Chapter 2

Basic Multi-Item, Single-Location Inventory
Model

2.1 Introduction

In this chapter, we consider a basic multi-item, single-location inventory model for
spare parts. This model is appropriate to demonstrate various optimization meth-
ods, to describe multiple system-oriented service measures, and to show the effects
of alternative or additional model assumptions. The basic model is appropriate for
planning in stationary situations. It may be used for both initial supply and inventory
planning during the exploitation phase. For the initial supply problem, one has no
starting stock, which leads to a cleaner problem formulation than for planning dur-
ing the exploitation phase. Therefore, we will describe the initial supply problem
first, and later we explain how this model can be used for the inventory planning
during the exploitation phase.

The single-location model will fit in case one has only one location where spare
parts are stocked. But, the model may also be used as a building block in planning
concepts for spare parts networks (for both initial supply and the planning during
the exploitation phase). This model may fit for:

e A central warehouse in a two-echelon network;

e A local warehouse;

e The total or aggregate stock in a two-echelon network with one central depot
and multiple local warehouses when all these stockpoints are at closed distance
of each other and emergency/lateral shipments are possible between each pair of
stockpoints (in this case, one can operate as if the network as a whole forms one
large virtual stockpoint).

This chapter is organized as follows. We will start with the description of the
basic model under the assumption of backordered demands, i.e., without the ass-
umption of emergency shipments. This means that a demand is backordered when
it can not be satisfied from stock. In line with this assumption we will start with
a service level constraint in terms of the aggregate mean number of backordered
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demands. For the optimization within this basic model, we will use a greedy
heuristic. The description of the basic model, its evaluation, and its optimiza-
tion are given in Sects. 2.2-2.4, respectively. After that, in Sect.2.5, we discuss
two alternative optimization techniques: Lagrangian relaxation and Dantzig-Wolfe
decomposition. We will see that both approaches are kind of equivalent. Subse-
quently, in Sect. 2.6, a comparison is made with the so-called item approach, which
is a straightforward inventory optimization approach without a direct connection
with system availability. Next, in Sect. 2.7, we discuss alternative service measures,
among which average availability. Then the application of the model for the inven-
tory planning during the exploitation phase is discussed in Sect. 2.8. Subsequently,
in Sect. 2.9, we discuss the model with emergency shipments, and we describe the
changes in the analysis and optimization approaches under this alternative assump-
tion. It will appear that these changes are limited. In Sect. 2.10, we discuss a number
of practically relevant extensions for both the case without and with the use of emer-
gency shipments. Finally, we make concluding remarks in Sect. 2.11.
Most of the material in this chapter stems from [20].

2.2 Basic Model

Consider a single warehouse where several spare parts are kept on stock to serve
an installed base of machines of the same type. The machines consist of multiple
components, which may be classified as critical and non-critical components. When
a critical component of a machine fails, the whole machine goes down, while a
machine can continue its functioning (i.e., to a sufficiently large extent) upon the
failure of a non-critical component. We limit ourselves to the inventories of the
spare parts for the critical components. When a critical component fails in a given
machine, then the failed part is replaced by a spare part from the warehouse if it
is available or as soon as a spare part becomes available; i.e., we have repair by
replacement. The failed part is returned to the warehouse and is immediately sent
into repair. We assume that all critical components are repairable.

We refer to the critical components as Stock-Keeping Units (SKU’s). The set
of SKU’s is denoted by I, and the number of SKU’s is denoted by |I| (¢ N :=
{1,2,...}). For notational convenience, the SKU’s are assumed to be numbered i =
1,2,...,|I|. We assume an infinite time horizon [0, ). For each SKU i € I, demand
occurs according to a Poisson process with a constant rate m; (> 0). The rate m;
denotes the demand rate for all machines together. The total demand rate for all
SKU’s together is denoted by M = Y ;c;m; and we assume that M > 0. A demand
is fulfilled immediately if possible, and otherwise it is backordered and fulfilled as
soon as possible. Each demand is accompanied by the return of a failed part, and
the failed part is immediately sent into repair. The time that a failed part is in repair
is called the repair leadtime, which consists of waiting time and repair time. Repair
leadtimes of parts of different SKU’s are assumed to be independent and repair
leadtimes of parts of the same SKU are assumed to be independent and identically



2.2 Basic Model 13

distributed (i.i.d.). The mean repair leadtimes for SKU i are denoted by #; (> 0).
Because each failed part is immediately sent into repair, the inventory position of
SKU i, defined as the physical stock minus backordered demand plus parts in repair,
is constant. This constant amount is denoted by S; (€ Ny := NU{0}).

Instead of saying that each failed part is immediately sent into repair, we may
also say that for each SKU the stock is controlled by a continuous-review basestock
policy, with basestock level S; for SKU i. Basestock level S; represents the initial
stock of SKU i and is a decision variable.

The price of a part of SKU i is ¢? (> 0). We look at the initial supply problem at
time instant ¢t = 0, i.e., at the investment in spare parts at the beginning of the time
horizon. The objective is to minimize the total investment subject to a constraint on
the aggregate mean number of backorders. The investment in, or budget spent to,
spare parts of SKU i is given by C;(S;) = ¢3S; and the total investment is given by:

C(S) =Y.Ci(S) =D ¢S,

icl icl

where S = (Sy,...,S | 1‘) denotes a vector consisting of all basestock levels. The mean
number of backorders of SKU i, in steady state (i.e., at an arbitrary point in time in
the long run), is denoted by EBO;(S;). The aggregate mean number of backorders,
in steady state, is:

EBO(S) =Y EBO;(S;). .1

i€l
The target level for EBO(S) is given by EBO® and the solution space is:
S = {S = (517...,S|1‘) | S; € Ny, Vi EI}.
Hence, in mathematical terms, our optimization problem is as follows:
P min C(S)
subject to EBO(S) < EBO,

Ses.

The optimal cost of Problem (P) is denoted by Cp. Problem (P) has a linear objective
function, a nonlinear constraint, and integral decision variables. It thus is a nonlinear
integer programming problem.

The mean backorder position EBO;(S;) denotes the number of parts of SKU i that
is missing in all machines of the installed base together. A part is said to be miss-
ing in case a failed part has not been replaced yet by a ready-for-use part because
there was no ready-for-use spare part available. Similarly, EBO(S) denotes the total
number of missing parts in all machines together, and thus is a measures for the in-
convenience due to insufficient stock of ready-for-use spare parts. The constraint on
the aggregate mean number of backorders is closely related to an availability con-
straint, where the availability A(S) denotes the fraction of machines that is not down
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due to a missing part, or equivalently, the fraction of time that any given machine
is not down due to a missing part. See Sect.2.7.2 for a detailed description of this
relation. In short, if it hardly occurs that any machine has two or more parts missing,
then

A(S) ~ 1~ ZEBO(S),

where Z denotes the total number of machines, and thus setting a maximum level
EBO® for the aggregate mean number of backorders is equivalent to setting a min-
imum level A°P =1 — %EBOObj for the availability.

In the description above, we used the terminology that is common for repairable
spare parts. Nevertheless, the model is easily generalized to situations where all
SKU’s, or a subset of SKU’s, is consumable, or where condemnation for repairable
SKU'’s occurs; see Sect. 2.10.1.

2.2.1 Overview of Assumptions

We summarize and discuss the main assumptions made above:

1. Demands for the different SKU’s occur according to independent Poisson
processes.
The assumption of independent Poisson processes is justified when a failure of a
component does not lead to additional failures of other components in the same
machine. In general this is true. The assumption of Poisson processes is justified
either when lifetimes of components are exponential or when lifetimes are gen-
erally distributed and the number of machines that is served by the warehouse is
sufficiently large.

2. For each SKU, the demand rate is constant.
The single warehouse serves multiple machines. When one or more machines
fail and failed parts cannot be provided immediately, then some machines may
be down for a while and the demand rates for a given SKU decreases accordingly.
However, when the fraction of machines that is down is always sufficiently small,
either because downtimes are short in general or because downtimes occur only
rarely, then the decrease in demand rate is small, and thus it is reasonable to
assume a constant demand rate.

3. Repair leadtimes for different SKU'’s are independent and repair leadtimes for
parts of the same SKU are independent and identically distributed.
For repairable SKU’s, this assumption is justified if planned repair leadtimes
have been agreed with repair companies (or departments). It then is the responsi-
bility of the repair company to meet the planned leadtimes. In practice, planned
leadtimes often occur either because repair is executed by an external company
or in order to decompose the inventory control from the control of the repair
facilities.
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4. A one-for-one replenishment strategy is applied for all SKU'’s.
This is justified as long as there are no fixed ordering costs or fixed ordering
costs are small relative to the prices of the SKU’s (or, thinking of the EOQ rule,
relative to price multiplied by demand rate). If fixed ordering costs are relevant,
then fixed order quantities may be appropriate to assume and one may follow an
(s,Q) instead of a basestock policy for each SKU. This extension is described in
Sect.2.10.3.

Example 2.1. We now describe an illustrative example that is used throughout this
chapter. A manufacturer of capital goods keeps spare parts on stock in a single
warehouse to support a reasonably large number of installed machines. All spare
parts demands are fulfilled from this warehouse. We consider three different SKU’s
([f] = 3). The average number of failures per year is 15 for SKU 1 (m; = 15), 5 for
SKU 2 (my = 5) and 1 for SKU 3 (m3 = 1). The average repair leadtimes are equal
to 2 months (or é year) for all three SKU’s (1 =1 =13 = %). The price of SKU 1
is 1,000 Euros (c§ = 1,000), the price of SKU 2 is 3,000 Euros (¢ = 3,000) and
the price of SKU 3 is 20,000 Euros (c§ = 20,000). It is specified that the aggregate
mean number of backorders may not exceed 0.1 (EBO°® = 0.1).

