
19

Christopher Peacock (ed.), Parasite Genomics Protocols, Methods in Molecular Biology, vol. 1201,
DOI 10.1007/978-1-4939-1438-8_2, © Springer Science+Business Media New York 2015

 Chapter 2

 From Sequence Mapping to Genome Assemblies

 Thomas D. Otto

 Abstract

 The development of “next-generation” high-throughput sequencing technologies has made it possible for
many labs to undertake sequencing-based research projects that were unthinkable just a few years ago.
Although the scientifi c applications are diverse, e.g., new genome projects, gene expression analysis,
genome-wide functional screens, or epigenetics—the sequence data are usually processed in one of two
ways: sequence reads are either mapped to an existing reference sequence, or they are built into a new
sequence (“de novo assembly”). In this chapter, we fi rst discuss some limitations of the mapping process
and how these may be overcome through local sequence assembly. We then introduce the concept of de
novo assembly and describe essential assembly improvement procedures such as scaffolding, contig order-
ing, gap closure, error evaluation, gene annotation transfer and ab initio gene annotation. The results are
high-quality draft assemblies that will facilitate informative downstream analyses.

 Key words Mapping , De novo assembly , Assembly improvement , Local assemblies , Bin assemblies ,
 Annotation

1 Introduction

 The aim of sequence assembly is to join short sequences of
n ucleotides (sequence reads 35–1,000 bp in length) into contiguous
sequences (contigs) that represent the sequenced DNA. Sequence
assembly is needed when no reference genome is available, or when
the sequenced DNA is too different from a potential reference
genome. In contrast, when strains or isolates are similar enough to a
reference sequence, reads can be mapped against this reference by
fi nding the unambiguous place where an alignment generates the
highest score for a given read, similar to a BLAST search. Figure 1
shows an example of reads from the Plasmodium falciparum IT
clone mapped to the MSP3 (Merozoite surface protein) gene of the
reference genome. Most of the regions are covered by mapped reads
and genetic variation is represented by red lines in the alignments.
But some regions are too polymorphic for reads to map. In this case,
only the comparison of the reference with the de novo assembly
reveals an insertion in the MSP3 gene in the IT strain.

20

 The basic idea of sequence assembly can be summarized as
follows. First, all the reads are compared against each other to
fi nd shared identical sequences, as is done by the programs like
CAP3 [1] and Celera [2]. Next, through joining reads by their
overlaps (identical sequence) the consensus sequence, usually in
discrete sequences called contigs, is generated (Fig. 2a). But due
to the high number of reads generated through recent sequenc-
ing technologies, the step of comparing reads to each other takes
too much time to be practical. One way around this is to use a
more effi cient representation of read similarity. Instead of look-
ing for overlaps, it is more effi cient to index all words of a spe-
cifi c length (k-mers) in all reads. Then an algorithm can generate
contigs by traversing a graphical representation (de Bruijn graph)
of the k-mers. Many high-throughput read assemblers use this
approach, like ABYSS [3], Velvet [4] or see CITATION 1 in
work document. A good introduction to the de Bruijn graph is

 Fig. 1 Mapping versus assembly. Two genes of P. falciparum 3D7 (red boxes) can be seen at the top. The hori-
zontal green and blue lines are mapped sequencing reads from the IT clone. Red points in the reads are dif-
ferences between the IT reads and the 3D7 reference. The lower part shows the de novo assembly of IT. The
 vertical bars are blast hits. The graphs are the coverage plots. Some regions of MSP3 in 3D7 are not covered
by mapped IT reads. The de novo assembly has an insertion, indicated by the shape of the blast hit. Reads map
even over this new assembled region

Thomas D. Otto

21

[5]. Unfortunately, assemblers rarely if ever generate one contig
per chromosome using short reads. The causes are usually repeti-
tive sequences, uneven or the complete lack of reads for particular
genome regions [6]. For example, reads from different copies of
a repeat will collapse into one contig, rather than into separate cop-
ies. To improve the contiguity of assemblies, large insert size librar-
ies can be used to bridge the diffi cult regions and join contigs into
scaffolds (also called supercontigs) [2 , 7 , 8]. The limitation is the
insert size, i.e., the distance between the paired reads, which deter-
mines the size of a problematic region that can be bridged.

 If a sequence is reasonably similar to a reference, scaffolds can
be further joined by ordering them against the reference [9 , 10].
Comparing against a reference helps to reveal where the genomes
are different, such as synteny breakpoints, insertions/deletions, or
differences in gene content. Other post-assembly improvements
are to close sequencing gaps (in the scaffolds) [11 , 12] and to cor-
rect single-base errors [13 , 14]. Methods for fi xing the latter are
based on mapping the reads against the assembly. The distance
between the two mates of a mapped read pair can also be used to
identify assembly errors [3]. If gene annotation (i.e., the positions
of exons and introns) is available for the reference this annotation

 Fig. 2 (a) Assembly with longer reads: Nearly identical overlap between reads enable the generation of the
consensus. (b) Assembly with short reads, using de Bruijn graph: First the reads are index and the k-mer are
stored in a hash table, including the k-mer and the frequency. With a k-mer length of 3 the k-mer TCG is non
unique. Due to this non unique k-mer, the graph quite complicated. (c) Overview of typical pipeline for de
novo assembly and annotation

Sequence Assembly

22

can be transferred to the new assembly in regions where the two
genomes are syntenic [15]. For regions of the new assembly without
synteny, ab initio gene prediction and function annotation must be
done. The resulting genome models can be merged with the trans-
ferred gene models.

 In this chapter we present methods to perform local assemblies
(for example of single genes), an assembly of unmapped reads (a so-
called bin assembly, for example of very diverse gene families), and a
complete assembly of genomes. Further, we describe methods to
improve the quality of an assembly and do a fi rst pass annotation.

2 Materials

 Bioinformatics analysis, especially in the assembly process, requires
not only appropriate computers, but also the right environment
with many installed tools and the knowledge of how to run them.
This chapter should help you to understand and apply the different
tools. To do so, we generated a tarball that contains all the needed
software packages (Table 1) of the work described here. This proto-
col is designed to work with the Linux operating system. To facili-
tate the application of the protocol, we generated a test data set that
can be used to go through the different steps. Finally, you will need
to bear in mind how much memory your computer will need to
process the data. For genomes up to 5 Mb we would recommend
up to 6 GB of memory. Genomes of 20, 100, and 200 Mb require
up to 20, 200, and 500 GB of memory. Those numbers will vary
depending on the structure of the genome, the quality of the reads,
the software used, and preprocessing of the reads. For the presented
example the computer would require around 2 GB of memory.

 The best way is to download the latest version of the programs
from their web sites (Table 1) and install them. Nevertheless need
to download the tar ball, see blow, as it contains some custom
scripts used in this chapter. The custom scripts from the tarball,
which are described in Table 2 .

 Alternatively it is possible to use a preinstallation, where all
tools are already installed and the necessary dependencies are set.
The requirement is a 64 bit Linux operating system. If this is the
case, do following steps to download and install it. Switch to the
bash shell and create a directory in which to install the software:
 $ bash
 $ mkdir -p ~/bin/Assembly
 $ cd ~/bin/Assembly

 Next download the fi le contains the software from the ftp
server. This fi le has to be extracted in a directory and the system-
wide variables have to be set:

2.1 Installation
and Resources

2.1.1 How to Install
the Programs

Thomas D. Otto

23

 $ wget
 ftp://ftp.sanger.ac.uk/pub/resources/software/
pagit/ParasiteProtocols.tgz
 $ tar xzf ParasiteProtocols.tgz
 $./installme.sh

 Table 1
 Description of the tools used in this chapter

 Name Description

 Read quality
 SGA [19] String graph assembler that has

functions to quality trim and
correct reads

 https://github.com/jts/sga

 Trimmomatic [8] Trims adapter from sequences www.usadellab.org/
cms/?page=trimmomatic

 Mappers
 SMALT Maps reads to a reference ftp://ftp.sanger.ac.uk/pub4/resources/

software/smalt/
 SAMTOOLS [20] Processes alignment fi les (SAM/

BAM)
 http://samtools.sourceforge.net/

 Assemblers
 Velvet[4] Assembler based on de Bruijn

graphs
 http://www.ebi.ac.uk/~zerbino/velvet/

 Post-assembly genome improvement
 REAPR [3] Assesses quality of sequences and

can break assemblies
 ftp://ftp.sanger.ac.uk/pub4/resources/

software/reapr/
 SSPACE [7] Scaffolder http://www.baseclear.com/

landingpages/basetools-a-wide- range-
of-bioinformatics-solutions/
sspacev12/

 ABACAS [9] Tools to order contigs against a
reference sequence

 http://abacas.sourceforge.net/

 IMAGE [11] Closes sequencing gaps and extends
contigs by local assembly

 http://sourceforge.net/projects/
image2/fi les/

 ICORN [13] Corrects 1–3 bp errors in sequences http://icorn.sourceforge.net/
 PAGIT [24] Toolkit that joins ABACAS,

