Chapter 2

Optimizing Second-Harmonic Generation
in a Circular Cylindrical Waveguide

with Embedded Periodically Arranged
Tubelets of Nonlinear Susceptibility

B.U. Felderhof, G. Marowsky, and J. Troe

2.1 Introduction

An efficient method of generating second-harmonic radiation (SHG) can find use
in a variety of technical applications. Confined geometry—such as in fibers or film
waveguides—allows concentration of the fundamental radiation at the position of
the material with nonlinear susceptibility. In earlier work [1] we have investigated
SHG in a planar geometry and studied the dependence on the position of nonlinear
material with respect to the planar device that guides the fundamental radiation.
SHG was enhanced by a judicious use of periodicity of the nonlinear material in the
direction of propagation of the fundamental wave. In this paper we consider instead
confinement of radiation in a circular waveguide or optical fiber. This geometry
has the advantage of confinement in both transverse dimensions, thus avoiding
diffraction and the corresponding dispersion of the fundamental beam in a transverse
direction. The following calculations show that the circular geometry is preferable
to the planar one, even when in the latter case the beam has infinite width, so that
diffraction no longer plays a role.

In the following we analyze SHG in a circular waveguide for an idealized
situation of high symmetry. The nonlinear material—representing an idealized
polarization sheet [2]—is assumed to be arranged in a periodic array of cylindrical
tubelets centered around the axis of the waveguide. The period in the axial direction
can be optimized by use of a Bragg condition involving the wavenumbers of both
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the fundamental and the doubled frequency. In addition one can optimize the axial
width of the tubelets and their transverse radius. By integration over the radius
the calculation can be extended to cover the case of tubelets of finite thickness,
or of an array of solid cylindrical pieces. Admittedly, the idealized situation under
consideration may be difficult to realize experimentally. The intention of our model
calculation is to elucidate the principles, and to serve as a guide for the analysis of
more realistic but less symmetric situations. Due to the high symmetry of the model
situation we can limit attention to a small number of modes. This advantage is lost
in more realistic situations.

The paper is organized as follows: First we perform a calculation in analogy to
that for planar geometry [1] for a finite length L of nonlinear material distributed
in N tubelets, where N is much larger than unity. For optimum phase matching
the intensity of the generated SHG grows in proportion to L2. In the circular
waveguide the efficiency is sufficiently high so that it is necessary to consider
depletion of the fundamental. On a large length scale the effect of depletion
may be studied by use of mode-coupling theory. The situation is mathematically
analogous to that of SHG in anisotropic crystals, so that the mode-coupling theory of
Armstrong et al. [3] can be used. Apparently this was not realized by Zhao et al. [4],
who formulated mode-coupling equations on the much smaller length scale of the
period of the array.

Second-harmonic generation in poled optical fibers using gratings optically
written by mode interference was studied experimentally by Fermann et al. [5].
Analogous experiments in thermally poled twin-hole glass fibers were performed by
Mizunami et al. [6,7]. Pump depletion in a waveguide filled with periodically poled
lithium niobate was observed by Parameswaran et al. [8] to be in good agreement
with theory.

2.2 Circular Waveguide Theory

We consider a circular waveguide of radius b filled with material which is uniform
in the axial direction z and with electric and magnetic permeability, which depend
only on the radial direction r. We use cylindrical coordinates (r, ¢, z). The dielectric
profile e(r, w) and magnetic profile u(r, @) depend also on frequency w. We assume
that for the frequencies of interest ¢ and p are real. Also we assume that ¢ and p
tend to constants &;, u; for small r and to constants €, u, for r — b. In later
application we consider in particular a two-layer situation with &, u = &;, u, for
O<r<dande,u=¢,u ford <r <b.

We consider plane wave solutions of Maxwell’s equations which depend on z
and ¢ through a factor exp(i pz — i wt) and which do not depend on the azimuthal
angle ¢. Maxwell’s equations for the electric and magnetic field amplitudes then
read in ST units [9-11]
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The solutions of these equations may be decomposed according to two polarizations.
For TE-polarization the components E,, E_, and H, vanish, and the equations may
be combined into the single equation

d*E, rd(u/r)dE, , ldu 1 2
_ -— = __\E,=p°E TE). 2.2
drr  p dr dr + (sua) ) oo (18- 22

For TM-polarization the components H,, H, and E, vanish, and the equations
may be combined into the single equation

d*H, rd(e/r)dH, , 1lde 1 )
_ - —|H, =p°H ™). (2.3
Ty ek el (s,ua) ) o =pH, (TM). (2.3)

We consider first TE-polarization. We assume that for 0 < r < r; the
permeabilities ¢, 4 equal ¢;, u; and that for r > r, they equal €7, i r. We write
the solution of Eq. (2.2) in these two regions:

E,(r) = Ji(gir) forr <r;,
E,(r)y=AsJi(qsr) + BsYi(qyrr) forr > ryp, 2.4)

with Bessel-functions Ji(¢r), Y1(gr) and wavenumbers

qj = \/&jjo* — p*. (2.5)