2.3 Evaluation

In this section, we evaluate the steady-state behavior and the aggregate mean number
of backorders EBO(S) for a given basestock policy S. Because parts of different
SKU’s have no interaction, the steady-state behavior can be evaluated per SKU.
This leads to a closed-form expression for EBO;(S;). EBO(S) itself then follows
from (2.1).

Consider an arbitrary SKU i, and assume that the basestock level S; is given. The
repair and fulfilment process of this SKU is depicted by the Petri net in Fig.2.1.
On the left-hand side in this figure, demands for ready-for-use parts, accompanied
with failed parts, arrive with rate m;. The failed parts follow the upper stream in
the figure. That is, they first go into repair which takes on average f; time units.
Then they arrive in a queue with ready-for-use parts. Actually this queue represents
the physical stock, also called stock on hand. The demands for ready-for-use parts
follow the lower stream. That is, these requests are sent to the warehouse, where
they are fulfilled immediately if there is enough stock on hand and after some delay
otherwise. Delayed requests are fulfilled according to a First-Come, First-Served
(FCFS) discipline. When both a request and a ready-for-use part are available, they
merge (i.e., the transition on the righthand side in the figure ‘fires’) and leave the
system.

It always holds that at least one of the two queues on the righthand side in the
figure is empty. If the stock on hand is positive then there will be no requests waiting
for a ready-for-use part. If the number of requests in the queue (= number of back-
orders) is positive, then there cannot be any part in the queue with on hand stock.
The number of backorders is identical to the length of the queue with requests.
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Parts in repair: JX; Ready-for-use parts:
OH, (On hand)
4@ jID
m;
—> —>
1T}

Requests for ready-for-use parts:
BO; (Backorders)

Fig. 2.1 Petri net of the repair and demand fulfilment process of SKU i

The state of the whole system at time instant t may be described by the tuples
(Xi(t),0H;(t),BO;(t)), where X;(t) denotes the number of parts in repair at time
t, OH;(r) denotes the stock on hand of ready-for-use parts at time ¢, and BO;(r)
denotes the number of backordered demands at time ¢. The amount X;(¢) represents
the number of parts in the repair pipeline and therefore is also called the (repair)
pipeline stock. Notice that (X;(¢),0H;(t),BO;(t)) constitutes a partial description
because repair leadtimes are generally distributed, and thus for a full description
one also has to denote how long parts are in repair already.

The possible values for the tuples (X;(¢), OH;(t),BO;(t)) are given by:

(Ovsivo)v(lvsif 170)7~~-5(Si7 17150)5(5i7070)7(si+ 17071)7(Si+27072)7""

The first S; states in this sequence are with positive stock on hand, the state (S;,0,0)
is the unique state where both the stock on hand and the number of backordered
demands is zero, and after that the states with a positive number of backordered
demands are obtained. A transition is made from one state to the next state in this
sequence when a demand occurs, while a completion of a repair leads to a transition
from one state to a previous state in this sequence. From the sequence with all pos-
sible states, we observe that the values of OH;(r) and BO;(t) follow directly from
the value of X;(¢). It holds that

OHj(t) = (Si = Xi(1)) ", 2.2)
BOi(1) = (Xi(t) = Si)", (2.3)
where x* = max{0,x} for any x € R. These equations imply that

OHi(t) —BO,’(I) =S —Xl'(t),

or, equivalently, that
X,’(l‘) + OH,'(Z) — BO[(I) =S

This latter equation is known as the stock balance equation (cf. Sherbrooke [18])
and shows that the number of parts in the upper stream of the Petri net in Fig. 2.1 is
always S; more than the number of requests in the lower stream.
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Let X;, OH;, and BO; be the steady-state variables corresponding to X;(¢), OH;(t),
and BO;(t), respectively; i.e., they are random variables denoting the number of
parts in repair, the number of ready-for-use parts, and the number of backordered
demands in steady state. By (2.2) and (2.3),

OH; = (S;—X;)", (2.4)
BO; = (X;—S;)". (2.5)

In our model failed parts enter the repair pipeline according to a Poisson process
and each failed part stays on average a time #; in the repair pipeline. The repair
pipeline may be seen as a queueing system with infinitely many servers and service
times #;. In other words, the repair pipeline is an M|G|e queueing system and thus
we may apply Palm’s theorem (cf. Palm [13]):

Palm’s theorem: If jobs arrive according to a Poisson process with rate A at a service

system and if the times that the jobs remain in the service system are independent and

identically distributed according to a given general distribution with mean EW, then the

steady-state distribution for the total number of jobs in the service system is Poisson with
mean AEW.

Application of this theorem to the repair pipeline leads to part (i) of the follow-
ing lemma; the parts (ii) and (iii) of this lemma follow from part (i) and Egs. (2.4)
and (2.5).

Lemma 2.1. Leti € 1.
(i) The pipeline stock X; is Poisson distributed with mean m;t;, i.e.,
1 X
P{X;=x}= (miti)* ") e it x € No;
x!
(ii) The distribution of the stock on hand OH,; is given by
L _ 2;0=S,P{Xl:y} ifx:O’
P{OH; = x} = {P{Xi =8i—x} fxeNx<S;
(iii) The distribution of the number of backordered demands BO; is given by

T P{Xi=y} ifx=0;
P{BO’_x}_{PiX,-—HS,»} ifxeN.

Lemma 2.1 contains the main results for the evaluation of a given policy. From
this lemma, we easily obtain relevant service measures, among which the mean
backorder positions EBO;(S;):

=

EBO;(S;) = E{BO:i(S))} = Y, (x—S8;)P{X;=x}
x=S;+1

= mjt; — S+Z i —x)P{X;=x},  S;€Np. (2.6)
x=0

Notice that the latter expression for EBO;(S;) is most appropriate for computational
purposes as it avoids complications because of sums with infinitely many terms.
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2.4 Optimization

Instead of solving Problem (P) directly, we consider a closely related Problem (Q)
with two objectives, minimization of the investment C(S) and minimization of the
aggregate mean number of backorders EBO(S):

Q@ min  C(S)
min EBO(S)
subjectto S € ..

This problem is a multi-objective programming problem. For this problem, we
will derive so-called efficient solutions. A solution S € .% is efficient for Prob-
lem (Q) if and only if there is no other solution §' € .7 with C(S') < C(S) and
EBO(S') < EBO(S), and strict inequality for at least one of these inequalities.
Alternatively stated, a solution S € . is efficient for Problem (Q) if and only if
C(S") > C(8S). or EBO(S) > EBO(S), or (C(S),EBO(S)) = (C(S),EBO(S)) for
all S’ € .7. Let &* denote the set of all efficient solutions for Problem (Q). Then the
points (C(S),EBO(S)), S € &*, constitute an efficient frontier for the total inventory
investment vs. aggregate mean number of backorders. From this efficient frontier,
an appropriate solution for Problem (P) may be picked.

Example 2.1 (continued). For our illustrative example, we compute the mean num-
ber of backorders and inventory investment for all plausible solutions with an invest-
ment of at most 85,000 Euros. These solutions are plotted in an C(S) vs. EBO(S)
figure; see Fig.2.2. We are interested in the efficient solutions for problem (Q),
which are denoted by squares. From this figure, we easily obtain an optimal solu-
tion of Problem (P) with EBO°® = 0.1. That solution is the first efficient solution
in Fig.2.2 with EBO(S) < 0.1. This leads to the solution S = (6,2, 1), for which
EBO(S) =0.098 and C(S) = 32,000 Euros.

Problem (Q) has the following structure:

EBO(S) = Y EBO;(S),
iel

Y:ylxyzx...xtym,

where .#; = Ny represents the solution space for S; for all i € I, i.e., the objective
functions are separable and the solutions space is a Cartesian Product, and thus
Problem (Q) as a whole is separable (cf. Fox [8]). In addition, the functions C;(S;) =
c4S;, i € 1, are linear, and, as we shall derive in Sect.2.4.1, the functions EBO;(S,)),
i € I, are decreasing and convex. Therefore, a greedy procedure may be applied to
generate efficient solutions; see Sect.2.4.2.
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Fig. 2.2 Efficient solutions for Example 2.1

2.4.1 Convexity of the Mean Backorder Positions

Definition 2.1. Let f(x) be a function on Z, and xp € Z.

(i) f(x) is decreasing for x > xq if

Af(x)=fx+1)—=f(x) <0,  x>x0;

(ii) f(x) is convex for x > x if

A f(xX)=Af(x+1)—Af(x) >0, x> xo.

19

Notice that Af(x+1) —Af(x) = f(x+2) —2f(x+ 1) + f(x), x € Z. The defi-
nitions for strictly decreasing and strictly convex are obtained by replacing the ine-
quality signs by strict inequality signs. The definitions for (strictly) increasing and

(strictly) concave are obtained by turning the (strict) inequality signs around.

The mean number of backorders EBO;(S;) for SKU i € I is a function on N.

Lemma 2.2 says that EBO;(S;) is decreasing and convex on its whole domain.

Lemma 2.2. For each SKU i € I, EBO;(S;) is decreasing and convex for S; € Ny.

Proof. Leti € l. By (2.6),

AEBO;(S;) = EBO;(Si + 1) — EBO,(S;)

oo

=— Y P{Xi=x}<0, S €N,

x=S;+1

Q2.7)
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which shows that EBO;(S;) is decreasing on its whole domain. Further,

AEBO;(S;) = AEBO;(S;i + 1) — AEBO,(S:)
=P{X;=S;+1} >0, S; € Ny,

which shows that EBO;(S;) is convex on its whole domain. O

2.4.2 Greedy Algorithm

Problem (Q) is separable and the functions EBO;(S;) are decreasing and convex
on their whole domains. Hence we can prove that a set of efficient solutions can
be generated by a greedy algorithm. A first efficient solution S = (S7,... ,S)p) is
obtained by setting S; = 0 for each SKU i € 1. This solution is efficient because it
has the lowest possible investment C(S) = 0. Next, for each SKU i, we compute
the decrease in EBO(S) relative to the increase in C(S) when S; would be increased
by one unit. The increase in C(S) equals ¢}, while the change in EBO(S) equals
(use (2.7))

AZEBO(S) = AEBO,’(SI‘) = — i P{X,' :x} = — (1 - iP{Xi :x}> .

x=S;+1

The decrease in EBO(S), which is equal to —A;EBO(S), divided by the increase
in C(S) is denoted by I;. The SKU with the highest value for I is selected (also
referred to as “biggest bang for the buck”), and the corresponding basestock level is
increased by one unit (ties may be broken with equal probabilities). The new solu-
tion S is also efficient and is added to a set of efficient solutions. The generation of
efficient solutions is continued until a given aggregate mean number of backorders
or inventory investment has been reached, or until some other stop criterium is met.
The formal procedure is described in Algorithm 2.1, where ey is an |/|-dimensional
unit row-vector.