IMAGE, ICORN, and RATT
 http://www.sanger.ac.uk/resources/

software/pagit/

 Annotation
 RATT [15] Transfers annotation from a

reference to a query, based on
synteny

 http://ratt.sourceforge.net/

 AUGUSTUS [23] Gene prediction software for
Eukaryotic organisms

 http://augustus.gobics.de/binaries/

 Glimmer [22] Gene prediction software for
bacteria

 http://www.cbcb.umd.edu/software/
glimmer/

 Prokka [7] Software to annotate bacterial
genomes

 http://vicbioinformatics.com/

Sequence Assembly

ftp://ftp.sanger.ac.uk/pub/resources/software/pagit/ParasiteProtocols.tgz
ftp://ftp.sanger.ac.uk/pub/resources/software/pagit/ParasiteProtocols.tgz
https://github.com/jts/sga
www.usadellab.org/cms/?page=trimmomatic
www.usadellab.org/cms/?page=trimmomatic
ftp://ftp.sanger.ac.uk/pub4/resources/software/smalt/
ftp://ftp.sanger.ac.uk/pub4/resources/software/smalt/
http://samtools.sourceforge.net/
http://www.ebi.ac.uk/~zerbino/velvet/
ftp://ftp.sanger.ac.uk/pub4/resources/software/reapr/
ftp://ftp.sanger.ac.uk/pub4/resources/software/reapr/
http://www.baseclear.com/landingpages/basetools-a-wide-range-of-bioinformatics-solutions/sspacev12/
http://www.baseclear.com/landingpages/basetools-a-wide-range-of-bioinformatics-solutions/sspacev12/
http://www.baseclear.com/landingpages/basetools-a-wide-range-of-bioinformatics-solutions/sspacev12/
http://www.baseclear.com/landingpages/basetools-a-wide-range-of-bioinformatics-solutions/sspacev12/
http://abacas.sourceforge.net/
http://sourceforge.net/projects/image2/files/
http://sourceforge.net/projects/image2/files/
http://icorn.sourceforge.net/
http://www.sanger.ac.uk/resources/software/pagit/
http://www.sanger.ac.uk/resources/software/pagit/
http://ratt.sourceforge.net/
http://augustus.gobics.de/binaries/
http://www.cbcb.umd.edu/software/glimmer/
http://www.cbcb.umd.edu/software/glimmer/
http://www.cbcb.umd.edu/software/glimmer/

24

 Each time you want to run one of the programs, do following step:
 $ source ~/bin/Assembly/sourceme.sh

 Alternatively, include the last command at the end of the ~/.
bashrc system fi le.

 There are several software components installed in the package,
which are summarized in Table 1 . They are ordered by groups:
read processing tools, assemblers, scaffolders, post-assembly
improvement tools, annotation tools, and custom Perl scripts that
will be needed in this protocol, Table 2 . All the tools will be dis-
cussed in detail through this chapter.

 To help the user to understand the protocol, we included a test
dataset for each section. The data are from a re-sequencing proj-
ect, concerning the Malaria parasite P. falciparum . Here we only
consider chromosome 10 of the IT clone. The complete genome

2.1.2 Software

2.1.3 Test Dataset

 Table 2
 Custom scripts from the tarball

 Scripts from the tarball

 stats Returns assembly statistics

 map.smalt.sh Wrapper script for smalt

 revcompFastq.pl Reverse complements fastq fi les

 sga2readpair.pl Generates two paired fastq fi les from a
merged fastq fi le (SGA correction output)

 deNovoPlus.sh Script to run the assembly and the
correction step in one call

 gff2gb.sh Transforms an Artemis gff to a genbank fi le

 augustusAnnotate.sh Takes an Augustus gtf and annotates it with
the fi rst blast hit as embl fi le

 annotation.MergeAnnotationSecondAway.pl Joins gene models as embl, and excludes a
model from the second set, if it overlaps
with a model from the fi rst set

 excludeGeneEMBL.pl Deletes gene models in an EMBL fi le from
a given list.

 annotation.giveIDCDS.pl Generates automatically geneIDs

 AllCommands.sh All the commands used in this chapter,
adapted to the latest version of the
software and correct for possible errors

 RemoveSequencesSmaller.pl Removes fasta entries that are smaller than a
given parameter

 BAM2consensus_reads.pl Script that takes mapped reads and returns
reads with consensus sequence

Thomas D. Otto

25

can be found on Gene DB [16]. As reference we will be using the
3D7 clone.

 To work with the data change to the directory:
 $ cd $ASSEMBLY_HOME/testdata
 $ ls

 The test reads are called reads_1.fastq, reads_2.fastq,
reads_3k_1.fastq, and reads_3k_2.fastq. The reference chromo-
some 10 from 3D7 is called ref.fa. There are four scripts:
Mapping.sh, LocalAssembly.sh, BinAssembly.sh, and deNovoAs-
sembly.sh. Type:
 $ cat *.sh

 to see all the commands

 Several sequencing technologies are available to date but it is not
our aim to discuss them here [4]. For a successful assembly the
reads should ideally have the following properties:

 1. Be fairly uniformly distributed across the genome sequence.
 2. Have enough coverage of the genome, i.e., 80× coverage with

100 bp reads. Longer reads will reduce the coverage need.
 3. Read pair information seems to be vital to make a good assem-

bly. The fragment size should be around 500 bp.
 4. Large insert size libraries will help to scaffold more complex

and larger genomes. Those libraries are called from time to
time also mate pairs.

 This protocol should be applicable to sequences of the length
of 76–250 bp in suffi cient depth, as provided by SOLID, Illumina,
or Ion torrent. For scaffolding the large insert size libraries
(8/20 kb) of the 454 technology are also helpful.

 The importance of uniformity of the read distribution is often
underestimated. This means that the amount obtained from each
region of the genome should be similar. But due to PCR amplifi ca-
tion steps, extreme GC content is amplifi ed differently. This can
result in uneven coverage that hinders the performance of assem-
blers. The following publication might be useful for further details
[17]. In our experience, good DNA quality and good library prep-
aration are the most crucial steps for a good de novo assembly.

3 Methods

 Here we describe the methods of the sections: read preprocess-
ing, mapping, local assembly, de novo assembly, and annotation.
For most of the step we provide further information in
Subheading 4 .

2.2 Sequencing
Technology

Sequence Assembly

26

 Before the reads can be used for assembly, sequencing adapters
have to be trimmed. Bad quality regions of reads could also be
trimmed. When not enough coverage is available (<80×), it is
advisable to correct the reads. However, we would recommend
trying the assembly without read correction fi rst. If the assembly
fails due to runtime and memory requirements, you should use the
read correction.

 1. To clip the reads for adapter you can use a program like trim-
momatic [8]. Assume that your reads are called reads_1.fastq
 $ java -Xmx1000m -jar $PAGIT_HOME/trimmo-
matic-0.32.jar PE reads_1.fastq reads_2.fastq
trimmed_1.fastq trimmo_unpaired_1.fq trimmed_2.
fastq trimmo_unpaired_2.fq ILLUMINACLIP:adapters.
fasta:2:10:7:1:MINLEN:50

 Though the call looks a bit long, the reads with the
trimmed adapters are in the fi les trimmed_1.fastq trimmed_2.
fastq. The fi le “adapters.fasta” contains the adapters used in
the sequencing process.

 2. To cut low-quality ends of reads, it is possible to use the pro-
gram “preprocess” from the assembler SGA [19].
 $ sga preprocess -m 51--ermute-ambiguous -f
3 -q 3 -p 1 reads_1.fastq reads_2.fastq > reads_
trimmed.fastq

 3. To correct reads from sequencing errors, SGA also has a func-
tion. But fi rst the reads have to be indexed.
 $ sga index reads_trimmed.fastq
 $ sga correct -k 51 -x 5 -o
reads_corrected.fastq reads_trimmed.fastq

 Here, a k-mer of 41 bp in the reads (-k) that occurs less
than fi ve times (-x), will be corrected to a k-mer that occurs
with the expected frequency.