The coefficients Ay and B are related by the boundary conditions at r = b. The
wavenumbers {¢;, q s} are real only up to a maximum value of p given by /e, [i;w
in either case and are pure imaginary beyond this value. For such wavenumbers we
rewrite the second equation in (2.4) as

Ey(r)y = Al (ksr) + BK (ksr) forr >ry, (2.6)

with modified Bessel-functions /1(k7) and K (kr) and k = +/p? — euw?. The
guided mode solutions occur at discrete values {p;} of p larger than /et rw.
We assume that the radius b is sufficiently large that the waveguide condition can
be approximated by

A(p,w) = 0. 2.7
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At fixed w the roots of this equation determine the discrete values {p; } for which a
guided mode solution exists. We call A(p, w) the dispersion function. The explicit
expressions for the coefficients A(p,w) and B(p,w) in the analogous case of
TM-polarization will be given in Eq. (2.54).

The one-dimensional wave equation (2.2) can be transformed to a form resem-
bling the one-dimensional time-independent Schrodinger equation by use of the

transformation
E,(r) = \/Efm. 8)

By substitution we find that Eq. (2.2) is transformed to

af
drz

where the function V(r) is given by

V(r) = —epw® + \/70”2\/» 1dlog(‘”) 2.10)

It is of interest to derive an expression for the norm of the eigensolutions.
Differentiating Eq. (2.9) with respect to p? one derives the identity

5 af\  of of]
() | = e

Applying this identity to guided mode solutions normalized as in Eq. (2.4) we find
by integration over r and use of the waveguide condition (2.7)

b 1 0A(p, w)
E _ . b
Ny = / 1(r) By (r) dr = 241 p; Bl )=,

We shall show in the next section that the norm is related to the intensity of the
mode.

It follows from Eq. (2.3) that for TM-polarization exactly the same relations
hold if we replace E, by H,, € by u, and p by . Where necessary the symbols
corresponding to the two types of solution will be distinguished by a superscript E
or M.

Vi f=pf (2.9)

2.12)

pj

2.3 Excitation of Guided Modes

In this section we describe how the eigenmodes may be excited by an oscillating
dipole density. We begin by relating the norm of an eigenmode, given by Eq. (2.12),
to the physical intensity. The energy current density averaged over a time period
27 /w is given by the Poynting vector

S = %Re(E x H*). (2.13)
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The z-component of this expression may be decomposed into

S.=8F+sM, (2.14)
with the separate terms for TE- and TM-polarizations

p 2 M P 2
SE=_"_|E,%, sM = 2 |\H,. 2.15
4 20)M| (ﬂ| z 2(08| (ﬂl ( )

We define the total intensity by the integrals
b b
I = 27[/ SZE(r)r dr, M= 271/ SZM(r)r dr. (2.16)
0 0

The intensity does not depend on z.
For a single eigenmode of either TE- or TM-type the expressions (2.15) become

p¥ p¥
E_ Y 2 M _F 2
£ = 2w,u|E‘”j| LS =S H P 2.17)

By comparison with Eq. (2.12) we find that for a single eigenmode excited with
amplitude a; the intensity is related to the norm of the mode by

Iy
I = nE/Nj|a,|2. (2.18)

This expression is formally the same for both polarizations.

Using orthogonality of the eigenmodes [9-11] we find that for a linear superpo-
sition of guided modes, all oscillating at the same frequency w, the total intensity is
given by

I=Ydf+1". (2.19)
J

which again does not depend on z.

Next we investigate how radiation is emitted by an antenna embedded in the
waveguide. We consider a surface polarization [12-14] P5(z) of finite extent in
the z-direction, independent of ¢, located at radius r = ry, and oscillating at
frequency w. The corresponding charge and current densities are

P} 50
po(r)=——=68(r—r9)— P>— 6(r —ryp),
0z *or

j(r) = —iwP5@)8(r —ro), (2.20)
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which must be added as source terms to Maxwell’s equations. The charge and
current densities are related by the continuity equation —iwp+ V- j = 0. A Fourier
analysis of the surface polarization yields

P5(2) =/i’s(p)eipz dp. 2.21)

From Maxwell’s equations we now find instead of Eq. (2.2)

dzﬁw r a’(/L/r)dEA(/J ) , ldu 1)\,
-— + E,
drr  u dr dr

= -’ uPJ8(r—r). (222

Similarly instead of Eq. (2.3)

d*H, r(de/r)dH, , o, lde 1)\,
— - -pPP————-= A, =
dr? e dr dr + (8/“0 P ) ¢

) lde ~ N
_,'w[PZSE&(r — 7o) — ;EPZSS(r — ro):| —wpP38(r —rp).  (2.23)

The solution of these equations may be found with the aid of the Green’s
functions G (r, ry) and GM (r, ry) defined by the equation

d’G

dr?