Algorithm 2.1 (Greedy algorithm)

Stepl SetS;:=0foralli€l, and S = (0,0,...,0);
&:={S}
C(S) :=0and EBO(S) := Y,c;mit;.

Step2  I;:=(1 —Zi’;oP{Xi =x})/cd forallieI;
k:=argmax{I;:iel};
S:=S+e;
&:=8U{S}.

Step3  Compute C(S) and EBO(S);
If ‘stop criterium’, then stop, else goto Step 2.
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In the following lemma, it is formally stated that Algorithm 2.1 generates a set of
efficient solutions for Problem (Q). The proof of this lemma follows directly from
Theorem 2 in Fox [8].

Lemma 2.3. At termination of Algorithm 2.1, the set & consists of efficient solutions
for Problem (Q), i.e., & C &*.

For the computation of the pipeline stock probabilities P{X; = x} in Algo-
rithm 2.1, we advice to use the following recursion for the sake of efficiency and
to avoid numerical problems:

P{X; =0} = e ™,

Ml prx; = x) for x € No. 2.8)

P{Xi=x+1}= =

Example 2.1 (continued). Application of the greedy algorithm to our example with
stop criterium ‘EBO(S) < 0.1’ leads to the efficient solutions displayed in Table 2.1.
After 11 iterations we obtain the first efficient solution that satisfies EBO(S) < 0.1.
This solution is S = (7,3, 1), for which EBO(S) = 0.031 and C(S) = 36,000 Euros.
This solution is optimal for Problem (P) with EBO°" = 0.031. Further, this sol-
ution is feasible for Problem (P) with EBO° = 0.1, but apparently not optimal.
Earlier, we found that S = (6,2, 1) is optimal for Problem (P) with EBO°" =0.1.
Notice that the gap in costs between S = (7,3,1) and the optimal solution is equal
to % = 12.5%. The efficient solution S = (6,2, 1) is not generated by the greedy
algorithm. In general, the greedy algorithm generates only a subset of all efficient
solutions. This follows clearly from Fig. 2.3, where both the efficient solutions from
the enumeration and the efficient solutions from the greedy algorithm are displayed.

In general, the greedy algorithm generates an ordered set & = {S°, 8! 8 .. .} of
efficient solutions for Problem (Q), where EBO(S®) > EBO(S') > EBO(S?) > ...
and 0 = C(S") < C(S') < C(S?) < .... The set & is a subset of the set &* with
all efficient solutions. For Problem (P) with a given target EBO®Y, one can easily
obtain a feasible solution from the subset & generated by the greedy algorithm. One
just takes the first solution S' € & with EBO(S') < EBO®Y. This solution is optimal
if and only if there is no solution S € &* with EBO(S') < EBO(S) < EBO™. In
general, the solution S’ will be close to optimal if EBO(S') is close to EBOY,
In the above example, we were a bit unlucky, because in the 11-th iteration the
basestock level of SKU 3 was increased, which led to a large jump for the aggregate
mean number of backorders. For real-life problems, one often has many SKU’s and
then such large jumps become less likely. See also the following example.

Example 2.2. The data in this example are taken from a real life situation of a repair
shop which has 99 SKU’s in stock. The prices of the SKU’s range from 135 Euros
to 61,828 Euros and the average price is 2,236 Euros. The number of failures ranges
from 1 to 18 per year and the average number of failures is 2.55 per year. Figure 2.4
gives an overview of the prices and failures rates (per year) of the SKU’s. The repair
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Fig. 2.3 Comparison of efficient solutions generated by the greedy algorithm and the whole set of
efficient solutions

Table 2.1 Steps of the greedy algorithm for Example 2.1

Itera- I I I3 k S1 S S3 EBO(S) C(S)
tion (Euros)
0 — — — — 00 0 3500 0
1 9.18-100*1.88-107*7.68-10°1 1 0 0 2582 1,000
2 7131074 1.88-10047.68-10°1 2 0 0 1.869 2,000
3 4561074 1.88-10047.68-1061 3 0 0 1413 3,000
4 242.100%188-1004768-10°1 4 0 0 1.171 4,000
5 1.09-107*1.88-10047.68-1062 4 1 0 0605 7,000
6 1.09:10%46.77-10°768-101 5 1 0 0497 8,000
7 420-10756.77-107°7.68-100°2 5 2 0 0293 11,000
8 420-107°1.74-107°7.68-10°1 6 2 0 0.251 12,000
9 142-107°1.74-107°7.68-10°2 6 3 0 0.199 15,000
10 1.42-107° 3471097681001 7 3 0 0.185 16,000
11 425-107°©347-10©7.68-100°3 7 3 1 0.031 36,000

lead time is 4 months (% year) for all SKU’s. We are interested in the solution
of Problem (P) with a target EBO®Y = 3.3 (which is comparable to the target in
Example 2.1).

We applied the greedy algorithm to this data set, which led to a feasible solution
S after 239 iterations, with EBO(S) = 3.02 and C(S) = 277,749 Euros. In Fig. 2.5,
the solutions from the greedy algorithm are displayed. In this figure we see that the
iterations of the greedy algorithm produce a very smooth curve. Towards the end
we see somewhat bigger gaps in the line. The cost of the last but one solution was
266,593 Euros, and constitutes a lower bound for the optimal cost. Hence, we know

- S e 277,749-266,593 11,156
that the generated heuristic solution is within 266593 = 266503 — 4.2% of
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Fig. 2.4 Representation of all SKU’s

the optimal solution (this is a bound, the actual gap is smaller). For applications in
practice, this is sufficiently good.

We can conclude that for instances with sufficiently many SKU’s, the greedy
algorithms will generate good heuristic solutions for Problem (P). Besides, a greedy
algorithm is efficient, it is easy to implement in practice and it is an algorithm that
is easy to understand by practitioners. If one would be interested in optimal solu-
tions, then Problem (P) may be solved by a similar exact approach as for knapsack
problems. A disadvantage of such an approach is that a small change in input par-
ameters (cost prices of the SKU’s, demand rates, or the target EBO"bj) may lead to
large changes in the optimal solution. The solution generated by the greedy algo-
rithm, however, will be rather robust. That is another big advantage of the greedy
algorithm.

2.5 Alternative Optimization Techniques

We can also approach the Problems (P) and (Q) with other techniques than the
greedy algorithm of Sect.2.4.2. In this section we will describe two alternative
optimization techniques, Lagrangian relaxation is described in Sect.2.5.1 and
the Dantzig-Wolfe decomposition is described in Sect. 2.5.2.
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Fig. 2.5 Outcome of the greedy algorithm

2.5.1 Lagrangian Relaxation

We apply the Lagrangian relaxation technique to Problem (P); for a general des-
cription of this technique, we refer to Appendix B of Porteus [14] (other well-
known references on Lagrangian relaxation are Everett [4] and Fisher [6, 7]). The
Lagrangian function for (P) is defined as

L(S,A) := Y. c3Si+ A (ZEBOi(S,-) — EBOObj>

icl icl

where A > 0is a Lagrange multiplier.

It has been noticed before that Problem (Q) is separable. This also holds for
Problem (P) (see also the definition of separable problems in [14], Appendix B). We
can separate Problem (P) because it is a linear combination of SKU objectives and
constraints. It is known that in separable problems, the Lagrangian function is also
separable. The Lagrangian function is now defined as

L(S,A) = Y Li(Si,A) — AEBO®, (2.9)
i€l
where
L,‘(S,', l) = C?Si + AEBO,'(S,')

is the decentralized Lagrangian function for SKU i. Notice that, in Eq. (2.9), we
have || different Lagrangian functions, one for every SKU. Notice that we have
only one A because we have only one constraint in our problem.
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For any given value of A, we can easily find a base stock level that minimizes
the decentralized Lagrangian function L;(S;,A), i € I. Since each decentralized
Lagrangian function is a convex functions, we know that it has either one unique
minimum or multiple minima in subsequent points. One way to find a minimum
is to start with S; = 0 and increase this S; by 1 at a time, until the value for the
decentralized Lagrangian function start increasing. We can do this for all i € 1, and
the resulting base stock vector S is a feasible solution for problem (P) (under any
choice for EBO®). We can now vary the value of A to find different solutions for
Problem (P). Then, we calculate the corresponding values of EBO(S) and C(S).

Example 2.1 (continued). Applying Lagrangian relaxation to our problem, gives the
following decentralized Lagrangian functions:

1,000-S; +AEBO(S)) ifi=1
L,’(S,‘,)L) =< 3,000-S; +AEBOl(Sz) ifi=2
20,000-S3 + AEBO;(S3) if i = 3.

If we vary A from 0 to 300,000, we find the solutions that are displayed in Table 2.2.
We can see that Lagrangian relaxation yields exactly the same solutions as our
greedy algorithm (compare Tables 2.1 and 2.2). In each row of Table 2.2, a range
of values for A is given for which that specific base stock vector minimizes the
Lagrangian function.

In this example, we observe a few important properties. The first property is that
using the Lagrangian relaxation method gives us optimal solutions of Problem (P)
for specific values of EBO®Y. This follows from the so-called Everett result (Everett
[4]), which for our problem reads as follows:

The Everett result: [f, for a given A > 0, S(1) minimizes L(S,A) over S € .7, then S(A)
is optimal for Problem (P) for every EBO € (0,0) that satisfies

EBO°™ > EBO(S(2)) and A (EBO(S(A)) — EBO®™) = 0.

