The Nature of Information

What is information? We have already asserted that it is a profound, primitive (i.e.,
irreducible) concept. Dictionary definitions include “(desired) items of knowledge”;
for example, one wishes to know the length of a piece of wood. It appears to be
less than a foot long, so we measure it with our desktop ruler marked off in inches,
with the result, let us say, “between six and seven inches”. This result is clearly
an item of desired knowledge, hence information. We shall return to this example
later. Another definition is “fact(s) learned about something”, implying that there is
a definable object to which the facts are related, suggesting the need for context and
meaning. A further definition is “what is conveyed or represented by a particular
arrangement of things”; the dots on the head of a matrix printer shape a letter, the bar
code on an item of merchandise represents facts about the nature, origin, and price
of the merchandise, and a sequence of letters can convey a possibly infinite range
of meanings. A thesaurus gives as synonyms “advice, data, instruction, message,
news, report”’. Finally, we have “a mathematical quantity expressing the probability
of occurrence of a specific sequence of symbols or impulses as against that of other
sequences (i.e., messages)”. This definition links the quantification of information
to a probability, which, as we shall see, plays a major réle in the development of the
subject.

We also note that “information science” is defined as the “study of processes
for storing and retrieving information”, and “information theory” is defined as the
“quantitative study of transmission processes for storing and retrieving of information
by signals”; that is, it deals with the mathematical problems arising in connexion with
the storage, transformation, and transmission of information. This forms the material
for Chap. 3. Etymologically, the word “information” comes from the Latin forma,
form, from formare, to give shape to, to describe.

Most information can be reduced to the response, or series of responses, to a
question, or series of questions, admitting only yes or no as an answer. We call
these yes/no, or dichotomous, questions. Typically, interpretation depends heavily on
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10 2 The Nature of Information

context.! Consider a would-be passenger racing up to a railway station. His ques-
tion “has the train gone?”” may indeed be answered by “yes” or “no”—although, in
practice, a third alternative, “don’t know,” may be encountered. At a small wayside
station, with the traveller arriving within five minutes of the expected departure time
of the only train scheduled within the next hour, the answer (yes or no) would be
unambiguous and will convey exactly one bit of information, as will be explained
below. If we insist on the qualification “desired,” an unsolicited remark of the sta-
tionmaster, “the train has gone,” may or may not convey information to the hopeful
passenger. Should the traveller have seen with his own eyes the train depart a minute
before, the stationmaster’s remark would certainly not convey any information.

Consider now a junction at which, after leaving the station, the lines diverge in
three different directions. The remark “the train has gone”, assuming the information
was desired, would still convey one bit of information, but by in addition specifying
the direction, viz. “the train has gone to X,” or “the train to X has gone,” “X” being
one of the three possible destinations, the remark would convey log, 3 = 1.59 bits
of information, this being the average number of questions admitting yes/no answers
required to specify the fact of departure to X, as opposed to either of the two other
directions.

This little scenario illustrates several crucial points:

1. Variety exists. In a formless, amorphous world there is no information to convey.

2. The amount of information received depends on what the recipient knows already.

3. The amount of information can only be calculated if the set of possible messages
(responses) has been predefined.

Dichotomous information often has a hierarchical structure; for example, on a
journey, a selection of direction has to be made at every cross-road. Given an ulti-
mate destination, successive choices are only meaningful on the basis of preceding
ones. Consider also an infant, who “chooses” (according to its environment) which
language it will speak. As an adolescent, he chooses a profession, again with an
influence from the environment and, in making this choice, knowledge of a certain
language may be primordial. As an adult there will be further career choices, which
will usually be intimately related to the previous choice of a profession.

Let us now reexamine the measurement of the length of a stick. It must be specified
in advance that it does not exceed a certain value—say one foot. This will suffice to
allow an appropriate measuring tool to be selected. If all we had was a measuring
stick exactly one foot long, we could simply ascertain whether the unknown piece
was longer or shorter, and this information would provide one bit of information, if
any length was a priori possible for the unknown piece.

Suppose, however, that the measuring stick is marked off in 1-inch divisions. If
the probabilities p of the unknown piece being any particular length / (measured to

"When it comes to the quantification of information, context is usually formalized through the
provision of a finite set of possible answers (choices). See Sect.2.3.2.
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the nearest inch), with O < ! < 12, were a prioriequal (i.e., p = ﬁ for each possible
length), then the information produced by the measurement equals log, 12 = 3.59
bits, this being the average number of questions admitting yes/no answers required
to specify the length to the nearest inch, as the reader may verify. On the other hand,
were we to have some prior information, according to which we had good reason
to suppose the length to be close to 9 inches (perhaps we had previously requested
the wood to be chopped to that length), the probabilities of the lengths 8, 9, and 10
inches would perhaps be 0.25 each, and the sum of all the others would be 0.25. The
existence of this prior knowledge would somewhat reduce the quantity of information
gained from the measurement, namely to % log, 4 + }‘ log, 36 = 2.79 bits. Should
the ruler have been marked off in tenths of an inch, the measurement would have
yielded considerably more information, namely log, 120 = 6.91 bits, assuming all
the probabilities of the wood being any particular length to be equal (i.e., ﬁ each).

Variety One of the most striking characteristics of the natural, especially the living,
world around us is its variety. This variety stands in great contrast to the world
studied by the methods of physics and chemistry, in which every electron and every
proton (etc.) in the universe are presumed to be identical, and we have no evidence to
gainsay this presumption. Similarly, every atom of helium (*He) is similar to every
other one, and indeed it is often emphasized that chemistry could only make progress
as a quantitative science after the realization that pure substances were necessary for
the investigation of reactions and the like, such that a sample of naphthalene in a
laboratory in Germany would behave in precisely the same way as one in Japan.

If we are shown a tray containing balls of three colours, red (r), blue (b), and white
(w), we might reasonably assert that the variety is three. Hence, one way to quantify
variety is simply to count the number of different kinds of objects. Thus, the variety
of either of the sets {r,b, w} and {r, b, b, r, w, r, w, w, b} is equal to three; the set
{r,r, w, w, w} has a variety of only two, and so forth. The objects considered should
of course be in the same category; that is, if the category were specified as “ball,” then
we would have difficulty if the tray also included a banana and an ashtray. However,
one could then redefine the category.

