl ,Xl+1

l = l + 1
Choose state duration dl according to fXl (·)
pl = pl−1 + dl

end while

/* Truncate the last state to get pL = T */

if pl > T then
Emit Y T

pl−1+1 according to bXl (·|·)
end if

as the product of d single-base probabilities P(Yt |Yt−1, . . . , Yt−k), each of which
is typically conditioned on a number k of previous bases. Therefore, if D is the
maximum duration of a state and N the number of states, the order of computing
a forward variable αi (t) is O(ND2). If T is the length of the DNA sequence, there
are N T such variables, leading to a total of O(TN2D2) operations to compute the
forward algorithm, and O(TN) bytes to store the variable values. This means that
the complexity of the problem is linear in the length of the sequence being analyzed,
which is a desired property. However, there is a lot of structure in the topology of
the model in Fig. 2.11 that we can take advantage of to get a significant reduction
in computational complexity. First, we partition the state space into exon states E
and intron and intergenic states I , where S = E ∪ I , and let NE and NI denote the
number of separate states in each class, such that N = NE + NI . Using the structure
of the state space, we can actually reduce the memory requirement from O(T N) to
O(T NI) by storing αi (t) only for the I -states.

Looking at the model, it is clear that an E-state must be followed by an I -state.
Also, because of the alternation between E- and I -states, at any given time and state,
either the previous state, or the state before that, was an I -state. Returning to the
forward recursion in (2.69), we can separate the summation over the previous state
j between the two-state classes E and I .

2.2 Generalized Hidden Markov Models (GHMMs) 65

αi (t) =
∑

j∈S

D∑

d=1

α j (t − d)a ji fi (d)bi (Y
t
t−d+1|Y t−d

1)

=
∑

j∈I

D∑

d=1

α j (t − d)a ji fi (d)bi (Y
t
t−d+1|Y t−d

1) (2.79a)

+
∑

j∈E

D∑

d=1

α j (t − d)a ji fi (d)bi (Y
t
t−d+1|Y t−d

1). (2.79b)

The first term (2.79a) depends on forward variables for previous I -states only, and
needs no further modification. To make the same come true for the second term
(2.79b) we need to step back one state further, which then must be an I -state. The
memory-reduced forward recursion can then be written as

αi (t) =
∑

j∈I

D∑

d=1

α j (t − d)a ji fi (d)bi (Y
t
t−d+1|Y t−d

1) (2.80a)

+
∑

j∈E

∑

k∈I

D∑

d=1

D∑

e=1

[
akj αk(t − e − 1) f j (e)b j (Y

t−d
t−d−e+1|Y t−d−e

1) (2.80b)

·a ji fi (d)bi (Y
t
t−d+1|Y t−d

1)
]
. (2.80c)

In (2.80b), instead of referring to the forward variables of the E-states, we can move
one step further back and use the forward variables of the preceding I -states, and
include the contribution of the E-states explicitly. As a result we do not have to store
the forward variables of the E-states.

Further simplifications can be made. First, recall that the I -states always have
duration d ≡ 1. As a result, the summation over d can be dropped and fi (d) can be
set to 1. Second, when leaving an exon Ei, j we jump to I j with probability 1. Thus,
the transition probability a ji = 1 for j ∈ E . Note also that the only way we can
jump directly between I -states is via self-transitions, which means that the first sum
over I -states only has one positive term. Third, we note that for any given pair of
I -states (i, k) with an intervening E-state, the connecting E-state is unique, call it
Ek,i . Thus, the summation over j ∈ E in (2.80b) has only one positive term as well,
the one involving Ek,i . Finally, the forward recursion becomes

αi (t) = bi (Yt |Y t−1
1)

[
aii αi (t − 1)

+
∑

k∈I

D∑

e=1

αk(t − e − 1)ak,Ek,i fEk,i (e)bEk,i (Y
t−1
t−e |Y t−e−1

1)

]
. (2.81)

66 2 Single Species Gene Finding

As a result, the required memory needed to store the forward variables becomes
O(T NI) and the number of operations O(T N 2

I D2). Since NI = 4 and N = 20
we have achieved an 80 % reduction in memory usage and a 96 % reduction of the
number of operations needed. Depending on the choice of exon emission distribution
bEi, j it may be possible to reduce the number of operations further, and significantly
boost the performance of the algorithm. For instance, if it is possible to make a
lookup table to compute exon probabilities in a small number of operations, then the
complexity of the forward calculation may be reduced by a factor D to O(T N 2

I D).
If we use the Genscan reduction of the state space, an extra need for a silent begin

and end state arises. Without an end state, the likelihood of the observed data would
be calculated using

P(Y T
1) =

N∑

i=1

αi (T). (2.82)

In the reduced model, however, we only store αi (T) for the I -states, i ∈ I . Although
we do not allow the sequence (or predictions of the sequence) to begin or end in the
middle of an exon, we still want it to be possible to predict an exon with a boundary
at Y1 or YT , respectively, and the sum in (2.82) would have to run over all states,
not just the I -states. We get around this by adding silent begin and end states to the
model. For the begin state X0 we set the initial distribution to be positive only for
I -states. The initialization conditions are therefore

αi (0) = πi , i ∈ I. (2.83)

Similarly, for the end state X L+1 we set transition probabilities from X L to be positive
only for transitions to I -states. The termination conditions become

αi (T + 1) = P(Y T
1 , X L+1 = i), i ∈ I. (2.84)

As before, the expression for αi (T +1) is the same as for the other forward variables
in (2.81), except it does not have the output term bi . The likelihood of the observed
data can then be calculated as usual

P(Y T
1) =

∑

i∈I

αi (T + 1). (2.85)

In the same manner, the backward and the Viterbi algorithms can be optimized to
reduce memory and computational complexity. The backward algorithm simplifies to

βi (t) = βi (t + 1)aii bi (Yt+1|Y t
1)

+
∑

k∈I

D∑

e=1

βk(t + e + 1)ai,Ei,k fEi,k (e)bEi,k (Y
t+d
t+1 |Y t

1)b j (Yt+e+1|Y t+e
1), (2.86)

with initialization βi (T + 1) = 1, i ∈ S.

2.2 Generalized Hidden Markov Models (GHMMs) 67

The optimized Viterbi algorithm becomes

δi (t) = bi (Yt |Y t−1
1)

· max
{
δi (t − 1)aii , max

k∈I
1≤e≤D

{
δk(t − e − 1)ak,Ek,i fEk,i (e)bEk,i (Y

t−1
t−e |Y t−e−1

1)
}}

(2.87)

with initialization δi (0) = πi , i ∈ I and termination as in (2.87) but without the
bi term. The backtracking procedure has to be changed slightly for the optimized
algorithms. We record the previous I -state that achieved the maximum, and if this
max involved passing through an exon state we need to record the maximizing dura-
tion of that exon as well. Otherwise, we record that the max was achieved via a
self-transition with a duration d = 1.

It is possible to speed things up further by using the fact that certain features
are (almost) always present in some of the states. For example, every initial exon
must start with a start codon ATG, and every terminal exon must end with one of
three possible stop codons; TAA, TAG, or TGA. Similarly, almost all donor sites
have consensus GT as the first two bases of the intron, and almost all acceptor sites
have an AG consensus as the final two bases of the intron. If we are willing to limit
ourselves to genes matching these rules only, we can restrict the summation over the
state length in the forward algorithm to sum only over lengths that are consistent
with these rules. The extent to which this reduces the computations will depend on
the composition of the sequence being analyzed.

Repeat masking can also help in speeding up the algorithms. The key observation
is that certain repeats (in particular long interspersed repeats such as the Alu repeat)
never occur in coding exons. Therefore, it is possible to substantially reduce the
number of potential exons to be considered (and summed over in the algorithm). The
effect on the computational complexity will depend on the frequency of repeats and
their structure in the sequence being analyzed.

2.2.4.3 Exon Probabilities

One of the attractive features of using a GHMM for gene prediction is that it provides
a natural way of computing the posterior probability of a predicted exon, given the
observed data. Say that we have predicted an exon E∗ of type se between bases a to
b, such that the length of the exon is d = (b − a + 1). We would like to compute the
probability that the prediction is correct, i.e., the probability that the exon is part of
a real gene and is predicted in the correct frame.

68 2 Single Species Gene Finding

P(E∗ ∈ se is correct |Y T
1) = P

(L⋃

l=1

(
Xl = se, dl = d, pl−1 = a − 1

)∣∣∣Y T
1

)

=
P
(

Y T
1 ,

L⋃

l=1

(
Xl = se, dl = d, pl−1 = a − 1

))

P(Y T
1)

. (2.88)

The denominator is simply the probability calculated in (2.85). To simplify the numer-
ator in (2.88), we recall that for any given pair of I -states surrounding an E-state, the
connecting E-state is uniquely defined. The opposite holds true as well; every exon
type is surrounded by a unique pair of I -states. Thus, if Xl = se we can determine
the previous and next I -states, call them i− and i+. The union in the numerator in
(2.88) can then be split into two unions, one for the preceding I -state i− and one
for the subsequent exon and I -state i+, and the desired probability can be calculated
using intermediate values of the forward and the backward algorithms.

P
(

Y T
1 ,

L⋃

l=1

(
Xl = se, dl = d, pl−1 = a − 1

))

= P
(

Y T
1 ,

L⋃

l=1

(
Xl = i−, pl = a − 1

)
,

L⋃

l=1

(
Xl = se, Xl+1 = i+, dl = d, pl = b

))

= P
(

Y a−1
1 ,

L⋃

l=1

(Xl = i−, pl = a − 1)
)

· P
(

Y b
a ,

L⋃

l=1

(Xl = se, Xl+1 = i+, dl = d, pl = b)

∣∣∣Y a−1
1 ,

L⋃

l=1

(Xl = i−, pl = a − 1)
)

· P
(

Y T
b+1

∣∣∣Y b
1 ,

L⋃

l=1

(Xl = i+, pl = b + 1)
)

= αi−(a − 1)ai−,e fse (d)bse (Y
b
a |Y a−1

1)βi+(b + 1). (2.89)

This probability can be interpreted as the probability that there is an exon of particular
type se running exactly from positions a to b in the sequence. The forward variable
αi−(a − 1) represents the probability of all possible parses to the left of the exon
that ends in the appropriate I -state i−, while the backward variable βi+(b + 1)

captures the probability of all parses to the right of the exon, beginning in I -state
i+ (see Fig. 2.13). Thus, the probability is constituted by the sum over all possible
pairings of parses to the left and the right of the exon in question, and not only by
intrinsic properties of the exon model itself. While the exon scores in many other
gene finders depend on local properties such as splice signals and codon composition,
the exon probability in Genscan is affected by the entire sequence. For instance, the
probability of an initial exon will be boosted if it is preceded by a strong promoter
signal at an appropriate distance upstream of a. This procedure, generally referred to

2.2 Generalized Hidden Markov Models (GHMMs) 69

...
...

i−

ai−,e fse(d)bse (Y
b
a |Y a−1

1)

i+

a−2
αa−1(i−)

a−1

βb+1(i+)

b+1 b+2

Fig. 2.13 Illustration of the forward–backward procedure for calculating the probability of a given
predicted exon

as the forward–backward algorithm, is presented in [30] as a method for reestimating
parameters in the training process, and is discussed in more general terms in Sect. 6.5.