— V()G = p*G + 8(r —ry). (2.24)

The Green’s function may be expressed as

G(r,ro) = M, (2.25)

A(h. f2)

where r_(r.) is the smaller (larger) of r and ry, in terms of the two fundamental
solutions f, f> defined by

E0 = [ aan. 0= L aan. o<,
sz(r) = /L Ki(kyr), sz(r) = \/i Ki(ksr), forr >ry, (2.26)
Ky ef

with the Wronskian

fi fa

A(f1, f2) = ol (2.27)
1 2
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The Wronskian takes the value
-1 -1
A(flEv sz) = —AE(p,a)), A(fle sz) = _AM(psw) (228)
M ef
The solution of Eq. (2.22) is given by

Ey(p.r) = =0’ [u(r)/r]/>G* (r, ro)[i(ro)ro] /B (229)

The solution of Eq. (2.23) is given by

Y . M (rr e(r
Hy(p,r) = zw[e(r)/r]'/z[“" et + S G (o)

2rp

+5-GM(r, ro)}[dro)/ro]_l/zﬁzs — wple(r)/r]"2GM (r.ro)e(ro) /ro] M2 B
(2.30)

For a surface polarization P (z) with arbitrary variation in the z-direction the
fields E,(r,z) and H,(r,z) are now obtained by Fourier superposition. Thus we
find

Ey(r,2) = /E},(p,r)e’” dp, Hy(r,2) = / I:I(p(p, r)e'’’ dp, (2.31)

where Ew (p,r)and I:I(ﬂ (p, r) are given by Egs. (2.29) and (2.30) in terms of f’S (p).
The Wronskian, given by Eq. (2.28), vanishes at the eigenvalues { pf} and { p;” .
For large z the contribution from the corresponding poles dominates the integrals
in Eq. (2.31). This allows us to evaluate the amplitude of the various guided modes
excited by the oscillating surface polarization.

2.4 Emitted Radiation

In this section we analyze the radiation emitted by a circular cylindrical antenna,
as introduced in the preceding section, in more detail. We are interested in
the radiation channeled into the waveguide and detected at large positive z. At
sufficiently large distance from the antenna, i.e., after the decay of transients
corresponding to evanescent wave solutions, the behavior of the fields is dominated
by pole contributions to the integrals, corresponding to roots of the waveguide
condition (2.7). The contributions may be found by contour integration in Eq. (2.31)
with the poles at positive {p;} shifted slightly upwards into the complex plane and
those at {—p,} shifted slightly downwards. We note that it follows from Eq. (2.6)
that for values { p; } for which the waveguide condition is satisfied

Silpj,r) = B(pj, ) falpj,r). (2.32)
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Thus we find for large positive z, far from the source P5(z),

E,(r,z) ~ ZaﬁWf(r) exp(iijz), (2.33)
J

where we employ the notation
A GERNGYSAGE (2.34)
The amplitudes are given by
at; = w0’ (pFNEY row £ (ro) P (p ), (2.35)

where we have used Eq. (2.12). From Eq. (2.33) we may evaluate the intensity
defined in Eq. (2.16). Because of the orthogonality of the different modes [9—11]
there are no cross terms, and we find by use of Eq. (2.18)

IF=3"1F =70 Y (pFNOY 'y f )l [P (). (2.36)
j j

Similarly we find for large positive z

Hy(r.2) ~ ) atfy} (r) exp(ip}'2). (2.37)
J
with the notation
Y (r) = yer)/rf} (). (2.38)

The amplitudes are given by
ay] = mo(p)' N} [R;(r0) B (p]) + Z;(ro) P (p])]. (2:39)

with the abbreviations

ir

R;(r) = s(r)p}"l//,M(r),
oM
Z(r) = %( Wér(”) + %w,’-” (r)). (2.40)

This yields for the intensity
M _ M
M=3%"1
J

=m0 Y (pI NI TR () P (p)) + Z; ) PE (P17 241)
J
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The expressions (2.36) and (2.41) have a fairly simple structure. The efficiency
with which a surface polarization P (z) excites the guided modes is determined
by its Fourier component at the wavenumber p;, as well as by its radial location
ro via the eigenfunction ¥, (rg), which appears quadratically with its proper
normalization N;.

2.5 Phase Matching

In this section we discuss the principle of second-harmonic generation by use of a
phase-matched adsorbate embedded in a circular cylindrical waveguide. We shall
assume that the adsorbate either is located as a thin layer directly outside the core
or is embedded in the core. We consider a surface polarization P5(2) located at
radius ry and induced by an incident fundamental wave. The polarization acts as an
antenna emitting waves at the second-harmonic frequency. Thus we put

P5(r0,2) = x?(2) : E10(r0,2) E 10(r0, 2), (2.42)

where E o(ro, z) is the incident fundamental field at the location of the adsorbate.
If the fundamental field oscillates at frequency w, then the surface polarization
oscillates at frequency 2w, and this must be taken into account in the expressions
of the preceding sections. We assume that the adsorbate is so weak that it does not
disturb the fundamental wave. This is expressed by the subscript zero in (2.42).