If there were only one kind of ball, say red, then our counting procedure would
yield a variety of one. It is more natural, however, to say that there is no variety if all
the objects are the same, suggesting that the logarithm of the number of objects is a
more reasonable way to quantify variety. If all the objects are the same, the variety
is then zero. We are, of course, at liberty to choose any base for the logarithm; if the
base is 2, then conventionally the variety is given in units of bits, a contraction of

binary digit. Hence, two kinds of objects have a variety of log, 2 = 1 bit, and three
kinds give log, 3 = }giig; = 3311 = 1.58 bits. The variety in bits is the average
number of yes/no questions required to ascertain the number of different kinds of

objects or to identify the kind of any object chosen from the set.”

2This primitive notion of variety is related to the diversity measured by biometricians concerned
with assessing the variety of species in an ecosystem (biocoenosis). Diversity D is essentially variety
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The Shannon Index The formula that we used to determine the quantity / of
information delivered by a measurement that fixes the result as one out of n equally
likely possibilities, each having a probability p;,i = 1, ..., n, all equal to 1/n, was

I =—logp=1logn. (2.4)

Itis called Hartley’s formula. If the base of the logarithm is 2, then the formula yields
numerical values in bits. Where the probabilities of the different alternatives are not
equal, then a weighted mean must be taken:

n
I==> pilog, pi . (2.5)
i=1
This generalization is called the Shannon or Shannon—Wiener index. In other words,
the quantity of information is weighted logarithmic variety. Note that the quantity
of information given by Eq. (2.5) is always less than that given by the equiprobable
case (2.4). This follows from Jensen’s inequality.’
Why is the negative of the sum taken? I in fact represents the gain of information
due to the measurement. In general,

gain (in something) = final value — initial value . 2.7

The initial value represents the uncertainty in the outcome prior to the measurement.
Shannon (1951) takes the final value (i.e., the result of the measurement), to be a
single value with variety one, hence using (2.5), I = 0 after the measurement; that
is, he considers the result to be known with certainty once it has been delivered.

(Footnote 2 continued)
weighted according to the relative abundances (i.e., probability p; of occurrence) of the N different
types, and this can be done in different ways. Parameters in use by practitioners include

Dyp=N (no weighting), 2.1)
Dy =exp(]) (the exponential of Shannon’s index), 2.2)
N
D, =1/ Z pi2 (the reciprocal of Simpson’s index). 2.3)
i=1
31t g(x) is a convex function on an interval (a, b), if x1, x2, ..., x, are arbitrary real numbers
a < x; < b,and if wy, wo, ..., w, are positive numbers with ZZ=1 wy = 1, then

o(3wen) = > wkgo) - 2.6)
k=1 k=1

Inequality (2.6) is then applied to the convex function y = xlogx (x > 0) with x4 = p; and
wy=1/n(k=1,2,...,n)toget I(p1, p2,..., pn) <logn.
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Hence, it is considered to have zero information, and it is in this sense that an
information processor is also an information annihilator. Wiener (1948) considers
the more general case in which the result of the measurement could be less than
certain (e.g., still a distribution, but narrower than the one measured).

The gain of information I is equivalent to the removal of uncertainty; hence,
information could be defined as “that which removes uncertainty”. It corresponds to
the reduction of variety perceived by an observer and is inversely proportional to the
probability of a particular value being read, or a particular symbol (or set of symbols)
being selected, or, more generally, is inversely proportional to the probability of a
message being received and remembered.

Example. An N x N grid of pixels, each of which can be either black or white,

2 . . . . . . .
can convey at most — ZlN % log, % bits of information. This maximum is achieved

when the probability of being either black or white is equal.

I defined by Egs.(2.4) and (2.5) has the properties that one may reasonably
postulate should be possessed by a measure of information, namely

1. I(Exy) = I(EN) + I(Ep), for N,M=1,2,...;
2. I(En) < I(Eny1)s
3. I(Ey) = 1.

Example. How much information is contained in a sequence of DNA? If each of
the four bases are chosen with equal probability (i.e., p = }1), the information in
a decamer is 10log, 4 = 20 bits. It is the average number of yes/no questions
that would be needed to ascertain the sequence. If the sequence were completely
unknown before questioning, this is the gain in information. Any constraints imposed
on the assembly of the sequence—for example, a rule that “AA” is never followed
by “T”, will lower the information content of the sequence (i.e., the gain in informa-
tion upon receiving the sequence, assuming that those constraints are known to us).
Some proteins are heavily constrained; the antifreeze glycoprotein (alanine-alanine-
threonine), could be simply specified by the instruction “repeat AAT n times”, much
more compactly than writing out the amino acid sequence in full, and the quantity of
information gained upon being informed of the sequence is correspondingly small.

Thermodynamic Entropy One often encounters the word “entropy” used synony-
mously with information (or its removal). Entropy (S) in a physical system represents
the ability of a system to absorb energy without increasing its temperature. Under
isothermal conditions (i.e., at a constant temperature T),

dQ =T1ds, (2.8)

where dQ is the heat that flows into the system. In thermodynamics, the internal
energy E of a system is formally defined by the First Law as the difference between
the heat and dW, the work done by the system:

dE =dQ —dW . (2.9)
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The only way that a system can absorb heat without raising its temperature is by
becoming more disordered. Hence, entropy is a measure of disorder. Starting from a
microscopic viewpoint, entropy is given by the famous formula inscribed on Boltz-
mann’s tombstone:

S=kphhW, (2.10)

where kp is his constant and W is the number of (micro)states available to the
system. Note that reducing the number of states reduces the disorder. Information
amounting to log, W bits is required to specify one particular microstate, assum-
ing that all microstates have the same probability of being occupied, according to
Hartley’s formula; the specification of a particular microstate removes that amount
of uncertainty. Thermodynamical entropy defined by Eq. (2.8), statistical mechani-
cal entropy (2.10), and the Hartley or Shannon index only differ from each other by
numerical constants.