If we take A = 0, then each Lagrangian function L;(S;,A) is strictly increasing, and
we find S(0) = (0,...,0) and EBO(S(0)) = X,;c; m;t;. The solution S(0) = (0,...,0)
is optimal for Problem (P) for every EBO°P > >icymit;. Foreach A > 0, the solution
S(1) is optimal for Problem (P) for EBO®® = EBO(S(1)); i.e., then the optimality
of S(4) is guaranteed for one specific value of EBO°® (but the solution might also
be optimal for slightly lower values of EBO®Y).

The second property that we see back in the above example is that the Lagrangian
relaxation method gives efficient solutions for Problem (Q). This follows directly
from Theorem 1 in Fox [8].

A third property that we observe is that Lagrangian relaxation yields exactly
the same solutions as the greedy algorithm. This is not a coincidence. When we
study the details of the execution of the greedy algorithm and the execution of the
Lagrangian relaxation method, we see the similarities. The key is that a one-to-one
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Table 2.2 Solutions generated with Lagrangian relaxation

A S1 82 S3 EBO;(S1) EBO>(S2) EBO3(S3) EBO(S) C(S)
(Euros)
€[0,1089) 2.500 0.833 0.167 3.500 0
€ [1,089,1,403) 1.582 0.833 0.167 2.582 1,000
€ [1,403,2,192) 0.869 0.833 0.167 1.869 2,000
€[2,192,4,125) 0.413 0.833 0.167 1.413 3,000
€ [4,125,5,306) 0.171 0.833 0.167 1.171 4,000

€ [5,306,9,189)

0
1
2
3
4
4 0.171 0268  0.167 0.605 7,000
€9,189,14,761) 5
5
6
6
7
7

0.062 0.268 0.167 0.497 8,000
0.062 0.065 0.167 0.293 11,000
0.020 0.065 0.167 0.251 12,000
0.020 0.012 0.167 0.199 15,000
0.006 0.012 0.167 0.185 16,000
0.006 0.012 0.013 0.031 36,000

€ [14,761,23,798)

€ [23,798,57,324)

€ [57,324,70,486)

€ [70,486,130,278)
€ [130,278,287,985)

WWWLWNDN~—=OOoOOOoOo
==l eNelelelolelelo o)

relationship exists between the I; values computed in the greedy algorithm and the
values of A for which S(A) changes to the next solution in the Lagrangian relaxation
method.

2.5.2 Dantzig-Wolfe Decomposition

A method that one may also apply to solve Problem (P) is Dantzig-Wolfe decompo-
sition, as introduced by Dantzig and Wolfe [3]. In order to be able to apply Dantzig-
Wolfe decomposition to Problem (P), we need to redefine it. A Master Problem is
introduced in which all possible basestock levels per SKU are listed as columns.
A constraint is added to ensure that only one basestock level is chosen per SKU. Set
K := Ny contains all possible basestock levels for all SKU’s i, i € . Let Sﬁ.‘, 1€,
k € K, be a variable referring to a fixed policy k for SKU i. We introduce a new
variable xf‘ €{0,1},i €1, k € K, that indicates whether a specific policy is selected
for item i or not. For example, if x? = 1 then policy 3 is selected for SKU i, this is
equivalent with S; = 2. By relaxing the integrality constraint on xf?, we allow for ran-
domized policies. The Master Problem (MP) related to Problem (P) is now defined
as follows:

(MP) min 3, ¥ Ci(SK)xk
iclkeK

subject to ¥ Y. EBO;(SF)xk < EBOY
iclkek

Y k=1, icl
keK
x>0, iel, kek.
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Note that the costs C;(S¥) and average backorder (EBO;(S¥)) are pre-determined
for all basestock levels Sf-‘ and that we use these numbers as input for Problem (MP).
This Master Problem can have many input variables, or possible policies. The size
of the problem may restrict fast calculation of the solution. Therefore, a Restricted
Master Problem (RMP) is introduced that considers only a subset of all possible
policies (K; C K) per SKU i and therefore requires less computational effort:

(RMP)  min ¥ ¥ Ci(SF)xk
iclkek;

subjectto 3, ¥ EBO;(S¥)xk < EBO°Y

iclkek;

> xk=1, il

keK;

xk >0, icl, keKk;.

Initially, the Problem (RMP) will be solved with one policy per SKU (|K;| = 1).
Thereafter, we will employ a procedure called column generation to add poli-
cies, or columns, to the policy set K;. We define an initial solution that is fea-
sible but not optimal. Let K; initially consist of one policy k that is defined by
S := min{S;|EBO;(S;) < Z2EBO,S; € No}.

From the optimal solution of the (RMP) we also obtain the dual prices of all
constraints. Let u# be the dual price that corresponds to the EBO constraint and let v;
be the dual price that corresponds to the constraint that ensures that only one policy
is chosen for SKU i. Dual price u needs to be nonpositive and v; is unrestricted in
sign.

In the column generation subproblem of SKU i, we search for policies that have
not yet been considered and improve our solution for (RMP), and these policies are
then added to K;. To obtain these policies we need to solve a subproblem for each
SKU i. Subproblem i is defined as follows:

(SUB(i)) min C,'(Si) —EBO,’(S,’)M —V;

subjext to S; € Np.

We are only interested in a basestock level that minimizes the subproblem and
that has a so-called negative reduced cost coefficient (i.e., under this basestock level,
the objective function of (SUB(7)) has a negative value). We know that the solution
of (SUB(i)) is straightforward because its objective function is the sum of a convex
term (—EBO;(S;)u), a linear term (C;(S;)) and a constant term (—v;). After solving
the subproblem (SUB(?)), we add the obtained optimal policy to the set K; if it has a
negative reduced cost. We do this for all subproblems (SUB(?)), i € I. We then solve
the (RMP) again for the extended set of policies and use the new dual prices as input
for the subproblems (SUB(7)). We continue this until all subproblems (SUB(i)) have
a nonnegative reduced cost coefficient.
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Fig. 2.6 Basestock vectors generated with Dantzig-Wolfe decomposition

One final step in the Dantzig-Wolfe method is to determine the basestock vector
that corresponds to the optimal solution for Problem (P). If the solution that we
obtain from the (RMP) consists of some fractional values, we need to round up
these basestock levels to the nearest integer. It appears that at most one SKU has a
fractional base stock value.

Example 2.1 (continued). We applied Dantzig-Wolfe decomposition to the example.
For different value of EBO® we determined the optimal basestock level. As said
before, rounding up was used to obtain integer values for basestock levels. The
results of this analysis are graphically displayed in Fig.2.6. For varying levels of
EBO°", we have depicted the value of the basestock levels for all SKU’s (indicated
by “S; out”), and the rounded values (indicated by “S; R”). (A basestock value of 2.5
of SKU i corresponds to x7 = x? = 0.5.) From this figure, we see that the fractional
basestock levels decrease almost linearly in the target EBO between two integer
values.

The results are aggregated in Table 2.3. If we compare Tables 2.3 and 2.2, we
see that the solutions we obtain are equal. Apparently for this problem, the two
optimization methods yield exactly the same solutions. This fact also implies that
with Dantzig-Wolfe decomposition we obtain the same results as with the Greedy
Algorithm. That we obtain the same results for Dantzig-Wolfe decomposition and
Lagrangian relaxation is due to the strong similarities between these two methods;
see also [10] (Sect. 1.4.2).
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Table 2.3 Solutions generated with Dantzig-Wolfe decomposition
EBO°Y S1 S2 S3 EBO; (S]) EBOz(Sz) EBO3(S3) EBO(S) C(S)

(Euros)
>3.500 00 0 2500 0.833 0.167 3.500 0
€[3.500,2.582) 1 0 0 1.582 0.833 0.167 2.582 1,000
€[2.582,1.869) 2 0 0 0.869 0.833 0.167 1.869 2,000
€[1.869,1.413) 3 0 0 0413 0.833 0.167 1.413 3,000
€[1.413,1.171) 4 0 0 0.171 0.833 0.167 1.171 4,000
€[1.171,0.605) 4 1 0 0.171 0.268 0.167 0.605 7,000
€1[0.605,0.497) 5 1 0 0.062 0.268 0.167 0.497 8,000
€[0.497,0.293) 5 2 0 0.062 0.065 0.167 0.293 11,000
€10.293,0.251) 6 2 0 0.020 0.065 0.167 0.251 12,000
€[0.251,0.199) 6 3 0 0.020 0.012 0.167 0.199 15,000
€10.199,0.185) 7 3 0 0.006 0.012 0.167 0.185 16,000
€1[0.185,0.031) 7 3 1  0.006 0.012 0.013 0.031 36,000

2.6 Item Approach

So far, we treated all SKU’s in one model and thus we followed a so-called system
approach (cf. Sect. 1.3). A straightforward way to get a feasible solution for Problem
(P) is to decompose the constraint for the aggregate mean number of backorders
into constraints per SKU. One then gets a simple decision problem per SKU. This
simplified approach is a so-called item approach and is obviously suboptimal. In this
section, we describe the item approach and we compare its solution for Problem (P)
to the solutions found by the methods of the previous sections.
The item approach consists of the following steps:

—

. Set a target EBO®Y for the aggregate mean number of backorders;

2. DivideAthis target over the SKU’s based on the demand rates; i.e., set a target
EBO?bJ for the mean number of backorders of SKU i via the following formula:
EBO®™ = (m;/M)EBO;

3. For each SKU i: determine S; such that the target EBO?bJ is reached against
minimal costs; i.e., determine S; as the smallest S; for which EBO;(S;) < E BO?bJ ;

4. Determine EBO(S) and C(8S).

Because all S; are integer valued, the actual EBO;(S;) can be significantly smaller

than the corresponding target EBO?bJ for a SKU i, and thus the actual EBO;(S)

can be quite a bit smaller than the aggregate target EBO°Y. By varying EBO°Y,

we obtain an EBO(S) versus C(S) curve, as under the approaches of Sects. 2.4

and 2.5. Via this curve, a heuristic solution is obtained for Problem (P) with a

given target level EBO°".

