2. Stress and Strain Analysis and Measurement

The engineering design of structures using polymers requires a thorough knowledge
of the basic principles of stress and strain analysis and measurement. Readers of
this book should have a fundamental knowledge of stress and strain from a
course in elementary solid mechanics and from an introductory course in
materials. Therefore, we do not rigorously derive from first principles all the
necessary concepts. However, in this chapter we provide a review of the
fundamentals and lay out consistent notation used in the remainder of the text.
It should be emphasized that the interpretations of stress and strain distributions
in polymers and the properties derived from the standpoint of the traditional
analysis given in this chapter are approximate and not applicable to viscoelastic
polymers under all circumstances. By comparing the procedures discussed in
later chapters with those of this chapter, it is therefore possible to contrast and
evaluate the differences.

2.1. Some Important and Useful Definitions

In elementary mechanics of materials (Strength of Materials or the first under-
graduate course in solid mechanics) as well as in an introductory graduate
elasticity course five fundamental assumptions are normally made about the
characteristics of the materials for which the analysis is valid. These assump-
tions require the material to be,

e Linear

+ Homogeneous
« Isotropic

« Elastic

« Continuum

Provided that a material has these characteristics, be it a metal or polymer, the
elementary stress analysis of bars, beams, frames, pressure vessels, columns, etc.
using these assumptions is quite accurate and useful. However, when these
assumptions are violated serious errors can occur if the same analysis
approaches are used. It is therefore incumbent upon engineers to thoroughly
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understand these fundamental definitions as well as how to determine if they are
appropriate for a given situation. As a result, the reader is encouraged to gain a
thorough understanding of the following terms:

Linearity: Two types of linearity are normally assumed: Material linearity
(Hookean stress-strain behavior) or linear relation between stress and strain;
Geometric linearity or small strains and deformation.

Elastic: Deformations due to external loads are completely and instanta-
neously reversible upon load removal.

Continuum: Matter is continuously distributed for all size scales, i.e. there
are no holes or voids.

Homogeneous: Material properties are the same at every point or material
properties are invariant upon translation.

Inhomogeneous or Heterogeneous: Material properties are not the same at
every point or material properties vary upon translation.

Amorphous: Chaotic or having structure without order. An example would
be glass or most metals on a macroscopic scale.

Crystalline: Having order or a regular structural arrangement. An example
would be naturally occurring crystals such as salt or many metals on the
microscopic scale within grain boundaries.

Isotropic: Materials which have the same mechanical properties in all
directions at an arbitrary point or materials whose properties are invariant
upon rotation of axes at a point. Amorphous materials are isotropic.

Anisotropic: Materials which have mechanical properties which are not the
same in different directions at a point or materials whose properties vary with
rotation at a point. Crystalline materials are anisotropic.

Plastic: The word comes from the Latin word plasticus, and from the Greek
words plastikos which in turn is derived from plastos (meaning molded)
and from plassein (meaning to mold). Unfortunately, this term is often used
as a generic name for a polymer (see definition below) probably because
many of the early polymers (cellulose, polyesters, etc.) appear to yield
and/or flow in a similar manner to metals and could be easily molded.
However, not all polymers are moldable, exhibit plastic flow or a definitive
yield point.

Viscoelasticity or Rheology: The study of materials whose mechanical
properties have characteristics of both solid and fluid materials. Visco-
elasticity is a term often used by those whose primary interest is solid
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mechanics while rheology is a term often used by those whose primary
interest is fluid mechanics. The term also implies that mechanical
properties are a function of time due to the intrinsic nature of a material
and that the material possesses a memory (fading) of past events. The
latter separates such materials from those with time dependent proper-
ties due primarily to changing environments or corrosion. All polymers
(fluid or solid) have time or temperature domains in which they are
viscoelastic.

Polymer: The word Polymer originates from the Greek word “polymeros”
which means many-membered (Clegg and Collyer 1993). Often the word
polymer is thought of as being composed of the two words; “poly” meaning
many and “mer” meaning unit. Thus, the word polymer means many units
and is very descriptive of a polymer molecule.

Several of these terms will be reexamined in this chapter but the intent
of the remainder of this book is to principally consider aspects of the last
three.

2.2. Elementary Definitions of Stress, Strain
and Material Properties

This section will describe the most elementary definitions of stress and strain
typically found in undergraduate strength of materials texts. These definitions
will serve to describe some basic test methods used to determine elastic material
properties. A later section will revisit stress and strain, defining them in a more
rigorous manner.

Often, stress and strain are defined on the basis of a simple uniaxial tension
test. Typically, a “dogbone” specimen such as that shown in Fig. 2.1a is used
and material properties such as Young’s modulus, Poisson’s ratio, failure (yield)
stress and strain are found therefrom. The specimen may be cut from a thin flat
plate of constant thickness or may be machined from a cylindrical bar. The
“dogbone” shape is to avoid stress concentrations from loading machine con-
nections and to insure a homogeneous state of stress and strain within the
measurement region. The term homogeneous here indicates a uniform state of
stress or strain over the measurement region, i.e. the throat or reduced central
portion of the specimen. Figure 2.1b shows the uniform or constant stress that is
present and that is calculated as given below.
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Fig. 2.1 “Dogbone” tensile specimen
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The engineering (average) stress can be calculated by dividing the applied
tensile force, P, (normal to the cross section) by the area of the original cross
sectional area Ag as follows,

Oay = A 2.1
The engineering (average) strain in the direction of the tensile load can be found
by dividing the change in length, AL, of the inscribed rectangle by the original
length L,

L
dL AL L-L
Eay = J———— 0 2.2)
Lo Lo Lo
Lo
or
L
w=——1=r—1 23
€ L 2.3)

The term A in the above equation is called the extension ratio and is sometimes
used for large deformations such as those which may occur with low modulus
rubbery polymers.

True stress and strain are calculated using the instantaneous (deformed at a
particular load) values of the cross-sectional area, A, and the length of the
rectangle, L,

2.4

and

L
dL
g = J — =In—=1In(1 +¢) 2.5)
Lo
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True strain is related to the engineering strain as indicated in Eq. 2.5 and can also
be shown to differ from the engineering strain by higher order terms (¢, €, etc.)
which are negligible for the small (linear) strain regime. Thus in the limit of
small strain, the true strain and engineering strain are identical. These and other
nonlinear measures are used for polymers and other materials undergoing large
deformations.

Hooke’s law is valid provided the stress varies linearly with strain and
Young’s modulus, E, may be determined from the slope of the stress-strain
curve or by dividing stress by strain,

E = S (2.6)
Sav
or
_ P/A (2.7)
AL/L,

and the axial deformation over length Ly is,

= AL =12 2.
4] AGE (2.8)

Poisson’s ratio, v, is defined as the absolute value of the ratio of strain transverse,
gy, to the load direction to the strain in the load direction, &,

y=% (2.9)
€x

The transverse strain &y, of course can be found from,

~d—d
=%

&y (2.10)

and is negative for an applied tensile load.