We might prefer an exon probability that is less specific than the one in (2.89).
For instance, we might want to know the probability that there is any kind of exon at
all in a certain region, rather than having to specify the exon type. There is a second
kind of probability that can help address this issue.
Note that the probability of being in (and at the end of) state i at time t is given by

αi (t)βi (t) = P(Y T
1 ,

L⋃

l=1

(Xl = i, pl = t)). (2.90)

This yields

∑

i∈I

αi (t)βi (t) = P(Y T
1 , state i at time t is an I -state). (2.91)

Therefore, if we normalize (2.91) by the probability of the entire sequence P(Y T
1),

and subtract the result from 1, we get

P(the hidden state at time t is some kind of exon |Y T
1) =

= 1 −
∑

i∈I αi (t)βi (t)

P(Y T
1)

. (2.92)

This offers an alternative kind of probability to the exon probability in (2.89). It does
not help much in determining what kind of exon it is or where its boundaries are,
but may help indicating alternative candidate exon regions. Such regions could be
missed by the Viterbi algorithm since the Viterbi only determines the single most

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

70 2 Single Species Gene Finding

likely sequence of exons, and there could be highly probable alternative splicings of
a gene that goes undetected.

2.3 Interpolated Markov Models (IMMs)

Markov models have successfully been used as content sensors in DNA sequence
analysis, both as discriminators between coding and noncoding sequences (see
Chap. 5) as well as the detection of regular motifs such as eukaryotic promoters
[25]. Usually higher order Markov models are required, due to long-range depen-
dencies within a sequence. For instance, a model for coding regions should at least
be of 2nd-order, because of the organization of nucleotides into codons. A 5th-order
or higher would be even more preferred, since neighboring codons tend to be depen-
dent as well. Basically, the higher the order the more sensitive the model is. The
drawback, however, is that as the order increases, the required size of the training
data grows exponentially. For instance, in a training model of order k there are 4k+1

probabilities to estimate. Thus, for a 5th-order model the training set has to be large
enough to contain all 4096 possible hexamers, and sufficiently many times to provide
reliable estimates, which is rarely the case in gene finding. The training data gets
even more sparse, when used for the recognition of regulatory motifs such as promot-
ers [25], or for automatic correction of sequence errors in low-quality data such as
ESTs [39]. A common solution to the problem of sparse training data is to “smooth”
the parameter estimates in some way in order to avoid zero probabilities. Smoothing
strategies include using pseudocounts, backing-off procedures, or interpolation tech-
niques. Using pseudocounts simply involves various ways of adding extra counts to
the observed frequencies (see Sect. 6.2). Backing-off procedures involve setting the
model to operate on a lower order when training data is insufficient.

In interpolated Markov models (IMMs) the order of the model is not fixed. Instead
an interpolation of several Markov models of different orders is used. In pattern recog-
nition these models are called variable-order Markov models [2], in data compression
they go under the name of variable-length Markov models or context trees [31], and in
speech recognition they are commonly referred to as stochastic language models [36].
The idea of IMMs is that although some oligomers occur too rarely to give reliable
estimates, some may be very frequent, and would provide useful information to the
prediction if included. Thus, instead of falling back to a lower order Markov model
altogether, an IMM attempts to use the extra strength of the higher order, whenever
there is data to support a longer context. As a result IMMs can capture both large
and small dependencies in the sequence corresponding to the available statistics in
the training set. Although an IMM is usually less powerful than a hidden Markov
model, it has proved successful for many applications, where the problem of sparse
training sets is frequent.

http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_6

2.3 Interpolated Markov Models (IMMs) 71

2.3.1 Preliminaries

The likelihood of a sequence Y T
1 can be decomposed as

P(Y T
1) =

T∏

t=1

P(Yt |Y t−1
1). (2.93)

However, using the entire previous sequence as context requires a huge training set,
and is very expensive computationally. Thus a common approximation is to use an
upper limit k of the context length.
The resulting model becomes a kth-order Markov model

P(Y T
1) ≈

T∏

t=1

P(Yt |Y t−1
t−k). (2.94)

Now, assume that we want to classify a sequence into one of N possible states, or
classes S = {s1, . . . , sN }. The conditional probabilities in (2.94) need to be estimated
for each class, from a training set of known classification. The sequence is then
classified into the state with the highest likelihood

s∗ = argmax
si ∈S

P(Y T
1 |si). (2.95)

The maximum likelihood (ML) estimates of the conditional probabilities in (2.94)
are given by

P̂(Yt |Y t−1
t−k) = f (Y t

t−k)

f (Y t−1
t−k)

, (2.96)

where f (Y b
a) denotes the frequency count of the sequence Y b

a . One problem, with the
ML-estimates, however, is that when some k-mers are very infrequent, they may yield
very unreliable estimates, or probability zero even. Even though some such k-mers
may actually not belong to the specific class, and should yield a zero count, others
may be missing due to sparse training data. The trick used in IMMs to overcome
this problem, is to combine the Markov models of different orders. The next section
describes two different interpolation schemes used to combine k-mers of different
lengths in order to smooth the estimates of low-frequent oligomers.

2.3.2 Linear and Rational Interpolation

Interpolated Markov models can be seen as a generalization of fixed-order Markov
models, where a combination of models of different orders is used. Instead of one

72 2 Single Species Gene Finding

fixed order, the conditional probabilities in (2.94) are estimated using a combination
of the ML-estimates in (2.96). Linear interpolation [36] can be written as

P̃(Yt |Y t−1
t−k) = ρ0

1

L
+ ρ1 P̂(Yt) + ρ2 P̂(Yt |Yt−1) + · · · + ρk P̂(Yt |Y t−1

t−k), (2.97)

where P̂(Yt |Y t−1
t−k) is the ML estimate in (2.96). The coefficients ρi are positive

constants that sum to one, such that P̃ is still a probability, and the factor 1/L is a
kind of “pseudocount” that ensures that none of the conditional probabilities are set
to zero. The ML-estimates P̂ of the different order models are based on counts of
oligomers in the training data. The coefficients ρi can be optimized with respect to
the likelihood using the EM-algorithm described in Sect. 6.4, where they are treated
as hidden variables in an HMM.

One problem with linear interpolation is that all the different orders in (2.97)
are treated equally, although some estimates may be less reliable than the others.
Rational interpolation [36] includes a weight function that scores the reliability of a
context Y t−1

t−i , such that

P̃(Yt |Y t−1
t−k) =

k∑

i=0

ρi · g(Y t−1
t−i) · P̂(Yt |Y t−1

t−i)

k∑

i=0

ρi · g(Y t−1
t−i)

(2.98)

where the denominator is needed for normalization. The weight function g can be
chosen different. For instance in [36] a sigmoid function is chosen, where the shape
depends on a constant bias C

g(Y t−1
t−i) = f (Y t−1

t−i)

f (Y t−1
t−i) + C

. (2.99)

For C = 0 the model reduces to linear interpolation, but for C > 0 we obtain the
rational interpolation model

P̃(Yt |Y t−1
t−k) =

k∑

i=0

ρi
f (Y t

t−k)

f (Y t−1
t−k) + C

k∑

i=0

ρi
f (Y t−1

t−k)

f (Y t−1
t−k) + C

. (2.100)

The bias has the most impact on small datasets, and the larger the training set,
the smaller the influence of C . One problem with rational interpolation is that the

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

2.3 Interpolated Markov Models (IMMs) 73

EM-algorithm cannot be used to estimate the coefficients ρi . Instead a gradient
descent method can be used to reach a local optimum [36].

2.3.3 GLIMMER: A Microbial Gene Finder

Microscopic organism that are too small to be observed by the naked eye are often
referred to as microbes, or microorganisms. They do not constitute a specific clas-
sification, but can be found in almost all different taxa of life, including bacteria,
animals, fungi, and plants, and include both prokaryotes and eukaryotes. Microbes
are typically unicellular, and exist anywhere in the biosphere where there is liquid
water, and they can survive extreme conditions such as heat, cold, acidity, salt, and
darkness. Besides their importance in a wide variety of areas such as food produc-
tion, water treatment (removing contaminants), and energy production (fermenting
ethanol), microbes pose as important models and tools for biotechnology, biochem-
istry, genetics, and molecular biology. Examples of popular microbes are the budding
yeast Saccharomyces cerevisiae and the bacterium Escherichia coli.

Splicing is rare in microbial genomes (as in prokaryotes in general, see Sect. 2.1.7).
Thus, the issue of microbial gene finding is not to find actual coding sequences and
determine the gene structures, but to identify the correct reading frame, and to sep-
arate overlapping genes. The main component in a microbial gene finder is, thus,
the content sensor that scores coding potential and captures dependencies between
nucleotides in open reading frames (ORFs). In addition, only some preprocessing to
select potential ORFs, and some post-processing to handle overlapping gene candi-
dates are necessary.

GLIMMER (Gene Locator and Interpolated Markov ModelER) is a microbial
gene finder, particularly suited for bacteria, archaea, and viruses [9, 10, 35]. It uses an
IMM to discriminate between coding and noncoding regions. The program consists
of two sub-modules; one that builds the IMM from training data, and one that uses
the resulting model to score new sequences.

2.3.3.1 Gene Prediction

GLIMMER scores a new sequence Y T
1 using a kth-order IMM

P(Y T
1) =

T∑

t=1

IMMk(Y
t
t−k), (2.101)

where IMMk is calculated as

IMMk(Y
t
t−k) = ρk(Y

t−1
t−k) · P(Yt |Y t−1

t−k) + (1 − ρk(Y
t−1
t−k)) · IMMk−1(Y

t
t−k).

(2.102)

74 2 Single Species Gene Finding

Table 2.3 Example in [45]
of the gene prediction output
of GLIMMER

orfID start end frame score

-------- ------ ----- -- -----

> Escherichia coli O157:H7

orf00001 11952 98 -3 2.84

orf00003 351 133 -1 5.25

orf00004 312 2816 +3 11.33

orf00005 2854 3750 +1 10.02

orf00007 3751 5037 +1 13.63

The training of the probabilities P(Yt |Y t−1
t−k) and the coefficients ρk is described in

the next section. The gene prediction procedure of GLIMMER goes as follows:

1. Identify all ORFs longer than a given threshold in the input sequence.
2. Score the ORFs in each of the six reading frames, using (2.101).
3. Select ORFs scoring higher than a given threshold for further analysis.
4. Examine selected ORFs for overlaps.
5. Report ORFs that passed the overlap analysis.

Instead of scoring the entire input sequence, open reading frames (ORFs) exceeding
a given minimum length are selected and scored using (2.101). Gene dense genomes
usually contain overlapping genes, and such occurrences are investigated further. If
two ORFs of different reading frames overlap by more than some preset minimum,
the overlapping region is scored separately in all six reading frames, and if the longer
ORF scores higher than the shorter in this region, the shorter ORF is dropped from the
analysis. GLIMMER outputs a set of predicted genes, along with notes on overlaps
that may need further examination. An example of the output format of the final gene
predictions is given in Table 2.3 (taken from [45]). The columns represent the ORF
identifier, the start and stop coordinates of the genes, the reading frame, and the gene
score.

A further extension of the IMMs used in GLIMMER are the Interpolated context
models (ICMs). While an IMM can use as many bases in the context as the training
data allows, an ICM can use any bases in the given context. That is, bases not
necessarily adjacent to one another. The idea is to capture the high dependence on
codon position when scoring a base. Often the ICM will choose a context identical
to that the corresponding IMM would have chosen, but sometimes, as in the case
with the third codon position, a slightly different model will be used.