Example 2.1 (continued). We apply the item approach to our problem for varying
levels of the target EBO°Y, which leads to the solutions displayed in Table 2.4 and
Fig.2.7. The generated solutions are different from the solutions that we obtained
before. For EBO® = 0.1, the item approach leads to the solution (5,3,2) and a
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Table 2.4 Inventory investment for different values of target item mean backorder

EBO® EBOS™ EBOS™ EBOYY S S, S3 EBO(S) C(S)

(Euros)
0.03 002 001 000 6 4 2 0.02 58,000
0.08 005 002 000 6 3 2 0.03 55000
0.15 0.11 004 001 5 3 2 0.09 54,000
020 0.14 005 001 5 3 2 0.09 54,000
030 021 007 001 4 2 1 025 30,000
060 043 014 003 3 2 1 049 29,000
090 064 021 004 3 2 1 049 29,000
120 086 029 006 3 1 1 0.69 26,000
.50 107 036 007 2 1 1 115 25000
1.80 129 043 009 2 1 1 1.15 25000
2.10 .50 050 010 2 1 1 1.15 25,000
240 171 057 011 1 1 1 1.86 24,000
270 193 064 013 1 1 1 1.86 24,000

corresponding investment of 54,000 Euros. We can see from the graph that the item
approach does not work well. In general, the item approach works well if the differ-
ences between the prices of the SKU’s are small. The solutions will deviate consid-
erably from the efficient solutions under large price differences.

2.7 Alternative Service Measures

Now consider the situation that we are not interested in the aggregate mean num-
ber of backorders but in some other service measure. Fortunately, it is possible to
adjust the greedy algorithm to deal with a different service measure. In Sects. 2.7.1
and 2.7.2, we discuss the implications of using the aggregate mean waiting time and
availability, respectively, as the relevant service measure. Furthermore, we deal with
the sum of the backorder probabilities in Sect. 2.7.3. In Sect. 2.7.4, we show how to
deal with the aggregate fill rate. Lastly, in Sect.2.7.5, we describe the implications
of using the aggregate mean number of stockouts as a service measure.

2.7.1 Aggregate Mean Waiting Time

A service measure that is quite often considered is the expected waiting time until
an arbitrary spare part demand is fulfilled. This measure, which we denote as the
aggregate mean waiting time, is obtained as follows. Let W;(S;) be the mean waiting
time for a spare part demand of SKU i € I under base stock level S;. Then the
aggregate mean waiting time W (S) is equal to
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W(S) = Y P{an arbitrary demand is for SKU i}
icl
x (expected waiting time for SKU i)
mi
=) —W(Si).
> Mwi(s)

icl

In Problem (P), the constraint EBO(S) < EBO® is replaced by the constraint
W(S) < Wi where W is the target level for the aggregate mean waiting time.
By Little’s law [12], it is easily seen that W;(S;) = EBO;(S;)/m;, i € I. As a result,
m; EBO;(S;)

1 1
= =222 — _ N EBOL(S;) = —EBO(S),
W) =M m M g; 0i(8) = 3, EBO(S)

and thus the constraint W (S) < WY is equivalent to the constraint EBO(S) <
EBO°" with EBO°™ = MW° (notice that the relation W (S) = EBO(S)/M also is
obtained by applying Little’s formula to the total number of backordered demands).
This means that the problem with an aggregate mean waiting time constraint can be
solved in the same way as Problem (P) of the basic model.

2.7.2 Average Availability

As stated in Sect. 2.2, the constraint on the aggregate mean number of backorders
is closely related to an availability constraint. The average availability is equal to
the fraction of time that any given machine is available. Let Z be the total number
of machines, and let Z; be the number of parts of SKU i installed per machine.
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We can approximate the average availability as follows. The average number of
backorders of SKU i is EBO;(S;). Hence, the probability that a given part of SKU i
. . o . EBO;(S:)
in a given machine is working is equal to 1 — 72 Next, ignoring dependencies
between these probabilities for the various parts in a given machine, we obtain the
following approximation for A(S) (which is an accurate estimate in case the number
of machines is sufficiently large and the total number of backordered demands is
low):
EBO;(S;)

s =[1(1- 22’

i€l

For sufficiently high values of A(S) (i.e., sufficiently low values of the EBO;(S;)),
the product on the right hand side may be approximated by its first order
approximation:

iel
oYz EBO;(S ZZ,-(Z,-—l) (EBO,-(S,))Z
iel Zl iel 2 27
EBO;(S;) EBO;(S;
+ z Z:Z; ZtZ( i) Zé( j) .
ijel, i i /
EBO;(

~1-37 )fl——ZEBO S,)—l—%EBO(S)

iel 1€1

Hence, for a sufficiently high target A°% for A(S), a heuristic solution for the prob-
lem with a target average availability may be obtained via the heuristic solution for
Problem (P) with target EBO°™ = Z(1 — A°) for the aggregate mean number of
backorders.

2.7.3 Sum of Backorder Probabilities

In our basic model, we assumed that a relatively large group of machines is
supported by the single stockpoint. In some applications, only one machine is
supported. This situation occurs on board of a frigate, or when customers have one
machine only and spare parts are kept on stock at the customer itself. The corre-
sponding optimization problem has been studied by Rustenburg [15]. In this prob-
lem, the availability of the machine is equal to A(S) = [1;;(1 — PBO;(S;)), where
PBO;(S;) denotes the backorder probability of SKU i. This is the steady-state prob-
ability for a positive number of backorders for SKU i. This probability is equal to:

PBO;(S 2 P{X; = x}.
x=S;+1
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For sufficiently high values of the availability (i.e., sufficiently low values of the
PBO;(S;)), it holds that the availability is well approximated by its first order
approximation

A(S) =1-Y PBO;(S;))+ Y, PBO:(S;)PBO;(S;)—...
iel i,jel, i#j
~ 1Y PBOi(S)),

icl

and then aiming for a high availability is almost equivalent to aiming for a low sum
of backorder probabilities:

PBO(S) := Y PBO;(S;).

iel

Then we get Problem (P) with a constraint for PBO(S). The greedy algorithm can
be slightly modified to solve this problem.
For the first order difference function of PBO;(S;), i € I, we find that

APBO,'(S,') = PBOi(SiJr 1) *PBO,‘(S,‘) = 7P{Xi =8+ 1} <0, S; € Np;

i.e., PBO;(S;) is decreasing on its whole domain. Via the second order difference
function of PBO;(S;), one can show that PBO;(S;) is convex for S; > max{ [m;t; —
21,0} (see Problem 2.4). The amount m;f; represents the average number of parts
in the repair pipeline. If this average pipeline stock is smaller than or equal to 2,
then max{[m;t; —2],0} = 0 and thus PBO;(S;) is convex on its whole domain. If
the average pipeline stock is larger than 2 (for slow moving SKU’s this will not
happen in general), then max{[m;t; —2],0} > 0 and we exclude solutions S with
S; < max{[m;t; — 21,0} from the solution space. The excluded solutions have a high
value for PBO;(S;) and thus also for PBO(S). Hence, they are not feasible for the
relevant problem instances with a low target for the sum of backorder probabilities.

In the greedy algorithm, the exclusion of solutions S with S; < max{[m;t; —21,0}
for some i € I simply implies that we use the solution S with S; = max{[m;t; — 21,0}
for all i € [ as the starting solution. Next, in each iteration of the greedy algorithm,
the ratio of the decrease in PBO(S) and the increase in C(S), due to an increase of
the basestock level of SKU i by 1, is measured by I;, which equals:

_ P{X;=S;+1}
—

L N
i

In each iteration, we increase the basestock level of the SKU with the highest I;.
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2.7.4 Aggregate Fill Rate

The aggregate fill rate is defined as the probability that an arbitrary demand for the
total group of SKU’s is fulfilled immediately, or, equivalently, as the fraction of the
total demand stream that is fulfilled from stock. Let the fill rate for SKU i, also
called item fill rate, be denoted by f3;(S;), then

B(S) = Z%ﬁi(&). (2.10)

icl

The target aggregate fill rate is given by S°%.

Demand for SKU i arrives according to a Poisson process, and thus, by the
PASTA (Poisson Arrivals See Time Averages) property, an arbitrary arriving
demand observes the system in steady state. Hence, with probability
P{OH; > 0} = P{X; < S;}, a positive stock on hand is observed and the demand
can be fulfilled immediately, and otherwise not. So,

Si—1
Bi(Si) = Y, P{X; =x}. @2.11)
x=0

The item fill rate 3;(S;) for an SKU i € [ is a function with domain Ny. Lemma 2.4
says that B3;(S;), and thus also f;(S;) = 57 Bi(S:), is increasing on its whole domain
and concave for S; > max{[m;t; — 1],0}, where [x] denotes the rounded value to
above for any x € R.

Lemma 2.4. For each SKU i € I, the item fill rate B;(S;) is increasing on its whole
domain and concave for S; > max{[m;t; — 1],0}.