Shear properties can be found from a right circular cylinder loaded in torsion
as shown in Fig. 2.2, where the shear stress, T, angle of twist, 0, and shear strain,
Y, are given by,

(2.11)

T:—’ = —_— = =

Tr TL 10
] G TTLTL
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Fig. 2.2 Typical torsion test specimen to obtain shear properties

Herein, L is the length of the cylinder, T is the applied torque, r is the radial
distance, J is the polar second moment of area and G is the shear modulus. These
equations are developed assuming a linear relation between shear stress and strain
as well as homogeneity and isotropy. With these assumptions, the shear stress and
strain vary linearly with the radius and a pure shear stress state exists on any
circumferential plane as shown on the surface at point A in Fig. 2.2. The shear
modulus, G, is the slope of the shear stress-strain curve and may be found from,

G="1 2.12)
Y

where the shear strain is easily found by measuring only the angular rotation, 0,
in a given length, L. The shear modulus is related to Young’s modulus and can
also be calculated from,

CG=——"— (2.13)

As Poisson’s ratio, v, varies between 0.3 and 0.5 for most materials, the shear
modulus is often approximated by, G ~ E/3.

While tensile and torsion bars are the usual methods to determine engineering
properties, other methods can be used to determine material properties such as
prismatic beams under bending or flexure loads similar to those shown in Fig. 2.3.

The elementary strength of materials equations for bending (flexural) stress,
Gy, shear stress, Ty, due to bending and vertical deflection, v, for a beam loaded
in bending are,

M,y o VQ dv M,
Izz ’ Vo Izzb, dX2 N EIZZ

(2.14)

where y is the distance from the neutral plane to the point at which stress is
calculated, M,, is the applied moment, I,, is the second moment of the cross-
sectional area about the neutral plane, b is the width of the beam at the point of
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calculation of the shear stress, Q is the first moment of the area about the neutral
plane (see a strength of materials text for a more explicit definition of each of
these terms), and other terms are as defined previously.

For a beam with a rectangular cross-section, the bending stress, oy, varies

linearly and shear stress, Ty, varies parabolically over the cross-section as
shown in Fig. 2.4.
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Fig. 2.4 Normal and shear stress variation in a rectangular beam in flexure
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Using Eq. 2.14, given the applied moment, M, geometry of the beam, and
deflection at a point, it is possible to calculate the modulus, E. Strictly speaking,
the equations for bending stress and beam deflections are only valid for pure
bending as depicted in Fig. 2.3a, b but give good approximations for other types
of loading such as that shown in Fig. 2.3c as long as the beam is not very short.
Very short beams require a shear correction factor for beam deflection.

As an example, a beam in three-point bending as shown in Fig. 2.5 is often
used to determine a “flex (or flexural) modulus” which is reported in industry
specification sheets describing a particular polymer.

L2 L2
e vle K|
l

Neutral axis P
before deformation

\

Neutral axis

P2 after deformation

P2
Fig. 2.5 Three-point bend specimen

The maximum deflection can be shown to be,

PL’
Omax = 8EL (2.15)
from which the flexural (flex) modulus is found to be,
PL® 1
= 21
481 dyax (2.16)

Fundamentally, any structure under load can be used to determine properties
provided the stress can be calculated and the strain can be measured at the same
location. However, it is important to note that no method is available to measure
stress directly. Stresses can only be calculated through the determination of
forces using Newton’s laws. On the other hand, strain can be determined directly
from measured deformations. That is, displacement or motion is the physically
measured quantity and force (and hence stress) is a defined, derived or calculated
quantity. Some might argue that photoelastic techniques may qualify for the
direct measurement of stress but it can also be argued that this effect is due to
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interaction of light on changes in the atomic and molecular structure associated
with a birefringent material, usually a polymer, caused by load induced dis-
placements or strain.

It is clear that all the specimens used to determine properties such as the
tensile bar, torsion bar and a beam in pure bending are special solid mechanics
boundary value problems (BVP) for which it is possible to determine a “closed
form” solution of the stress distribution using only the loading, the geometry,
equilibrium equations and an assumption of a linear relation between stress and
strain. It is to be noted that the same solutions of these BVP’s from a first course
in solid mechanics can be obtained using a more rigorous approach based on the
Theory of Elasticity.

While the basic definitions of stress and strain are unchanged regardless of
material, it should be noted that the elementary relations used above are often
not applicable to polymers. As will be discussed in detail in the next chapters,
polymers are inherently viscoelastic. For example, the rate of loading in a simple
tension test will change the value measured for E in a viscoelastic material since
modulus is inherently a function of time.

2.3. Typical Stress-Strain Properties

Properties of materials can be determined using the above elementary
approaches. Often, for example, static tensile or compression tests are performed
with a modern computer driven servo-hydraulic testing system such as the one
shown in Fig. 2.6. The applied load is measured by a load cell (shown in (a) just
above the grips) and deformation is found by either an extensometer (shown in
(b) attached to the specimen) or an electrical resistance strain gage shown in (c).
The latter is glued to the specimen and the change in resistance is measured as
the specimen and the gage elongate. (Many additional methods are available to
measure strain, including laser extensometers, moiré techniques, etc.). The
cross-sectional area of the specimen and the gage length are input into the
computer and the stress strain diagram is printed as the test is being run or can
be stored for later use. The reason for a homogeneous state of stress and strain is
now obvious. If a homogeneous state of stress and strain do not exist, it is only
possible to determine the average strain value over the gage length region with
this procedure and not the true properties of the material at a point.

Typical stress-strain diagrams for brittle and ductile materials are shown in
Fig. 2.7. For brittle materials such as cast iron, glass, some epoxy resins, etc., the
stress strain diagram is linear from initial loading (point 0) nearly to rupture
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(point B) when average strains are measured. As will be discussed subsequently,
stress and strain are “point” quantities if the correct mathematical definition of
each is used. As a result, if the strain were actually measured at a single point,
i.e., the point of final failure, the stress and strain at failure even for a brittle
material might be slightly higher than the average values shown in Fig. 2.7.

(a) (c)

Fig. 2.6 (a) Servo-hydraulic testing system: (b) extensometer, (c) electrical resistance
strain gage

For ductile materials such as many aluminum alloys, copper, etc., the stress-
strain diagram may be nonlinear from initial loading until final rupture. How-
ever, for small stresses and strains, a portion may be well approximated by a
straight line and an approximate proportional limit (point A) can be determined.
For many metals and other materials, if the stress exceeds the proportional limit
aresidual or permanent deformation may remain when the specimen is unloaded
and the material is said to have “yielded”. The exact yield point may not be the
same as the proportional limit and if this is the case the location is difficult to
determine. As a result, an arbitrary “0.2 % offset” procedure is often used to
determine the yield point in metals. That is, a line parallel to the initial tangent to
the stress-strain diagram is drawn to pass through a strain of 0.002 in./in. The
yield point is then defined as the point of intersection of this line and the stress-
strain diagram (point C in Fig. 2.7). This procedure can be used for polymers but
the offset must be much larger than 0.2 % definition used for metals. Procedures
to find the yield point in polymers will be discussed in Chaps. 3 and 11.
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Fig. 2.7 Stress-strain diagrams for brittle and ductile materials

An approximate sketch of the stress-strain diagram for mild steel is shown in
Fig. 2.8a. The numbers given for proportional limit, upper and lower yield points
and maximum stress are taken from the literature, but are only approximations.
Notice that the stress is nearly linear with strain until it reaches the upper yield
point stress which is also known as the elastic-plastic tensile instability point. At
this point the load (or stress) decreases as the deformation continues to increase.
That is, less load is necessary to sustain continued deformation. The region
between the lower yield point and the maximum stress is a region of strain
hardening, a concept that is discussed in the next section. Note that if true stress
and strain are used, the maximum or ultimate stress is at the rupture point.