2.3.3.2 Training the IMM

Seven submodels are trained by GLIMMER on a set of known sequences; one for each
reading frame (three for each strand), and one for noncoding regions. Each submodel
is trained by counting the occurrences of all oligomers of lengths 1, . . . , k +1 where
k is a predefined maximum context depth (default is k = 8 in GLIMMER). The last

2.3 Interpolated Markov Models (IMMs) 75

base of the oligomer defines the frame, and the preceding bases represent the context
of that base. The likelihoods P(Yt |Y t−1

t−k) in (2.102) are estimated directly from these
frequency counts using

P(Yt |Y t−1
t−k) = f (Y t

t−k)∑
y∈V f (Y t−1

t−k , y)
, (2.103)

where (Y t−1
t−k , y) denotes the concatenation of the context sequence and symbol y ∈

{A, C, G, T }.
The coefficients ρk(Y

t−1
t−k) are determined using two criteria: if the context Y t−1

t−k
occurs frequently enough, the actual frequency is used and the weight ρk is set to
1. The frequency threshold used is 400, and gives about 95 % confidence that the
estimated probabilities are within ±0.05 of their true value [35]. Otherwise, if a
context occurs less than 400 times in the training set, the frequency of the context
is compared to the IMM-value of the one base shorter context, to see if the longer
context adds information to the prediction.
The comparison is performed using a χ2-test

ρk(Y
t−1
t−k) =

⎧
⎪⎨

⎪⎩

0 if c < 0.5,

c

400

∑

y∈V

f (Y t−1
t−k , y) if c ≥ 0.5 (2.104)

where c is the probability, taken from the χ2-distribution, that the frequencies of the
longer context differ from the IMM-values of the shorter context. That is, if we let

X2 =
∑

y∈{A,C,G,T }

[
f (Y t−1

t−k , y) − IMMk−1(Y
t−1
t−k+1, y)

]2

IMMk−1(Y
t−1
t−k+1, y)

, (2.105)

where X2 is χ2-distributed with 3 degrees of freedom, the probability c is given by

c = P(χ2
3 ≥ X2). (2.106)

In effect, the frequencies of the longer context are compared to the IMM-values of the
one base shorter context, and if there is a significant difference between contexts the
longer context serve as a better predictor and gets a higher value on the coefficient
ρ. If there is little difference, meaning that the longer context adds no significant
information, the longer context model gets a lower value on ρ.

76 2 Single Species Gene Finding

2.3.3.3 GlimmerM

Eukaryotes such as the yeast S. cerevisiae, or the malaria parasite Plasmodium
falciparum, are commonly analyzed using gene finders optimized for human. While
these genomes have a gene density that is significantly lower than for microbes,
they are still very gene rich, and a prokaryote gene finder may perform better than
a human gene finder. GlimmerM is based on the GLIMMER method, but is opti-
mized for gene densities around 20 %, and has incorporated the GeneSplicer splice
site detector [27]. Moreover, GlimmerM uses a combination of decision trees and
IMM-based exon scoring. The decision trees, built by the OC1 system [24], estimate
the probability that a given sequence is coding, and the resulting gene models are
accepted if the IMM-score for the coding sequence is above a certain threshold.

2.4 Neural Networks

Artificial neural networks were first developed in an attempt to mimic the information
processing and learning of the biological nervous system, such as the brain, in order
to acquire some of their immense computational power. While the artificial neurons
used in neural networks today remain quite far from their biological counterpart, their
computational power has proved useful in a number of fields. Neural network models
have traditionally been used in speech and image recognition, but has become more
and more popular as components in DNA sequence analysis. In general, neural net-
works are suitable for classification problems with computationally complex patterns
and many hypotheses to be evaluated in parallel.

Neural networks are essentially nonlinear mappings between a set of input vari-
ables and a set of output variables. An advantage of neural networks over other such
mappings is that while many other techniques grow exponentially with the dimension
of the input space, neural networks typically only grow linearly, or quadratically, with
input dimension. We give a brief overview of the neural networks most commonly
used in computational biology, the backpropagated feed-forward neural networks.
For a more thorough treatment, see for instance [1].

2.4.1 Biological Neurons

Biological nervous systems, such as the brain, consist of myriads of neurons, which
are specialized cells designed to process and transmit information. Learning, for
instance, takes place when neurons communicate with each other. Each neuron can
connect to several thousands of others, and multiple neurons can fire in parallel.
Hence, the human brain, consisting of something like 1011 neurons, constitute a
parallel processor with a capability that is vastly superior to the most advanced
computer clusters that exist today.

2.4 Neural Networks 77

axon

dendrites

synapse

cell body

Fig. 2.14 A biological neuron consists of a cell body, a dendritic tree, and an axon. The space
between the axon and the dendrites of the next neuron is called the synapse. The neuron receives
signals on its dendrites, and transport them through the axon and into the synapse over to the next
neuron

A neuron is typically composed of a cell body, a dendritic tree, and an axon (see
Fig. 2.14). The neuron receives signals on the dendrites and releases (fires) signals
through the axon. Connected neurons are separated by a small physical gap called a
synapse. The information is carried through the system in the form of electrochemical
pulses, or action potentials, that are passed on from neuron to neuron. A neuron can
receive thousands of such pulses from different neurons, and each pulse may change
the potential of the dendritic membrane, either by inhibiting or exciting the generation
of further pulses. If the sum of these pulses exceeds a certain threshold the neuron
“fires” by generating a new pulse that travels into the synapse and over to the next
neuron.

2.4.2 Artificial Neurons and the Perceptron

An artificial neuron is, similarly to a biological neuron, composed by a cell body,
dendrites, and an axon (see Fig. 2.15). The inputs, that are received through the
dendrites, get integrated in some manner, and if the result exceeds a given threshold,
the neuron transmits an output. Thus, an artificial neuron is simply a computational
unit, that maps input values to one or more outputs. The computation is done in two
steps: first the input values x = (x1, . . . , xN) are integrated into a single value a,
through some integration function a = h(x), and then this value is transformed by
some nonlinear function g, called the activation function, to produce an output value
y = g(a) = g(h(x)).

The simplest kind of artificial neurons, first proposed by McCulloch and Pitts [22],
uses binary values (0 or 1) both for inputs and the output. The integration function is

78 2 Single Species Gene Finding

INPUTS

x1

x2

xN

Dendrites

Σ f

Integration
Activation

OUTPUT

Axon

Fig. 2.15 An artificial neuron attempts to mimic a biological neuron, and consists of a cell body,
dendrites, and an axon. The inputs are weighted and summed, before the activation function decides
whether the neuron should fire or not

an unweighted sum of excitatory and inhibitory edges. If any of the inhibitory edges
is 1, the neuron is inhibited and the output is 0.
Otherwise, if all inhibitory edges are 0, the integrated value is the sum of the excitatory
edges

a =
∑

i=1N

xi . (2.107)

The activation function is the Heaviside step function (or threshold function)

φ(a) =
{

1 if a > θ,

0 otherwise,
(2.108)

where θ is called the threshold, or the bias. If the integrated value a exceeds the
threshold, and φ takes value 1, the neuron fires. Otherwise it takes the deactivated
value 0.

However, although very useful for the computation of logical functions in finite
automatons, the McCulloch–Pitts neurons are rather limited. A generalization of the
McCulloch–Pitts neuron, called the perceptron, was developed by Rosenblatt [33]. In
its simplest form, it is basically the McCulloch–Pitts neuron with real-valued inputs
and associated weights. The input values x1, . . . , xN , xi ∈ R, are fed into the node
through edges with associated weights w1, . . . , wN . The integration function is the
weighted sum

a =
N∑

i=1

wi xi , (2.109)

2.4 Neural Networks 79

Fig. 2.16 A single-layer
network diagram

x1

x2

...

xN

y

w1

w2

wN

inputs

output

and the activation function is the same threshold function (2.108) as in the McCulloch–
Pitts neuron. A network only consisting of one neuron like this, is sometimes called a
single-layer network, because it consists of a single layer of weights (see Fig. 2.16).
In analogy with the biological neuron, the inputs xi represent the level of activity of
the neurons connected to the current neuron, and the weights wi signify the strengths
of these connections.

A further generalization of the perceptron is to allow for more general activation
functions. The activation function somehow determines how powerful the output of
the neuron should be. While biological neurons choose between “fire” or “not fire”,
mathematically it is more convenient with a smoother (differentiable) activation
function.
A popular choice is the logistic sigmoid function

φ(a) = 1

1 + e−σ(a+θ)
, (2.110)

where θ is the bias that moves the curve away from zero, and σ a parameter that
affects the steepness of the curve. The bias θ can be viewed as the number of pulses
needed for the neuron to fire. Training a neural network involves estimating the
values of the edge weights and of the bias parameter. For convenience it is common
to invoke the bias into the network by adding an extra input variable x0 ≡ 1, and an
associated edge w0 = −θ (see Fig. 2.17). Using this, and assuming σ = 1, gives the
simpler form of the activation function

φ(a) = 1

1 + e−a
. (2.111)

A small modification to (2.110) gives the ‘tanh’ activation function

φ(a) = ea − e−a

ea + e−a
, (2.112)

80 2 Single Species Gene Finding

Fig. 2.17 A single-layer
network diagram with an
added bias node

x1

x2

...

xN

1

y

w1

w2

wN −θ

inputs

output

which is symmetric and therefore may achieve faster convergence of the training
algorithms in some cases.

2.4.3 Multilayer Neural Networks

The architecture of a neural network is usually either feed-forward or recurrent. A
feed-forward network is devoid of loops; it is a directed acyclic graph where the
information moves in only one direction, from the input nodes, possibly through one
or more hidden layers, and to the output nodes. The counterpart, recurrent networks,
contain cycles. We will only consider feed-forward networks here, since almost all
applications in computational biology use layered feed-forward network models.

A multilayer neural network is a further generalization of the single-layer network,
where the network function is composed by several successive functions. In a network
architecture, this can be seen as successive layers of nodes, or processing units, with
connections running from the nodes in one layer to the next. A node can be either
hidden or visible, where visible nodes are typically those connected to the outside
world, such as the input and the output nodes, and the hidden nodes occupy layers in
between. A layer that consists of only hidden nodes is called a hidden layer, and the
total number of layers define the depth of the network. A layered network does not
contain cycles, and usually each node in one layer is connected to each of the nodes
in the next. Figure 2.18 illustrates a two-layer feed-forward network.
Note that we choose not to include the input layer when counting the depth of
the network. This is because the input nodes are not really processing units, but
only holders of the input values. With this convention, the depth corresponds to the
layers of weights to be estimated from training data. Also, a multilayer network does
not have to be fully connected as in Fig. 2.18; a more economical model would be
preferred whenever possible.