Proof. Leti€ I By (2.11),
ABi(S;) = Bi(Si+1) = Bi(S) =P{X; =S} >0,  S; €N, 2.12)

which shows that 3;(S;) is increasing on its whole domain. Further,
ABi(S) =P{X;=S;+1}—P{X;=S;},  S;eN. (2.13)

By Eq. (2.8),

mit;
Si+1

P{X,':Sl'—‘rl}: P{X,':Sl'}, S; € Np,

and by substitution of this recursive relation into (2.13), we find

mit;
Si+1

A2Bi(Si) = ( - 1) P{X;=S;}, S, €N
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From this formula, it follows that A2;(S;) < 0 if and only if Sn_”fl —-1<0,ie,if
and only if S; > m;t; — 1. In other words, 3;(S;) is concave for S; > m;#; — 1. Because
of the integrality and nonnegativity of S;, the condition S; > m;t; — 1 is equivalent to

S; > max{ |_m,'l‘,' — ]-| 70} O

The amount m;t; represents the average number of parts in the repair pipeline. If
this average pipeline stock is smaller than or equal to 1, then max{[m;t; —1],0} =0
and thus f3;(S;) is concave on its whole domain. If the average pipeline stock is larger
than 1 (for slow moving SKU’s this will not happen in general), then max{ [m;f; —
11,0} > 0 and we exclude solutions S with S; < max{[m;z; —1],0} from the solution
space. The excluded solutions have a very low value for f;(.S;) and they are generally
not relevant for problem instances with a high target for the aggregate fill rate.

We now reformulate Problem (Q) as defined in Sect.2.4. First, we replace the
minimization of EBO(S) by the maximization of 3(S). Second, we limit the solu-
tion space to .’ = . x ) X ... X \III’ with 7 ={S; €Ny : S; >mt;— 1}, i€ L
Hence, we obtain the Problem (Q'):

(Q)  min c(s)
max B(S)
subjectto S € .

Problem (Q’) is still separable and the functions J;(S;) are now increasing and
concave on their whole domains .#;. Hence a set of efficient solutions can be gen-
erated by a greedy algorithm. A first efficient solution S = (Sy, ... N ,|) is obtained
by setting S; = max{[m;t; — 1],0} for each SKU i € I. This solution is efficient be-
cause it has the lowest possible investment. Next, for each SKU i, we compute the
increase in B(S) relative to the increase in C(S) when S; would be increased by one
unit. The increase in C(S) equals ¢?, while the increase in 3(S) equals (use (2.12))

AiB(S) = MlAﬁi(Si) = Ml (Bi(Si+1) = Bi(Si) = MLP{X:' =Si}.
The increase in 3 (S) divided by the increase in C(S) is denoted by

l—f _ m,-P{X,- = Si} .
Mct

The SKU with the highest value for I; is selected, and the corresponding basestock
level is increased by one unit (ties are broken with equal probabilities). The new
solution S is also efficient and is added to a set of efficient solutions. The genera-
tion of efficient solutions is continued until a given aggregate fill rate or inventory
investment has been reached, or until some other stop criterium is met. The formal
procedure is described in Algorithm 2.2.
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Algorithm 2.2 (Greedy algorithm)
Stepl  SetS; := max{[mt; — 11,0} foralli € I;
S= (S|7SQ,. .. ,Sw);
&:={S}
Compute C(S) and B(S).
Step2  I;:= (miP{X;i=S;})/(Mc?) foralli € I
k:=argmax{I;:iel};
S:=S+e
&:=8U{S}.
Step3  Compute C(S) and 3(S);
If ‘stop criterium’, then stop, else goto Step 2.

For the computation of the pipeline stock probabilities P{X; = S;} in this
algorithm, we advice to use the recursive expression (2.8) for the sake of efficiency.
In the following lemma, it is formally stated that Algorithm 2.2 generates efficient
solutions for Problem (Q’) (again, the proof follows directly from Theorem 2 in
Fox [8]).

Lemma 2.5. At termination of Algorithm 2.2, the set & consists of efficient solutions
for Problem (Q').

Example 2.1 (continued). If we apply the greedy algorithm to our example with
B°Y = 0.98, we find the efficient solutions that are displayed in Table 2.5. After
twelve iterations we obtain basestock levels that fulfill the target aggregate fill rate at
an inventory investment of 41,000 Euros. In Fig. 2.8, the efficient solutions obtained
by both enumeration and the greedy algorithm are displayed. As you can see the
greedy algorithm again generates a subset of all efficient solutions.

2.7.5 Aggregate Mean Number of Stockouts

Another service measure is the aggregate mean number of stockouts. This measure
counts the number of stockouts for all spare parts together. The mean number of
stockouts of SKU i is calculated by the following formula:

04(S;) = mi(1 = Bi(S;)).

The aggregate mean number of stockouts is then the sum of the individual mean
numbers of stockouts:
OC(S) = 206,’(5,’).

i€l
The increase in ¢;(S;) by increasing the basestock level of SKU i by 1 is:

AOC,'(S,') = OC,'(S,' + 1) — OC,'(S,') = —m,'P{X,' = S,'} <0, S; € Np.
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Fig. 2.8 Outcome of the greedy algorithm

Table 2.5 Steps of the greedy algorithm

Itera- . h I; k S; S 83 B(S) C(S)
tion (Euros)
0 — — — — 2 0 00205 2,000
1 1.83-100%345-.107°2.02-100°1 3 0 0 0.388 3,000
2 1.53-10%345-10°2.02:10°1 4 0 0 0.541 4,000
3 9541077 3451070202101 5 0 0 0.637 5,000
4 477-10°5345-107°2.02-10°1 6 0 0 0.684 6,000
5 1.99-107°345.10752.02-10°2 6 1 0 0.788 9,000
6 1.99-107°2.87-107°2.02-10°2 6 2 0 0.874 12,000
7 1.99-.107°5120-107°2.02-100°1 7 2 0 0.894 13,000
8 7.10-1071.20-10752.02-10° 2 7 3 0 0.930 16,000
9 7.10-107°3.33-107°2.02-10°1 8 3 0 0.937 17,000
10 2.22-107°3.33-.10792.02-10°° 2 8 4 0 0.947 20,000
11 2221096931077 2021001 9 4 0 0949 21,000
12 6.16-1077 6.93-10772.02-10°° 3 9 4 1 0.989 41,000

Lemma 2.4 states that f3;(S;) is increasing on its whole domain and concave for
S; > max{[m;t; — 1],0}. Applying Lemma 2.4 to the situation of o;(S;) results in
the conclusion that ¢;(S;) is decreasing on its whole domain and convex for S; >
max{[m;t; — 17,0}. This can be taken into account for the starting solution in the
greedy algorithm. In each iteration of the greedy algorithm, the ratio of the decrease
in a(S) and the increase in C(S), due to an increase of the basestock level of SKU i
with 1, is measured by I;, which equals:

o m,-P{X,- = Si}

a
G

I;

In each iteration, we increase the basestock level of the SKU with the highest I;.
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2.8 Inventory Planning During the Exploitation Phase

The basic model of Sect. 2.2 has been formulated for the initial supply problem. In
this section, we consider the use of this model, or a slightly modified version, for
the tactical inventory planning during the exploitation phase of the machines that are
supported. Here, we limit ourselves to the part of the exploitation phase that repair
of repairables and procurement of consumables are possible and the installed base
has a reasonably stable size. In that part of the exploitation phase, it is common that
every month or quarter, the base stock levels are updated. We refer to these time
instants as the tactical planning time instants.

At a tactical planning instant, one first generates new estimates for the demand
rates m;, i € I. This is done via some forecasting method, in which one may also
incorporate a changed size of the installed base. Next, based on the new demand
rates, new base stock levels S;, i € I, are determined. For the latter step, one can
use the basic model in Sect.2.2. This model is based on a steady-state analysis,
and looking at such an analysis is fine only if changes in the basestock levels are
effectuated quickly enough for all SKU’s. If one orders additional parts for some
repairable SKU’s and the delivery leadtimes would be 1 year (notice that these lead-
times are other times than the repair leadtimes), then one should also look at the
transient behavior of these SKU’s in the first year. This possible complication is
ignored below.

When applying the model in Sect.2.2 during the exploitation phase, one has
already parts on stock or in the repair pipeline, and these amounts have to be taken
into account. Let the current level for the inventory position of SKU i be denoted
by S, i € I. The effect of these current base stock levels S{"" depends on what one
can do with the parts of SKU’s for which we would like to decrease the base stock
level. We distinguish two main cases.

The first case applies for the stock at a local warehouse. Parts that are not needed
anymore at the local warehouse go back to the central depot, and the central depot
may be able to use those parts for other local warehouses. One can then assume that
decreasing the base stock level of an SKU i from S7*" to a lower level S; reduces the
inventory investment by ¢ per unit decrease. And, increasing the base stock level of
an SKU i from S{*" to a higher level S; increases the inventory investment by c¢? per
unit increase. In other words, the marginal costs for increasing or decreasing base
stock levels are the same as for the original problem of Sect.2.2. Hence, one can
optimize the new base stock levels S; in the same way as before, i.e., as if there is
no current stock.

The second case generally applies for the stock at a central depot or the stock
in a network as a whole. A decrease of the basestock level for a consumable SKU
i means that one part less is procured in the near future. This saves an amount c?.
Sometimes it is possible to deliver parts back to the original supplier, but one may
then receive a lower price back than the original price ¢? for which the part was
bought. A decrease of the basestock level for a repairable SKU i may lead to less
repairs in the near future or the excess stock is sold, e.g., on a second-hand parts
market. In both cases one will save less than ¢? per unit decrease. To capture all
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cases, we introduce a parameter ¢ (0 < & < ¢?) that denotes how much is saved per
unit decrease of the basestock level of SKU i, i € I. For an SKU i, the current stock
represents a value of ¢#S7*", and the cost of changing the basestock level from S§"*
to S; is

C?(S,’ — S?ur) if Si Z Slgur
{ (S — 85 if0 < S < S

1

Adding a constant cost factor ¢2S{"" leads to the following modified cost function
Gi(Si):

C'(S‘) . é?Si if0<S§; < S;;ur
PR G A (S — S5 if S > Se

For the rest, Problem (P) and Problem (Q) remain the same. The modified cost
functions C;(S;) are increasing and convex. Hence, generating efficient solutions
for C(S) and EBO(S) can still be done by the same greedy algorithm (cf. Fox [8],
Sect. 8); the factors I; in Algorithm 2.1 are now computed as

(1=3%  P{X; =x})/& ifé&>0and0<S; < S
if¢¢ =0and 0 < §; < S

_ —AEBO(S) _
(1 =% P{X; =x})/ct if §; > so.