Although the set of positions and momenta of the molecules in a gas at a given
instant can thus be considered as information, within a microscopic interval (between
atomic collisions, of the order of 0.1 ps) this set is forgotten and another set is real-
ized. The positions and momenta constitute microscopic information; the quantity of
macroscopic (remembered) information is zero. In general, the quantity of macroin-
formation is far less than the quantity of (forgotten) microinformation, but the former
is far more valuable.*

In the world of engineering, this state of affairs has of course always been recog-
nized. One does not need to know the temperature (within reason!) in order to design
a bridge or a mechanism. The essential features of any construction are found in a
few large-scale correlated motions; the vast number of uncorrelated, thermal degrees
of freedom are generally unimportant.

Symbol and Word Entropies The Shannon index (2.5) gives the average
information per symbol; an analogous quantity 7, can be defined for the probability
of n-mers (n-symbol “words”), whence the differential entropy I,,,

Iy =Iny1 — I, (2.11)
whose asymptotic limit (n — o00) Shannon calls “entropy of the source”, is a measure
of the information in the (n + 1)th symbol, assuming the n previous ones are known.
The decay of I,, quantifies correlations within the symbolic sequence (an aspect of
memory).

4“Forgetting” implies decay of information; what does “remembering” mean? It means to bring a
system to a defined stable state (i.e., one of two or more states), and the system can only switch to
another state under the influence of an external impulse. The physical realization of such systems
implies a minimum of several atoms; as a rule a single atom, or a simple small molecule, can
exist in only one stable state. Among the smallest molecules fulfilling this condition are sugars
and amino acids, which can exist in left- and right-handed chiralities. Note that many biological
macromolecules and supramolecular assemblies can exist in several stable states.
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2.1 Structure and Quantity

In our discussion so far we have tacitly assumed that we know a priori the set from
which the actual measurement will come. In an actual physical experiment, this is
like knowing from which dial we shall take readings of the position of the pointer,
for example, and, furthermore, this knowledge may comprise all the information
required to construct and use the meter, which is far more than that needed to formally
specify the circuit diagram and other details of the construction. It would also have to
include blueprints for the machinery needed to make the mechanical and electronic
components, for manufacturing the required materials from available matter, and so
forth. In many cases we do not need to concern ourselves about all this, because we
are only interested in the gain in information (i.e., loss of uncertainty) obtained by
receiving the result of the dial reading, which is given by Eq. (2.5). The information
pertinent to the construction of the experiment usually remains the same, hence
cancels out (Eq. 2.7). In other words, the Shannon—Weaver index is strictly concerned
with the metrical aspects of information, not with its structure.

2.1.1 The Generation of Information

Prior to carrying out an experiment, or an observation, there is objective uncertainty
due to the fact that several possibilities (for the result) have to be taken into account.
The information furnished by the outcome of the experiment reduces this uncertainty:
R.A. Fisher (1951) defined the quantity of information furnished by a series of
repeated measurements as the reciprocal of the variance:

Fr(x) < 1/{(Xest — X)?) (2.12)

where [ is the Fisher information and the denominator of the right-hand side is the
variance of the estimator xeg.> One use of . is to measure the encoding accuracy of a
population of neurons subject to some stimulus (Chap. 17); maximizing /r optimizes
extraction of the value of the stimulus.®

2.1.2 Conditional and Unconditional Information

Information about real events that have happened (e.g., a volcanic eruption), or
about entities that exist (e.g., a sequence of DNA) is primarily unconditional; that
is, it does not depend on anything (as soon as information is encoded, however, it
becomes conditional on the code).

5The relation between the Shannon index and Fisher’s information, which refers to the intrinsic
accuracy of an experimental result, is treated by Kullback and Leibler (1951).
6 An example is given by Karbowski (2000).
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Scientific work has two stages:

1. Receiving unconditional information from nature (by making observations in the
field, doing experiments in the laboratory).

2. Generating conditional information in the form of hypotheses and theories relating
the observed facts to each other using axiom systems. The success of any theory
(which may be one of several) largely depends on general acceptance of the chosen
propositions and the mathematical apparatus used to manipulate the elements of
the theory; that is, there is a strongly social aspect involved.

Conditional information tends to be unified; for example, a group of scattered tribes,
or practitioners of initially disparate disciplines, may end up speaking a common
language (they may then comprehend the information they exchange as being uncon-
ditional and may ultimately end up believing that there cannot be other languages).
Encoded information is conditional on agreement between emitters and receivers
concerning the code.

2.1.3 Experiments and Observations

Consider once again the example of the measurement of the length of an object using
a ruler and the information gained thereby. The gain presupposes the existence of a
world of objects and knowledge, including the ruler itself and its calibration in appro-
priate units of measurement. The overall procedure is captured, albeit imperfectly,
in Fig.2.1.

The essential point is that “information” has two parts: a prior part embodied
by the physical apparatus, the knowledge required to carry out the experiment or
observation, and so forth; and a posterior part equal to the loss in uncertainty about
the system due to having made the observation. The prior part can be thought of
as specifying the set of possible values from which the observed value must come.
In a physical measurement, it is related to the structure of the experiment and the
instruments it employs, and the millennia of civilization that have enabled such
activities. The posterior part (/) is sometimes called “missing information” because
once the prior part (K) is specified, the system still has the freedom, quantified
by I, to adopt different microstates. In a musical analogy, K would correspond to
the structure of a Bach fugue and I to the freedom the performer has in making

Generation of Measurement Transmission
information — > (reducing uncertainty of —_5 of results
(an experiment) possible outcomes)

Fig. 2.1 The procedures involved in carrying out an experiment, from conception to ultimate
dissemination
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interpretational choices while still respecting the structure.” One could say that the
magnitude of I corresponds to the degree of logical indeterminacy inhering in the
system, in other words that part of its description that cannot be formulated within
itself; it is the amount of selective information lacking.

I can often be calculated according to the procedures described in the previous
section (the Hartley or Shannon index). If we need to quantify K, it can be done using
the concept of algorithmic information content (AIC) or Kolmogorov information,
which corresponds to the length of the most concise description of what is known
about the system (see Sect.6.5). Hence, the total information 38 is the sum of the
ensemble (Shannon) entropy / and the physical (Kolmogorov) entropy K:

J=I1+K. (2.13)

Mackay (1950) proposed the terms “logon” for the structural (prior) information,
equivalent to K in Eq. (2.13), and “metron” for the metrical (posterior) measurement.
The gain in information from a measurement (Eq. 2.7) falls wholly within the metrical
domain, of course, and within that domain, there is a prior and posterior component
(cf. Sect.5.4).