The elastic-plastic tensile instability point in mild steel has received much
attention and many explanations. Some polymers, such as polycarbonate, exhibit
a similar phenomenon. Both steel and polycarbonate not only show an upper and
lower yield point but visible striations of yielding; plastic flow or slip lines
(Luder’s bands), at an approximate angle of 54.7° to the load axis, occur in each
for stresses equivalent to the upper yield point stress. (For a description and an
example of Luder’s band formation in polycarbonate, see Fig. 3.7¢). It has been
argued that this instability point (and the appearance of an upper and lower yield
point) in metals is a result of the testing procedure and is related to the evolution
of internal damage. That this is the case for polycarbonate will be shown in
Chap. 3. For a discussion of these factors for metals, see Drucker (1962) and
Kachanov (1986).

If the strain scale of Fig. 2.8a is expanded as illustrated in Fig. 2.8b, the
stress-strain diagram of mild steel is approximated by two straight lines; one for
the linear elastic portion and one which is horizontal at a stress level of the lower

LLINT3

yield point. This characteristic of mild steel to “flow”, “neck” or “draw”” without
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rupture when the yield point has been exceeded has led to the concepts of plastic,
limit or ultimate design. That is, just because the yield point has been exceeded
does not mean that the material cannot support load. In fact, it can be shown that
economy of design and weight savings can be obtained using limit design
concepts. Concepts of plasticity and yielding date back to St. Venant in about
1870 but the concepts of plastic or limit design including computational plas-
ticity evolved primarily in the latter half of the twentieth century (see
Westergaard (1964) for a discussion of the history of solid mechanics including
comments on the evolution of plasticity). Also, an excellent discussion of
plasticity and metal forming is given by Osakada (2010). Computational plas-
ticity has its origins associated with calculations of deformations beyond the
yield point for stress-strain diagrams similar to that of mild steel and will be
briefly discussed in Chap. 11 in the context of polymers.
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(a) Stress-strain diagram for mild steel (b) Expanded scale up to 2%strain

Fig. 2.8 Typical tensile stress-strain diagrams (not to scale)

As will be discussed in Chap. 3, the same procedures discussed in the present
chapter are used to determine the stress-strain characteristics of polymers. If
only a single rate of loading is used, similar results will be obtained. On the other
hand, if polymers are loaded at various strain rates, the behavior varies signif-
icantly from that of metals. Generally, metals do not show rate effects at ambient
temperatures. They do, however, show considerable rate effects at elevated
temperatures but the molecular mechanisms responsible for such effects are
very different in polymers and metals.

It is appropriate to note that industry specification sheets often give the elastic
modulus, yield strength, strain to yield, ultimate stress and strain to failure as
determined by these elementary techniques. One objective of this text is to
emphasize the need for approaches to obtain more appropriate specifications
for the engineering design of polymers.
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2.4. Idealized Stress-Strain Diagrams

The stress-strain diagrams discussed in the last section are often approximated by
idealized diagrams. For example, a linear elastic perfectly brittle material is
assumed to have a stress-strain diagram similar to that given in Fig. 2.9a. On the
other hand, the stress-strain curve for mild steel can be approximated as a perfectly
elastic-plastic material with the stress-strain diagram given in Fig. 2.9b.
Metals (and polymers) often have nonlinear stress-strain behavior as shown in
Fig. 2.10a. These are sometimes modeled with a bilinear diagram as shown in
Fig. 2.10b and are referred to as a perfectly linear elastic strain hardening material.
Here the 0.2 % offset method for determining the yield point for metals is used
as an illustration. For polymers a different method must be used (See Chap. 3).

o, is the rupture stress oy Is the yield point stress

o | oyt

0

€

T

(a) Linear elastic perfectly brittle

T
€

(b) Linear elastic perfectly plastic

Fig. 2.9 Idealized uniaxial stress-strain diagrams

c

_En__

(a) Nonlinear behavior

(b) Bilinear approximation

Fig. 2.10 Nonlinear stress-strain diagram with linear elastic strain hardening approxi-
mation (o, is the yield point stress)
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2.5. Mathematical Definitions of Stress, Strain
and Material Characteristics

The previous sections give a brief review of some elementary concepts of solid
mechanics which are often used to determine basic properties of most engineer-
ing materials. However, these approaches are sometimes not adequate and more
advanced concepts from the theory of elasticity or the theory of plasticity are
needed. Herein, a brief discussion is given of some of the more exact modeling
approaches for linear elastic materials. Even these methods need to be modified
for viscoelastic materials but this section will only give some of the basic
elasticity concepts.

Definition of a Continuum A basic assumption of elementary solid mechanics
is that a material can be approximated as a continuum. That is, the material
(of mass AM) is continuously distributed over an arbitrarily small volume, AV,
such that,

AM dM . .
Lim - === const. = p = (density at a point) 217

Quite obviously such an assumption is at odds with our knowledge of the atomic
and molecular nature of materials but is an acceptable approximation for most
engineering applications. The principles of linear elasticity, though based upon
the premise of a continuum, have been shown to be useful in estimating the
stress and strain fields associated with dislocations and other non-continuum
microstructural details.

Physical and Mathematical Definition of Normal Stress and Shear
Stress Consider a body in equilibrium under the action of external forces Fj
as shown in Fig. 2.11a. If a cutting plane is passed through the body as shown in
Fig. 2.11b, equilibrium is maintained on the remaining portion by internal forces
distributed over the newly exposed internal surface.
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Fig. 2.11 Physical definition of normal force and shear force

At any arbitrary point p, the incremental resultant force, AF,, on the cut
surface can be broken up into a normal force in the direction of the normal, n, to
surface S and a tangential force parallel to surface S. The normal stress and the
shear stress at point p is mathematically defined as,

AF, . AF,
= -_n = 2.18
On = 111\130 AA S AI/I\rEO AA (2.18)

where AF, and AFg are the normal and shearing forces on the area AA
surrounding point p.

Alternatively, the resultant force, AF,., at point p can be divided by the area,
AA, and the limit taken to obtain the stress resultant ¢, as shown in Fig. 2.12.
Normal and tangential components of this stress resultant will then be the normal
stress 6,, and shear stress T, at point p on the infinitesimal area AA.
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Fig. 2.13 Cartesian components of internal stresses
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If a pair of cutting planes a differential distance apart are passed through the
body parallel to each of the three coordinate planes, a cube will be identified.
Each plane will have normal and tangential components of the stress resultants.
The tangential or shear stress resultant on each plane can further be represented
by two components in the coordinate directions. The internal stress state is then
represented by three stress components on each coordinate plane as shown in
Fig. 2.13. (Note that equal and opposite components will exist on the unexposed
faces). Therefore at any point in a body there will be nine stress components.
These are often identified in matrix form such that,

Oxx Txy Txz
Gij = | Tyx Oyy Ty (2.19)
Tzx  Tzy Oz

Using equilibrium, it is easy to show that the stress matrix is symmetric or,
Txy = Tyx>  Txz = Tzx,  Tyz = Tzy (220)

leaving only six independent stresses existing at a material point.

Physical and Mathematical Definition of Normal Strain and Shear Strain If
a differential element is acted upon by stresses as shown in Fig. 2.14a both
normal and shearing deformations will result. The resulting deformation in
the x-y plane is shown in Fig. 2.14b, where u is the displacement component
in the x direction and v is the displacement component in the y direction.