TTAGS)

If ¢¢ = 0 for some SKU i, then one could say that the first S{" are free for this SKU
and they should we selected first. We enforce this by saying that I; = oo as long as
S; < 8. The alternative would be to start with S; := S instead of S; := 0 for such
an SKU.

2.9 Emergency Shipments

In several practical situations, demand will not be backordered in case of a stockout,
but an emergency option will be applied. For example, when our single-location
model is applied to a local warehouse, it may be so that a demand is satisfied by an
emergency shipment from a central depot or from another local warehouse (in the
latter case, the shipment is generally denoted as a lateral transshipment). When our
model is applied for a central depot, such an emergency shipment may be possible
from an external supplier or another source. Or, for repairables, it may be possible
to execute an emergency repair for a part that is already at the repair shop, followed
by a fast form of transport. For our spare parts stockpoint, it means that the demand
is lost (or a ‘lost sale’) instead of backordered when it cannot be satisfied from
stock. Emergency shipments (or repairs) will be expensive in general, but, in case
downtime costs of machines are high, it is natural to apply them. The application
of emergency shipments has several consequences for our model description and its
whole analysis.
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Assume that the average time for an emergency shipment is equal to #™ for
SKU i. Define W;(S;) as the mean waiting time for an arbitrary demand for SKU i.
It holds that

Wi(Si) = (1= Bi(Si)™,

where f3;(S;) is the fill rate for SKU i. Next, we define W(S) as the mean waiting
time for an arbitrary demand for all SKU’s together, i.e., the aggregate mean waiting
time:
my

W(S) = 2, MW,(S,).
Then the total downtime of all machines together is equal to MW (S), and the average
availability of the machines may be approximated by

N MW (S)

AS) =1 Z
Hence, setting a minimum level A°% for A(S) is equivalent to setting a maximum
level WO = Z(1 — A1) /M for W (S).

With respect to costs, one has two types of costs now. As before, one has costs
for buying spare parts at the beginning, with price ¢? for SKU i. In addition, one has
costs for the emergency shipments. Each time that one applies an emergency ship-
ment for SKU i, one has costs ¢§™. We assume that c{™ contains the costs for a fast
delivery from another location. When an emergency shipment is applied, one has
one normal replenishment less at our stockpoint, and therefore those costs should
be subtracted. The average costs per time unit for SKU i for emergency shipments
are equal to m;(1 — B;(S;))ci™. The total costs consist of these costs per time unit
and the one-time costs at the beginning. The latter costs may be transformed into
inventory holding costs per time unit. We use ! to denote the inventory holding cost
per time unit per part of SKU i. Then the average costs per time unit for SKU i are
equal to

Ci(S;) = cMS; +mi(1 = Bi(Si))cs™, (2.14)

and the total average costs are equal to C(S) = ;c; C;(S;). The optimization problem
that we want to solve is as follows:

(P") min C(S)
subject to W(S) < WO,

Ses.
The related multi-objective problem is:

@) min E(S)
min W(S)

subjectto S € .77
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The evaluation of a given policy basestock policy S can still be made per SKU.
Under the application of emergency shipments, the number of parts in the repair
pipeline of SKU i is bounded from above by S;. L.e., the behavior of the number of
parts in repair of SKU i is no longer as in an M|G|ee queue but as in an M|Gl|c|c
queue with ¢ = S; parallel servers, arrival rate m;, and mean service time #;. The
M|G|c|c queue is also called an Erlang loss system. The fill rate 3;(S;) for SKU i is
obtained via the so-called Erlang loss probability. The fill rate is equal to the fraction
of time that there is at least one part on stock. This is equal to the fraction of time
that at least one server is free in the corresponding Erlang loss system. The latter
probability is equal to 1 minus the fraction of time that all servers are occupied, i.e.,
to 1 minus the Erlang loss probability. Hence,

1 S
51Pi

S. 1 ] Y
2]'1:() ﬁpi

Bi(Si) =1~ (2.15)

where p; := mjt;.

Karush [9] has shown that the Erlang loss probability is strictly convex and
decreasing as a function of the number of servers (see also Remark 2 in [11]). This
implies that B;(S;) is strictly concave and increasing on its whole domain. As a
result:

e For each i € I, W;(S;) is decreasing and concave on its whole domain.

e Foreachie€ I, C;(S;) is convex on its whole domain. The function C;(S;) may now
be decreasing for smaller values of S;, because of the presence of the emergency
costs.

Let S; min := argmin C’i(Si). Then, obviously, for Problem (P”) and its corresponding
multi-objective programming problem (Q”), we may exclude solutions with S; <
S; min for some i € I. Then, one can generate efficient solutions for C(S) and W (S)
in a similar way as for Problem (Q) in Sect.2.4 (see [8], Sect. 8); the factors I;
are now computed as I7 := —AW(S)/A,C(S) with AW (S) = (m;/M)AW;(S;) =
(mi/M)(Wi(Si+1) —W;(S;)) and A,C(S) = AC;(S;) = Ci(Si+1) = Ci(S:), Si > Si min-
This results in the following algorithm.

Algorithm 2.3 (Greedy algorithm)
Step1 S min := argminC;(S;) for all i € I
Set S; 1= Simin forall i € I, and 8 = (S1 min, - - -, S}7|,min)
&:={S}k
Compute C(S) and W (S).
Step2  I;:= —(mAW;(S;))/(MAC(S;)) forall i € I;
k:=argmax{I;:i€I};
S:=S+e;
&:=EU{S}.
Step3  Compute C(S) and W (S);
If ‘stop criterium’, then stop, else goto Step 2.
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In the following lemma, it is formally stated that Algorithm 2.3 generates effi-
cient solutions for Problem (Q”). The proof of this lemma follows from Fox [8]
(Sect. 8).

Lemma 2.6. At termination of Algorithm 2.3, the set & consists of efficient solutions
for Problem (Q").

2.10 Extensions

In this section we describe a few extensions to our model.

2.10.1 Consumables and Condemnation

In Sect.2.2, we use the terminology that is common for repairable spare parts.
Nevertheless, the model also applies when all SKU’s, or some of the SKU’s, are
consumable. For a consumable, we assume that a new part is procured each time
that a demand occurs, and we assume i.i.d. procurement leadtimes, which again are
denoted by #;.

One can also have a kind of mixture of the situations for a repairable and a con-
sumable, respectively. So far, for a repairable, we assume that a repair is always
executed and it is always successful. In practice, this is often more subtle. In many
cases, components can fail due to various reasons. Some of the resulting defects may
be repairable and others not. It may also be that a part is only repaired for a limited
number of times, because its performance slowly decreases after each repair. One
generally refers to these phenomena as condemnation. From a modeling point of
view, condemnation can be easily incorporated, which was already noticed by [5].
The idea is to introduce a parameter r; that represents the probability that a failed
part of SKU i can be repaired. Next, we distinguish a mean repair leadtime #;-"
and a mean procurement leadtime 7" (the procurement leadtime for SKU i may be
stochastic as long as realizations of the leadtime for different order are independent).
Then an arbitrary failed part leads to the arrival of a ready-for-use/new part at the
most upstream location after an average leadtime #; = rit; * + (1 — r;)t7"**. These #;’s
are the leadtimes that can be used in the basic model without emergency shipments,
and similarly in the model with emergency shipments.

2.10.2 Excluding Pipeline Stock

In Sect. 2.10.1, we denoted that the model of Sect. 2.2 also applies for consumables.
In that basic model, we look at inventory investment. In Sect. 2.9, we describe the
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model with emergency shipments, and we have switched to inventory holding costs
so that these costs can be added to the emergency shipments costs to obtain the
average costs per time unit. When determining inventory holding costs for consum-
ables that are procured at an external supplier, it is more appropriate to exclude the
pipeline stock (i.e., the parts that are on order but not on hand yet). For a consum-
able SKU i in the model of Sect. 2.9, replenishment orders for single units are placed
with rate m;3;(S;), and, by Little’s law, the average pipeline stock is m;;(S;)z;. This
leads to the following modified expression for the average costs per time unit for
SKU i, as given in (2.14):

Ci(Si) = ¢! (Si — miBi(Si)t:) +mi(1— Bi(Si))c§™
= C?(Si - m,-t,-) —|—m,~(1 — ﬂ,‘(S,‘))(C?m —|—C¥ll‘,‘).

This function is still convex (like the function é,-(S,-) in (2.14)), and thus one can
still follow the same solution procedure as in Sect. 2.9.

2.10.3 Batching

In our basic model, we assume one-for-one replenishments for all SKU’s. For a
local warehouse, this is generally justified because it receives consolidated replen-
ishments for all SKU’s together from a central depot. However, at a central depot,
one may send failed parts into repair at external repair shops or one orders consum-
ables at outside suppliers, and then some form of batching may be desired. Reasons
for using batching may be fixed setup costs for certain repair activities, fixed or-
dering and delivery costs that are charged by external suppliers, or pack sizes that
are prescribed by suppliers. Applying the logic of the EOQ rule shows that gen-
erally one-for-one replenishments will make sense for the more expensive SKU’s,
which have high inventory holding costs and/or low demand rates. For less expen-
sive components, however, it may be appropriate to use a fixed batch size Q, and
thus to follow an (s,Q)-policy instead of a basestock policy. Consider the basic
model (without emergency shipments), but assume now that for each SKU i, a batch
of Q; failed parts is sent into repair as soon as the inventory position of SKU i
drops to its reorder level s; (> —1). (Notice that a basestock policy with basestock
level S; = s; + 1 is obtained in case Q; = 1.) The repair leadtime for such a batch
is always equal to #; (we now assume that the repair leadtime is deterministic). The
performance for SKU i is then obtained by making use of the following two key
properties:

e The inventory level OH;(¢) — BO;(t) of SKU i at an arbitrary time point ¢ is given
by the inventory position at time point # —#; minus the demand in the time interval
[t —t;,1) (see Sect. 5.3.2 of Axsiter [1]).

e The inventory position at time point t —¢; is as the inventory position at an ar-
bitrary time point and thus is uniformly distributed on the integers s; + 1,s; +
2,...,8;+ Q; (see Proposition 5.1 of [1]).
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The demand during time interval [f —¢;,¢) is Poisson distributed with mean m;#;, and
thus has the same distribution as the pipeline stock X; in the basic model. Hence,
OH;(t) — BO;(t) is equal to s; + U; — X;, where U; is a uniformly distributed random
variable on {1,...,Q;}. For the on-hand stock and the number of backorders in
steady state, we then obtain:

OH; = (si+U; = Xi)",
BO; = (X,‘ — (Si+Ui))+.