2.4 Neural Networks 81

x1

x2

x3

z1

z2

z3

z4

y1

y2

inputs
outputs

weights

w(1)
ij w(2)

jk

weights

hidden
layer

Fig. 2.18 A two-layer feed-forward network diagram

Consider a two-layer network with N input units (x1, . . . , xN), a hidden layer of
M hidden units (z1, . . . , zM), and K output units (y1, . . . , yk).
If ψ is the activation function of the hidden units and φ the activation of the output
units, the network can be represented mathematically as

yk = ψ

(M∑

j=1

w(2)
jk · z j

)
, k = 1, . . . , K

= ψ

(M∑

j=1

w(2)
jk · φ

(N∑

i=1

w(1)
i j xi

))
. (2.113)

While it is possible to use different activation functions for different layers, it is
common to use the same for all, such that ψ = φ. A multilayer perceptron is a
multilayer network, with either the threshold function (2.108) or the logistic sigmoid
function (2.110) as activation function. The advantage with the sigmoid function is
that it is differentiable, which enables the use of a very powerful training procedure
called the backpropagation algorithm described in Sect. 6.7.

2.4.4 GRAIL: A Neural Network-Based Gene Finder

GRAIL [43, 44] is a neural network-based gene finder that scores potential exons
by combining the scores of a number of content and signal sensors. Four types of

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

82 2 Single Species Gene Finding

exons are recognized: initial, internal, terminal, and single exons. These exon types
represent open reading frames in combination with their specific boundaries: start
codon to donor site (initial), acceptor to donor site (internal), acceptor site to stop
codon (terminal), or start to stop codon (single). The gene prediction is performed
in four separate steps:

1. Extract all possible exon candidates.
2. Remove improbable exons.
3. Score remaining exons.
4. Construct gene models.

The first step is a preprocessing step, where all possible exons in the sequence are
extracted. A candidate exon consists of an open reading frame surrounded by the
corresponding exon boundaries. This first step produces a huge number of candidates,
typically several thousands just in a sequence of 10,000 bp [43]. Thus, in the second
step a number of heuristic rules are applied to remove improbable exons. In the third
step, all remaining exon candidates are scored by a feed-forward neural network,
which has been trained by the backpropagation algorithm described in Sect. 6.7. The
input to the network is a feature vector of various coding measures and splice site
scores for each exon candidate. In the fourth and final step, the scored exon candidates
are combined into frame-consistent gene models.

The GRAIL neural network consists of 13 input nodes, two hidden layers with
seven, and three nodes, respectively, and one output node. A network diagram is
shown in Fig. 2.19. The hidden layer of seven nodes, not shown in the figure, is
part of the splice site scoring. A mathematical representation of the network can be
written as

y = φ

⎛

⎝
3∑

k=1

w3
k φ

(7∑

j=1

w2
k j φ

(13∑

i=1

w1
j i xi

))
⎞

⎠ , (2.114)

where φ is the logistic activation function

φ(x) = 1

1 + e−x
. (2.115)

The weights w are trained using the backpropagation algorithm.
During training, the output is evaluated using a matching function M , that measures
the overlap of the candidate exon with the true exon(s),

M(candidate) =
∑

i mi

length(candidate)

∑
i mi∑

j length(exon j)
, (2.116)

where
∑

i mi is the number of bases of the candidate exon that overlap true exons,
and

∑
j length(exon j) is the total length of all exons that overlap the candidate.

Thus, 0 ≤ M ≤ 1 with

http://dx.doi.org/10.1007/978-1-4471-6693-1_6

2.4 Neural Networks 83

6-mer in-frame (Isochore)

6-mer in-frame (Candidate)

5th-order Markov model

Isochore GC Composition

Exon GC Composition

Size prob. profile

Length

Donor

Acceptor

Intron Vocabulary 1 (Isochore)

Intron Vocabulary 1 (Candidate)

Intron Vocabulary 2 (Isochore)

Intron Vocabulary 2 (Candidate)

inputs

hidden

units

output

Exon score

Fig. 2.19 The GRAIL neural network for scoring candidate exons. The network consists of 13
input nodes, two hidden layers of seven (not shown), and three nodes, respectively, and one output
node delivering the final exon score. The figure is reproduced from [43], c©1996 IEEE

M =
{

1 if prediction is correct

0 if no overlap with true exons.
(2.117)

The feature vector fed into the GRAIL neural network consists of 13 measures for
each candidate exon, including various coding measures and splice site measures
[43]. Coding potential is scored using both a frame-dependent 6-tuple preference
model and a fifth-order inhomogeneous Markov model. These measures are not
independent, but by applying supervised learning (labeled training examples), the
weights are adapted for all features together. The splice site detector in GRAIL is
in itself a neural network, that combines the scores from several measures. Neural
networks applied to splice site detection are described in more detail in Sect. 5.4.4.

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

84 2 Single Species Gene Finding

2.5 Decision Trees

A decision tree is a kind of tree diagram that can be used to choose between different
decisions for an object, by connecting series of tests on different features of the
object. Decision trees are a common ingredient in clinical research, in which various
features of the patient lie as ground for diagnosis into one of two or more clinical
categories. Traditional statistical methods struggle in such situations, where the set of
possible features may be large, or the interactions between the features are complex,
or the feature values do not follow a known distribution. Moreover, the outcome of the
analysis may be difficult to interpret, for instance if diagnosis is presented in terms of
probabilities. An advantage of decision trees is that it enables the reduction of rather
complex datasets into simple and comprehensible data structures. In addition, being
a nonparametric technique, decision trees avoid the problems of making assumptions
about the distribution.

Decision trees can be applied to classification problems, in which objects need
to be classified into different classes based on a set of features, or attributes, that
characterize the object. In this context decision trees are also called classification
trees. Here we give a brief overview of the decision tree theory applied to single
species gene finding. For a more thorough treatment, confer for instance the books
by Breiman et al. [6] or Quinlan [29].

2.5.1 Classification

Decision trees can be used to classify an object based on a set of features that
characterize the object. A decision tree consists of internal nodes and leaf nodes.
The leaf nodes contain the class labels, and each internal node performs a test on
one specific features. A new object is classified by passing it down from the root of
the tree, through a series of tests on its features, finally ending up in one of the leaf
nodes. In each node the corresponding feature is tested, and depending on the answer
the object is passed down into one of its child nodes. The process is recursed until
the object reaches a leaf node and receives its classification. In other words, given a set
of features, a decision tree represents a series of rules that are used for classification
of the corresponding object. The features can be of any type, binary, categorical, or
numerical, while the class labels must be qualitative.

Using an existing decision tree for classification is easy. The trick to decision tree
analysis is the actual construction of the tree, called decision tree learning, using
a training set of objects with corresponding feature values and known class labels.
Given a large set of possible features, decision tree learning techniques have been
developed to choose both which features that are relevant, and in which order they are
to be tested. Example 2.5 illustrates a simple dataset, borrowed from [28], containing
only categorical feature values.

2.5 Decision Trees 85

Table 2.4 A simple decision tree training set

Object Features Class

Outlook Temperature Humidity Windy

1 Sunny Hot High False N

2 Sunny Hot High True N

3 Overcast Hot High False P

4 Rain Mild High False P

5 Rain Cool Normal False P

6 Rain Cool Normal True N

7 Overcast Cool Normal True P

8 Sunny Mild High False N

9 Sunny Cool Normal False P

10 Rain Mild Normal False P

11 Sunny Mild Normal True P

12 Overcast Mild High True P

13 Overcast Hot Normal False P

14 Rain Mild High True N

With kind permission from Springer Science + Business media: [28, p. 87, Table 1]

Example 2.5 A simple decision tree training set
The following example is borrowed from [28]. In this training set the observed objects
are Saturday mornings. Suppose we use a number of different weather features to
determine whether we will undertake a certain activity or not. The classification of
the objects is thus either P or N for positive or negative instances, respectively, where
a positive instance means that the activity will take place. The weather features and
the corresponding values used are

Feature Values
Outlook Sunny, overcast, rain
Temperature Cool, mild, hot
Humidity Normal, high
Windy True, false

The dataset is presented in Table 2.4. Given this training set we would like to build
a decision tree that, based on the feature values of a new Saturday morning, can be
used to determine whether the activity in question will happen or not. In the next
section, we describe how to build such a decision tree from data. �

86 2 Single Species Gene Finding

2.5.2 Decision Tree Learning

Depending on which order the features are tested, there are many ways to build a
complete decision tree from the same training set. By the principle of Occam’s Razor,
the shortest hypothesis should always be preferable. Or, in terms of decision trees,
the tree that is optimal for a given dataset is the smallest one. However, creating
an algorithm that, for a general set of features, always finds the smallest tree is
an NP-complete problem, basically meaning that it cannot be solved in reasonable
time. Therefore, numerous algorithms have been created that search for close to
optimal trees, among the most noted ones being ID3 [28], C4.5 [29], and CART [6].
These algorithms typically use a greedy recursive procedure which, while creating
reasonable trees, cannot guarantee to find the optimal solution. Such algorithms
typically consist of the following basic steps:

1. Determine the feature that best splits the data.
2. For each pure subset (all of the same class), create a leaf node with that class. For

each impure subset, return to 1.
3. Stop when no more splits are possible and all paths end with a leaf node.

We call a set of objects pure if all objects belong to the same class, and impure
otherwise. For instance, for a given feature, we can group the objects according
to their feature values. If that grouping corresponds completely with the grouping
according to class label, it represents a pure split of the dataset.

Which feature that best splits the data is determined using some kind of measure of
impurity. A popular measure, for instance used by the ID3 algorithm, is the Shannon
entropy, or simply entropy. Suppose that we have a training set D of n objects each
characterized by a set of features A1, . . . , Ap, and each with a known class label
ci ∈ C , i = 1, . . . , n, where C is the set of all classes. The entropy of such a set can
be written as

H(D) = −
∑

c∈C

pc log2 pc, (2.118)

where the sum runs over all possible classes, and where pc is the probability of
belonging to class c ∈ C . The entropy basically measures the uncertainty, level of
randomness, or information content of the dataset. The more uniform the distribution
is, the higher the entropy. The base 2 of the logarithm transforms the value into “bits”
commonly used in information theory. The entropy assigns measure zero to pure
sets and reaches its maximum when all classes have equal probabilities. Alternative
impurity measures include the Gini index and the twoing rule.

Gini = 1 −
∑

c

p2
c , (2.119)

Twoing = |TL ||TR |
n2

(
∑

c∈C

∣∣∣
Lc

|TL | − Rc

|TR |
∣∣∣

)2

, (2.120)

2.5 Decision Trees 87

where, for a split at node T containing n objects, |TL | and |TR | are the numbers
of objects to the left and to the right of the split, respectively, and Lc and Rc are
the numbers of objects having class label c to the left and the right of the split,
respectively. The Gini index chooses the split attempting to separate as large a class
from the rest as possible, while the twoing rule attempts to split the data as cen-
tral as possible. Which splitting rule that works best depends on the application
(cf. [5, 6]).

The feature that best splits the training data is the one that causes the largest
decrease in impurity. The goal is to create descendant subsets that are purer than its
parents. This decrease in impurity is calculated using a measure called the information
gain: for a set D of n objects the information gain of splitting over a specific feature
A is given by

IG(D, A) = H(D) −
∑

v∈A

|Dv|
|D| H(Dv), (2.121)

where the sum runs over all possible feature values of A, Dv is the set of objects in
D that take value v for feature A, and |Dv| and |D| denote the numbers of objects in
each set (i.e., |D| = n). The second part of (2.121) in fact corresponds to an entity
known as the conditional entropy H(D|A)of D, given the attribute values of A.

Now we can calculate the information gain of splitting the dataset in each of the
features. Then the feature with the highest information gain is chosen to be tested first
and the test is placed in the root of the tree. Branches are created for each possible
value of the feature, the dataset is split into subsets according to their values on the
chosen feature, and the procedure is repeated in the child nodes.