To summarize, the Kolmogorov information K can be used to define the structure
of information and is calculated by considering the system used to make a mea-
surement. The result of the measurement is macroscopic, remembered information,
quantified by the Shannon index /. The gain in information equals (finaly — initial;
information):

I=U+K)-ULi+K)=1— 1. (2.14)

In other words, it is unexceptionable to assume that the measurement procedure
does not change the structural information, although this must only be regarded as a
cautious, provisional statement. Presumably, any measurement or series of measure-
ments that overthrows the theoretical framework within which a measurement was
made does actually lead to a change in K. Equation (2.13) formalizes the notion of
quiddity qua essence, comprising substance (K ) and properties (/). The calculation
of K will be dealt with in more detail in Chap. 6. As a final remark in this section,
we note that the results of an experiment or observation transmitted elsewhere may
have the same effect on the recipient as if he had carried out the experiment himself.

Problem. Critically scrutinize Fig.2.1 in the light of the above discussion and
attempt to quantify the information flows.

2.2 Constraint

Shannon puts emphasis on the information resulting from the selection from a set
of possible alternatives (implying the existence of alternatives)—information can
only be received where there is doubt. Much of the theory of information deals with

7Cf. Tureck (1995).
8Called the physical information of a system by Zurek (1989).
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signals, which operate on the set of alternatives constituting the recipient’s doubt
to yield a lesser doubt, or even certainty (zero doubt). Thus, the signals themselves
have an information content by virtue of their potential for making selections; the
quantity of information corresponds to the intensity of selection or to the recipient’s
surprise upon receiving the information. / from Eq.(2.5) gives the average infor-
mation content per symbol; it is a weighted mean of the degree of uncertainty (i.e.,
freedom of choice) in choosing a symbol before any choice is made.

If we are writing a piece of prose, and even more so if it is verse, our freedom of
choice of letters is considerably constrained; for example, the probability that “x”
follows “g” in an English text is much lower than % (or % if we include, as we
should, the space as a symbol). In other words, the selection of a particular letter
depends on the preceding symbol, or group of preceding symbols. This problem
in linguistics was first investigated by Markov, who encoded a poem of Pushkin’s
using a binary coding scheme admitting consonants (C) or vowels (V). Markov
(1913) proposed that the selection of successive symbols C or V no longer depended
on their probabilities as determined by their frequencies (v = V/(V + C), where V
and C are, respectively, the total numbers of vowels and consonants). To every pair
of letters (L ;, Lg) there corresponds a conditional probability pjx; given that L ; has
occurred, the probability of Ly at the next selection is pji. If the initial letter has a
probability a;, then the probability of the sequence (L, L, L;) = a; pjx pi; and so
forth. The scheme can be conveniently written in matrix notation:

—>‘ cC Vv
C ‘pcc Pcv (2.15)
A ‘pvc Pov

where p.. means the probability that a consonant is followed by another consonant,
and similarly for the other terms. The matrix is stochastic; that is, the rows must add
up to 1. If every column is identical, then there is no dependence on the preceding
symbol, and we revert to a random, or zeroth-order Markov, process. Suppose now
that observation reveals that the probability of C occurring after V preceded by C is
different from that of C occurring after V preceded by V, or even that the probability
of C occurring after VV preceded by C is different from that of C occurring after
VV preceded by V. These higher-order Markov processes can be recoded in strict
Markov form; thus, for the second-order process (dependency of the probabilities on
the two preceding symbols) “VVC” can be written as a transition from VV to VC,
and hence the matrix of transition probabilities becomes

— ‘ CC CV VC VV

cC ‘ Pece Pecv 0 0

CV‘ 0 0 peve Pevw (2.16)
VC ‘pvcc Poev 00

VV‘ 0 0 pove Povw




2.2 Constraint 19

and so on for higher orders. Notice that some transitions necessarily have zero prob-
ability.”

The reader may object that one rarely composes text letter by letter, but rather
word by word. Clearly, there are strong constraints governing the succession of words
in a text. The frequencies of these successions can be obtained by counting word
occurrences in very long text and are then used to construct the transition matrix,
which is, of course, gigantic even for a first-order process. We remark that a book
ending with “... in the solid state is greatly aided by this new tool” is more likely to
begin with “Rocket motor design received a considerable boost when ...” than one
ending “I became submerged in my thoughts which sparkled with a cold light”.!°

We note here that clearly one may attempt to model DNA or protein sequences
as Markov processes, as will be discussed in Part III. Markov chains as such will be
discussed more fully in Chap. 6.

The notion of constraint applies whenever a set “is smaller than it might be”. The
classic example is that of road traffic lights, which display various combinations of
red, amber, and green, each of which may be on or off. Although 23 = 8 combi-
nations are theoretically possible, in most countries only certain combinations are
used, typically only four out of the eight. Constraints are ubiquitous in the universe
and much of science consists in determining them; thus, in a sense, “constraint” is
synonymous with “regularity”. Laws of nature are clearly constraints, and the very
existence of physical objects such as tables and aeroplanes, which have fewer degrees
of freedom than their constituent parts considered separately, is a manifestation of
constraint.

In this book we are particularly concerned with constraints applied to sequences.
Clearly, if a Markov process is in operation, the variety of the set of possible sequences
generated from a particular alphabet is smaller than it would be had successive
symbols been freely selected; that is, it is indeed “smaller than it might have been”.
“Might have been” requires the qualification, then, of “would have been if successive
symbols had been freely (or randomly—Ileaving the discussion of ‘randomness’ to
Chap. 6) selected”. We already know how to calculate the entropy (or information, or
Shannon index, or Shannon—Weaver index) I of a random sequence (Eq.2.5); there
is a precise way of calculating the entropy per symbol for a Markov process (see
Sect. 6.2), and the reader may use the formula derived there to verify that the entropy
of a Markov process is less than that of a “perfectly random” process. Using some
of the terminology already introduced, we may expand on this statement to say that
the surprise occasioned by receiving a piece of information is lower if constraint is
operating; for example, when spelling out a word, it is practically superfluous to say
“u” after “q”.