 4. The output of SGA will be one merged fi le, where reads might
have been discarded due to general bad quality. To generate
again forward and reverse reads (or read one and two), use fol-
lowing command:
 $ sga2readpair.pl reads_corrected.fastq reads_corr

 A good fi rst analysis step is to map the reads against a closely related
reference (i.e., 90 % nucleotide identity), if one exists. Here we are
going to use the mapper SMALT. The fi nal output of this mapping
process will be a BAM fi le, which contains all the reads, including
their sequence and quality, as well as mapping information (see Fig. 3).
Assuming your reference is called ref.fa and your reads reads_1.fastq
and reads_2.fastq, the following steps need to be done:

3.1 Read
Preprocessing

3.2 Mapping
the Reads

Thomas D. Otto

27

 1. For pragmatic reasons, it might be good to link the name of
your fi les to the names used here:
 $ ln -s YOUR_REFERENCE ref.fa
 $ ln -s YOUR_READS_1.fastq reads_1.fastq
 $ ln -s YOUR_READS_2.fastq reads_2.fastq

 2. To see the differences between the fasta and the fastq format
(Fig. 3) use the Linux command “head”:
 $ head ref.fa reads_1.fastq

 3. First your reference has to be indexed:
 $ smalt index -k 17 -s 3 ref.fa ref.fa

 Here, all words (so-called k-mer) of 13 bp in the genome
are counted and stored in an effi cient way through hashing.
A short summary of the number of k-mers and the runtime is
given. The output will be two fi les: ref.fa.sma and ref.fa.smi.

 4. Comparing those k-mers between the reference and the reads,
the mapper is able to decide where in the genome each read
could be placed.
 $ smalt map -i 1000 -m 50 -r 0 -f samsoft -o
Mapped.sam ref.fa reads_1.fastq reads_2.fastq

 Fig. 3 Examples of different fi le formats. (a) fasta: Each sequence starts with a “>” and a name. Then the
sequence is followed. (b) fastq: Similar to fasta, but with the quality coded in ASCII. (c) SAM format: First col-
umn is the name of the read. Next column is the mapping fl ag that can be used for querying a BAM fi le. Third
and fourth, seven and eight columns are mapped to the reads and its mate, respectively. Column nine is the
fragment size. The information how well the reads map is in column fi ve and six, mapping quality and cigar
string, respectively. The sequence and the quality of the reads are stored in column ten and eleven. The last
column can have many different information, like an alignment score, other possible position to map repeti-
tively. This depends on the mapper

Sequence Assembly

28

 As parameters you can set the maximum expected frag-
ment size for a read pair to be properly paired (-i), place
reads repetitively (-r), and exclude reads that map with a
lower Smith- Waterman alignment score than 50 (-s). The
reads are stored in the fi le Mapped.sam in SAM format [20]
(-o -f samsoft). An example of the SAM format can be seen
in Fig. 3 . It is a well- defi ned format, including for each read
how and where it is mapped (column 2–6), where its mate is
mapped, the sequence of the read and its quality and fi nally
some tags.

 5. If you want to map a large insert library (more than 1 kb), fi rst
the reads have to be reverse complemented.
 $ revcompFastq.pl reads_3k_1.fastq rev.
reads_3k_1.fastq
 $ revcompFastq.pl reads_3k_2.fastq rev.
reads_3k_2.fastq

 For the mapping the settings for the fragment size have
to be adapted. With a library of 3 kbp, a limit of 5 kbp should
be set.
 $ smalt map -i 5000 -j 1000 -m 50 -r 0 -f
samsoft -o Mapped_3K.sam ref.fa rev.
reads_3k_1.fastq rev.reads_3k_2.fastq

 The newly introduced -j parameter limits the minimal dis-
tance for mates. If you have more libraries, repeats this step.

 6. Next, we will transform the SAM fi le into a binary version,
called BAM. This will enable us to do more analysis, and save
disc space, as long as you delete the SAM fi le after the
transformation:
 $ samtools view -b Mapped.sam -t ref.fa.fai |
samtools sort - Mapped
 $ samtools index Mapped.bam
 $ rm Mapped.sam

 For mapping of the large insert, just adapt the commands
by changing the fi le name Mapped to Mapped_3K.

 7. If you would like to visualize the mapping you could use
Artemis BAMview [21],
 $ art -Dbam = Mapped.bam ref.fa

 Although mapping is a powerful method, there are limitations:
Some regions in the reference might be too polymorphic for reads
to be mapped. Nor can larger insertions be detected. In this section
we will fi rst present steps showing you how to analyze those poly-
morphic regions by reassembling reads that map around it. Then we
show how to assess larger insertions or new DNA elements through
the assembly of non-mapped reads, the so-called bin assembly .

3.3 Local
Assemblies

Thomas D. Otto

29

 1. To reassemble a specifi c region we will need to gather the reads
of this region (or at the border of it) and save them in the SAM
format. We use samtools for this:
 $ samtools view Mapped.bam Chr:From-To |
sort>Region1.sam

 “Chr” is the name of the replicon and “From”-“To” the
position of the target region. For this example use the
Pf3D7_10_v3:1404400-1405500.

 2. It is always good to have a look at the extracted reads to check if
they come from the correct region, see column three and four:
 $ head Region1.sam

 3. Those reads can now be assembled.
 $ velveth Assembly.55 55 -sam -short Region1.sam
 $ velvetg Assembly.55 -exp_cov auto

 The fi rst step generates the so-called de Bruijn graph. The
next step is to generate the contigs from it. The parameters
specify the input format (-sam), short reads (-short), and the
expected median k-mer coverage (-exp_cov auto) here deter-
mined automatically.

 4. Both programs generate a lot of output: # of reads, # k-mers,
average coverage etc. To obtain statistics of the assembly, look
at the last line: The number of nodes indicates the number of
contigs, so the pieces obtained from the assembly. The n50 is a
continuity metric, max is the length of the largest contig, total
the size of the assembly, and the last two numbers are the
amount of reads used in the graph versus the total amount.
Another way to look at the same statistics is the program stats:
 $ stats Assembly.55/contigs.fa

 5. As explained in Subheading 4.3 , step 2 the k-mer has the
strongest impact on the assembly. It is good to iterate through
different k-mer values in an automated fashion to optimize the
assembly:

 $ for ((kmer=31;$kmer<=73;kmer+=6)) ; do
 velveth Assembly.$kmer $kmer -sam -short
Region1.sam>out.velh.$kmer.txt;
 velvetg Assembly.$kmer -exp_cov auto>
out.velg.$kmer.txt
 done

 This time each assembly output is written to a different
fi le, through the “>” command.

 6. To analyze the different assemblies, we “grep” the line that starts
with “Final” in all the output fi le of velvetg and different k-mers:
 $ grep "^Final" out.velg.*.txt

Sequence Assembly

30

 Which assembly is the best? For local assemblies you would
expect one contig that represents the targeted region.

 7. The result of the assembler is the fasta fi le Assembly.55/con-
tigs.fa (or another k-mer depending on your genome). One
way to analyze it would be to load it into Artemis or blast it
against a public database. But in some cases the local assembly
didn’t return one contigs, but several. Our approach has two
caveats: Some reads are too divergent to map, or an insertion
occurred and we are not using the mate pairs. The following
command will pull in the read’s mate, even if it doesn’t map:
 $ samtools view Mapped.bam | awk '($3==”Chr”
&& $4>=From && $4<=To) || ($7==”Chr” &&
$8>=From && $8<=To)' | sort>Region2.sam
 If you are following the example use Pf3D7_10_
v3, 1394400, and 1400000 for the parameters
“Chr,” “From,” and “To,” respectively.

 8. To assemble paird reads, just adapt the Velvet call as follow:
 $ velveth AssemblyRP.55 55 -sam -shortPaired
Region2.sam
 $ velvetg AssemblyRP.55 -exp_cov auto -ins_
length 400 -ins_length_sd 30 -min_pair_count 15

 The changes tell Velvet that the input fi le contains mate
pairs and that their fragment size is 400 with a standard devia-
tion of 30 % of the library. “-min_pair_count” is the number of
read pairs needed to join two contigs into a scaffold. n.b. Here
the fragment size is the median, rather than the maximal frag-
ment size, as is the case with SMALT.

 9. In case of large insert libraries, repeat step 8 to gather those
reads:
 $ samtools view Mapped_3K.bam | awk ‘($3==”Chr”
&& $4>=From && $4<=To) || ($7==”Chr” &&
$8>=From && $8<=To)’ | sort>Region2_3K.sam

 The following parameters are added to the Velvet com-
mands to include a second library:
 $ velveth AssemblyRP_3K.55 55 -sam -shortPaired
Region2.sam -sam -shortPaired2 Region2_3K.sam
 $ velvetg AssemblyRP_3K.55 -exp_cov auto
-ins_length 400 -ins_length_sd 30 -ins_
length2 3000 -ins_length2_sd 30

 Again, have a look at the statistics. The number of bases in
the assembly should have increased signifi cantly.

 10. The next step would be to iterate again through the k-mers as
shown in step 6 . In this part we showed you how to assemble
a specifi c region of the genome. We would encourage the

Thomas D. Otto

31

reader to apply those commands to the example of the MSP3
and S-antigen gene from the exercise, see Subheading 2.1.1 .
This procedure is appropriate if reads map to the reference but
have many differences. Next we show how to get hold of the
sequences that are completely different to the reference, like
plasmids or very divergent multigene families.