Example 2.6 A simple decision tree training set (cont.)
We illustrate how the decision tree for the data in Table 2.4 is built using entropy
and information gain. First, in order to calculate the entropy H(D) in (2.118) of the
entire dataset, we estimate the class probabilities by the relative frequencies for class
labels P and N :

pP = 9/14, pN = 5/14.

Thus, the entropy becomes

H(D) = −(9/14) log2(9/14) − (5/14) log2(5/14) ≈ 0.940.

Next, if we were to split the data according to attribute ‘Outlook’, we would split the
dataset into groups according to the feature values ‘sunny’, ‘overcast’, or ‘rain’.

88 2 Single Species Gene Finding

Outlook Class Outlook Class Outlook Class
Sunny N Overcast P Rain P
Sunny N Overcast P Rain P
Sunny N Overcast P Rain P
Sunny P Overcast P Rain N
Sunny P Rain N

The entropies of the subsets become

Sunny: H(Dv) = −(3/5) log2(3/5) − (2/5) log2(2/5) ≈ 0.971
Overcast: H(Dv) = −(4/4) log2(4/4) = 0
Rain: H(Dv) = −(3/5) log2(3/5) − (2/5) log2(2/5) ≈ 0.971

The resulting information gain for ‘Outlook’ thus becomes

I G(D, Outlook) = 0.940 −
(5

14
· 0.971 + 4

14
· 0 + 5

14
· 0.971

)
≈ 0.247.

Similarly, we get for the other features

I G(D, Temperature) ≈ 0.029

I G(D, Humidity) ≈ 0.152

I G(D, Windy) ≈ 0.048

We see that ‘Outlook’ achieves the highest information gain and we therefore place
it in the root node. We draw three branches from this node, one for each of the
values of ‘Outlook’, and continue. Next we note that the ‘overcast’ group is pure (all
objects have label P), and we therefore insert a leaf node with class label P . The
other two subsets are impure and need to be split further. The information gain is
now calculated over the corresponding subsets of objects. For instance, the subset
‘sunny’ now contains n = 5 objects, and the information gain is calculated for the
features ‘Temperature’, ‘Humidity’, and ‘Windy’ for this subset,

IG(Dsunny, Temperature) ≈ 0.571

IG(Dsunny, Humidity) ≈ 0.971

IG(Dsunny, Windy) ≈ 0.020

Humidity achieves the highest information gain for this subset, and is placed in
the corresponding node. The procedure continues until all subsets are pure and can
be finished off with leaf nodes. The resulting tree is shown in Fig. 2.20. Note that
the feature ‘Temperature’ is never used. The ‘Temperature’ feature is very impure,
meaning that it has very weak (if any) association with the classification, and the tree
reaches its leaf nodes without having to take that feature into consideration. �

2.5 Decision Trees 89

Fig. 2.20 The resulting tree
of the data in Table 2.4. With
kind permission from
Springer Science + Business
media: [28, p. 87, Fig. 2]

Outlook

sunny overcast rain

Humidity P Windy

normal high true false

P N N P

The resulting decision tree classifies the objects in the training set perfectly. The risk
is, however, that the tree is too specific to the training set, and will not be able to
correctly classify new objects presented to it. This problem is known as overfitting,
and is commonly solved by some kind of pruning procedure. Pruning basically
means that parts of the tree will be cut off by turning internal nodes into leaf nodes.
This makes the tree less specific to the training set, but more flexible to new data.
Confer for instance [6, 29] for more details.

We have treated only categorical or binary feature values so far, but the feature
values are allowed to be numerical as well. The node tests in the decision tree would
then typically involve inequalities such as xi ≥ 4.2 versus xi < 4.2, or possibly
separation into several subintervals. There are many different methods for dealing
with numerical values, but most of them involve discretizing the data in some manner
in order to treat them as categorical values. A rather different treatment is introduced
by the OC1 algorithm [24], used by the MORGAN gene finder presented next. OC1
does not split the data for one specific feature, but uses linear combinations of the
feature values to determine the best decision tree.

2.5.3 MORGAN: A Decision Tree-Based Gene Finder

MORGAN (Multi-frame Optimal Rule-based Gene ANalyzer) [34] is a gene finder
that combines decision trees with dynamic programming and signal sensor algo-
rithms. The dynamic programming algorithm is used to search through all possible
parses of the sequence, while the decision tree algorithm and the signal sensors pro-
vide scores of the different parts of the potential gene. The decision trees are built
using the OC1 system [24], which uses something called oblique tests in the decision
tree nodes. In order to estimate probabilities of a potential exon or intron, the OC1
also includes a random component which means that it can produce different trees
for the same data each time it is run.

90 2 Single Species Gene Finding

Before the MORGAN system can be trained, the training set, consisting of raw
genomic DNA sequences with known exons and introns, is transformed into the form
of objects, class labels, and features. This is done by first identifying all potential
start, stop, donor, and acceptor sites, scoring above a certain threshold, in the train-
ing sequences. Next, candidate exons are identified by combining the correspond-
ing boundary sites (start-donor for initial exons, acceptor–donor for internal exons,
and acceptor-stop for terminal exons), and requiring an open reading frame (ORF)
between the sites. Similarly, potential introns are identified by pairing up donor and
acceptor sites, with an additional length constraint (between 20 and 16,000 bp), but
without the ORF requirement. For each of the three types of exons and the intron,
a decision tree is constructed. Since the true exons and introns are known in the
training set, the identified candidate exons and introns receive a label that is either
‘true’ or ‘false’. Thus, the objects are the potential exons and introns, and the class
labels are ‘true’ or ‘false’ revealing which objects are real or not.

The features used by MORGAN to characterize the objects include boundary
site scores, an in-frame hexamer statistic, and a position asymmetry statistic. The
signal sensors used to score the boundary sites are a first-order Markov model for the
start sites based on the Kozak sequence (see Sect. 5.3.2), and second-order Markov
models for the splice sites. Since no consensus sequence is known for the sequence
surrounding the stop sites, the stop codons are simply identified directly. These type
of submodels are discussed further in Chap. 5.

The in-frame hexamer statistic for a subsequence between positions i and j in the
sequence is given by

IF6(i, j) =

⎧
⎪⎨

⎪⎩

∑
k=0,3,6,..., j−6 log(fk/Fk)∑
k=1,4,7,..., j−6 log(fk/Fk)∑
k=2,5,8,..., j−6 log(fk/Fk)

(2.122)

where fk is the frequency of the hexamer starting in position k in coding sequences,
and Fk is the frequency of the hexamer among all hexamers in the training set, in all
reading frames [41]. The position asymmetry statistic, presented in [12], counts the
frequency of each nucleotide in each of the three codon positions.

The OC1 system [24], used to build the decision trees, is specifically designed
to handle numerical feature values. OC1 does not split the data according to their
feature values, but uses linear discriminant kind of tests, where, instead of using
interval tests such as xi ≥ 4.2, each internal node contains a linear combination of
one or more features,

a1x1 + a2x2 + · · · apx p ≥ ap+1. (2.123)

Since this linear combination represents a hyperplane that is nonparallel to the axes
in feature space, this is called an oblique split.

After the decision tree is built, OC1 prunes the tree using a method called com-
plexity pruning [6]. Basically, a complexity measure is calculated for each internal

http://dx.doi.org/10.1007/978-1-4471-6693-1_5
http://dx.doi.org/10.1007/978-1-4471-6693-1_5

2.5 Decision Trees 91

node based on the number of misclassifications that would result on the training set if
that node were turned into a leaf, combined with the size of the subtree rooted at that
node. The node with the largest complexity measure is then turned into a leaf. The
series of increasingly smaller trees are then tested on a separate part of the training
set, and the tree with the highest accuracy on this set is kept as the output of the
system.

2.6 Conditional Random Fields

In gene prediction we want to connect the observed sequence data to a sequence of
labels corresponding to the underlying gene model. A successful approach to this has
been to employ hidden Markov models (HMMs), described earlier in this chapter.
One disadvantage with HMMs, however, is that in order to make computations fea-
sible, two rather strong independence assumptions have to be made: (i) given the
current state (i.e., current sequence label), the next state is conditionally independent
of everything else, and (ii) the observed output from each state only depends on
the underlying state. With these assumptions, the HMM machinery comes together
very nicely, but often the observed sequence include complex interdependencies that
when ignored may significantly hurt classification performance. Conditional random
fields (CRFs) [19] were developed mainly to fill this gap. CRFs offer an alternative
to HMMs, where, instead of making simplifying assumptions, the model is extended
to include interdependence features. The cost of this added flexibility, however, is
increased computational complexity and a less straightforward interpretation of the
parameters. This section gives a brief encounter of CRFs, in the context of compu-
tational gene prediction. More general and detailed descriptions can be found for
instance in [19, 42].

2.6.1 Preliminaries

We recall from Sect. 2.1.1 that a random process is a collection of random variables
that is indexed by some ordered set T . Such a collection can typically be used to
model the evolution of a system or the development of a physical process over time,
where the system or process switches randomly between states, or phases. If the
index set T is ordered it is often referred to as “time”, and the indexed collection
of random variables can be lined up as in a chain of events. Hidden Markov models
(HMMs), described in Sect. 2.1, are a special kind of random processes, that consist
of two interrelated process: a Markov process that is hidden from the observer,
corresponding to the state labels we want to predict (e.g., exons, introns, intergene,
etc.), and an observed process corresponding to the observed output we wish to
annotate (e.g., the DNA sequence).

92 2 Single Species Gene Finding

A random field is a generalization of random processes where the process evolves
in a multidimensional space, and the time index is replaced by a corresponding
multidimensional coordinate vector. Random fields are useful for instance to model
spatial data such as the pixels in image analysis, where both the position and the value
(attribute) of the process are of interest. As for random processes, there are many
kinds of random fields, but a family of models relevant to this section are the Markov
random fields, also known as Markov networks. A Markov random field is a collection
of random variables having a similar Markov property as for Markov chains, that
can readily be described by an undirected graph. Basically, the Markov property
for random fields state that given the neighbors in the graph, a random variable
is conditionally independent of everything else. Markov random fields are similar
to Bayesian networks, described in Sect. 5.4.7, in how the dependency structure is
represented. The difference is that Bayesian networks are directed and acyclic, while
Markov random fields are undirected and possibly cyclic. A conditional random field
(CRF) is an extension of Markov random fields in the same manner as an HMM is
an extension of a Markov chain. That is, a CRF is a Markov random field in which
each random variable can be conditioned upon a set of global observations.

2.6.2 Generative Versus Discriminative Models

Before we move on we need to introduce some new notation. In the HMM frame-
work described earlier in this chapter, the hidden label sequence is denoted X and
the observed sequence Y. In the CRF community, however, this notation is usu-
ally switched. Therefore, to avoid confusion, throughout this section the observed
sequence, also called the input sequence, is denoted O, and the hidden output
sequence is denoted H.