The constraints affecting the choice of successive words are a manifestation of
the syntax of a language. In the next chapter other ways in which constraint can

9See also Sect.6.2.
19Good (1969) has shown that ordinary language cannot be represented even by a Markov process
of infinite order.
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operate will be examined, but for now we can simply state that whenever constraint
is present, the entropy (of the set we are considering, hence of the information
received by selecting a member of that set) is lower than it would be for a perfectly
random selection from that set.

This maximum entropy (which, in physical systems, corresponds to the most
probable arrangement; i.e., to the macroscopic state that can be arranged in the
largest number of ways)—Ilet us call it Iry,x—allows us to define a relative entropy

Ly,

actual entro
Jpe = SR CTTTOPY 2.17)

Imax
and a redundancy R,
R=1—1Iy . (2.18)

In a fascinating piece of work, Shannon (1951) established the entropy of English
essentially through empirical investigations using rooms full of people trying to guess
incomplete texts.!!

More formally, the relative entropy (Kullback—Leibler distance
(discrete) distributions with probability functions a; and by, is

R(a.b) = D arlog;(ar/bx) - (2.19)
k

)12 petween two

If ax is an actual distribution of observations, and by, is a model description approxi-
mating to the data,'3 then R(a, b) is the expected difference (expressed as the number
of bits) between encoding samples from a; using a code based on a and using a code
based on b. This can be seen by writing Eq.(2.19) as

R(a.b) = — D bilogyax + D arlog; ay . (2.20)
k k

where the first term on the right-hand side is called the cross-entropy of a; and by,
the expected number of bits required to encode observations from @ when using a
code based on b rather than a. Conversely, R(a, b) is the gain in information if a
code based on a rather than b is used.

Suppose that P{xi, x2, ..., x;} is the probability of having a certain pattern
(arrangement), or m-gram xi, X2, ..., xm,14 assumed to be ergodic (stationary sto-
chastic).!> Examples could be the English texts studied by Shannon; of particular

relevance to the topic of this book is the problem of predicting the nucleic acid base

"Note that most computer languages lack redundancy—a single wrong character in a program will
usually cause the program to halt, or not compile.

12Since R(a, b) # R(b, a), it is not a true metric and is therefore sometimes called “divergence”
rather than “distance”.

13possibly constructed a priori.

14See also Sect. 8.2.

15See Sect. 6.1.
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following a known (sequenced) arrangement. The conditional probability'® that the

pattern [(m — 1)-gram] x1, x3, ..., x,,— is followed by the symbol x,, is
P ) LI L] —1>
PLomlxt, 2,y 1} = b2 X Xk (2.21)
Plx1,x2, ..., Xm—1}

The “m-length approximation” to the entropy S,,, defined as the average uncertainty
about the next symbol, is

sz_ Z P{'xl’-x23"'1xm—1}
X15X2500es Xm—1
X D Plxulx1, X2, . X1} 10g P{xp X1, X2, -, X1} (2.22)
pe

It includes all possible correlations up to length m. Note that the first sum on the
right-hand side is taken over all possible preceding sequences, and the second sum
is taken over all possible symbols. The correlation information is defined as

ki = Sm—1 — Su (m > 2) . (2.23)

S1 is simply the Shannon information (Eq.2.5). If the probability of the different
symbols is a priori equal, then the information is given by Hartley’s formula (2.4).!”
Form =1,

ki1 =logn — S (2.24)

is known as the density information. By recursion we can then write
o
I=8+ D kn (2.25)
m=1

the total information J being equal to logn. The first term on the right gives the
random component and is defined as S = lim,,,_, » S;,;, and the second one gives the
redundancy. For a binary string, S = 1 if it is random, and the redundancy equals
zero. For a regular string like ...010101..., § = 0 and k» = 1; for a first order
Markov chain k;,, = O for all m > 2.

2.2.1 The Value of Information

In order to quantify value V, we need to know the goal toward which the information
will be used. D.S. Chernavsky (1990) points to two cases that may be considered:

(i) The goal can almost certainly be reached by some means or another. In this case
a reasonable quantification is

V = (cost or time required to reach goal without the information)

— (cost or time required to reach goal with the information) .  (2.26)

168ee Sect.5.2.2.
7The effective measure complexity is the weighted sum of the &, [viz., Zf;o:z(m — D)k ]—see
Eq.6.27.
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(i) The probability of reaching the goal is low. Then it is more reasonable to adopt

prob. of reaching goal with the information

V =log 2.27)

2 prob. of reaching goal without the information

With both of these measures, irrelevant information is clearly zero-valued.

Durability of information contributes to its value. Intuitively, we have the idea
that the more important the information, the longer it is preserved. In antiquity,
accounts of major events such as military victories were preserved in massive stone
monuments whose inscriptions can still be read today several thousand years later.
Military secrets are printed on paper or photographed using silver halide film and
stored in bunkers, rather than committed to magnetic media. We tend to write down
things we need to remember for a long time.

The value of information is closely related to the problem of weighing the cred-
ibility that one should accord a certain received piece of information. The question
of weighting scientific data from a series of measurements was an important driver
for the development of probability theory. In 1777, Daniel Bernoulli raised this issue
in the context of averaging astronomical data, where it was customary to simply
reject data deviating too far from the mean and weight all others equally.'® Bennett
(1988) has proposed that his notion of logical depth (Sect.6.5) provides a formal
measure of value, very much in the spirit of Egs. (2.26) and (2.27). A sequence of
coin tosses formally contains much information that has little value; a table giving
the positions of the planets every day for several centuries hence contains no more
information than the equations of motion and initial conditions from which it was
deduced, but saves anyone consulting it the effort of calculating the positions. This
suggests that the value of a message resides not in its information per se (i.e., its
absolutely unpredictable parts) nor in any obvious redundancy (e.g., repetition), but
rather in what Bennett has suggested be called buried redundancy: parts predictable
only with considerable effort on the part of the recipient of the message. This effort
corresponds to logical depth.

The value of information is also related to the amount already possessed. The
same Bernoulli asserted that the value (utility in economic parlance) of an amount
m of money received is proportional to log[(m + ¢)/c], where c is the amount of
money already possessed,'® and a similar relationship may apply to information.