The fundamental wave is a linear combination of guided modes with
z-dependence exp(ip;z) with wavenumber p;(w). We shall assume that the
susceptibility y® depends on z via the density of adsorbed molecules. If the
adsorbate has a periodicity in the z-direction with period a characterized by
the wavenumber K = 2m/a, then we may expect resonance when the phase-
matching condition

p;Qw) = 2pi(w) +nk, n=0%£1%2,... (2.43)
is satisfied. More specifically it is natural to aim at satisfying the condition
Po(2w) = 2po(w) £ K, (2.44)
for the lowest mode j = 0. We shall call this the Bragg condition.
We consider in particular a grating of period a consisting of N adsorbate tubelets

of width w < a. An example of the grating and waveguide is shown in Figs. 2.1
and 2.2. The susceptibility function is given by

x@ = xPgn (), (2.45)
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Fig. 2.1 Axial cross section
of the waveguide and
adsorbate structure. The
figure should be rotated about
the z axis to get the
three-dimensional picture
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Fig. 2.2 Three-dimensional picture of the waveguide and adsorbate structure

with the Bragg function

gn(z) = Z O(w,z—na — %w), (2.46)

where

O(w,z) =1

w
for |z| > 5 (2.47)
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The prefactor x® in (2.45) is a third rank tensor independent of z. We shall assume
that y® has the characteristics of a layer isotropic about the surface normal in the
radial direction. We also assume that there exists a mirror plane containing the radial
normal to exclude chirality. From these assumptions it follows that x® has only
three independent components (for details see [14—17]). The Fourier-component

A S
P (p) is proportional to

N 1 o0 R .
G (p—2p(@) = — / gy (@)X P@=in g
27 J oo

_exp(isgw) —1 1 —exp (i Nsga) (2.48)
N 27i sk 1 —exp(isga) '

where we have introduced the variable
s = 2pr(w) — p. (2.49)

For real p the absolute square of the second factor in Eq. (2.48) is given by

_esta

> sin’(Nsa/2)

sin?(sa/2) (250)

Fy(sa) = ‘1

1 _ eisa

which takes the values N2 at sa = 2nmw, wheren = 0, =1, +2, .. .. Since we wish
)
P (p) to be maximum at po(2w) we choose the lattice distance a such that

a = 27|2po(w) — po2w)|™" (2.51)

corresponding to n = 1 or n = —1. In this way we satisfy the Bragg condi-
tion (2.44). The width of the function in Eq. (2.50) at s = +2x/a is of order 1/ Na.
Hence the area of the peak is proportional to N. The larger N, the more precisely
the condition (2.51) must be satisfied. An error Aa in the value of a implies an
error Ap = 2wAa/a® in p-space. If we require this to be at most 1/Na, then N
cannot be larger than a /2w Aa. Ideally one would use a tunable laser and adjust the
frequency o such that the condition (2.51) is precisely satisfied. With that choice

the absolute square of the first factor in Eq. (2.48) is maximal at w = %a.

2.6 Second-Harmonic Generation

In this section we investigate the effect of geometry on the efficiency for second-
harmonic generation. We consider the core of the waveguide to be a cylinder of
radius d with dielectric constant &, surrounded by an outer mantle with uniform
dielectric constant & < &;. The grating of adsorbed molecules is located at radius ry,
either inside or outside the core (rp < d or ry > d). We put the magnetic
permeability equal to py everywhere and consider guided mode solutions of TM
type. We study the dependence of the efficiency for second-harmonic generation on
the radius ry.
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The discontinuity of the dielectric constant at » = d corresponds to jump
conditions for the tangential component H,(r). The first condition is that H,(r)
is continuous at r = d. The wave equation (2.3) may be rewritten as

e(r) -

e(r) dr re(r)

d 1 dH, H, )
+euw H, Hw~ (2.52)

Hence the second condition is that (dH,/dr + H,/r)/e is continuous at the
interface. In analogy to Egs. (2.4) and (2.6) we write the solution as

H,(r) = Ji(qar), for0<r <d,
= AMI (k1) + BM K, (k7). ford <r <b, (2.53)

where ¢ = /e ow? — p? and k1 = +/ p? — &1 wow?. From the two continuity

equations we find for the coefficients AY and BM
&
AY (p.0) = = q2dJo(q2d) K1 (1d) + k11 (q2d) Kolord).
2

£
B (p,w) = —i G2dJo(qad) 11 (1 d) + k1dJy (Gad) o (k). (2.54)

Putting A (p, w) = 0 for fixed @ one finds the wavenumbers pj‘” (k) of the guided
modes. The guided mode solutions take the form

Y (r) = Ji(gar). for0<r <d,
= BM(pM. 0)Ki(kyyr).  ford <r <b. (2.55)