 11. The following command returns all the reads that don’t map as
proper pairs:
 $ samtools view -F 2 Mapped.bam | head

 But as discussed before, we would like to get just the mate
pairs that don’t map. The fl ag 4 is set if the read is not mapping
and the fl ag 8 is set if the mate is not mapping. Adding the
fl ags will return when both don’t map:
 $ samtools view -f 12 Mapped.bam | sort>
NotMapped.sam

 12. Now we can assemble the reads as before. You might want to
run the last call also for the large insert library. Here is the
assembler call for one library:
 $ velveth Bin.55 55 -sam -shortPaired
NotMapped.sam
 $ velvetg Bin.55 -exp_cov auto -ins_length 400
 -min_contig_lgth 300 -cov_cutoff 5

 Two new parameters are introduced. First we want to ignore
contigs smaller than 300 bp (min_contig_lgth). Next, regions
(or nodes in the de Bruijn graph) that have a coverage of less
than 5 k-mer are ignored from the assembly (cov_cutoff). This
will minimize the possibility of false joins. If the read coverage is
even you can set this option to (auto). The value will be set to
half of the “exp_cov” parameter. We chose the name “bin” as
many users tend to forget about the non- mapped reads.

 13. Depending on the size of the organism whose genome you are
assembling, the number of contigs might be signifi cantly
higher than in our little example. Now it is even more impor-
tant to use different k-mers. The call would look like:
 $ for ((kmer=31;$kmer<=73;kmer+=6)) ; do
 velveth Bin.$kmer $kmer -sam -shortPaired
NotMapped.sam>out.velh.$kmer.txt;
 $ velvetg Bin.$kmer -exp_cov auto -ins_length 400
-min_contig_lgth 300 -cov_cutoff 5>out.velg.
$kmer.txt
 done

 14. To look at the results you could again use the grep call, or use
the little stats script:
 $ stats Bin.*/contigs.fa

Sequence Assembly

32

 It is important to keep in mind, that those statistics do not
tell you, how good (in terms of errors) the assembly really is.
In the next section we are going to introduce a tool called
REAPR that can evaluate the quality of the assembly, and
return corrected assembly statistics.

 15. Now include the mate pair library. Redo the step 11 with
the Mapped_3K fi le and run the assembly like in step 9 .
Use the stats command to see the impact of the library, espe-
cially the N_count.

 16. At this step you might have generated larger sequences (several
kbp) of the target region. In the example those will be subtelo-
meric regions with the genes of different gene families. To look
at it, you could for example load it into Artemis (fi le Bin.55/
contigs.fa) and detect open reading frames (ORF), see
Subheading 4 . Alternatively you run ab initio gene fi nding
tools like Glimmer [22] or Augustus [23], see Subheading 3.5 .

 Although the bin and local assemblies are powerful ways to get results
quickly, in many cases a complete de novo assembly is necessary.
Reasons are that no reference is available or is too divergent, or the
mapping and SNP calls aren’t accurate enough. Also, it is more dif-
fi cult to combine a local assembly with the reference into a contigu-
ous sequence than to do a de novo assembly. We assume that the
reader has understood the earlier steps, as this section builds on them.

 In the sections before, we performed de novo assemblies on a
limited read set. Now we are going to use all the reads. The assem-
bly call won’t be very different, but we are going to do improve-
ment of the assembly. Let’s again assume that your short insert
reads are called reads_1.fastq and reads_2.fastq and the reads of the
large insert library are reverse complemented and called rev.
reads_3k_1.fastq rev.reads_3k_2.fastq, see Subheading 3.2 , step 5 .

 1. To run the assembly is straight forward:
 $ for ((kmer=31;$kmer<=73;kmer+=6)) ; do
 velveth deNovo.$kmer $kmer -fastq -shortPaired
-separate reads_1.fastq reads_2.fastq -fastq
-shortPaired2 -separate rev.reads_3k_1.fastq
rev.reads_3k_2.fastq>out.velh.$kmer.txt;
 velvetg deNovo.$kmer -exp_cov auto -cov_cut-
off 5 -ins_length 400 -min_contig_lgth 300
-ins_length2 3000 -ins_length2_sd 30>out.
velg $kmer.txt;
 done

 2. As before you can now look into the assembly with the stats script,
or grep the line in the output fi les, see Subheading 3.3 , step 4 .

 3. You might not necessarily want to optimize the assembly based
on the n50. One example would be to increase the number of

3.4 Whole Genome
Assembly

Thomas D. Otto

33

genes of a specifi c gene family, which is very repetitive. So
instead of looking at a large n50 you want to increase the num-
bers of genes. In general, a higher k-mer will better separate
the different copies. Also the modifi cation of the “-max_diver-
gence” parameter might help.

 4. The next step is to check the quality of the assembly. Just
because the assembly has good statistics, doesn’t mean it is a
good one with no error.

 REAPR [3] is a tool that can fi nd errors in assembled
sequences by remapping the reads. First, the reads, ideally
from a large insert library, have to be mapped against the
assembly. This can be done with the commands of
Subheading 3.2 , or with this little program from the tarball:
 $ map.smalt.sh deNovo.55/contigs.fa rev.
reads_3k_1.fastq rev.reads_3k_2.fastq Mapped
Novo55 5000

 This will generate the BAM “MappedNovo55.bam” of the
mapped mate pairs on the chosen assembly. As parameter the
script uses “-x,” “-r 0,” and “-y 0.8.”

 5. Now we can run REAPR:
 $ reapr pipeline deNovo.55/contigs.fa Mapped
Novo55.bam Reapr.55

 Different metrics are going to be applied to decide which
bases are correct and which are wrong; scaffolds will be broken
where there are errors. The important outputs are in the report
fi le with the new statistics of the assembly (05.summary.report.
txt) and the new assembly fi le 04.break.broken_assembly.fa.

 6. In choosing the best assembly it is better to compare the cor-
rected n50s rather than those given by the assembler. For each
assembly the mapping and REAPR would need to be run.

 7. Once we choose the best assembly, we are going to do another
round of scaffolding using the program SSPACE. Though
assemblers themselves have a scaffolding step, other scaffold-
ing might improve the assembly. First we are going to iterate
through different settings of the short library, and then the
mate pair library. To prepare the call type:
 $ echo “LIB1 reads_1.fastq reads_2.fastq 400
0.3 FR”>lib1

 8. The resulting fi le will provide SSPACE with the fragment size
(400 bp), the standard deviation (30 %), and the read orienta-
tion FR (Forward/Reverse). If your library has a different frag-
ment size, adapt the command in step 7 . Now run SSPACE:
 $ SSPACE_Basic_v2.0.pl -l lib1 -s
Reapr.55/04.break.broken_assembly.fa -k 200
-n 31 -b out.200

Sequence Assembly

34

 The parameters indicate the nature of the reads (-l lib1),
the input fi le, the result from REAPR (-s), the number of mates
needed to join two contigs/supercontigs (-t) to a supercontig,
how many bases must overlap to merge two contigs rather than
scaffolding them and -b, the output. The fi le out.200.summa-
ryfi le.txt gives a summary of the mapping and scaffolding and
out.200.fi nal.scaffolds.fasta holds the current assembly.

 9. In the step before, we used 200 mates to join two contigs.
This might sound a lot, but we are looking at fragment
 coverage, rather than read coverage. Also, the way SSPACE
works, the best results are obtained by fi rst making the most
high scoring joins and then running SSPACE again with a
decreasing k parameter.
 $ SSPACE_Basic_v2.0.pl -l lib1 -s out.200.
fi nal.scaffolds.fasta -k 100 -n 31 -b out.100
 $ SSPACE_Basic_v2.0.pl -l lib1 -s out.100.
fi nal.scaffolds.fasta -k 50 -n 31 -b out.50
 $ SSPACE_Basic_v2.0.pl -l lib1 -s out.50.
fi nal.scaffolds.fasta -k 10 -n 31 -b out.10

 Looking at the statistics of the scaffolding results you
should see a clear decrease in the number of contigs/scaffolds.
 $ stats out*.fi nal.scaffolds.fasta

 We would encourage the reader to try to scaffold the out-
put directly with 10 read pairs for the -k parameter to compare
the effect on their assembly.