18D, Bernoulli, Diiudicatio maxime probabilis plurium observationem discrepantium atque
verisimillima inductio inde formanda. Acta Acad. Sci. Imp. Petrop. 1 (1777) 3-23. See also L. Euler,
Observationes in praecedentem dissertationem illustris Bernoulli. Acta Acad. Sci. Imp. Petrop. 1
(1777) 24-33.

19Cf. Thomas (2010).
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2.2.2 The Quality of Information

Quality is an attribute that brings us back to the problem posed by Bernoulli in 1777,
namely how to weight observations. If we return to our simple measurement of the
length of a piece of wood, the reliability may be affected by the physical condition
of the measuring stick, its markings, its origin (e.g., from a kindergarten or from
Sevres), the eyesight of the measurer, and so forth.

2.3  Accuracy, Meaning, and Effect
2.3.1 Accuracy

In the preceding sections, we have focused on the information gained when a certain
signal, or sequence of signals, is received. The quantity of this information / has been
formalized according to its statistical properties. [ is of particular relevance when
considering how accurately a certain sequence of symbols can be transmitted. This
question will be considered in more detail in Chap.3. For now, let us merely note
that no physical device can discriminate between pieces of information differing by
arbitrarily small amounts. In the case of a photographic detector, for example, dimin-
ishing the difference will require larger and larger detectors in order to discriminate,
but photon noise places an ultimate limitation in the way of achieving arbitrarily
small detection.

A communication system depending on setting the position of a pointer on a dial
to 1 of 6000 positions and letting the position be observed by the distant recipient of
the message through a telescope, while allowing a comfortably large range of signs
to be transmitted, would be hopelessly prone to reading errors, and it was long ago
realized that far more reliable communication could be achieved by using a small
number of unambiguously uninterpretable signs (e.g., signalling flags at sea) that
could be combined to generate complex messages.

Practical information space is thus normally discrete; for example, meteorological
bulletins do not generally give the actual wind speed in kilometres per hour and the
direction in degrees, but refer to 1 of the 13 points of the Beaufort scale and 1 of the
8 compass points. The information space is therefore a finite 2-space with 8 x 13
elements.

20The same principle applies, in vastly extended form, to the principal systems of writing extant
on Earth. In the Chinese system one character, which may be quite elaborate, represents an entire
word, which could itself represent (often in a context-dependent fashion) an entire concept. In the
alphabetical system, words are built up from syllables. Where there is no difficulty in perceiving a
text in full detail, preferably a whole page at a time, the Chinese system must be superior, having
more force of expression and enabling the information to be appraised more rapidly. In other cases,
such as transmitting messages long distances through a noisy channel, the alphabetic system has
evident advantages.
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The rule for determining the distance between two words (i.e., the metric of
information space) is most conveniently perceived if the words are encoded in binary
form. The Hamming distance is the number of digit places in which the two words
differ.2! This metric satisfies the usual rules for distance; that is, if a, b, and c are
three points in the space and D(a, b) is the distance between a and b, then

D(a,a) = 0;
D(a,b) = D(b,a) >0 ifb+#a;
D(a,b)+ D(b,c) > D(a,c) .

Other distances can be defined (see Sect. 13.4.2).

In biology, the question of accuracy refers especially to the replication of DNA, its
transcription into RNA, and the translation of RNA into protein. It may also refer to
the accuracy with which physiological signals can be transmitted within and between
cells.

2.3.2 Meaning

Shannon’s theory is not primarily concerned with the question of semantic content
(i.e., meaning). In the simple example of measuring the length of a piece of wood,
the question of meaning scarcely enters into the discourse. In nearly all of the other
cases, where we are concerned with receiving signs, or sequences of symbols, after
we have received them accurately we can start to concern ourselves with the question
of meaning. The issues can range from simple ones of interpretation to involved and
complex ones. An example of the former is the interpretation of the order “Wait!”
heard in a workshop. It may indeed mean “pause until further notice”, but heard
by an apprentice standing by a weighing machine, may well be interpreted as “call
out the weight of the object on the weighing pan”. An example of the latter is the
statement “John Smith is departing for Paris”, which has very different connotations
according to whether it was made in an airport, a railway station or some other place.

It is easy to show that the meaning contained in a message depends on the set of
possible messages. Ashby (1956) has constructed the following example. Suppose a
prisoner-of-war is allowed to send a message to his family. In one camp, the message
can be chosen from the following set:

I am well

I am quite well
I am not well

I am still alive,

and in another camp, only one message may be sent:

I am well.

21¢t, JE. Surrick and L.M. Conant, Laddergrams, New York: Sears (1927): “Turn bell into ring in
six moves” and so forth; and Sect. 13.4.3.
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In both cases, there is implicitly a further alternative—no message at all, which would
mean that the prisoner is dying or already dead. In the second camp, if the recipient
is aware that only one message is permitted, he or she will know that it encompasses
several alternatives, which are explicitly available in the first camp. Therefore, the
same message (I am well) can mean different things depending on the set from which
it is drawn.

In much human communication, it is the context-dependent difference between
explicit and implicit meaning that is decisive in determining the ultimate outcome
of the reception of information. In the latter example of the previous paragraph, the
context—here provided by the physical environment—endows the statement with
a large complement of implicit information, which mostly depends on the mental
baggage possessed by the recipient of the information; for example, the meaning
of a Chinese poem may only be understandable to someone who has assimilated
Chinese history and literature since childhood, and will not as a rule be intelligible
to a foreigner armed with a dictionary.

A very similar state of affairs is present in the living cell. A given sequence of
DNA will have a well-defined explicit meaning in terms of the sequence of amino
acids it encodes, and into which it can be translated. In the eukaryotic cell, however,
that amino acid sequence may then be glycosylated and further transformed, but in
a bacterium, it may not be; indeed it may even misfold and aggregate—a concrete
example of implicit meaning dependent on context.