“ “u+ ﬁ—uAy
y T Oyy Yle >
KT
— Tyx i
Txy
Z i
2z 192
«— Ay —» Oxx + Ayl _
1 ! Av
90° u - Ql 777777 -~ V+AX AX
AX _ v v AX l -
0 ——M— X 0! COX
l — u+§—)‘ij —
(a) (b)

Fig. 2.14 Definitions of displacements u and v and corresponding shear and normal
strains
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The unit change in the Ax dimension will be the strain e, and is given by,

A
<u + —qu> —u
= lim Ax
SXX - A

x—0 Ax

(2.21)

with similar definitions for the unit change in the y and z directions. (The
assumption of small strain and linear behavior is implicit here with the assump-
tion that 0 is small and thus its impact on Au is ignored). Therefore the normal
strains in the three coordinate directions are defined as,

e — 1i Au  Ou e — 1 Av  0Ov
* T aDoAx  ox T YT A% Ay 0y’
(2.22)
_ g Aw  Ow
2= W% Az oz
where u, v and w are the displacement components in the three coordinate
directions at a point. Shear strains are defined as the distortion of the original
90° angle at the origin or the sum of the angles 0; + 0,. That is, again using the

small deformation assumption,

Au
: v+ &YAX) — v (U+A—)—u
tan (B +62) ~ (61 +6)=  lim | : “ax b=y Ayy

(2.23)

which leads to the three shear strains,

ov Ou ow Ou ow Ov
we(aty) we(rs) we(5+s) o

Stresses and strains are often described using tensorial mathematics but in order
for strains to transform as tensors, the definition of shear strain must be modified
to include a factor of one half as follows,

1/0v Ou 1/0w Ou 1/0w Ov
w=3(arn) =aarn) walE e 0

The difference between the latter two sets of equations can lead to very errone-
ous values of stress when attempting to use an electrical strain gage rosette to
determine the state of stress experimentally. In Eq. 2.25 the traditional symbol &
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with mixed indices has been used to identity tensorial shear strain. The symbol y
with mixed indices will be used to describe non-tensorial shear strain, also called
engineering strain.

In general, as with stresses, nine components of strain exist at a point and
these can be represented in matrix form as,

g = | &x &y Ey (2.26)

Again, it is possible to show that the strain matrix is symmetric or that,
Exy = €yx, Exz = Ezx, Eyz = Eyy (227)

Hence there are only six independent strains.

Generalized Hooke’s Law As noted previously, Hooke’s law for one dimen-
sion or for the condition of uniaxial stress and strain for elastic materials is given
by 6 =E &. Using the principle of superposition, the generalized Hooke’s law
for a three dimensional state of stress and strain in a homogeneous and isotropic
material can be shown to be,

1 Tx

Eax = E[Gxx —V(0yy +64)], Yy = Ey
1 z

&y = glow —Uom +04)]. vy =& (228)
1 Txz

€7, = E[Gzz - V(Gxx + ny)] s Yxz = E

where E, G and v are Young’s modulus, the shear modulus and Poisson’s ratio
respectively. Only two are independent and as indicated earlier,

E

The proof for Eq. 2.29 may be found in many elementary books on solid
mechanics.

Other forms of the generalized Hooke’s law can be found in many texts. The
relation between various material constants for linear elastic materials are shown
below in Table 2.1 where E, G and v are previously defined and where K is the
bulk modulus and A is known as Lame’s constant.
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Table 2.1 Relation between various elastic constants. A and G are often termed Lame’
constants and K is the bulk modulus

TA = 1/(E+ 1) + 82

Lamé’s Shear Young’s Poisson’s Bulk
modulus, A modulus, G modulus, E ratio, v modulus, K
A G G(3L+2G) A 342G
r+G 2(L+G) 3
M E AT+ (E-3)) A" —(E+)) |AT+(3ML+E)
4 4 6
AV M1 =2v)  |A1+v)(1—2v) M1 +v)
2v v 3y
A K 3(K—=2) 9K(K — 1) A
2 3K — A 3IK—A
G E| (2G-E)G E-2G GE
E — 3G 2G 3(3G —E)
G,v 2Gv 2G(1+v) 2G(1 +v)
1—2v 3(1—2v)
GK 3K - 2G 9KG 3K -2G
3 3K+ G 2(3K + G)
E,v vE E E
(IT+v)(I=2v) [ 2(1 +v) 3(1 —2v)
EK | 3K(3K-E) 3EK 3K—-E
(9K — E) 9K —E 6K
v,K 3Kv 3K(1 —2v) 3K(1 —2v)
1+v 2(1+v)

Hooke’s law is a mathematical statement of the linear relation between stress
and strain and usually implies both small strains (¢* < < €) and small deforma-
tions. It is also to be noted that in general elasticity solutions in two and three
dimensions, the displacement, stress and strain variables are functions of spatial
position, x;. This will be handled more explicitly in Chap. 9.

Again, it is important to note that stress and strain are point quantities, yet
methods for strain measurement are not capable of measuring strain at an
infinitesimal point. Thus, average values are measured and moduli are obtained
using stresses calculated at a point. For this reason, strains are best measured
where no gradients exist or are so small that an average is a good approximation.
One approach when large gradients exist is to try to measure the gradient and
extrapolate to a point. The development of methods to measure strains within
very small regions has become a topic of great importance due to the
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development of micro-devices and machines. Further, such concerns as interface
or interphase properties in multi-phase materials also creates the need for new
micro strain measurement techniques.

Indicial Notation and Compact Form of Generalized Hooke’s Law Because
of the cumbersome form of the generalized Hooke’s Law for material constitu-
tive response in three dimensions (Eq. 2.28), a shorthand notation referred to as
indicial or index notation is extensively used. Here we provide a brief summary
of indicial notation and further details may be found in many books on contin-
uum mechanics (e.g., Fliigge 1972). In indicial notation, the subscripts on
tensors are used with very precise rules and conventions and provide a compact
way to relate and manipulate tensorial expressions.

The conventions are as follows:

» Subscripts indicating coordinate direction (X, y, z) can be generally
represented by a roman letter variable that is understood to take on the values
of 1, 2, or 3. For example, the stress tensor can be written as 6;; which then
gives reference to the entire 3 x 3 matrix. That is the stress and strain matrices
given by Eqs. 2.19 and 2.26 become,

C11 O12 O13 €11 €12 €13
6j= |02 ©2 013 |&=|¢€1 €n &3 (2.30)
631 032 033 €31 €32 €33

* Summation convention: if the same index appears twice in any term, sum-
mation is implied over that index (unless suspended by the phrase “no sum”).
For example,

Gii =011 + 02 + 033 (2.31)

« Free index: non-repeated subscripts are called free subscripts since they are
free to take on any value in 3D space. The count of the free indices on a
variable indicates the order of the tensor. e.g. Fj; is a vector (first order tensor),
6;; is a second order tensor.

e Dummy index: repeated subscripts are called dummy subscripts, since they
can be changed freely to another letter with no effect on the equation.

* Rule 1: The same subscript cannot appear more than twice in any term.

* Rule 2: Free indices in each term (both sides of the equation) must agree (all
terms in an equation must be of the same order).