 10. Now we are going to scaffold with the mate pair library. One
important point must be made. Small contigs of less than 500 bp,
which belong between two larger contigs, might not be included
in the scaffold, as the number of large-insert reads between the
large contigs is higher than between them and the smaller contig.
To our knowledge no scaffolder solves this problem in a satisfy-
ing manner. Therefore we normally exclude contigs smaller than
500 bp. The hope is that in the later stages we can regenerate the
sequence by doing gapclosing, step 18 . Leaving the contigs in
would make this more diffi cult. The size limitation can be added
in the velvetg step or with the following PERL script:
 $ RemoveSequencesSmaller.pl out.10.fi nal.
scaffolds.fasta 500>SSPACE.1.fasta

 11. Here the command to prepare and run SSPACE on the mate
pair library:
 $ echo “LIB2 reads_3k_1.fastq reads_3k_2.
fastq 3000 0.3 RF”>lib2

 Note, you don’t have to use the reverse complemented
reads; you can set the direction to RF rather than FR.

Thomas D. Otto

35

 $ SSPACE_Basic_v2.0.pl -l lib2 -s
SSPACE.1.fasta -k 500 -n 31 -b out2.500

 Next rerun the command, decrease k, as shown before for
the short insert library.

 12. Compare the number of scaffolded contigs between the use of
short and large insert size libraries. Generally, large insert
libraries have a strong impact on the contiguity of the sequence.
They enable bridging of repetitive regions. This is very valu-
able for parasites which may have repetitive subtelomeric
sequences and to improve comparison between different iso-
lates for structural variation.

 13. Remember that the assembler already did some scaffolding. It
might be advantageous to tell velveth not to use the large insert
size library for scaffolding. Scaffolder can use the complete
length of the reads to place reads (rather than just the k-mer)
and they can deal with PCR duplicates. The call would look as
follows for a k-mer of 55:
 $ velveth deNovoSE.55 55 -fastq -shortPaired
-separate reads_1.fastq reads_2.fastq -fastq
-short -separate reads_3k_1.fastq rev.
reads_3k_2.fastq
 $ velvetg deNovoSE.55 -exp_cov auto -cov_cut-
off 5 -ins_length 400 -min_contig_lgth 300

 14. In some projects a mix of different sequencing technologies
are used. The scaffolding step might be the best step at which
to combine the different technologies. Assuming you have a
BAM fi le of the mapped reads, do:
 $ samtools view -F12 Mapped454.bam | awk
'$7!="="' | sort | BAM2consensus_reads.pl
Assembly.fa Reads_Scaff

 15. We are again using awk, sort, PERL, and pipes. As parameter
for the PERL program BAM2consensus.pl you have to pro-
vide the assembly sequence (Assembly.fa) and the result prefi x
for the new read fi les (Reads_Scaff).

 16. As mentioned before most of the errors are introduced to the
assembly in the scaffolding step. Therefore we recommend
that you rerun REAPR. Caution must be taken for the fact that
SSPACE renames the scaffolds, including a pipe symbol. The
following function of REAPR can be used to rename them:
 $ reapr facheck out2.10.fi nal.scaffolds.fasta
ForReapr.fa

 Now we have long scaffolds with sequencing gaps and
some base errors. In the next steps we are going to try to close
sequencing gaps with IMAGE ([11]) and correct base errors
using ICORN ([13]). If you have a closely related reference

Sequence Assembly

36

you can order your scaffolds against it and transfer the annota-
tion, using the tools ABACAS and RATT. These programs are
part of the PAGIT pipeline [24]. PAGIT has an automated
way to invoke the tools; however here we are presenting the
specifi c program calls. For more in-depth information we rec-
ommend to read the PAGIT protocol paper.

 17. If you don’t have a reference sequence available, do
 $ PAGIT.noRef.sh ResultReapr.fa read_1.fastq
reads_2.fastq 500 Final.fa

 To call the script successfully give it your current assembly,
the reads, the insert size, and the fi nal result name.

 18. The PAGIT script will fi rst run nine iterations of gapclosing
and contig extension, decreasing the k-mer length every three
iterations from 71, to 55 and then 41. The calls look like:
 $ image.pl -scaffolds ResultReapr.fa -prefi x
reads -iteration 1 -all_iteration 3 -dir_
prefi x ite -kmer 71 -smalt_minScore 60
 $ restartIMAGE.pl ite3 55 3 partitioned
 $ restartIMAGE.pl ite6 41 3 partitioned

 Local assemblies are done for each sequencing gap and at
the ends of contigs, by including the mate pairs that don’t
map, as done in Subheading 3.3 , step 7 . The k-mer for the
assembly can be changed as can the minimal score for a read to
be placed with SMALT (smalt_minScore - the “-s” parameter
in Subheading 3.2 , step 4). Again, we encourage the reader to
change the parameters and analyze the impact. In the end, the
contigs are joined and placed in the fi le Res.image.fasta by
 $ contigs2scaffolds.pl ite9/new.fa
ite9/new.read.placed 300 10 Res.image

 19. After the IMAGE step, 50–80 % of the sequencing gaps should
be closed and many scaffold ends extended. Next, we are going
to apply the tool ICORN to correct base errors. Compared to
REAPR it looks for 1–3 bp errors and corrects them. REAPR
scores single bases rather than correcting them. Reads are
mapped with SMALT and differences between reads and the
reference are found and corrected.
 $ icorn2.start.sh Reads 500 Res.image.fa 1 3

 As before, the reads, fragment size, and the input reference
from IMAGE are passed to the script. The last two parameters
are the iteration start and stop. The output will be a summary
fi le (Res.image.fasta.summary.txt) and the corrected sequence
fi le (Res.image.fasta.4). If run through the PAGIT pipeline the
fi nal result will be called Final.fa. The next step for the analysis
would be to start with the ab initio annotation of genes, see
Subheading 3.5 .

Thomas D. Otto

37

 20. In cases where a reference sequence is available, the PAGIT
pipeline has a tool to order the contigs against the reference,
and to transfer the annotation. This following call will also
invoke the gap closing (IMAGE) and correction (iCORN)
steps:
 $ PAGIT.sh ResultReapr.fa read_1.fastq reads_
2.fastq 500 Final ref.fa AnnotationDIR

 The call is very similar to the above one, with the excep-
tion that the reference and a directory with the annotation of
the reference are given.

 21. In the fi rst step, the scaffolds will be ordered against a refer-
ence. A certain caution must be taken however. If it is known
that the species under study has many synteny breaks relative to
the reference, the resulting order might not be correct.
Furthermore, we recommend deleting regions (or replace
them with n’s—the symbol for an ambiguous base) where
there is evolutionary pressure, as in virulence factors or the
subtelomeres of species such as Plasmodium or Trypanosomes .
To put it another way, you would like the scaffolds to be
ordered only against the well-conserved parts of the reference.

 22. As discussed, the PAGIT pipeline will order the contigs with
the following command:
 $ abacas.pl -r ref.fa -q ResultReapr.fa -p
nucmer -d

 If you work with more divergent species, you might want
to change nucmer to promer in the PAGIT.sh script. Instead of
using nucleotide similarity, an amino acid comparison will be
done. The result will be a multifasta fi le. Scaffolds ordered
against a reference chromosome will be joined with n’s and are
now named after the reference replicon.

 23. After this step, IMAGE and ICORN will be run again (steps
16 and 17).

 24. Now it is possible to transfer the annotation onto the improved
assembly with RATT. The call used by the PAGIT script is:
 $ start.ratt.sh AnnotationDIR ForRatt.fa
Transfer Species

 Similar to ABACAS, the last parameter determines the
similarity. Due to the nature of the program it won’t work with
amino acid comparisons. The parameter Species is the most
robust. If your reference is very similar, and the assembly is
contiguous, in pieces larger than 10 kb, we would recommend
the value “Assembly” or “Strain” for this parameter. The value
“Transfer” is a prefi x for the result fi les. “AnnotationDIR” is
the position of the reference annotation in embl format. Note
that you might need to adapt the confi guration fi le of RATT,
with a simple editor. Here is the position of the fi le:

Sequence Assembly

38

 $ echo $RATT_CONFIG
 This confi guration fi le enables you to set the start codons,

splice sites and if pseudo genes should also be corrected.
 25. The result of RATT is one annotation fi le for each replicon,

starting with Transfer.*.fi nal.embl (ordered and unordered
scaffolds). You can open them in Artemis. To compare these
with the reference, use ACT. ACT can be seen as two Artemis
view joined by a similarity comparison, see Fig 1 . First we will
generate this comparison fi le for a single chromosome by
extracting the chromosome sequence from the multifasta fi le,
preparing it and blasting it.
 $ samtools faidx ref.fa RefChr>RefChr.fa
 $ formatdb -p F -i RefChr.fa
 $ blastall -p blastn -m 8 -e 1e-6 -d RefChr.fa
-i Sequences/deNovoSuper -o comp.RefChr.blast

 where RefChr.fa is the name of the reference chromosome.
Without going into too much detail, the reference chromo-
some is being compared to scaffolds or ordered scaffolds, from
the PAGIT pipeline. These sequences are in the folder
“Sequences.” To start ACT, use the reference fi le, which
should be in the folder “embl,” the comparison fi le you just
generated. The result fi le from RATT is Transfer.deNovoSu-
per.fi nal.embl.
 $ act AnnotationDIR/RefChr.embl comp.RefChr.
blast Transfer.deNovoSuper.fi nal.embl

 26. In ACT, it is possible to see insertions, deletions, and rear-
rangements in the comparison window. To evaluate the RATT
transfer, load onto the reference chromosome the fi le Transfer.
RefChr.NOTTransfered.embl (click on File->2nd option
->Read an Entry). This fi le will show the gene models that
weren’t transferred. Lastly, load the GFF fi le from the “Query”
folder, and look for the synteny tag. These regions have no
synteny to the reference, and are probably insertions.
Furthermore, those will need to be annotated separately.
Figure 1 is an example of an ACT view.