Generative models is a family of models where the joint probability of the hidden
and the observed sequence can be factorized as

P(O, H) = P(O)P(H|O). (2.124)

A generative model thus allows us to draw samples from it, in order to “gener-
ate” synthetic examples of the observed sequence given the hidden. However, due
to high dimensionality and complex dependencies the distribution of the observed
sequence may be difficult to render, which is why numerous independence assump-
tions often need to be made to make the computations tractable. Discriminative
models, on the other hand, is a family of conditional distributions P(H|O) where
the hidden sequence to be classified is modeled directly. The distribution of the
observed sequence is ignored and thereby the need for independency assumptions
on the observed sequence is avoided. By supplying a model for the marginal distri-
bution of the observed sequence, the conditional distribution of the discriminative
model could be used to compute the joint distribution as in (2.124), but since the
conditional distribution is all we need for classification, this is usually not done.

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

2.6 Conditional Random Fields 93

In this manner, there are generative-discriminative model pairs, where one model
can be converted into the other using Bayes’ rule (see Sect. 5.4.7). One such pair
is the naive Bayes classifiers and the logistic regression. Assume that we want to
determine a single classification label H , based on a vector of observations or features
O = (O1, O2, . . . , On). The naive Bayes classifier is based on the joint probability
of the classification label and the observations, which can be factorized as

P(H, O) = P(H)

n∏

i=1

P(Oi |H). (2.125)

The logistic regression classifier is instead based on the conditional probability and
assumes that the logarithm of the conditional distribution, log P(H |O), is a linear
function of O, such that

P(H |O) = 1

Z(O)
exp

(
θH +

n∑

i=1

θH,i Oi

)
(2.126)

where Z(O) is a normalization factor and θH is a bias weight corresponding to the
initial log P(H) component in the naive Bayes formula in (2.125). To write this in
more compact form we can define feature functions that are indicator functions for
a single class only. That is, we let fH ′, j (H, O) = 1{H ′=H}O j represent the feature
weights and fH ′(H, O) = 1{H ′=H} the bias weights. By instead using a common
index k for all different feature functions fk and their corresponding weights θk , the
logistic regression model can be written as

P(H |O) = 1

Z(O)
exp

(
K∑

k=1

θk fk(H, O)

)
. (2.127)

By training the naive Bayes classifier in (2.125) to maximize the conditional like-
lihood, we achieve the logistic regression classifier, and if the logistic regression
classifier is trained to maximize the joint distribution we achieve the naive Bayes.
In a similar manner, HMMs and CRFs are a generative-discriminative pair, and for
suitable choices of feature functions in the CRFs we can convert one model into the
other.

An important note is that while the two models in a generative-discriminative pair
exactly mirror one another in theory, this is rarely true in practice. In order for this
to hold we need access to the true distributions, but in practice we are usually left
to work with estimations and approximations resulting from only having samples of
the true distributions. Therefore, it matters which model we choose, generative or
discriminative, and the choice for a given application may not be obvious as both
approaches have their pros and cons. If we focus merely on the classification task,
discriminative models can be highly superior, both in terms of computational com-
plexity and in terms of the level of dependencies they can include. They impose

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

94 2 Single Species Gene Finding

conditional independence assumptions on the hidden sequence pretty much in the
same manner as in generative models, and they describe how the hidden sequence
may depend on the observed, while interdependencies within the observed sequence
need not be explicitly stated. This way discriminative models can include very com-
plex dependencies and overlapping features which may improve the classification
accuracy. However, generative models are usually more flexible, in particular when
it comes to training, and are more easily interpreted. Also, generative models are
better at handling missing, latent, or partially labeled data, and can sometimes per-
form better than a discriminative model as a result. Therefore, which approach to
use has to be guided by the application in question [3, 21].

2.6.3 Graphical Models and Markov Random Fields

In many statistical applications we have prior knowledge about the ordering of a
set of variables, either of the temporal ordering of events or in terms of dependency
structures. Such knowledge can often be illustrated in a graphical model G = (V, E),
where V are the vertices and E the connecting edges. The vertices correspond to the
random variables and the edges represent the dependency structure between these
variables. Graphical models can be divided into two main classes: directed acyclic
graphs (DAGs) and undirected graphs. Two important models for our purposes are
Bayesian networks which are a kind of DAGs, described in Sect. 5.4.7, and Markov
random fields, which are undirected graphs that will be discussed a little further in
this section. For a more comprehensive treatment on graphical models and random
fields, see for instance [23].

We say that random variables A and B are conditionally independent given a third
random variable C if and only if

P(A, B|C) = P(A|C)P(B|C), A, B, C ∈ V . (2.128)

Conditional independence is a powerful concept as it can be used to factorize com-
plex multivariate distributions into products of factors acting on smaller subsets of
the random variables. Any joint distribution of a set of random variables can be repre-
sented by a DAG, where the edges correspond to conditional dependencies between
the variables, and the absence of an edge implies conditional independence between
the variables of the corresponding vertices.

Now, let X = (Xv)v∈V be a collection of random variables. Recall from (2.1)
that the probability of any such set and for any ordering can be decomposed into a
product of conditional probabilities

P(X) = P(X1)

V∏

v=2

P(Xv|X1, . . . , Xv−1). (2.129)

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

2.6 Conditional Random Fields 95

For a graph G = (V, E), if there exists an ordering v1, . . . , vd of the vertices (i.e., of
the random variables) that is consistent with the graph, meaning that a directed edge
vi → v j ∈ E implies the ordering i < j , then G is called directed acyclic graph
(DAG). We define the parents π(v) of a vertex v ∈ V as the set of vertices having a
directed edge to v. A directed model is then a family of distributions that factorize as

P(X) =
∏

v∈V

P(Xv|Xπ(v)) (2.130)

where Xv is the random variable at vertex v and Xπ(v) is the set of random variables
of the parent vertices of v. Because of the recursiveness in this decomposition, the
resulting graph is acyclic, meaning that it does not contain any loops, resulting in
a DAG (see Fig. 2.21a for an illustration). A common family of directed acyclic
models are Bayesian networks, described in Sect. 5.4.7, and hidden Markov models
and neural networks described earlier in this chapter can both be considered special
cases of Bayesian networks.

In Markov random fields, on the other hand, the underlying graph is undirected
and may be cyclic, representing a correlation between the random variables rather
than a causality. An undirected graph is a graph where the edges have no direction.
That is, for two vertices i, j ∈ V the edges 〈i, j〉 and 〈 j, i〉 are equivalent. Since there
is no direction of the edges, there is no ordering of the random variables, meaning
that the distribution can no longer be factorized according to a set of parents as in
(2.130). Instead, an undirected graph can represent a family of distributions that
each factorize according to a set of factors. A factor can be any strictly positive,
real-valued function, and do not necessarily correspond to a conditional probability,
which is why we also need a normalization factor to achieve a proper probability
distribution. Formally, given a set of random variables X and a collection of A subsets
{Xa}A

a=1, an undirected graphical model is the set of distributions that can be written
as

P(X) = 1

Z

A∏

a=1

Ψa(Xa) (2.131)

A

B

C

D

A

B

C

D

(a) (b)

Fig. 2.21 An illustration of a graphical representation of four random variables, A, B, C, D.
a A directed acyclic graph where the joint distribution factorizes as P(A, B, C, D) =
P(A)P(B|A, C)P(C |A, B)P(D|B). b The corresponding undirected cyclic graph. Each node with
its former parents form a complete subgraph of the graph

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

96 2 Single Species Gene Finding

for any choice of positive factors Ψa(Xa) > 0 for all Xa . The constant Z , also known
as the partition function, is a normalization factor

Z =
∑

X

A∏

a=1

Ψa(Xa), (2.132)

where the sum runs over all possible assignments to the set X. The factors Ψa are
also called local functions, because they act on local subsets of the graph vertices,
or compatibility functions, because they represent how compatible the values in a
subset Xa are with each other.

There is a clear connection between directed and undirected graphs. To see this,
assume that the distribution of X factorizes with respect to an undirected acyclic
graph. Instead of talking about the parents of a vertex as in directed graphs, we
now talk about the neighbors n(v) of v ∈ V , meaning all vertices connected to v
by an edge. In a directed graph a random variable Xv is conditionally independent
of all predecessors in the graph, given its parents π(v). In undirected graphs the
corresponding conditional independence structure is represented by simple graph
separation. It may be tempting to think that a DAG can be converted into an undirected
graph simply by dropping the direction of the edges as in Fig. 2.21, but this does not
hold in general. A v-shape in a DAG with edges A → B ← C would in the undirected
graph result in a structure A − B − C where A and C are conditionally independent
given B, which clearly is not true. Instead we need to add an edge between A and C
in the undirected graph to indicate their connection. This way of linking “unmarried”
nodes is called moralization. Unfortunately, we loose some information of the DAG
in the process, and we therefore cannot move in the other direction, creating a DAG
from an undirected graph.

A special type of conditional independence structure is given by a Markov prop-
erty formulation, similar to that of Markov chains, and that can be defined at three
different levels: the global Markov property, the local Markov property, and the pair-
wise Markov property. The global Markov property of an undirected graph states that
any two subset of random variables are conditionally independent given a separat-
ing subset. That is, for three subsets of vertices A, B, C ⊂ V we say that XA is
conditionally independent of XB given XC if and only if the vertices in C sepa-
rates those in A from those in B. In essence, this means that if we remove all the
vertices in C from the graph, the sets A and B are no longer connected. The local
Markov property states that a random variable Xv is conditionally independent of all
other variables in the graph, given its neighbors, and the pairwise Markov property
states that two random variables not connected by an edge, are conditionally inde-
pendent given everything else. The global property implies the local, which in turn
implies the pairwise property. However, if we add the assumption that the distrib-
ution of the random variables is positive, meaning that P(Xv) > 0 for all v ∈ V ,
we achieve equivalence between the three Markov properties. A random field is a
generalization of random processes in which a collection of random variables are
indexed by a multidimensional space. In a Markov random field the index space is an

2.6 Conditional Random Fields 97

undirected graph G = (V, E) that fulfills the local Markov property. That is, for
each vertex v ∈ V , given its neighbors n(v) the corresponding random variable Xv

is conditionally independent of everything else. That is,

P(Xv|X\Xv) = P(Xv|Xn(v)), v ∈ V (2.133)

where X\Xv denotes all variables in X except Xv.
The conditional independences of an arbitrary distribution can be difficult to sort

out, and a convenient subclass of Markov random fields are those that use the max-
imal cliques of the graph as the factorization subsets. A clique is a subgraph of G
that is fully connected, meaning that there is an edge between every pair of vertices
in the subgraph. Furthermore, a maximal clique is a clique that cannot be extended
further without breaking the full connectedness property. The set of factors operat-
ing on the maximal cliques of G are called potential functions. A joint distribution,
factorized by its maximal cliques, is then proportional to the product of the potential
functions. The Hammersley–Clifford theorem [14, 23] gives that any positive dis-
tribution that satisfies the local Markov property can be factorized according to its
maximal cliques. Such a Markov random field is sometimes called a Gibbs random
field, which is popular in statistical physics because it can be represented by a Gibbs
distribution for appropriate potential functions. A Gibbs distribution is a measure
that factorizes over the maximal cliques C of the undirected graph G, and where the
distribution takes the log-linear form

P(X) = 1

Z
exp(−H(X)). (2.134)

where H(X) > 0 is called the energy function of configuration X. The meaning of
an energy function can be somewhat abstract, but it relates to the energy used to
describe the organization of atoms in thermodynamical systems. For instance, the
more ordered the atoms in a metal are, the lower the energy (see Sect. 3.2.8 for more
on this). In the Gibbs distribution, the factors in (2.131) thus take the form

Ψc(Xc) = exp(−H(Xc)) (2.135)

where H is the energy of the subset of random variables in clique c ∈ C , and the
energy function H(X) sums over the maximal cliques C . We can now give a more
formal statement of the Hammersley–Clifford theorem:

Theorem 2.5 (The Hammersley–Clifford Theorem) A positive distribution is a
Markov random field if and only if it is a Gibbs random field.