Example of valid expression: v; = ajju; — Aeydix

< Rule 3: Both free and repeated indices may be replaced with others subject to

the rules.
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Example of valid expression: ajju; +d; = ajuy +d;

» Unlike in vector algebra, the order of the variables in a term is unimportant, as
the bookkeeping is done by the subscripts. For example consider the inner
product of a second order tensor and a vector:

Ajjuj = UjAj; (2.32)

 Differentiation with respect to spatial coordinates is represented by a comma,
for example

dVi

—L = 2
a =V (2.33)

 The identity matrix is also referred to as the Kronecker Delta function and is
represented by

(1, ifi=j
8ij = {0’ ifi ] (2.34)

The properties of §;; are thus

0;i =3
Sijvj = Vj

2.35
8ijdjk = ik (2.35)
8ijoik = oik

Although the conventions listed above may seem tedious at first, with a little
practice index notation provides many advantages including easier manipula-
tions of matrix expressions. Additionally, it is a very compact notation and the
rules listed above can often be used during manipulation to reduce errors in
derivations.

The generalized Hooke’s Law from Eq. 2.28 may be rewritten to relate
tensorial stress and strain in index notation as follows:

1+v 1%
8ij = Tcij — Eckk&j (236)

or

Cjj = 2G8ij + 7\814(61]' 2.37)
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Additionally, the strain-displacement relations, Eqs. 2.22 and 2.25, can be
written as

1
&j = E(ui,j + uj,i) (2.38)

where u; are the three displacement components, represented as u, v, and
w earlier (e.g., u; =v).

These expressions will be used extensively later in Chap. 9 when dealing with
viscoelasticity problems in two and three dimensions.

Consequences of Homogeneity and Isotropy Assumptions It is interesting to
examine the consequences if a material is linearly elastic but not homogeneous
or isotropic. For such a material, the generalized Hooke’s law is often expressed
using index notation as,

Gij = Eijkqekq (2.39)

For a material that is nonhomogeneous, the material properties are a func-
tion of spatial position and E;jxq becomes Ejj4(X,y,z). The nonhomogeneity for
a particular material determines exactly how the moduli vary across the
material. The geometry of the material on an atomic or even microscale
determines symmetry relationships that govern the degree of anisotropy of
the material. Without regard to symmetry constraints, Eq. 2.39 could have
81 independent proportionality properties relating stress components to strain
components.

The complete set of nine equations (one for each stress) each with nine
coefficients (one for each strain term) can be found from Eq. 2.39. This is
accomplished using the summation convention over repeated indices. That is,
Eq. 2.39 is understood to be a double summation as follows,

3 3
Gij = Z Z Eijkqgkq (240)

k=1 gq=1

(The expansion is left as an exercise for the reader. See problem 2.4).

If a material is nonlinear elastic as well as heterogeneous and anisotropic,
Eq. 2.39 becomes,

Ojj = Eijkl(xv Y, Z)Skl + E/ijkl(xv Y, Z)eil +oe (241)
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Again each term on the right hand side of Eq. 2.40 represents a double summa-
tion and each coefficient of strain is an independent set of material parameters.
Thus, many more than 81 parameters may be required to represent a nonlinear
heterogeneous and anisotropic material. Further, for viscoelastic materials, these
material parameters are time dependent. The introduction of the assumption of
linearity reduces the number of parameters to 81 while homogeneity removes
their spatial variation (i.e., the Ejjq parameters are now constants). Symmetry of
the stress and strain tensors (matrices) reduces the number of constants to 36.
The existence of a strain energy potential reduces the number of constants to 21.
Material symmetry reduces the number of constants further. For example, an
orthotropic material, one with three planes of material symmetry, has only 9
constants and an isotropic material, one with a center of symmetry, has only two
independent constants (and Eq. 2.39 reduces to Eq. 2.28). Now it is easy to see
why the assumptions of linearity, homogeneity and isotropy are used for most
engineering analyses.

A plane of material symmetry exists within a material when the material
properties (elastic moduli) at mirror-imaged points across the plane are identical.
For example, in the sketch given in Fig. 2.15a, the yz plane is a plane of symmetry
and the elastic moduli would be the same at the material points A and B.

z
¢+B
|
|
4
|
, !
7 1
A :
-X ’ Y1
1 // ?A
/// l
' 1 >
X] 171 y
|
|
_______ |
Y1

Fig. 2.15 (a) Definition of a plane of material symmetry
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Experimentation is needed to determine if a material is homogeneous or
isotropic. One approach is to cut small tensile coupons from a three-dimensional
body and perform a uniaxial tensile or compressive test as well as a torsion test
for shear. Obviously, to obtain a statistical sample of specimens at a single point
would require exact replicas of the same material or a large number of near
replicas. Assuming that such could be accomplished for a body with points A
and B as in Fig. 2.15a, the following relationships would hold for homogeneity,

E

XXX | AT Exxxx |B

Wy |y T Tww|g

A 2222 (2 42 )

That is, the modulus components are invariant (constant) for all directions at a
point (See Problem 2.5).

The above measurement approach illustrates the influence of heterogeneity
and anisotropy on moduli but is not very practical. A sonic method of measuring
properties, though not as precise as tensile or torsion tests, is often used and is
based upon the fact that the speed of sound, vy, in a medium is related to its
modulus of elasticity, E, and density, p, such that (Kolsky 1963),

Ve =4 [— (2.43)

The above is adequate for a thin long bar of material but for three-dimensional
bodies the velocity is related to both dilatational (volume change — see subse-
quent section for definition) and shear effects as well as geometry effects, etc.

It is to be noted that the condition of heterogeneity and anisotropy are
confronted when considering many materials used in engineering design. For
example, while many metals are isotropic on a macroscopic scale, they are
crystalline on a microscopic scale. Crystalline materials are at least anisotropic
and may be heterogeneous as well. Wood is both heterogeneous and anisotropic
as are many ceramic materials. Modern polymer, ceramic or metal matrix
composites such as fiberglass, etc. are both heterogeneous and anisotropic.
The mathematical analysis of such materials often neglects the effect of hetero-
geneity but does include anisotropic effects. (See Lekhnitskii (1963), Daniel and
Ishai (2005)).
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2.6. Principal Stresses

In the study of viscoelasticity as in the study of elasticity, it is mandatory to have
a thorough understanding of methods to determine principal stresses and strains.
Principal stresses are defined as the normal stresses on the planes oriented such
that the shear stresses are zero — the maximum and minimum normal stresses at a
point are principal stresses. The determination of stresses and strains in two
dimensions is well covered in elementary solid mechanics both analytically and
semi-graphically using Mohr’s circle. However, practical stress analysis prob-
lems frequently involve three dimensions. The basic equations for transforma-
tion of stresses in three-dimensions, including the determination of principal
stresses, will be given and the interested reader can find the complete develop-
ment in many solid mechanics texts.

Often in stress analysis it is necessary to determine the stresses (strains) in a
new coordinate system after calculating or measuring the stresses (strains) in
another coordinate system. In this connection, the use of index notation is very

helpful as it can be shown that the stress G;j in a new coordinate system, X;, can be

easily obtained from the 6j; in the old coordinate system, X;, by the equation,

!