These expressions generalize the expressions (2.4)—(2.5) of the basic model. The
rest of the analysis goes along similar lines as for the basic model. In particular, the
mean number of backorders is now denoted by EBO;(s;) and may be shown to be
decreasing and convex for s; > —1.

For the model with emergency shipments, it is less easy to incorporate a fixed
batch size. Emergency shipments lead to lost sales for the inventory of spare parts,
and, generally spoken, lost sales models are much harder to analyze than backo-
rdering models (see also Bijvank and Vis [2]). The two key properties as described
above for the backordering case, do not hold for the lost sales case. Hence, for the
lost sales case, one has to rely on approximate evaluation methods; see [2] for fur-
ther references.

2.10.4 Criticality

So far, we have assumed that all components are equally critical, i.e., a delay of x
hours/days in fulfilling a spare parts demand is equally bad for all SKU’s. When
considering system availability, we assume that each component is critical. That is,
an entire system goes down when a component has failed and can not be immedi-
ately replaced by a spare part. The reality in practice is often more sophisticated.
The criticality of a component is related to the consequences for the system and
system output if that component is not replaced immediately. These consequences
may depend on the failure mode of a failed part, the position of a component in the
system (an SKU may occur at multiple places in a system, and the criticality may
differ per position), the level of redundancy per position, and so on. A good way to
address these factors is to go back to the reliability data of a system and to incor-
porate the above factors in the modeling. This has been done by Van Jaarsveld and
Dekker [21].

Generally, it appears to be difficult to quantify the criticality of all components.
But, suppose that this has been done. Then it is possible to classify components in
multiple criticality classes, and next a service target may be specified per class or
one adds weights and optimizes under weighted service level constraints.
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2.11 Concluding Remarks

A single-item version of the basic model in this chapter was formulated for the first
time in 1966 by Feeney and Sherbrooke [5], who also discussed extensions to com-
pound Poisson demand processes and the emergency shipments case (also denoted
as the lost sales case). Shortly later, Sherbrooke [17] extended this model to a
multi-item distribution system with one central warehouse and multiple local ware-
house. This was the so-called METRIC model, which we will discuss extensively in
Chap. 6. For a heuristic optimization of basestock levels, a so-called marginal analy-
sis was introduced, which is like the greedy algorithm as formulated in this chapter.
The paper by Sherbrooke led to a big stream of papers on spare parts models.

A better understanding for the marginal analysis of Sherbrooke [17] and the
quality of its solutions was developed later; see e.g. Sherbrooke [18] and Wong
etal. [22]. In Sect. 2.12 of Sherbrooke [18], a justification for the marginal analysis
is given for the single-location model. However, a link with efficient solutions for a
corresponding multi-objective programming problem and a real proof that it leads to
optimal solutions for specific target values for the aggregate mean number of back-
orders (cf. Sect. 2.4.2) are absent in those works. To the best of our knowledge, that
link and proof were given for the first time in Van Houtum and Hoen [20].

Differences between the system and item approach, as presented in Sect. 2.6,
were studied by multiple authors; see e.g. Rustenburg et al. [16] and Thonemann
et al. [19]. In the latter paper, it has been shown that cost differences between the
SKU’s are the main factor to lead to large cost differences between the system and
item approach.

Problems

2.1. Consider a single warehouse for which the basic model of Sect. 2.2 applies. We
have |I| =3 SKU’s. The data for the SKU’s are as follows:

a

i m; ti &
(per month) (months) (Euros)
1 1.0 1.0 500
2 0.4 1.5 1,400
3 0.2 2.0 4,000

The maximum level for the aggregate mean number of backorders is 0.2.

(a) Compute the probabilities P{X; = x} and P{X; < x} for i = 1,2,3 and 0 <
x < 6. Hint: Use the recursion in (2.8) for the computation of the probabilities
P{Xi = x}.
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(b) Apply Algorithm 2.1 to generate efficient solutions for Problem (Q). (Use an
appropriate stop criterium.)

(c) What is the first solution S generated under (b) for which the aggregate mean
number of backorders is at most 0.2? What are the average costs under this
solution?

2.2. Consider Problem 2.1, and suppose that the item approach with EBO°® = 0.2
is applied to generate a feasible solution. Denote this solution as Si®™,

(a) Determine 8™, EBO(S™), and C(S'™).

(b) What is the costs difference with the solution obtained under part (c) of
Problem 2.1?

(c) Consider the efficient solutions obtained via the system approach, i.e., via
Algorithm 2.1; see also part (b) of Problem 2.1. What is the cheapest solution S
among them with EBO(S) < EBO(S!®™), and how large is the costs difference?
What is the solution S among them with the lowest aggregate mean number of
backorders and costs C(S) < C(S!*™), and how large is the difference in the
aggregate mean number of backorders when comparing this solution S to Si¢™?

2.3. Consider Problem 2.1. We are interested in additional performance measures
for the solution S obtained under part (c) of that problem.

(a) Determine the aggregate mean waiting time W (S) under solution S.

(b) What is the aggregate fill rate 3(S) under solution S?

(c) A fraction 1 — B(S) of all demands is backordered, and they are satisfied after a
certain delay. What is the average delay for an arbitrary backordered demand?

2.4. Consider the problem as described in Sect. 2.7.3. First, prove that

mit;
Si+2

AZPBOi(Si)Z (1— >P{X,':Si+1}, S; € Np.

Next, use this equation to prove that PBO;(S;) is convex for S; > max{[m;t; —21,0}.

2.5. Consider Problem 2.1, but suppose that one has already certain parts on stock:
1 part of SKU 1, 2 parts of SKU 2, and 3 parts of SKU 3. The parts are bought
from an external supplier and it is not possible to sell parts back to the supplier. The
requirement for the aggregate mean number of backorders remains the same.

(a) Problem (Q) as described for the standard problem of Sect. 2.2 becomes slightly
different. Give the adapted problem formulation.
(b) Formulate a greedy algorithm that gives efficient solutions for the adapted Prob-

lem (Q).
(c) Apply the algorithm formulated under (b).
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(d) What is the first solution S generated under (c) for which the aggregate mean
number of backorders is at most 0.2? What are the average costs under this
solution?

2.6. Consider Problem 2.5, but now assume that parts can be sold back to the sup-
plier for 50 % of the selling price. Answer the same questions as for Problem 2.5.

2.7. Consider the extension of the basic model to the case with emergency ship-
ments as described in Sect. 2.9. In the analysis of this extended model, one uses the
property that the Erlang loss probability is strictly convex and decreasing as a func-
tion of the number of servers. For an Erlang loss system with ¢ € Ny servers and
offered load p > 0, the Erlang loss probability is given by:

p¢/e!
Yoop*/x!

Prove that L(c,p) is strictly decreasing as a function of ¢ € Ny.

L(c,p) =

2.8. Consider the problem of Sect. 2.9. Assume that the replenishment leadtimes are
exponentially distributed (i.e., we consider a special case). Determine the steady-
state distribution for the number of parts on order of an SKU i via a Markov analysis.
Verify the correctness of (2.15) for this special case.

2.9. Consider the generalization of the basic model to the use of given batch sizes
for the inventory control of all SKU’s; see Sect.2.10.3. For each SKU i € I, one
then follows an (s;, Q;)-policy, where Q; represents the given batch size for SKU i
and s; (> —1) is the reorder level. The mean number of backorders is denoted by
EBO;(s;). Prove that EBO;(s;) is decreasing and convex for s; > —1.

2.10. Consider a company with its own maintenance department and a own spare
parts stock. The spare parts are used for corrective maintenance at a group of
machines. For the inventory control, the company wants to use a system approach.
The service measure that they work with is the aggregate fill rate, cf. Sect. 2.7.4.

To learn more about how the system approach works, the company wants to
consider a set of three representative spare parts. The data for these parts are as
follows:

my =15, my =5, m3 =1 (in demands per year),
1
H=bh=8= 3 (in years),
c§ =300, ¢5 =800, ¢§ =5,000 (in Euros).
(a) Apply the greedy algorithm of Sect. 2.7.4 to generate efficient solutions for C(S)

and B(S). Plot these solutions in a figure. List the solutions also in a table. What
is now the cheapest solution with an aggregate fill rate of at least 3°% = 0.98?
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The company is not willing to apply a pure form of the system approach. They
want to avoid too high basestock levels for cheap parts, because there is always
inaccuracy in estimating demand rates and then a too high basestock level may lead
to dead stock in the future. For each SKU, they want a fill rate of at most 0.998. In
addition, they do not want too low basestock levels for expensive SKU’s, because
that may hinder acceptance of the use of the system approach. For each SKU, they
want a fill rate of at least 0.90.

(b) With these extra constraints, one obtains a variant of Problem (Q’) of Sect. 2.7.4.
Formulate this variant.

(c) For this variant of Problem (Q’), one can again formulate a greedy algorithm
to generate efficient solutions. Formulate such a greedy algorithm and explain
why it will generate efficient solutions.

(d) Apply the greedy algorithm of (c), and plot the generated solutions in the same
figure as the solutions obtained under (a). List the solutions also in a table.
What is now the cheapest solution with an aggregate fill rate of at least §°% =
0.98? How large is the increase in costs in comparison to the solution obtained
under (a)?
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