An important note is that although the maximal clique factorization corresponds to
the conditional independence structure of the graphical model, the potential functions
in themselves do not necessarily have a probabilistic interpretation. They merely
represent constraints on the underlying random variables, which in turn effect the
global probability distribution, but that do not directly translate into probabilistic
terms.

http://dx.doi.org/10.1007/978-1-4471-6693-1_3

98 2 Single Species Gene Finding

2.6.4 Conditional Random Fields (CRFs)

A conditional random field (CRF) is a Markov random field where each random
variable in the field may also be conditioned upon a set of global observations [19]. A
CRF can be seen as an extension of logistic regression where the hidden variables are
conditioned on the observed sequence. CRFs are also closely related to the hidden
Markov models (HMMs) described earlier in this chapter. In fact, for a suitable
choice of clique potentials, HMMs and CRFs form a generative-discriminative model
pair in the same way as naive Bayes and logistic regression discussed above. The
main difference between HMMs and CRFs is that while HMMs model the joint
distribution P(H, O) of an observed input sequence O and a hidden output H and
(recall that we changed the HMM notation from (X, Y) to (H, O)), CRFs focus on the
conditional distribution P(H|O) of the hidden sequence, given the observed. Thus, in
the conditional setting, the observed distribution P(O) does not need to be modeled
explicitly, leading to a simpler model which can allow the inclusion of complex
dependencies within the observed sequence. Another advantage is that the potential
functions can depend on the data, for instance by incorporating global features into
the local potential functions, something that is very hard to do in generative models.
The main disadvantage of CRFs is that they need to be trained on labeled data and the
training process is typically very computer intense. General graphs typically become
intractable fast, while graphs with a chain or tree structure may still be manageable.

The choice of potential functions for CRFs is closely related to the maximum
entropy method described in Sect. 5.4.6. In order to include interdependencies within
the observed sequence as well as other local and global knowledge of the data, we
define a set of input features. A CRF is then a Markov random field where the clique
potentials are conditioned on this feature set, denote it K,

P(H|O, K) = 1

Z(O, K)

∏

c∈C
Ψc(Hc|O, K). (2.136)

Finding the maximum entropy distribution that satisfies K features fk is an opti-
mization problem under constraints, and if we choose log-linear clique potentials as
in logistic regression we get for clique c ∈ C

Ψc(Hc|O) = exp

(
K∑

k=1

λck fck(Hc, O)

)
(2.137)

where λck is the Lagrangian multiplier associated with feature fck . Note also that we
can make the features clique specific. The resulting CRF distribution becomes

P(H|O) = 1

Z(O)
exp

⎛

⎝
∑

c∈C

K∑

k=1

λck fck(Hc, O)

⎞

⎠ . (2.138)

http://dx.doi.org/10.1007/978-1-4471-6693-1_5

2.6 Conditional Random Fields 99

Linear-Chain CRFs

For sequence models the common choice is a linear-chain CRF, which models
the correlation between adjacent hidden variables in a linear sequence similarly
to HMMs. In a linear graph each vertex only has two neighbors, and the maximal
cliques simply constitute each pair of adjacent vertices connected by an edge. There-
fore, we can define the clique potentials on the edges e = 〈i −1, i〉 instead on vertex
subsets

Ψe(He) = exp

(
K∑

k=1

λk fk(Hi−1, Hi , O) +
K∑

k=1

μk gk(Hi , O)

)
(2.139)

where fk are feature functions of the local transitions and the global observed
sequence, and gk feature functions of the sequence label at position i and the observed
sequence. The features fk and gk are, thus, closely connected to the transitions and
emissions in an HMM. In fact, by choosing features exactly corresponding to the
logarithm of the transition and emission probabilities in an HMM, the conditional
distribution P(H|O) rendered from the joint distribution P(H, O) in an HMM, is a
CRF. That is, by rewriting the joint distribution as

P(O, H) = 1

Z

T∏

t=1

exp

⎛

⎝
∑

i, j∈S

θi j 1{Ht = j}1{Ht−1=i} +
∑

i∈S

∑

v∈V

μiv1{Ht =i}1{Ot =v}

⎞

⎠

(2.140)

and defining the parameters as

θi j = log P(Ht = j |Ht−1 = j)

μiv = log P(Ot = v|Ht = i) (2.141)

Z = 1

we achieve a direct correspondence between the HMM and the related CRF. To
see this, by using a generic notation fk for features and θk for the corresponding
parameters, we transfer the the formula in (2.140) into

P(O, H) = 1

Z

T∏

t=1

exp

(
K∑

k=1

θk fk(Ht−1, Ht , Ot)

)
. (2.142)

The conditional distribution achieved by using (2.142) in

P(H|O) = P(O, H)∑
O′ P(O′, H)

(2.143)

100 2 Single Species Gene Finding

is then a special type of linear-chain CRFs that only include features for the transitions
and emissions modeled by a standard HMM. However, general linear-chain CRFs
are not limited to the use of indicator functions, but can use any real-valued set of
functions in place of the feature functions fk in (2.142). For instance, since CRFs do
not model the observed input sequence, we can let the feature functions depend on
the entire observation sequence without having to alter the dependency structure in
the graphical model.

2.6.5 Conrad: CRF-Based Gene Prediction

Generalized (GHMMs), described in Sect. 2.2, have proved very powerful in gene
prediction, as they are flexible, easy to train, and easily interpreted probabilistically.
The disadvantages include the difficulties to include external information, such as
various homology sources, long-ranging sequence features, and unknown dependen-
cies both within and between the external sources. Since CRFs avoid the problems
of modeling the observed input data, they can easily incorporate various sources of
information, regardless of unknown dependencies and long-range effects.

Conrad [8] is a gene prediction software based on semi-Markov CRFs (SMCRFs),
which has inherited the generalized (semi-Markov) features of GHMMs and com-
bined them with discriminative features from the CRF framework. As before, we
have a hidden state sequence H of labels to be predicted, and an observed sequence
O corresponding to the given DNA sequence to be labeled. Again, a CRF expresses
the conditional probability P(H|O) as opposed to GHMMs which model the joint
probability P(H, O) of the hidden and the observed data. The conditional probability
is as before expressed in log-linear form

P(H|O) = 1

Zλ(O)
exp

⎛

⎝
∑

j

λ j Fj (H, O)

⎞

⎠ (2.144)

where λ j is the feature weight, Fj a feature function, which in itself is a sum of
features (see below), and Zλ(O) the normalizing factor.

The hidden sequence is assumed to be a linearly structured vector of labels such
as “exons”, “introns”, and “intergenes”, with one label per nucleotide in the observed
sequence. Or conversely, the observed sequence can be segmented into p intervals
{Ii }p

i=1 = {(ti , ui , vi)}p
i=1 of equally labeled segments (e.g., corresponding to an

entire exon), with start at nucleotide ti , end at ui , and the same label vi all through
the segment. The segmentation p naturally varies and is determined as part of the pre-
diction. As in GHMMs, Conrad assumes that each interval (ti , ui , vi) only depends on
the adjacent neighboring intervals Ii−1 and Ii+1. The feature function Fj is therefore
written as a sum of localized feature functions

2.6 Conditional Random Fields 101

Fj (H, O) =
p∑

i=1

f j (ti , ui , vi , vi−1, O). (2.145)

The partitioning of the observed sequence is similar to the generalized (semi-Markov)
feature of GHMMs and is what makes the CRF semi-Markov. The prediction of hid-
den labels produced by the SMCRF for a given observed sequence is the segmentation
H that maximizes then the conditional probability P(H|O).

Feature Selection

The major issues when applying SMCRFs to gene prediction is the construction of
suitable feature functions f j , and the training of their corresponding weights λ j . The
advantage over GHMMs, as mentioned earlier, is that these features are not required
to be independent or to have a probabilistic interpretation. Conrad is constructed to
use both generative features, inherited from GHMMs, and discriminative features,
with the result that Conrad can behave either as a pure GHMM or as a SMCRF or
anywhere in between. The generative features in Conrad are:

• Reference features: modeling the internal sequence composition of the different
model states, using a third-order Markov model. These features do not include the
segmentation boundaries such as start and stop codons, or splice sites.

• Length features: modeling the state length distributions of exons, introns, and
intergenic regions. The intergene lengths are modeled using an exponential dis-
tribution (the continuous counterpart of the geometric distribution), and exon and
intron lengths are modeled by a mixture of two gamma distributions.

• Transition feature: modeling the transition probabilities between states.
• Boundary features: modeling state boundary signals such as start and stop codons

and splice sites.
• Phylogenetic features: modeling species homology through state-specific multiple

alignments.

By using only reference, length, transition, and boundary features with all weights
set to λ j = 1, Conrad is equivalent to the conditional probability computed by the
corresponding GHMM by taking

PGHMM(H|O) = PGHMM(H, O)

PGHMM(O)
. (2.146)

In the GHMM, we let ai j denote the transition probability between states i, j ∈ S,
πi the initial probability of i ∈ S, and q j (Oti , Oui) the emission probability for the
segment Oti , . . . , Oui , now including the duration probability as well (emission and
duration were separated in Sect. 2.2). The joint probability then takes the form

PGHMM(H|O) = πv1

p∏

i=2

avi−1,vi qvi (Oti , Oui) (2.147)

102 2 Single Species Gene Finding

and the features in Conrad translates to

fGHMM(vi−1, vi , ti , ui , O) =
{

log(qvi (Oti , Oui)) + log(πvi) if ti = 1
log(qvi (Oti , Oui)) + log(avi−1,vi) if ti > 1.

(2.148)
This version of Conrad (called ConradG-1) is similar to Genscan [7] described in
Sect. 2.2.4. ConradG-2, which includes phylogenetic features for two-species com-
parisons is similar to Twinscan [17] described in Sect. 4.1.2.

Discriminative features are features lacking a probabilistic interpretation. The
use of discriminative features enables the ability to incorporate long-range effects
and unknown dependencies, or any other type of information that may be difficult
to model probabilistically. Conrad incorporates a few discriminative features that
represent information commonly used when annotations are curated manually, but
that is difficult to include in a probabilistic setting. The discriminative features are:

• Gap features: modeling gaps in the multiple alignments that are not captured by
the phylogenetic features.

• Footprint features: modeling the positions at which the different species in the
multiple alignment are aligned.

• EST features: modeling the connection between the EST alignments and the state
fragmentation of the hidden label sequence.

For instance, the gap feature for a specific exon E takes the form

fGAP,E (vi−1, vi , ti , ui , O) =
ui∑

k=ti

{
1 if vi = E and gap of length 1 or 2 (mod 3) at k
0 otherwise,

(2.149)
thus counting the number of gaps in the alignment that would cause a frameshift
in the coding sequence. The features are similar for introns and intergenes. Also,
the footprint and EST features work the same way, by summing similar indicator
functions while scanning through the state segment.