Gij = aikajqckq (244)

.. . . . !
where the quantities a;; are the direction cosines between the axes X; and x; and
may be given in matrix form as,

a1 a2 a3
aj = | ap1 axp axs (2.45)
a3]  dz a3z

Figure 2.15b illustrates coordinate transformation for stress at a material point
in two dimensions, showing the primed and unprimed axis systems where the
angle between them is defined as 0. In Eq. 2.44, the repeated indices on the right
again indicate summation over the three coordinates, x,y,z or the indices 1,2,3. It
is left as an exercise for the reader to show that this process leads to the familiar
two-dimensional expressions found in the first course in solid mechanics (see
Problem 2.6),

GIX = 6, 0820 + Gy sin 20 4+ 27,ysinBcos0 (2.46a)
or

/ Ox + 0y Ox —
c. =
X 2 2

% 00820 + Tyy sin 20 (2.46b)
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Fig. 2.15 (b) Illustration of coordinate transformation in two dimensions

!

T,y = —(0x — 0y )sinBcosd + 7, (cos %0 — sin’0) (2.47a)

or

T;y = % sin 20 + Ty cos 20 (2.47b)

Using Eq. 2.44 it is possible to show that the three principal stresses (strains) can
be calculated from the following cubic equation,

o; — Lo} + Lo, —I; =0 (2.48)
where the principal stresses, 6;, are given by one of the three roots 61, 6, or 63 and,

I, :Gxx+6yy+czz:61+62+63

2 2 2
I2 = OxxOyy + GOyyOzz + Oxx0zz — ny - Cyz — Oy, = 0102 + 0203 + 030 (249)

_ 2 2
I3 = 64xOyy0,; — OxxG;, — OyyO, GZZG + 204y0y;6,x = G16203

yz

The quantities I, I,, and I3 are the same for any arbitrary coordinate system
located at the same point and are therefore called invariants.

In two-dimensions when 6,, =0 and a state of plane stress exists, Eq. 2.48
reduces to the familiar form,

Oxx +0o Oxx — O 2
oo = \/ (Tyy) + (1)’ (2.50)
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where the comma does not indicate differentiation in this case, but is here used to
emphasize the similarity in form of the two principle stresses by writing them in
one equation. The proof of Eq. 2.50 is left as an exercise for the reader.

The directions of principal stresses (strains) are also very important. How-
ever, the development of the necessary equations will not be presented here but it
might be noted that the procedure is an eigenvalue problem associated with the
diagonalization of the stress (strain) matrix.

2.7. Deviatoric and Dilatational Components
of Stress and Strain

A general state of stress at a point or the stress tensor at a point can be separated
into two components, one of which results in a change of shape (deviatoric) and
one which results in a change of volume (dilatational). Shape changes due to a
pure shear stress such as that of a bar in torsion given in Fig. 2.2 are easy to
visualize and are shown by the dashed lines in Fig. 2.16a (assuming only a
horizontal motion takes place).

«
— —

ny =0y
|
T |
—_—» Ny | (o
-~ t /
/I ! ' ’
/ < --- | pR—
/ (o} Oyx = O
/ XX | XX 1
o) 4 d
/ / y /___________>
/
/ / // Gzz; = O3 X
/ h ’ : dz
%
—— 4 v
,/ dx Oy
z
(a) (b)

Fig. 2.16 (a) Shape changes due to pure shear. (b) Normal stresses leading to a pure
volume change

Shear Modulus Because only shear stresses and strains exist for the case of
pure shear, the shear modulus can easily be determined from a torsion test by
measuring the angle of twist over a prescribed length under a known torque, i.e.,
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T= BE (2.51)
L

where all terms are as previously defined in Eq. 2.11.

Bulk Modulus. Volume changes are produced only by normal stresses. For
example, consider an element loaded with only normal stresses (principal
stresses) as shown in Fig. 2.16b. The change in volume can be shown to be
(for small strains),

AV
7 = &x T 8yy + €4 (252)

Substituting the values of strains from the generalized Hooke’s law, Eq. 2.28,
gives,

AV 1-2v

v 3 (0xx + Oyy +6,,) (2.53)

If Poisson’s ratio is v = 0.5, the change in volume is zero or the material is
incompressible. Here it is important to note that Poisson’s ratio for metals and
many other materials in the linear elastic range is approximately 0.33 (i.e., v~ 1/3).
However, near and beyond the yield point, Poisson’s ratio is approximately 0.5
(i.e., v~1/2). That is, when materials yield, neck or flow, they do so at constant
volume.

In the case when all the stresses on the element in Fig. 2.16b are equal
(0xx =0yy =06,,=0), a spherical state of stress (hydrostatic stress) is said to
exist and,

AV_1—2v
V E

(30) (2.54)

By equating Egs. 2.52 and 2.54 the Bulk Modulus can be defined as the ratio of
the hydrostatic stress, o, to volumetric strain or unit change in volume (AV/V),

E

Notice that the bulk modulus becomes infinite, K ~ 0o, if the material is incom-
pressible and Poisson’s ratio is, v~ 1/2.

Obviously, one method for obtaining the bulk modulus of a material would be
to create a hydrostatic compression (or tension) state of stress and measure the
resulting volume change.
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Dilatational and Deviatoric Stresses for a General State of Stress For a
general stress state, the dilatational or volumetric component is defined by the
mean stress or the average of the three normal stress components shown in
Fig. 2.13,

XX 77 1
L 2 2 T Ou 2ok (2.56)

G = Oy

In Eq. 2.56 care has been taken to provide three different symbolic ways of
indicating the volumetric stress, 6, 6,,, Or 6/3 to emphasize the many notations
found in the literature. Since the sum of the normal stresses is the first Invariant,
I;, the mean stress, 6,,, will be the same for any axis orientation at a point
including the principal axes as shown in Eq. 2.56. Thus, independent of axis
orientation the general stress state can be separated into a volumetric component
plus a shear component as shown in Fig. 2.17. That is, if the stresses responsible
for volumetric changes are subtracted from a general stress state, only stresses
responsible for shape changes remain. This statement can be expressed in
matrix form as,

Oxx Txy Txz om O 0 Sxx  Sxy  Sxz
Tyx Oyy Tyz | = 0 om O |+ syx Sy Sy (2.57)
Tix  Tzy Oz 0 0 on Sox Szy Sz

or in index notation as

1
Gij = §°kk6ij =+ sj (2.58)

where s;; are the deviator (shape change) components of stress and §;; is the
Kronecker Delta function as defined earlier (Eq. 2.34).
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Fig. 2.17 Separation of a general stress state into dilatational and deviator stresses
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Since the trace of the first two matrices in Eq. 2.52 are the same, i.e.,
Okk = Oxx + Oyy + G, = 30 (2.59)
the trace of the third matrix is zero, i.e.,
Skk = Sxx + Syy + 822 = 0 (2.60)

Using Eq. 2.60, the deviator matrix can be separated into five simple shear stress
systems,

Sxx  Sxy Sxz 0 s¢ O 0o 0 O 0 0 sy
Syx Syy Syz | =|sx O Of|+]10 O sy, |+] 0 O
Six  Szy Sz 0 0 0 0 s,y O Syx
sk 0 0 0 o 0
+1 0 —sx O[+]0 —s;, O
0 0 O 0 0 sy
(2.61)

That the stress states given by the first three matrices on the right side of Eq. 2.61
are pure shear states is obvious. The last two are also pure shear states but at 45°
to the indicated axis as shown in Fig. 2.18.