 27. Using ACT, it would be possible to look for Open Reading
Frames (ORFs), not overlapping RATT-transferred annotation
and follow the description of Subheading 4.3 , step 10 .

 28. Although at this stage we have an improved, annotated
genome, one quality check remains to be done. We recom-
mend doing a “bin” assembly as described in Subheading 3.3 .
During the process, we deleted small contigs, which might
contain important sequences. Also, some assemblers exclude
reads with an extreme k-mer coverage, for example those
derived from mitochondrial or plasmid DNA. Furthermore,

Thomas D. Otto

39

maybe something went wrong in the process—there could
have been a truncated fi le. If the bin assembly contains inter-
esting sequences, join it with the current, improved assembly:
 $ cat ForRatt.fasta bin.55/contigs.fa>
Joined.Assembly.fasta

 29. Each program generates temporary fi les, which use a lot of
space. For example, IMAGE generates ite*/ directories,
SSPACE creates several mapping directory or ICORN does
ICORN2_*/ directories. Those should be deleted on a regu-
lar base with the rm command, i.e:
 $ rm -rf ICORN2_*/ ite*/ reads/ bowtieouput/

 30. Some of you may have noticed that it would be possible to fi rst
run IMAGE to extend contigs, then run the scaffolder. Or,
perhaps it would be good to scaffold the bin contigs into the
improved assembly. Both these points are true and we hope to
have given the reader the impression that each process can be
seen as a module. The order can be changed, and processes
 iterated. The aim of this protocol is to show the reader the pos-
sibilities of generating assemblies and improving them.

 In the previous section we showed how to improve the quality of a
genome sequence and how to transfer annotation from a reference
onto the assembly. But the genome is far from being well annotated:
Where its sequence is not similar to the reference, like in multigene
families or insertions, the annotation would be transferred poorly or
not at all. To annotate those regions, an ab initio gene prediction
must be done. (The same would need to be done, when no closely
related reference exists.) Here we present a method of predicting
gene models and a fi rst pass functional gene annotation. In the end,
we show how to merge the new annotation with the RATT trans-
ferred annotation.

 Although the method presented here for gene prediction and
functional annotation is valid when a closely related reference
exists, we highly encourage the reader to further study the subject
of gene prediction and functional annotation, as each program and
method has its strength and weakness [5 , 6].

 1. First, the gene predictor has to be trained. For simplicity we
assume that we can use the genes from the reference genome.

 2. Load the annotation from the reference genome (you can use
the one of the test dataset) into Artemis and save it in the GFF
format (File ->Save An Entry As ->GFF Format). For simplic-
ity, save it as ChrX.gff. Accept all the warnings that some clas-
sifi ers won’t be saved.

 3. Next we require to know the names of each chromosome in
the reference fasta fi le ref.fa. The command

3.5 Annotation

Sequence Assembly

40

 $ grep ‘>’ ref.fa
 will do the job. Remember the name of the chromosome

of which you generated the GFF fi le. In this example her for
simplicity we assume it is called ChrX.

 4. This command will transform the gff into the gb format needed
for Augustus.
 $ gff2gb.sh ChrX.gff ChrX ChrX.gb

 In case that you have more than one chromosome, redo
the steps from number 2 and concatenate the fi les with:
 $ cat ChrX.gb ChrX2.gb … ChrXn>All.gb

 5. Next, we initiate Augustus
 $ new_species.pl -- pecies=NEW
 $ etraining -- Species=NEW --
stopCodonExcludedFromCDS=false ChrX.gb

 The fi rst command will generate a training instance for
your reference, called “NEW.” This instance is than trained in
with the gene models saved in Artemis second command. Read
carefully the output of the programs. Gene models that seem
to be wrong for Augustus will be excluded.

 6. Now we can apply the trained model to the new assembly:
 $ augustus -- Species=NEW ImprovedAssembly.
fasta>abintio.gtf

 The output is a gtf fi le that contains all the predicted models.
 7. Those models obviously don’t have any functional annotation.

The next command will attribute to each model the fi rst
BLAST hit with an E-value of at least 1e-40 of the new model
against the proteome of the reference genome “ref.aa.fa” in
the next command. The output will be EMBL fi les in the
“Augustus” directory.
 $ augustusAnnotate.sh ImprovedAssembly.fasta
abintio.gtf ref.aa.fa

 At this point we have the annotation of the ab initio gene
models. Now we present here how to merge them with the
gene models of the RATT transfer.

 8. The fi rst step is to delete gene models that contain still errors
in the RATT transfer. Although RATT tries to correct gene
models, this step can fail. The next command will use the sta-
tistic of each gene stored in the “report” fi les:
 $ cat Transfer.*txt | perl -nle '@ar=split(/\t/);
if (($ar[8]+$ar[9]+$ar[10]+$ar[11]+$ar[12]+
$ar[13])>0){print $ar[0]}'>exclude.txt

Thomas D. Otto

41

 This command counts the columns 8–13 that represent
specifi c errors, such as wrong start codon, frame shifts, or
incorrect splice sites.

 9. The next call will exclude all the models that are fl agged to be
wrong from the EMBL fi les. (The new fi les will be stored in
the directory RATT_excluded):
 $ mkdir RATT_excluded
 $ for x in ` ls Transfer.*fi nal.embl ` ; do
 cat $x | excludeGeneEMBL.pl exlude.txt>
RATT_excluded/$x;
 done

 10. At this stage it is possible to join the models from the RATT
model with the models from the gene prediction. The rule is
that if a predicted gene overlaps with a RATT transferred
model, it will be deleted.

 First we generate a directory to store the fi les:
 $ mkdir Joined
 $ for x in `grep '>' assembly.fa | sed
's/>//g'`; do annotation.MergeAnnotation
SecondAway.pl

RATT_excluded/Transfer.$x.fi nal.embl

Augustus/$x.embl>Joined/$x.embl;
 done

 11. Now it is possible to examine the annotation in Artemis.
 $art Joined/ChrX.embl

 Further you can also add the models from the ab initio
gene prediction as a separate track (Menu: File -> Read Entry,
and select the gff from the “Augustus” directory. If genes are
wrong, it is advisable to delete those from the RATT transfer
and redo step 10 .

 12. The last step would be to give the genes systematic ids. This
can be done in Artemis or with following script:
 $ mkdir fi nal
 $ cat Joined/chrX.embl | annotation.giveIDCDS.
pl NameID_01 T>fi nal/chrX.embl

 This command has to be run for each new chromosome/
supercontigs, in this case “chrX.embl.” The fi rst parameter
(NameID_01) would be the ID plus the chromosome number,
here 01. The second parameter is optional: RATT transfers also
the locus tag from the reference. If this has the prefi x of the sec-
ond parameter (in this case “T”) the reference locus_tag will be
stored in the ratt_orthologs tag. If not, it gets deleted.

Sequence Assembly

42

4 Notes

 This protocol uses a wide range of tools and commands. We assume
that a novice user will probably need a week to work through the
protocol when assembling a bacterial genome. It is important to
have a computer with all the tools installed and enough memory,
around 6 GB. When using the preinstalled tarball (Subheading 2.1 ,
 step 1) be sure to run it on a computer with at least 6 GB of
memory. To run through the provided example will take around 1
day.

 It is important to keep in mind that reads can be of poor quality
and that sequencing might generate insuffi cient depth. Although
assembly will still be possible, the representation of the genome as
a whole will be poor, and the range of meaningful downstream
analyses will be quite small.

 Another important point is the possibility of contamination.
Depending on the source of material, host contamination is com-
mon. If host contamination is present, and there is a reference
sequence for the host, map the reads against the host genome
(Subheading 3.2 , step 3 ff) and extract those from the results fi le
with the command in Subheading 3.2, step 5 . This will fi lter most
of the contamination. For the rest, once the assembly is done, blast
the contigs against the reference. You can also compare the GC
content of the contigs. The contaminants normally have a different
GC content from that of the target genome.

 1. There are many programs to trim adapters. The key thing is to
have a fi le of adapter sequences. In our experience, it is most
often mate pair libraries and bad quality runs that have many
adapters.