From Eq. (2.12) one finds for their norm

b 0AM (p, w
= [ oRdr = s 0 P s
&(r) 2¢1pj ap M
The electrical field has components
| (dH H
E=2LH, E() = ’—(—“’ + —9"). (2.57)
we we\ dr r

We assume that the fundamental is present as a single mode oscillating at frequency
w with amplitude a{‘z (w). Hence the electrical field vector is

M d M
E(w;r,z) = 2’;?:))[ prr vl (re, ( l/f;r(r) wkr(r))ez:| exp(ipMz).
(2.58)
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We assume an isotropic tensor y® with mirror symmetry. The induced surface
polarization is

SM _ a%(w) 2 .M
P°" Q2w,2) = gn(@| ——= | Xi(w,ro)expRip; z), (2.59)
we(w, ro)

with Bragg factor given by Eq. (2.46) and vector X (w, ro) given by

dy M Y\
o) = [Xl(p%w%(w,r))z—m( v | v (r)) }e,

dr r
dyM(r M
+2ixapit ! (w,r)( Ve () | vl ))ez, (2.60)
dr r
where y; = )(52,),, X2 = ;&;, and y3 = )(g; = )&2 are the relevant components

of the nonlinear susceptibility tensor y ®. We assume that the layer of second-order
susceptibility is locally flat, so that the subscript r corresponds to the locally normal
component and z to the locally tangential component. For a representation of the
tensor in the local Cartesian frame see Roders et al. [17]. The emitted second-
harmonic radiation is TM-polarized. The intensity of the emitted second-harmonic
radiation is given by Eq. (2.41), with the right-hand side taken at frequency 2w
instead of w. We find by use of Eq. (2.18)

1
P @o)N Y 20) pfl (@) N} ()

1M @ow) = L 1GN (P Qo) —2p (@)

we(w, ro)
x| Rj Q0. 10) Xi (. 10) + Z Q. 70) Xgz (. 10)|* (1M () 2.61)
The conversion coefficient is defined by
i = 1M o)/ LY (). (2.62)
We write the conversion coefficient in the form
mi = 27” Gy (P! @) = 2p @) P A (r0) [T (@), (2.63)
with coefficient

|R; Qw, ro) Xir (@, 70) + Z; (2w, r0) Xz (@, ro)|2
ke(w, ro)*p¥ Qw)N M 2w) p! (0)2NM (0)?

Ajilro) = : (2.64)

and write the latter as

1 . .
Aji(ro) = =76 E Can (G 15 70) X2 X0 (2.65)
0 A
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Fig. 2.3 Plot of the 1.5
wavenumber po(k) of the v

lowest order guided wave §

(solid curve), of the \é 1.49
wavenumber p; (k) of the <
first-order guided wave (long = 1 48
dashes), of the wavenumber =
p2(k) of the second-order 2’
guided wave (short dashes), i 1.47
as functions of kd for values &

of the dielectric constant =

given in the text 1.46

with dimensionless coefficients C,, (j|k;ro). The factors R; and Z; are given
by Eq. (2.40), and X, and X, are given by Eq. (2.60). The coupling coefficients
Cy..(j|k) depend on the radius r( and the geometry of the waveguide. The efficiency
of second-harmonic generation for the chosen geometry is characterized by the
Bragg prefactor |GN | and the coefficients Cy,,(j|k; ro).

We consider the width d to be fixed, and vary the frequency w. The input laser
is tuned in a narrow frequency range, so that dispersion of the dielectric constant
near w and 2w may be neglected. We put &,(w) = 2.25¢), &22w) = 2.28¢,
in combination with g;(@w) = 2.13gy and &1 (2w) = 2.17gy. In Fig.2.3 we plot
the reduced wavenumbers po(k)/k, p1(k)/k, and p,(k)/k at the fundamental
frequency as functions of kd. The ratios {p,(k)/k} are larger than /e;/e9 =
1.4595 and less than ./g,/e9 = 1.5. The corresponding plots at the second-
harmonic frequency are very similar.

In Fig.2.4 we plot the coefficient C;(0|0;rg) at kd=24 as a function of the
fraction ro/d. In Figs.2.5 and 2.6 we present similar plots for the coefficients
C»(0]0; rp) and C33(0|0; ). The plot in Fig. 2.4 for susceptibility y; = )(izr), shows
the largest rate of conversion.