: ;

Fig. 2.18 Pure shear state

Therefore each term in Eq. 2.61 represents a pure shear state and results in
only shape changes with no volume change.
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Strains can also be separated into dilatational and deviatoric components and
the equation for strain analogous to Eq. 2.58 is,

1
€ij = €j + 8m6ij or g = € + ggkksij (262)

where e;; are the deviatoric strains and e, = ;ekk is the dilatational component.

Clearly the trace of the strain tensor equivalent to Eq. 2.59 can be recovered
from Eq. 2.62.

The generalized Hooke’s law given by Eq. 2.28 or Eq. 2.36 can now be
written in terms of deviatoric and dilatational stresses and strains using the
equations above as well as Eqgs. 2.52-2.55

Sij = 2Geij (2 63)

okk = 3Kekk '
The importance of the concept of a separating the stress (and strain) tensors into
dilatational and deviatoric components is due to the observation that viscoelastic
and/or plastic (meaning yielding, not polymers) deformations in materials are
predominately due to changes in shape. For this reason, volumetric effects can
often be neglected and, in fact, the assumption of incompressibility is often
invoked. If this assumption is used, the solution of complex boundary value
problems (BVP) are often greatly simplified. Such an assumption is often made
in analyses using the theory of plasticity and theory of viscoelasticity and each
will be discussed in later chapters.

Further, the observation that deformations in viscoelastic materials such as
polymers is more related to changes of shape than changes of volume suggest
that shear and volumetric tests may be more valuable than the traditional
uniaxial test.

It can be shown that additional invariants exist for both dilatational and
deviatoric stresses. For a derivation and description of these see Fung (1965)
and Shames et al. (1992). The invariants for the deviator state will be used briefly
in Chap. 11 and are therefore given below.

Ji=061+06y+063=0
Jo =30 — I 2.64)
J3 =1 — Joom — 0},

All invariants have many different forms other than those given herein.
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2.8. Failure (Rupture or Yield) Theories

Simply stated, failure theories are attempts to have a method by which the failure
of a material can be predicted and thereby prevented. Most often the physical
property to be limited is determined by experimental observations and then a
mathematical theory is developed to accommodate observations. To date, no set
of universal failure criteria has been determined which is suitable for all mate-
rials. Because of the large interest in light weight but strong materials such as
polymer, metal and ceramic matrix composites (PMC, MMC and CMC respec-
tively) that will operate at high temperatures or under other adverse conditions
there has been much activity in developing special failure criteria appropriate for
individual materials. As a result, the number of failure theories now is in the
hundreds. Here we will only give the essential features of the classical theories,
which were primarily developed for metals. For this reason, it is suggested that
the reader keep an open mind and be extremely careful when investigating the
behavior of polymers using these traditional methods. It is virtually certain that
actual behavior will not always be well represented using any of the following
theories due to the time dependent nature of polymer based materials. The same
statement is likely true for most of the current popular theories used for
composites.

Ductile materials often have a stress-strain diagram similar to that of mild
steel shown in Fig. 2.8 and can be approximated by a linear elastic-perfectly
plastic material with a stress-strain diagram such as that given in Fig. 2.9b.
Failure for ductile materials is assumed to occur when stresses or strains exceed
those at the yield point. Materials such as cast iron, glass, concrete and epoxy are
very brittle and can often be approximated as perfectly linear elastic-perfectly
brittle materials similar to that given in Fig. 2.9a. Failure for brittle materials is
assumed to occur when stresses or strains reach a value for which rupture
(separation) will occur.

The following are the simple statements and expressions for three well known
and often used failure theories. They are described in terms of principal stresses,
where 6; > 6, > 63, and a failure stress in a uniaxial tensile test, 6| g,e> Which
is either the rupture stress or the yield stress as appropriate for the material.
Typically, tensile and compression properties as found in a uniaxial test are
assumed to be the same.
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Maximum Normal Stress Theory (Lame-Navier) Failure occurs when the
largest principal stress (either tension or compression) is equal to the maximum
tensile stress at failure (rupture or yield) in a uniaxial tensile test.

61 = Of | tensile (2 . 65)

Maximum Shear Stress Theory (Tresca) Failure occurs when the maximum
shear stress at an arbitrary point in a stressed body is equal to the maximum shear
stress at failure (rupture or yield) in a uniaxial tensile test.

- 67 —063 . | _ Gf|tensile
max — D) — ‘max|tensile — 2

(2.66)

01 — 03 = Gf|tensile

Maximum Distortion Energy (or Maximum Octahedral Shear Stress) The-
ory (von Mises) Failure occurs when the maximum distortion energy
(or maximum octahedral shear stress) at an arbitrary point in a stressed medium
reaches the value equivalent to the maximum distortion energy (or maximum
octahedral shear stress) at failure (yield) in simple tension

(5% + G% + cg — (6102 4+ 0203 + 0301) = 2($%|tensﬂe 2.67)

Development of the octahedral shear stress can be found in many texts and
will not be given here. However, it is appropriate to note the geometry of the
octahedral plane. That is, if a diagonal plane is identified for stressed element as
shown in Fig. 2.19a such that the normal to the diagonal plane makes an angle of
54.7°, the stress state will be as shown in Fig. 2.19b. The resultant shear stress on
this octahedral plane, so named because there are eight such planes at a point, is
the octahedral shear stress. The octahedral shear stress and the octahedral plane
is very important especially for polymers as the majority of viscoelastic behavior
is associated with shear or deviatoric response as opposed bulk or dilational
response. This is discussed in more detail in the next section.
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(a) (b)

Fig. 2.19 Definition of the octahedral shear stress

Comparison Between Theory and Experiment Comparisons between theory
and experiment have been made for many materials. Shown in Fig. 2.20 are the
graphs in stress space for the equations for the three theories given above. Also
shown is experimental data on five different metals as well as four different
polymers. It will be noted that cast iron, a very brittle material agrees well with
the maximum normal stress theory while the ductile materials of steel and
aluminum tend to agree best with the von Mises criteria. Polymers tend to be
better represented by von Mises than the other theories.
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Fig. 2.20 Comparison between failure theories and experiment (Data from Dowling
(1993): metal p. 252, polymer p. 254)

2.9. Atomic Bonding Model for Theoretical
Mechanical Properties

Materials scientists and engineers have long sought methods to determine the
mechanical properties of materials from knowledge of the bonding properties of
individual atoms, which, of course, hold materials together. Observation of
elastic behavior suggests the existence of both attractive and repulsive forces
between individual atoms. Stretching an elastic bar in tension, stretches the
atomic bonds and release of the load allows the bonds to return to their original
equilibrium positions. Likewise, compression causes atoms to move closer
together and release of the load allows the atoms to return to their equilibrium
position. A hypothetical tensile (or compressive) bar composed of perfectly
packed atoms is shown in Fig. 2.21. The distances between the centers of four
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neighboring atoms, mnpq, form a rhombus. When stretched, the strains in the
vertical and horizontal directions, &, and ey, can be calculated from geometrical
changes in the position of the spheres and the ratio can be shown to give a
Poisson’s ratio of v =1/3, which is close to the measured value for metals and
many materials. The proof is left as an exercise for the reader (see Problem 2.8).
This simple calculation tends to give some confidence in the use of an atomic
model to represent mechanical behavior.