 2. Trimming should be done for very bad quality reads. But the
best cutoff is tricky to set. A base with a quality value of ten still
has a 90 % chance of being correct. For the assembly, one out
of ten reads will be excluded and this generates noise. With
enough coverage, and without doing read correction, choose a
quality cut off of 20.

 3. The SGA correction will fi rst index the reads and then do the
correction by looking for k-mers in reads. A read is corrected
where it contains a k-mer with too low abundance. Depending
on the complexity of the genome and the read coverage, this
step takes between 4 h and 4 days. The biggest impact of the
correction will be on the memory and runtime requirement
for the assembly.

 There are many tools that can be used to map reads against a refer-
ence [25]. SMALT is a tool that gives us more control when a read is
mapped, using the parameters for minimum score or fragment size.

4.1 Preprocessing

4.2 Mapping Reads

Thomas D. Otto

43

 1. The indexing step can be optimized in terms of speed and sen-
sitivity. The k-mer is the length of the identical words and the
parameter s is the step size. With a step size of one every k-mer
is taken, with a step size of two only every second k-mer is
used. Low k and s parameters will result in many small pieces
that represent the genome. More divergent reads can be
mapped, as if you have an SNP every 14 bases a k-mer of 13
can be found in the reads, but not a higher k-mer. The price
will be the runtime. Higher parameters like k = 20 and s = 11
will result in a more sparse representation. Reads with many
differences to the reference might not get mapped. But the
mapping time is signifi cantly shorter. A k-mer smaller than 13
should not be used, due to the runtime and the fact that k-mers
which occur very often will be ignored.

 2. For the mapping step many parameters can be set ($ smalt map
-H). Interesting parameters include “-y” to limit the place-
ment of the reads by identity, “-n” to use more than one
thread, or “-d” to allow multiple hits for each read. In terms of
runtime, for a 5 MB genome with 100× read coverage, we
estimate a mapping time of 1 h. The runtime increases linearly
with the number of reads or the genome size. Normally not
more than 2 GB of memory is needed.

 3. To map large insert libraries, reverse complement the Illumina
reads. For 454 reads, you just need to reverse complement the
second read. Although the mappers have functions to reverse
complement, some just recalculate the fl ag, rather than really
reverse complementing the reads. This is generally okay, but as
our analysis builds on the mapped reads, we have to have them
in the correct orientation.

 4. The reason for sorting and indexing the reads is a faster access
to reads at specifi c positions. Later this will become more
obvious. This step takes around 10 % of the total mapping
time. To get a statistic of the mapping, do $ samtools fl agstat
Mapped.bam.

 1. The samtools command “view” prints all the reads mapped to
the specifi ed chromosome “Chr” between the positions
“From” to “To.” Select a region slightly larger than the one
you are interested in. For example if you chose a specifi c gene,
extend the border by 100 bp.

 2. Those two commands will do the assembly. The fi rst command
builds the graphical representation of the reads. As for the
mapping, we select a specifi c k-mer, which will represent the
nodes of the graphs. Two reads are basically joined into a con-
tig if they share an identical k-mer. The k-mer setting will have
the strongest impact on the quality of the assembly. If the

4.3 Local
Assemblies

Sequence Assembly

44

k-mer is too long, two reads that should be joined might not
get joined due to sequencing errors. On the other hand,
shorter k-mers are more likely to be repetitive, which is a big
issue for the assembler. This could lead to many small contigs,
or in some rare cases also to mis-assemblies. The second com-
mand cleans the graph and fi nds an Euler path through the
graph. A very important parameter is the expected coverage.
This can be determined automatically by Velvet. The value can
be obtained manually through the “stats.txt” fi le, see velvet
manual. Obviously, there are many assemblers that could be
used at this point. Although the results will vary slightly, we
think that it will be more important here to explain the general
procedure than to list all the different assembler calls. In the
end, they have very similar parameters and ways to be called.
Both Velvet programs have many parameters. The most impor-
tant will be explained below. To see them all, just type ($ vel-
veth or velvetg).

 3. The overview values of the Velvet and the stats program have
the following meaning. The sum is the total number of bases
in the assembly. “n” represents the number of contigs in the
assembly; “mean” and “largest” relate to the contig size. The
N50 is the length L such that 50 % of the assembly lies in con-
tigs of at least length L . N60 is defi ned analogously, but for
60 % of the genome, etc. The N_count is the amount of n’s
contained in the assembly.

 4. The for loop is a feature of bash, the Linux environment you
are working in. It basically iterates over several values of the
variable $kmer from 31 to 73, with a step size of 6. This com-
mand will take roughly eight times as long as a single Velvet
call. For larger read sets you might want to run different Velvet
calls on different computers, but this kind of optimization is
not part of this chapter.

 Depending on the quality of the reads, the amount of cover-
age and the base composition of the genome, a certain k-mer
will generate a more contiguous and larger assembly. If you have
coverage over 80×, it is likely to be a larger k-mer. It is possible
to iterate the k-mer with a lower step size, around the optimum.
Please note that a k-mer must always be an odd integer value.

 5. This command will take some minutes to run. All reads are
handed (or piped) to the awk command. This one looks to see
whether a read or its mate map on the specifi ed chromosome
and position (columns 3, 4 and 7, 8). These two conditions are
connected with a logical OR (||), so if at least the mate or the
read fulfi ll the condition, the mapping information of the read
is piped to a sort command. The sorting is necessary, as the
assembly step will require a SAM fi le, sorted by read name, so
all reads in a pair are together. To write the output into a fi le,

Thomas D. Otto

45

use the “>” command. As we ensure to collect both mates, a
local assembly should be able to reconstruct an insertion of
nearly twice the fragment size. As a look ahead, this method to
pull in non-mapping reads through mate pairs is the basic idea
of gap closing software like IMAGE, part of PAGIT that will
be discussed later.

 6. Velvet will fi nally try to scaffold the contigs using the mate
pairs. Basically the reads are mapped back to the graph (using
the k-mer as seeds), and if a certain number (value of -min_
pair_count) maps to two contigs, these will be joined into a
scaffold. Ns are inserted between the contigs, the number of
which depends on the expected gap size. This step is the most
likely source of mis-assemblies. Therefore higher values will
tend to generate more conservative assemblies, with fewer
errors and more contigs. A good setting is generally to set the
value to the median coverage, which is returned in the second
last line of the velvetg output. To set this value, the velvetg call
would therefore need to be run twice. Finally, although the
output of Velvet now has supercontigs, the fi le will still be
called “contigs.fa” The quickest way to check if the results are
contigs or scaffolds is to use the stats program—if the N_count
is not zero then the results are scaffolds.

 7. Although including the large insert size library reduced the
number of scaffolds, the effect might not be seen in local
assemblies.

 8. We chose to select only read pairs where neither map, to avoid
chimeras entering into the read set. Although these could be
fi ltered out later (parameter -cov_cutoff), they would slow
down the process and introduce noise. To obtain these reads
we query their fl ags (the second column of the BAM fi le), in
this case 12, read and mate don’t map. Next, each line of the
SAM fi le is passed via the pipe command to the sort program.

 9. The mate pair library should make a huge difference to the
statistics of the supercontigs. Later we are going to discuss fur-
ther problems with scaffolding using large insert libraries. But
depending on the organism, the fi nal result should be one scaf-
fold per amplicon, which is rarely achieved.

 10. To detect and annotate ORFs do the following in Artemis:
click on Menu Create ->mark open reading frame. Choose a
minimum length of 200 and enable the option to break at
contig boundaries. Next, you can blast the obtained ORFs
against a uniprot database: Select ->Select all CDS; Run ->Run
blastp on selected feature ->Uniprot_eukaryota. Choose
Uniprot_bacteria, if you work with bacteria. The blastp gets
run. Once done you can see the results by selecting a CDS and
pressing the keys crtl+back quote.

Sequence Assembly

46

 1. As all the reads are going to be used, the runtime will be
increased. Genomes below 5 MB will run in around 20 min,
and need just 2 GB of memory. Larger genomes, up to 30 MB,
will take around 1 h and the memory can increase up to
30 GB. To lower the memory requirements, work with a
higher k-mer (>49) and correct the reads before running the
assembler (Subheading 3.1 , step 3). For very large parasites,
Velvet might need more than 200 GB memory. In this case,
the SGA assembler is a useful alternative, which normally
doesn’t use more than 60 GB of memory. When using large
insert size libraries, a fraction of reads can point in the wrong
direction, and may result in incorrect scaffolding. To avoid
this, set the shortMatePaired parameter to yes.

 Some users might want to try a tool called velvetoptimser.
pl. It automatically tries different settings in velvet to optimize
a specifi c value, such as a large N50 or assemblies with many
bases. Interestingly, in our experience, manually iterating
through the parameters generates still better results for larger
genomes.