It is of interest to compare the optimal situation with that for a planar waveguide.
We have found earlier that for a planar waveguide consisting of a slab of dielectric
constant & of thickness 2d surrounded by a medium of dielectric constant &,
second-harmonic generation is optimal for a thin polarization layer midway between
the two interfaces (in Ref. 1 this was called geometry III). For the planar waveguide
the conversion coefficient took the form

47‘[2 A
n%ﬂg = 7 GNjkP(Zlel:X/\XZ)JkM(w)V (266)
Ap
with Bragg factor
Grjrr = |Gy (p) 20) = 2p (@), (2.67)

Here the wavenumbers p must be calculated for the guided modes of the planar
waveguide, so that the lattice distance a and the Bragg factor Gy;ip differ from
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Fig. 2.4 Plot of the coupling coefficient C11(0]0; ro) for kd = 24 as a function of ro/d. The
coefficient characterizes the efficiency of conversion, as given by Eqgs. (2.63) and (2.65), of the
lowest order guided wave with largest wavenumber pg(k) at the fundamental frequency w = k¢
to the mode with largest wavenumber po(2k) at the second-harmonic frequency 20w = 2kc.
The radius of the tubelet of nonlinear susceptibility is ro, and d is the radius of the core of
the waveguide. The subscripts 11 indicate the contribution which is quadratic in the component

X = szr), of the second-order susceptibility tensor
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Fig. 2.5 Plot of the coupling coefficient C»,(0]0; ro) for kd = 24 as a function of ro/d. The
coefficient characterizes the efficiency of conversion, as given by Egs. (2.63) and (2.65), of the
lowest order guided wave with largest wavenumber py(k) at the fundamental frequency w = k¢
to the mode with largest wavenumber po(2k) at the second-harmonic frequency 2w = 2kc.
The radius of the tubelet of nonlinear susceptibility is rp, and d is the radius of the core of
the waveguide. The subscripts 22 indicate the contribution which is quadratic in the component

X2 = Xifi of the second-order susceptibility tensor

the lattice distance and corresponding factor Gyjrc for a cylindrical waveguide
appearing in Eq. (2.63). The intensity J kM (w) is defined from the integral of the
Poynting vector along the transverse coordinate. In order to compare the two
geometries we put

IM(w) = nd*S¢, JM(w) =2dSp, (2.68)
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Fig. 2.6 Plot of the coupling coefficient C33(0]0; ro) for kd = 24 as a function of ro/d. The
coefficient characterizes the efficiency of conversion, as given by Egs. (2.63) and (2.65), of the
lowest order guided wave with largest wavenumber po(k) at the fundamental frequency @ = kc
to the mode with largest wavenumber po(2k) at the second-harmonic frequency 2w = 2kc.
The radius of the tubelet of nonlinear susceptibility is o, and d is the radius of the core of
the waveguide. The subscripts 33 indicate the contribution which is quadratic in the component

X1 = )((2;) of the second-order susceptibility tensor

and write the conversion coefficient (2.63) for the cylindrical waveguide in the form

272 _
U%ACJ = TGNjkCAjkC (ro)d*Sc, (2.69)

where G yjic is the Bragg factor defined as in Eq. (2.67). The conversion coefficient
for the planar waveguide is written similarly as

MM 272 -
Nikp = TGNjkPAjde Sp. (2.70)

By comparison with Eq. (2.66)
Ay = > Bk 2.71)
jkP — kd — jk X/‘Xp, .

We consider kd = 24, as in the experiment of Parameswaran et al. [8], with
wavelength of the fundamental A = 27 /k = 1550 nm and d =~ 6um, and use
the same dielectric constants as above. Then we find for the cylindrical waveguide
po(w)d = 35.837 and py(2w)d = 72.388, and for the planar waveguide po(w)d =
35.972 and py(2w)d = 72.463. The lattice distance a, given by Eq. (2.51), in the
two cases takes the value

ac =8.79d, ap =12.12d. (2.72)
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Fig. 2.7 Plot of the coupling coefficient Cy;(0|0) for the circular waveguide as a function of kd
(solid curve). For each value of kd, the optimal radius ry has been chosen. For comparison we also
plot the coupling coefficient Cy;(0|0) for the planar waveguide as a function of kd (dashed curve).
The notation is explained in the caption to Fig.2.4

Correspondingly we find for the coupling factors in Egs. (2.69) and (2.70) for
=x3=0

Aooc (rm) = 4275 |1 1*/(3d ), Aoop = 32.47 111/ (3d®). (2.73)

for the value r,, = 0.593 d corresponding to the maximum in Fig.2.4. The
prefactors in Eq. (2.73) are the values of the coupling coefficients Cy1¢ (0]0) = 4275
and Cy1p(0]0) = 32.47. In Fig. 2.7 we show the coupling coefficient Cy;¢ (0]0) as
a function of kd. At each value of kd the optimal radius ry has been chosen. For
comparison we show also the coupling coefficient Cy;p(0]|0) as a function of kd
for the planar waveguide. This shows a decrease with increasing frequency of the
fundamental. Clearly the circular waveguide geometry is to be preferred for most
frequencies .

For large N the Bragg factors G in Egs. (2.69) and (2.70) vary rapidly with
frequency. It makes sense to compare the two geometries at their peak values for
second-harmonic generation. Hence we put the factor Fy in Eq. (2.50) equal to N2
in both cases. Then the Bragg factors differ only by the first factor in Eq. (2.48).
Taking w = a/2 in both cases we get for the two Bragg factors at the peak value

Gnooe = 0.198 N2, Gyoop = 0.377 N2. (2.74)

The prefactors for the two geometries in the conversion coefficients (2.68) and (2.69)
take similar values. The circular geometry may have an advantage over the planar
geometry in the efficiency of input of the fundamental wave.