The importance of context in determining implicit meaning is even more graph-
ically illustrated in the case of the developing multicellular organism, in which the
cells are initially all identical; according to chemical signals received from their
environment they will develop into different kinds of cells. The meaning of the
genotype is the phenotype, and it is implicit rather than explicit meaning, which is,
of course, why the DNA sequence of any earthly organism sent to an alien civiliza-
tion will not allow them to reconstruct the organism. Ultimately, most of the cells
in the developing embryo become irreversibly different from each other (differen-
tiation), but while they are still pluripotent, they may be transplanted into regions
of different chemical composition and change their fate; for example, a cell from
the non-neurogenic region of one embryo transplanted into the neurogenic region
of another may become a neuroblast (Sect. 10.8.2). The mechanism of such trans-
formations will be discussed in a little more detail in Chap. 10, but here this type of
phenomenon serves to illustrate how the implicit meaning of the genome dominates
the explicit meaning. This implicit meaning is called epigenetics,”” and it seems
clear that we will not truly understand life before we have developed a powerful way
of treating epigenetic phenomena. Shannon’s approach has proved very powerful for
treating the problem of the accurate transmission of signals, but at present we do

22Cf. Sects. 10.8.2 and 10.8.3.
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not have a comparable foundation for treating the problem of the precise transfer of
meaning.?>

Even at the molecular level, at which phenotype is more circumscribed and could
be considered to be the function (of an enzyme), or simply the structure of a protein,
there is presently little understanding of the relation between sequence and function,
as illustrated by the thousands of known different sequences encoding the same type
of structure and function, or different sequences encoding different structures but the
same type of function, or similar structures with different functions.

Part of the difficulty is that the function (i.e., biological meaning) is not so con-
veniently quantifiable as the information content of the sequence encoding it. Even
considering the simpler problem of structure alone, there are various approaches
yielding very different answers. Supposing that a certain protein has a unique struc-
ture [most nonstructural proteins have, of course, several (at least two) structures in
order to function; the best-known example is probably haemoglobin]. This structure
could be specified by the coordinates of all the constituent atoms, or the dihedral
angles of each amino acid, listed in order of the sequence, and at a given resolution
[Dewey (1996, 1997) calls this the algorithmic complexity of a protein; cf. K in
Eq. (2.13)]. If, however, protein structures come from a finite number of basic types,
it suffices to specify one of these types, which moves the problem back into one
dealing with Shannon-type information.

In the case of function, a useful starting point could be to consider the immune
system, in which the main criterion of function is the affinity of the antibody (or,
more precisely, the affinity of a small region of the antibody) to the target antigen.
The discussion of affinity and how affinities can lead to networks of interactions will
be dealt with in Chap. 16.

The problem of assigning meaning to a sign, or a message (a collection of signs),
is usually referred to as the semantic problem. Semantic information cannot be
interpreted solely at the syntactical level. Just as a set of antibodies can be ranked
in order of affinity, so may a series of statements be ranked in order of semantic
precision; for example, consider the statements:

A train will leave.
A train will leave London today.
An express train will leave London Marylebone for Glasgow at 10:20 a.m. today.

and so on. Postal or e-mail addresses have a similar kind of syntactical hierarchy.
Although we are not yet able to assign numerical values to meanings, we can at least
order them.

Carnap and Bar-Hillel (1952) have framed a theory, rooted in Carnap’s theory of
inductive probability, attempting to do for semantics what Shannon did for the techni-
cal content of a message. It deals with the semantic content of declarative sentences,

23Given that translation (from nucleic acid to protein) is involved, the proverb “traduttori traditori”
is quite apt.
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excluding the pragmatic aspects (dealing with the consequences or value of received
information for the recipient). It does not deal with the so-called semantic problem of
communication, which is concerned with the identity (or approach thereto) between
the intended meaning of the sender and the interpretation of meaning by the receiver:
Carnap and Bar-Hillel place this explicit involvement of sender and receiver in the
realm of pragmatics.

To gain a flavour of their approach, note that the semantic content of sentence
J, conditional on having heard sentence i, is content(j|i) = content(i & j) —
content(7), and their measure of information is defined as information(i) = — log,
content(NOT 7). They consider semantic noise (resulting in misinterpretation of a
message, even though all of its individual elements have been perfectly received) and
semantic efficiency, which takes experience into account; for example, a language
with the predicates W, M, and C, designating respectively warm, moderate, and cold
temperatures, would be efficient in a continental climate (e.g., Switzerland or Hun-
gary) but would become inefficient with a move to the western margin of Europe,
since M occurs much more frequently there.

Although the quantification of information is deliberately abstracted from the
content of a message, taking content into account may allow much more dramatic
compression of a message than is possible using solely the statistical redundancy
(Eq.2.18). Consider how words such as “utilization” may be replaced by “use”,
appellations such as “guidance counsellor” by “counsellor”, and phrases such as “at
this moment in time” by “at this moment”, or simply “now”. Many documents can be
thus reduced in length by over two-thirds without any loss in meaning (but a consid-
erable gain in readability). With simply constructed texts, algorithmic procedures for
accomplishing this that do not require the text to be interpreted can be devised; for
example, all the words in the text can be counted and listed in order of frequency of
occurrence, and then each sentence is assigned a score according to the numbers of
the highest-ranking words (apart from “and”, “that”, etc.) it contains. The sentences
with the highest scores are preferentially retained.

2.3.3 Effect

A signal may be accurately received and its meaning may be understood by the
recipient, but that does not guarantee that it will engender the response desired by
the sender. This aspect of information deals with the ultimate result and the possibly
far-reaching consequences of a message and how the deduced meaning is related to
human purposes. The question of the value of information has already been discussed
(Sect.2.2.1), and operationally it comes close to a quantification of effect.

Mackay has proposed that the quantum of effective information is that amount
that enables the recipient to make one alteration to the logical pattern describing his
awareness of the relevant situation, and this would appear to provide a good basis for
quantifying effect. Suppose that an agent has a state of mind M1, which comprises
certain beliefs, hypotheses, and the like (the prior state). The agent then hears a
sentence, which causes a change to state of mind M>, the posterior state, which



28 2 The Nature of Information

stands in readiness to make a response. If the meaning of an item of information is
its contribution to the agent’s total state of conditional readiness for action and the
planning of action (i.e., the agent’s conditional repertoire of action), then the effect
is the ultimate realization of that conditional readiness in terms of actual action.?*

As soon as we introduce the notion of a conditional repertoire of action, we see
that selection must be considered. Indeed, the three essential attributes of an agent
are (and note the parallel with the symbolic level) as follows:

1. A repertoire, from which alternative actions can be selected;

2. Anevaluator, which assigns values to different states of affairs according to either
given or self-set criteria;

3. A selector, which selects actions increasing a positive evaluation and diminishing
deleterious evaluation.

One may compare this procedure with that of evolutionary computation (Sect. 8.1),
and, a fortiori, with that of evolution itself. Here, the selected actions are used to build
up a presence in the repertoire (and, assuming that the repertoire remains constant
in size, unselected actions will be diminished).