Now consider just two atoms in equilibrium with each other as shown in
Fig. 2.22. Application of a tensile force, F, will induce an attractive force, Fy,
between the two atoms in order to maintain equilibrium. Application of a
compressive force will induce a repulsive force, Fg, between the two atoms to
maintain equilibrium. These attractive and repulsive forces will vary depending
upon the separation distance. It is to be noted that the attractive forces in
interatomic bonds are largely electrostatic in nature. For example, Coulomb’s
law for electrostatic charges indicates that the force is inversely proportional to
the square of the spacing. The repulsive forces are caused by the interactions of
the electron shells of the atoms and is somewhat difficult to estimate directly.

The variation of attractive and repulsive forces and energies with separation
distance are given in Fig. 2.22d-e, where ry is the equilibrium spacing. The
forms of the equations agree with physical observations but the values of the
constants o, , m and n vary for different materials. Obviously, the effect of
dislocations, vacancies, grain boundaries, etc. complicates the picture in metals
and the long molecular chains, entanglements and other defects complicate the
picture in polymers. The energy equations and diagrams given in Fig. 2.22 can
be simply calculated from the force diagram using the basic definitions of work
and energy given in elementary mechanics. This proof is left as an exercise for
the reader.

Obviously, if the tensile forces are large enough, the distance between atoms
can become so great that the attractive force will tend to zero and no force would
be required for the atom to be in equilibrium. On the other hand, the application
of a compressive forces can not force the two atoms to merge and the repulsive
force will increase without bound. For this reason, it should be possible to
calculate the theoretical strength of a material if sufficient information is
known about the bonding forces in atoms of a particular material. This interpre-
tation has been used by many (see for example, (Courtney (1990), McClintock
and Argon (1966), Richards (1961), Shames and Cozzarelli (1992)) to formulate
nonlinear stress-strain relations, laws for creep, plasticity effects, etc. However,
as far as is known by the authors, no direct experimental verification has ever
been made and, at best, such deduction must be termed empirical.
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(a) Close packed crystal structure in (b) Elongation and contraction of
a material subject to tensile stress. centers due to tensile loading.

Fig. 2.21 Atomic deformations in a material composed of perfectly packed atoms

Not withstanding the empirical nature of the force and energy variations in
Fig. 2.22, this approach does give insight to the strength limitations of materials.
For example, by examination of Fig. 2.22d it can be shown that for a perfect
crystalline arrangement of atoms as in Fig. 2.21 that the strength of a material
should be the same order of magnitude as its elastic modulus (see Richards
1961). The fact that no material has such high strength properties is an indication
of weaknesses caused by imperfections in their molecular structure
(e.g. imperfections such as dislocations, vacancies, etc.). Even near perfect
crystalline materials do not have such high strength properties. On the other
hand, it has been recognized that it is possible to increase strength properties
drastically by developing processing approaches to create more nearly perfect
crystalline structure and to minimize imperfections in molecular structure. Most
of these processing improvements (directional solidification, powder metal-
lurgy, etc.) are used for metals and ceramic type materials. Indeed, it is recog-
nized that the large number of secondary bonds as opposed to primary bonds in
polymers gives rise to their relatively modest properties when compared with
most metals. Never-the-less, as will be noted in the following chapters, the
properties of polymers can also be improved greatly by increasing crystallinity,
using additives and developing improved processing techniques.
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Fr Fy Fy Fr Fo = Fr  Fg = Fc
I r> I‘O r< 1”0

(a) (b) (©)

(d) Interatomic attractive (e) Interatomic attractive
and repulsive forces. and repulsive energies.

Fig. 2.22 Attractive and repulsive forces and energies between atoms

2.10. Review Questions

2.1. Name five assumption that are normally made to solve problems in
elementary solid mechanics.

2.2. Name two types of nonlinearities encountered in solid mechanics.

2.3. Describe a heterogeneous or an inhomogeneous material. Name several
materials that are inhomogeneous

2.4. Describe an anisotropic material. Name several materials that are
anisotropic.

2.5. Give a mathematical definition for a continuum.

2.6. Define crystallinity, amorphous, anisotropic and material symmetry.

2.7. Define true stress and true strain and write an appropriate equation
for each.

2.8. Discuss the characteristics one would seek in developing a test specimen
to determine material properties.

2.9. What is a Luder’s band? At what angle do they occur? Name two
materials in which they are known to occur.

2.10. Explain the difference between engineering shear strain and the tensorial

alternative.
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2.11.

2.12.
2.13.
2.14.
2.15.
2.16.
2.17.
2.18.
2.19.
2.20.
2.21.

2.22.

How many material constants are needed to characterize a linear elastic
homogeneous isotropic material? How many material constants are
needed to characterize a linear elastic homogeneous anisotropic material?
Describe a plane of material symmetry. What type of symmetry does an
isotropic material possess?

Define a stress invariant and give the proper expression for the first
invariant of stress.

Define deviatoric and dilatational stresses.

Give a definition for the classical failure theories of Tresca and von Mises.
A brittle material is likely to follow which failure theory? On what plane
would a brittle material tested in uniaxial tension fail?

A ductile material is likely to follow which failure theory?

What is the octahedral shear stress.

At what angle does a slip band form for a Tresca material tested in
uniaxial tension.

At what angle does a slip band form for a von Mises material tested in
uniaxial tension.

The strength of a material for a perfect arrangement of atoms might be
expected to be on the order of what other material parameter?

Poisson’s ratio can be shown to be equal to what value for a perfect
arrangement of atoms?

2.11. Problems

2.1.

2.2.

2.3.

24.

2.5.

If the engineering strain in a tensile bar is 0.0025 and Poisson’s ratio is
0.33, find the original length and the original diameter if the length and
diameter under load are 2.333 ft. and 1.005 in. respectively.

Find the true strain for the circumstances described in problem 2.1.

A circular tensile bar of a ductile material with an original cross-sectional
area of 0.5 in.” is stressed beyond the yield point until a neck is formed. The
area of the neck is 0.25 in.? Find the average engineering strain in the
necked region. Calculate also the true strain. (Hint: Assume yielding
occurs with no volume change).

The generalized Hooke’s law in tensor (matrix) notation is given as
6;; = Eijkq €kq- Expand and find the algebraic expansion for 61,.

From a thin plate of material small tensile coupons are cut at points A, B
and C as shown and the following moduli properties are determined

ExlAs Ex

B’EX|C’E)’

Ey

Ey

A’ A’Ee BsEelc

5> Eylc Eo
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2.6.

2.7.

2.8.

Give a correct relationship among the moduli for a homogeneous material.
Give a correct relationship among the moduli for an anisotropic material.

vh

><"

For a 2-D state of stress show that the tensorial transformation relation
given by c/ij = 2jj4Okq reduces to the form

6;( =6, c0s0+ Gy sin 20 + 27y sin® cosO
Expand Eq. 2.58 and show that the matrix given below is recovered.

Oxx — Om ny Gxz
Sjj = Cyx Oyy — Om Cyz
Gzx Gzy Gzz — Om

Using the geometry given in Fig. 2.21 show that the ratio of lateral to
longitudinal strain is 1/3. (Hint: spheres at m and n that are initially in
contact stretch vertically when a stress is applied resulting in a separation
of the spheres at m and n. Also, spheres at p and q will move inward
to maintain contact with spheres at m and n).



2 Springer
http://www.springer.com/978-1-4899-7484-6

Polymer Engineering Science and Viscoelasticity
An Introduction

Brinson, H.F.; Brinson, L.C.

2015, XV, 482 p. 266 illus., 82 illus. in color.,
Hardcover

ISEN: 978-1-4899-7484-6