In the above numerical example we find for the circular waveguide with
susceptibility y; = 10~!3 esu the conversion factor in SI units

et =2.7x10° L* 1M (w), (2.75)
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Table 2.1 Selected conversion efficiencies (for details, cf. text)

SHG-experiment PQw)/P(w)in %  Reference

Surface-SHG simple reflection =~ 10712 G.T. Boyd, Y. R. Shen, T.W. Hinsch
Second-harmonic generation from
sub-monolayer molecular
adsorbates using a CW diode
laser

Seventh International Conference
Laser Spectroscopy VII
Maui, HI, USA, 24-28 June 1985

KDP-crystal in transmission 1.72 x 10~ A. Yariv Quantum Electronics Third
Edition, Wiley, New York, 1988
Chapter 16.7: Second-Harmonic
Generation with Gaussian Beams,
pp. 402

Planar waveguide 1x107* A. Bratz, B. U. Felderhof, G.
Marowsky

optimized geometry I1I Second-harmonic generation in
planar waveguides

Appl. Phys. B 50, 393-404 (1990)

Quasi-phase-matched 2.7 This work

SHG in a fiber under

optimized conditions

where L = Na is the length of material with nonlinear susceptibility y;. For an
input power of the fundamental /™ (w) = 100 mW this becomes ni¥ = 2.7L?
with L in cm. By definition the conversion factor is less than unity. This implies that
for a length 1 cm we must take depletion into account.

In Table 2.1 we have summarized some relevant conversion data from reliable
literature sources. The table shows that SHG conversion varies by many orders
of magnitude, depending on the experiment. The conversion efficiency 107'2 %
concerns the famous Maui surface experiment of Boyd, Shen, and Hénsch, demon-
strating surface SHG of a sub-monolayer of pyridine adsorbed on a silver electrode.
The other SHG conversion data concern KDP, an optimized planar waveguide
geometry of Bratz et al. [1], and the proposed configuration of Fig.2.2 in this
work. Due to strong spatial confinement and Bragg interference the conversion
efficiency is strongly enhanced and pump depletion has to be considered even for
device lengths as short as 1 cm. Therefore the device length was taken to be 0.1 cm
to avoid depletion and make the data comparable. It should be noted that for the
KDP-case SHG was considered with Gaussian beams; hence the efficiency increases
only linearly with crystal thickness.
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2.7 Depletion

For a sufficiently long stretch of nonlinear susceptibility depletion of the funda-
mental must be taken into account. We consider a stretch with M periods of
nonlinear susceptibility y®, where M is a large multiple of N. It is assumed that
N is sufficiently small that the preceding theory, with neglect of depletion, may be
applied. In the experiment of Parameswaran et al. [8] with a planar waveguide the
number of periods is about M = 4000. The period a is assumed to be adjusted
to the frequency of the fundamental by use of Eq. (2.51). Due to the Bragg factor,
conversion is then limited to the lowest mode with wavenumber py(2w).

We assume first that the input laser is tuned to the peak value, so that the Bragg
factor is proportional to N2, as in Eq. (2.74). On a large length scale the intensity
of the fundamental IOM (w; z) decreases with distance along the waveguide, and
the intensity of the second harmonic IOM (2w; z) increases. For brevity we denote
Ii(z) = I(f” (w;z) and I(z) = I(f"’ (2w; z). We define corresponding slowly varying
wave amplitudes A4, (z) and A,(z) by [3]

1
11(z) = p1A1()*1,(0), L(z) = > P245(2)*11(0), (2.76)
with the abbreviations

P1 = po(w), P2 = poCw). (2.77)

The amplitudes A (z) and A,(z) are assumed to satisfy the mode-coupling equations

dA

o YA,

dz P1

dA

22 _ Y g2, 2.78)
dz P2

where the coefficient y can be evaluated from the preceding theory for the behavior
at small z. The mode-coupling equations imply the conservation law

1, (2) + I(z) = 1,(0). 2.79)

The equations have the solution

1 2
Ai(z) = —— sech kz, As(z) = ,/ — tanhkz, (2.80)
v/ P1 p2
with

y 2
K= [|—, (2.81)
P\ P2
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so that correspondingly
I11(z) = I,(0)sech’kz, I(z) = 1;(0) tanh? kz. (2.82)

Comparison with Eq. (2.62) yields

2
i = 8= [e 1240011 (0). (2.83)

with coupling factor Ay given by Eq. (2.65). The decay length 1/k decreases with
increasing intensity of the incident laser light.
We note the identity

dA\?
(d—zl) + 12 A3 (p1A2—1) =0. (2.84)

This shows that the solution may be interpreted as the motion of a particle in a
quartic potential at zero energy, or as the interface profile between two phases of a
fluid [18]. The identity is equivalent with the conservation law (2.79).