2.3.4 Significs

As summarized by Welby (1911), significs comprises (a) sense (“in what sense
is a word used?”), (b) meaning (the specific sense a word is intended to convey),
and (c) significance—the far-reaching consequence, implication, ultimate result, or
outcome (e.g., of some event or experience). It therefore includes semantics but goes
well beyond it.

Problem. Discuss how the significs of n-grams of DNA and of peptides (regulatory
oligopeptides and proteins) could be developed.

2.4 Further Remarks on Information Generation

The exercise of intellect involves both the transformation and generation of informa-
tion, the latter quite possibly involving the crossing of some kind of logical gap. It
is a moot point whether the solution of a set of equations contains more information
than the equations, since the solution is implicit (and J.S. Mill insisted that induction,
not deduction, is the only road to new knowledge). If it does not, are we then no
more complex than a zygote, which apparently contains all the information required
to generate a functional adult?

2*Wiener subsumes effect into meaning in his definition of “meaningful information”.
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The reception of information is equivalent to ordering (i.e., an entropy decrease)
and corresponds to the various ordering phenomena seen in nature. Three categories
can be distinguished:

1. Order from disorder [sometimes called “self-organization” (see also Sect. 9.8)29];

2. Order from order (a process based on templating, such as DNA replication or
transcription);

3. Order from noise (microscopic information is given macroscopic expression).

The only meaningful way of interpreting the first category is to suppose that the
order was implicit in the initial state; hence, it is questionable whether information
has actually been generated. In the second category, the volume of ordering has
increased, but inevitably at the expense of more disorder elsewhere, because of the
physical exigencies of the copying process.?® Note that copying per se does not lead
to an increase in the amount of information. The third category is of genuine interest,
for it illuminates problems such as that of the development of the zygote, in which
environmental information is given meaningful macroscopic expression, such that
we are indeed more complex than the zygotes whence we sprang.

Problem. Examine the proposition that the production and dissemination of copies
of a document reporting new facts does not increase the amount of information.

25 Summary

Information is that which removes uncertainty. It has two aspects: form (what we
already know about the system) and content, the result of an operation (e.g., a mea-
surement) carried out within the framework of our extant knowledge. Form specifies
the structure of the information. This includes the specification of the set of possible
messages that we can receive or the (design and fabrication of and way of using) the
instrument used to measure a parameter of the system. It can be quantified as the
length of the shortest algorithm able to specify the system (Kolmogorov informa-
tion). If we know the set from which the result of the measurement operation has to
come, the (metrical) content of the operation is given by the Shannon index (reducing
to the Hartley index if the choices are equiprobable). A message (e.g., a succession
of symbols) that directs our selection is, upon receipt, essentially equivalent to the
result of the measurement operation encoded by the message. The Shannon index
assumes that the message is known with certainty once it has been received; if it is
not, the Wiener index should be used.

25But anyway see the critiques of von Foerster (1960) and of Ashby (1962). We may, however,
consider self-organization as programmable self-assembly.

26The creation of disorder could be avoided by doing things perfectly reversibly, but that implies
doing them infinitely slowly and is, hence, scarcely of practical interest.


http://dx.doi.org/10.1007/978-1-4471-6702-0_9

30 2 The Nature of Information

Information can be represented as a sign or as a succession of signs (symbols). The
information conveyed by each symbol equals the freedom in choosing the symbol. If
all choices are a priori equiprobable, the specification of a sequence removes uncer-
tainty maximally. In practice, there may be strong syntactical constraints imposed
on the successive choices, which limit the possible variety in a sequence of symbols.

In order to be considered valuable (or desired), the received information must
be remembered (macroscopic information). Microinformation is not remembered.
Thus, the information inherent in the positions and momenta of all the gas molecules
in a room is forgotten picoseconds after its reception. It is of no value.

Information can be divided into three aspects: the signs themselves, their syntax
(their relation with each other), and the accuracy with which they can be transmitted;
their meaning, or semantic value (i.e., their relation to designata); and their effect
(how effectively the received meaning affects the conduct of the recipient in the
desired way), which may be called pragmatics, the study of signs in relation to their
users, or significs, the study of significance.?’ In other words, content comprises the
signs themselves and their syntax (i.e., the relation between them), their meaning
(semantic value), and their effect on the conduct of the recipient (i.e., does it lead
to action?). A further aspect is that of style, very difficult to quantify. It can be
considered to be determined by word usage frequencies, from which the cybernetic
temperature can be derived (cf. Eq. 3.7). An indication of style (cf. biomarkers giving
an indication of disease) might be given by the occurrence of certain characteristic
words, including the use of a certain synonym rather than another. If a symbolic
sequence is modelled as a Markov chain, matters of style would be encapsulated in
hidden Markov models (q.v.).

Meaning may be highly context-dependent; the stronger this dependence, the more
implicit the meaning.

The effect of receipt of information on behaviour can be quantified in terms
of changes to the logical pattern describing the awareness of the recipient to his
environment. In simpler terms, this may be quantified as value in terms of a change
in behaviour (assuming that enough data on replicate systems or past events are
available to enable the course of action that would have taken place in the absence
of the received information to be determined).

Information is inherently discrete (quantal) and thus based on combinatorics,
which also happens to suit the spirit of the digital computer. In biology, if “geno-
type” constitutes the signs, then “phenotype” constitutes meaning. Action is self-
explanatory and linked to adaptation (see Sect.9.2). Biological function might be
considered to be the potential for action.

2TThese three aspects, namely of syntactics, semantics, and pragmatics, are usually considered to
constitute the theory of signs, or semiotics.
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