Parameter Training

The feature weights λ j are trained from labeled example sequences. The common
approach to train the weights in CRFs is to use conditional maximum likelihood
(CML) described in Sect. 6.8. That is, for a single pair of training sequences (H0, O0),
the CML estimator is given by

λ̂CML = argmax
λ

(log P(H0|O0)). (2.150)

The maximum is typically found using a gradient-based technique (see Sect. 6.6),
where the specific choice of algorithm depends on the formulation of the CRF. For
SMCRFs the common approach is to use dynamic programming algorithms similar
to the forward and the backward algorithms in HMMs.

http://dx.doi.org/10.1007/978-1-4471-6693-1_4
http://dx.doi.org/10.1007/978-1-4471-6693-1_6
http://dx.doi.org/10.1007/978-1-4471-6693-1_6

2.6 Conditional Random Fields 103

Another approach, introduced by the Conrad group, is to use something called
maximum expected accuracy (MEA). CML optimizes the accuracy of the prediction
indirectly by maximizing the likelihood of the hidden sequences given in the training
set. Instead, one would like to optimize the accuracy directly, but this becomes
intractable since changing the weights causes changes in the segmentation, which in
turn changes the accuracy in a discontinuous way. Instead the objective function is
defined as the expected accuracy over the entire distribution of segmentations defined
by the SMCRF. However, in order to compute this, we first need to need a similarity
metric. We define a similarity function S between the training set (H0, O0) and a
certain label sequence H as

S(H, H0, O0) =
T∑

t=1

s(Ht−1, Ht , H0
t−1, H0

t , O0, t) (2.151)

where s are some kind of similarity functions over dinucleotides that can be set as
suited. For gene prediction, the function S is divided into two parts, corresponding
to splice sites and internal nucleotides. The nucleotide similarity score is simply
counting the number of correctly labeled nucleotides in each state, while the splice
site similarity scores consider both the labeling and the placement of the splice
boundary.

The objective function used to optimize the weights is then defined as the expec-
tation of the similarity function

AMEA(λ) = Eλ[S(H, H0, O0)] =
∑

y

Pλ(H|O0)S(H, H0, O0) (2.152)

and MEA estimator is given by

λ̂MEA = argmax
λ

AMEA(λ). (2.153)

This maximum is again achieved by using gradient-based methods. However, since
the objective function is not concave in λ, there is no guarantee that the global
maximum is reached. To achieve the best results, the initial weights are set by using
the CML estimates.

References

1. Baldi, P., Brunak, S.: Bioinformatics: The Machine Learning Approach. MIT Press, Cambridge
(2001)

2. Begleiter, R., El-Yaniv, R., Yona, G.: On prediction using variable order Markov models.
J. Artif. Intell. 22, 385–421 (2004)

3. Bishop, C.M., Lasserre, J.: Generative or discriminative? Getting the best of both worlds.
Bayesian Stat. 8, 3–24 (2007)

104 2 Single Species Gene Finding

4. Blattner, F.R., Plunkett, G., Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-vides, J.,
Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis, N.W., Kirkpatrick, H.A., Goeden,
M.A., Rose, D.J., Mau, B., Shao, Y.: The complete genome sequence of Escherichia coli K-12.
Science 277, 1453–1469 (1997)

5. Breiman, L.: Some properties of splitting criteria. Mach. Learn. 24, 41–47 (1996)
6. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees.

Chapman & Hall, New York (1984)
7. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol.

Biol. 268, 78–94 (1997)
8. DeCaprio, D., Vinson, J.P., Pearson, M.D., Montgomery, P., Doherty, M., Galagan, J.E.: Conrad:

gene prediction using conditional random fields. Genome Res. 17, 1389–1398 (2007)
9. Delcher, A.L., Harmon, D., Kasif, S., White, O., Salzberg, S.L.: Improved microbial gene

identification with GLIMMER. Nucleic Acids Res. 27, 4636–4641 (1999)
10. Delcher, A.L., Bratke, K.A., Powers, E.C., Salzberg, S.L.: Identifying bacterial genes and

endosymbiont DNA with Glimmer. Bioinformatics 23, 673–679 (2007)
11. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis. Probabilistic

Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)
12. Fickett, J.W., Tung, C.-S.: Assessment of protein coding measures. Nucleic Acids Res. 20,

6441–6450 (1992)
13. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computa-

tional Biology. Cambridge University Press, Cambridge (1997)
14. Hammersley, J., Clifford, P.: Markov fields on finite graphs and lattices.http://www.statslab.

cam.ac.uk/~grg/books/hammfest/hamm-cliff.pdf
15. Jukes, T.H., Osawa, S.: The genetic code in mitochondria and chloroplasts. Experientia 46,

1117–1126 (1990)
16. Karlin, S., Taylor, H.M.: A First Course in Stochastic Processes, 2nd edn. Academic Press,

New York (1975)
17. Korf, I., Flicek, P., Duan, D., Brent, M.R.: Integrating genomic homology into gene structure

prediction. Bioinformatics 17, S140–S148 (2001)
18. Koski, T.: Hidden Markov Models for Bioinformatics. Springer, Berlin (2001)
19. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for

segmenting and labeling sequence data. In: Proceedings of International Conference Machine
Learning, pp. 282–289 (2001)

20. Larsen, T., Krogh, A.: EasyGene—a prokaryotic gene finder that ranks ORFs by statistical
significance. BMC Bioinform. 4, 21–35 (2003)

21. Ng, A.Y., Jordan, M.I.: On discriminative versus generative classifiers: a comparison of logistic
regression and naive Bayes. In: NIPS (2001)

22. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull.
Math. Biol. 52, 99–115 (1943)

23. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)
24. Murthy, S.K., Kasif, S., Salzberg, S.L.: A system for induction of oblique decision trees.

J. Artif. Intell. Res. 2, 1–32 (1994)
25. Ohler, U., Harbeck, S., Niemann, H., Nöth, E., Reese, M.G.: Interpolated Markov chains for

eukaryotic promoter recognition. Bioinformatics 15, 362–369 (1999)
26. Perna, N.T., Plunkett, G., Burland, V., Mau, B., Glasner, J.D., Rose, D.J., Mayhew, G.F., Evans,

P.S., Gregor, J., Kirkpatrick, H.A., Pósfai, G., Hackett, J., Klink, S., Boutin, A., Shao, Y.,
Miller, L., Grotbeck, E.J., Davis, N.W., Lim, A., Dimalanta, E.T., Potamousis, K.D., Apodaca,
J., Anantharaman, T.S., Lin, J., Yen, G., Schwartz, D.C., Welch, R.A., Blattner, F.R.: Genome
sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533 (2001)

27. Pertea, M., Lin, X., Salzberg, S.L.: GeneSplicer: a new computational method for splice site
prediction. Nucleic Acids Res. 29, 1185–1190 (2001)

28. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)
29. Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann Publishers, San Mateo

(1993)

http://www.statslab.cam.ac.uk/~grg/books/hammfest/hamm-cliff.pdf
http://www.statslab.cam.ac.uk/~grg/books/hammfest/hamm-cliff.pdf

References 105

30. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recog-
nition. Proc. IEEE 77, 257–286 (1989)

31. Rissanen, J.: A universal data compression system. IEEE Trans. Inf. Theory 29, 656–664 (1983)
32. Rivas, E., Eddy, S.R.: Noncoding RNA gene detection using comparative sequence analysis.

BMC Bioinform. 2, 8 (2001)
33. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization

in the brain. Psychol. Rev. 65, 386–408 (1958)
34. Salzberg, S.L., Delcher, A.L., Fasman, K.H., Henderson, J.: A decision tree system for finding

genes in DNA. J. Comput. Biol. 5, 667–680 (1998)
35. Salzberg, S.L., Delcher, A.L., Kasif, S., White, O.: Microbial gene identification using inter-

polated Markov models. Nucleic Acids Res. 26, 544–548 (1998)
36. Schukat-Talamazzini, E.G., Gallwitz, F., Harbeck, S., Warnke, V.: Rational interpolation

of maximum likelihood predictors in stochastic language modeling. In: Proceedings of
Eurospeech’97, pp. 2731–2734. Rhodes, Greece (1997)

37. Sharp, P.M., Cowe, E.: Synonymous codon usage in Sacharomyces cerevisiae. Yeast 7, 657–678
(1991)

38. Shmatkov, A.M., Melikyan, A.A., Chernousko, F.L., Borodovsky, M.: Finding prokaryotic
genes by the ‘frame-by-frame’ algorithm: targeting gene starts and overlapping genes. Bioin-
formatics 15, 874–886 (1999)

39. Shmilovici, A., Ben-Gal, I.: Using a VOM model for reconstructing potential coding regions
in EST sequences. Comput. Stat. 22, 49–69 (2007)

40. Skovgaard, M., Jensen, L.J., Brunak, S., Ussery, D., Krogh, A.: On the total number of genes
and their length distribution in complete microbial genomes. Trends Genet. 17, 425–428 (2001)

41. Snyder, E.E., Stormo, G.D.: Identification of protein coding regions in genomic DNA. J. Mol.
Biol. 248, 1–18 (1995)

42. Sutton, C., McCallum, A.: An introduction to conditional random fields. Found. Trends Mach.
Learn. 4, 267–373 (2011)

43. Xu, Y., Mural, R.J., Einstein, J.R., Shah, M.B., Uberbacher, E.C.: GRAIL: a multi-agent neural
network system for gene identification. Proc. IEEE 84, 1544–1552 (1996)

44. Xu, Y., Uberbacher, E.C.: Computational gene prediction using neural networks and similarity
search. In: Salzberg, S.L., Searls, D.B., Kasif, S. (eds.) Computational Methods in Molecular
Biology, pp. 109–128. Elsevier Science B.V., Amsterdam (1998)

45. http://www.cbcb.umd.edu/glimmer/

http://www.cbcb.umd.edu/glimmer/

http://www.springer.com/978-1-4471-6692-4

	2 Single Species Gene Finding
	2.1 Hidden Markov Models (HMMs)
	2.1.1 Markov Chains
	2.1.2 Hidden Markov Models
	2.1.3 Dynamic Programming
	2.1.4 The Forward Algorithm
	2.1.5 The Backward Algorithm
	2.1.6 The Viterbi Algorithm
	2.1.7 EasyGene: A Prokaryotic Gene Finder

	2.2 Generalized Hidden Markov Models (GHMMs)
	2.2.1 Preliminaries
	2.2.2 The Forward and Backward Algorithms
	2.2.3 The Viterbi Algorithm
	2.2.4 Genscan: A GHMM-Based Gene Finder

	2.3 Interpolated Markov Models (IMMs)
	2.3.1 Preliminaries
	2.3.2 Linear and Rational Interpolation
	2.3.3 GLIMMER: A Microbial Gene Finder

	2.4 Neural Networks
	2.4.1 Biological Neurons
	2.4.2 Artificial Neurons and the Perceptron
	2.4.3 Multilayer Neural Networks
	2.4.4 GRAIL: A Neural Network-Based Gene Finder

	2.5 Decision Trees
	2.5.1 Classification
	2.5.2 Decision Tree Learning
	2.5.3 MORGAN: A Decision Tree-Based Gene Finder

	2.6 Conditional Random Fields
	2.6.1 Preliminaries
	2.6.2 Generative Versus Discriminative Models
	2.6.3 Graphical Models and Markov Random Fields
	2.6.4 Conditional Random Fields (CRFs)
	2.6.5 Conrad: CRF-Based Gene Prediction

	References