If the input laser is not tuned to the peak value we must use complex amplitudes
A1(z), A2(z) and generalize the mode-coupling equations to [3,19]

dA, 14

4. — AT Ay’ 7%,
b4 1
dA :
d—; - 2plAfe—’APZ, (2.85)
2
with phase mismatch
Ap = p» —2p; —nkK. (2.86)
With the normalization
1
By = {/piA:, B, = 5\/172/12 (2.87)
the mode-coupling equations can be expressed as
dB ;
d—l = —0B] Bye' ",
Z
dB 1 ;
d_; = 5oBfe"APZ, (2.88)

with coefficient

o= k2. (2.89)
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With the complex notation
B, = bie'*, By = —ibye'?”, (2.90)

the mode-coupling equations (2.88) can be cast in the standard form with real
variables [3]

db . d
d_zl = —obbysinb, di;] = ob;ycos 0,
db2 1 2 . d(p2 1 blz
P B L 2.91
iz zabl sin 0, e 20b2 cos 8, 2.91)

with phase difference
0 =Apz+¢—2¢. (2.92)

The mode-coupling equations imply the energy conservation law, which may be
expressed as

b?(z) +2b3(z) = 1. (2.93)

With a final change of variables

u=>by, v=bv2, [=«kz (2.94)
the equations become
Z—Z = —uvsino,
Z—; = u’sin 6,
Z—? = As + COt@dié‘ In(u?v), As = % (2.95)

These equations have the two conservation laws

A A
W+ =1, uzvcose—i——pvz:l“—i——pv%, (2.96)
2k 2k
where the constant I' is determined by the initial values at z = 0 according to

I = uov(z] cos bp. In our case I = 0, since vy = 0. The equations can be solved in
terms of the elliptic integral

dx. (2.97)

‘o 1/V2 1
2 Jo \/x(l—x)z—%Aszxz
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Fig. 2.8 Plot of the reduced second-harmonic intensity v? at fixed length L = 1/k as a function
of the reduced detuning parameter As = Ap/k, where Ap is the phase mismatch. The notation is
explained in Sect. 2.7

Explicitly

¢ = ¥ F(arcsin(v/ /7)), y = 8/(8 + As® + v As* + 16As?), (2.98)

where F(gp|y?) is the elliptic integral of the first kind [20]. In particular
F(¢|1) = 2 arctanh(tan(p/2)) leads to v = tanh{ in agreement with Eq. (2.82).
The expression Eq. (2.98) can be inverted to

V(&) = ¥ sn(C/ Vv ), (2.99)

with Jacobian elliptic function sn(¢/,/y, ). In Fig. 2.8 we plot the reduced second-
harmonic intensity v?> for fixed length { = 1 as a function of the detuning
parameter As. The plot shows a spectral line with sidewings. For fixed detuning
parameter As the second-harmonic intensity varies periodically as a function of
distance ¢.

Note that in the present theory the mode-coupling equations are assumed to hold
on a length scale much larger than the period of the grating. This is in contrast to
the theory of Zhao et al. [4], who assume mode-coupling equations on the scale of
the period. The present formulation allows understanding of the effect of depletion
in the framework of the well-known theory developed by Armstrong et al. [3] for
second-harmonic generation in anisotropic crystals.

Finally we note that it follows from Eq. (2.82) that for optimal phase matching the
stretch of nonlinear susceptibility L/, over which the second-harmonic intensity /I,
is one half of the input fundamental intensity 7/, (0) is given by

1 1 0.881
L, = — arctanh— = . 2.100
1/2 p arctan NG - ( )
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For the numerical example used in Eq. (2.75) we have «? = 2.7 x 10°1,(0), so that

5.36 x 10713

Lip=——F—
x1v/11(0)

with y; in esu and 7;(0) in mW. The prefactor follows from 5.36 = 0.881/+/0.027.
Thus the half-length varies inversely with the second-order susceptibility and the
square root of the input fundamental intensity. In Eq. (2.101) it is assumed that the
radius of the tubelet ry has the optimal value shown in Fig. 2.4.

cm, (2.101)

2.8 Discussion

We have presented a model calculation of second-harmonic generation in a circular
cylindrical waveguide or optical fiber for a situation where the nonlinear material
is isotropic and distributed in a radially symmetric manner. Though the geometry
is not easy to realize experimentally, the calculation shows the essential features of
the mechanism. A comparison with an earlier calculation for a planar waveguide
[1] shows that the confinement in cylindrical geometry has distinct advantages.
The work of Parameswaran et al. [8] shows that second-harmonic generation in
cylindrical geometry can be realized experimentally and is quite effective.

The conversion efficiency is sufficiently high that depletion of the fundamental
must be taken into account. We have shown that depletion can be described in terms
of the mode-coupling formalism developed by Armstrong et al. [3] for second-
harmonic generation in anisotropic crystals.
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