 2. To test the different assemblies for the best representation, one
could blast conserved motifs against the different assemblies
and assume that the one with the highest number might best
represent the gene family. Obviously, one must fi nd a balance
with the other statistics, such as the N50.

 3. It is a very common procedure to join several steps of process-
ing into one script. This reduces not only the amount of time,
but also the likelihood of typing errors.

 4. REAPR generates many statistics. A very useful feature is the
generation of the per-base quality. Every base will be scored for
correctness, try $ reapr perfectmap. REAPR with only break
scaffolds if the error is over a gap (n’s). If an error is within a
contig, the bases are replaced with Ns and the deleted sequence
is written into the “bin” fi le (Contig errors can also be broken
with reapr break -a). Plots for the different errors can be loaded
into Artemis. The command $ reapr plot<chromosomeName>
will generate all the plots and a script to start Artemis auto-
matically. For genomes under 4 MB REAPR takes less than
10 min. For larger genome, the runtime and memory require-
ment is similar to the mapping step.

 5. The application of automatically mapping reads and correcting
assemblies needs a bit of scripting. Supplied in the tarball is a
script called “deNovoPlus.sh.” It is a very trivial script, which
has as parameters the k-mer and the insert size. The following
commands will be run:
 $kmer=$1
 $insersize=$2

4.4 De Novo
Assembly

Thomas D. Otto

47

 velveth deNovo.$kmer $kmer -fastq -shortPaired
-separate reads_1.fastq reads_2.fastq velvetg
deNovo.$kmer -exp_cov auto -cov_cutoff 5 -ins_
length $insersize -min_contig_lgth 300
 map.smalt.sh deNovo.$kmer/contigs.fa rev.
reads_3k_1.fastq rev.reads_3k_2.fastq Mapped
Novo$kmer 5000
 reapr pipeline deNovo.$kmer/contigs.fa Mapped
Novo$kmer Reapr.$kmer

 The script basically joins all the commands explained
before, and assumes a very stringent naming convention. This
is a simple example how powerful and easy scripts can be. One
would call it through a for loop and use different k-mers, or
start the job on different computers to save time.

 6. Compared to the assemblers, a scaffolder will use the complete
length of the reads to determine its position in the assembly.
Also it should ignore duplicate reads, where mate pairs that
came from the same DNA fragment are overrepresented due
to the PCR amplifi cation step. We use SSPACE as it is straight-
forward to use and was one of the fi rst using Illumina data. As
mentioned later in Subheading 3.4 , step 12 , the scaffolding of
SSPACE is better than that of velvet. Therefore one could dis-
able the scaffolding with the large insert size library.

 7. At fi rst it might sound weird to iterate through different
 settings, decreasing the evidence. But again, this optimizes the
results, without generating more errors.

 8. As for most of the tools, there are limitations. To further scaf-
fold you would need combinatorial PCR. Alternatively you can
order contigs of at least 40 kb using optical maps.

 9. This step will have more impact on larger genomes, where
more k-mers are repetitive, more duplicate reads are expected,
and the order of contigs is not so obvious. There are also
limitations of the existing scaffolders. If three copies of a repeat
are joined into one contig, the scaffolder should not join the
contigs. It would be better to exclude those reads from the
assembly, and hope that local assemblies (see Subheading 3.4 ,
 step 17) will regenerate them, or split the collapsed repeat into
three copies. This is not a problem if the repeat is smaller than
the largest mate pair library.

 10. SSPACE is designed to work with Illumina reads. But you may
have 454 8 kb/20 kb libraries available for scaffolding. Here
we present a script that returns fake reads from a BAM fi le,
with the consensus sequence taken from the reference using
the correct read length. This preprocessing step will also reduce
the reads that have to be analyzed by SSPACE, by excluding
reads not holding scaffolding information (as mapping for

Sequence Assembly

48

example onto the same contig). First you have to reverse com-
plement your reads so that they point towards each other (see
Subheading 3.2 , step 5). Next map them with SMALT
(Subheading 3.4 , step 4). Then you can do step 14 . The reads
can now be given to SSPACE. If you have a large genome, you
can also do this to speed up the runtime of SSPACE
signifi cantly.

 11. There is always a trade-off between automated pipelines and run-
ning the tools one by one. Here we provide an automated
approach, while also explaining the main parameters for each tool.

 12. IMAGE is a powerful tool to improve your assemblies. The
price is a long runtime. In each iteration, the reads are mapped,
gathered for each gap or scaffold end, and a local assemblies
are done. Subsequent iterations are faster, as properly paired
reads will not be remapped and regions that could not be
improved in the previous iteration will not be touched. But
this method is still much faster than fi lling gaps by
PCR. Interestingly, other gapfi lling tools close different types
of gaps than IMAGE. For the remaining sequencing gaps, you
would need to do PCR, if considered necessary.

 13. ICORN is an iterative tool that takes 30 min per iteration for
genomes around 4 Mb and 8–24 h for genomes around
200 GB.

 14. Some scaffolds will not get ordered. These may be the most
interesting sequences, as they will be the most different from
the reference (if they are not contamination). It is important
not to forget them!

 After running ABACAS, you should rename your ordered
scaffolds. Naming is always important and mostly needs to be
done in a manual matter, through an editor. For those who
would like a more automated way, look into the Linux “sed”
program.

 15. As mentioned RATT can only transfer annotation where
synteny exists. But those regions without synteny are the ones
to be examined in more detail. Furthermore, it will be neces-
sary to annotate them separately, Subheading 3.5 .

 16. It might be surprising, but indeed errors occur that no one
expected. To do a “bin” assembly is an effi cient way to double-
check the assembly for errors.

 Although stated before, we must iterate that the ab initio gene
prediction and functional annotation we present is not the most
sophisticated, but valid as a fi rst pass annotation if a closely related
reference genome exists. The reference genome will be used to
train the gene fi nder and as a database for the functional annota-
tion. General errors of the gene prediction are overprediction,

4.5 Gene Prediction

Thomas D. Otto

49

missing exons, and wrong splice sites. In the functional annota-
tion, it can be wrong to assume homology due to similarity to
homology, especially when paralogous exists. Nevertheless, as a
starting point (and merged with the RATT transfer) the method
presented here will be extremely helpful.

 For bacterial gene prediction we would recommend Glimmer
or Prokka [7], which are easy to use.

 1. In case that you don't have a closely related reference, you will
need to generate 200–400 high-quality gene models. This
training set should cover as many different type of genes, not
just the core genes, like predicted from CEGMA [26].

 2. A lot of time in bioinformatics is spent on transforming fi les to
different formats. To ensure that this won’t be a problem for
this protocol, we generated the gff fi le through Artemis. Users
that are more experienced with scripting will have their own
methods, especially, when the genome has many
chromosomes.

 3. This script hides some ugly code. From the gff a gtf is gener-
ated, with the name of the sequence. This is then transformed
to a genbank fi le, using an augustus script. For more advanced
users, it might worth to look into the script and modify the
parameters to obtain better results.

 4. If the second command returns a lot of errors, like wrong
models, then in the transformation step something went
wrong. One solution might be to name the gene models with
locus_tag in Artemis, without using any special characters in
the name.

 5. All the above steps run within minutes. This step might need
several hours if the genome is over 30 Mb.

 6. To generate a full EMBL fi le the program “ratt.main.pl
doEMBL” can be used. It combines the sequence (fasta fi le)
with the annotation (EMBL format).

 7. In some case, it is desirable to exclude also specifi c gene fami-
lies, as it is likely that the transfer will be wrong, for example
missing exon, and the ab initio gene prediction might be better.
$ cat Transfer.*txt | grep "variant erythro-
cyte" | cut -f 1 >>exclude.txt will add all genes ids
that have the annotation “variant erythrocyte” as product to
the list to exclude genes.

 8. Depending on the expected quality of the annotation, here a
lot of time can be spent. Further, several information from the
reference transferred onto the new assembly might not be rel-
evant. This information should be deleted.

 9. Actually, the geneID should be obtained from a database like
EBI, to agree with their submission format.

Sequence Assembly

50

 Acknowledgements

 I would like to thank Adam Reid, Martin Hunt, and Bernardo
Foth for proofreading the chapter.

 References

 1. Huang X, Madan A (1999) CAP3: a DNA
sequence assembly program. Genome Res
9(9):868–877

 2. Myers EW et al (2000) A whole-genome assem-
bly of Drosophila. Science 287:2196–2204

 3. Simpson JT et al (2009) ABySS: a parallel
assembler for short read sequence data.
Genome Res 19(6):1117–1123

 4. Zerbino DR, Birney E (2008) Velvet: algo-
rithms for de novo short read assembly using
de Bruijn graphs. Genome Res 18:821–829

 5. Compeau PE, Pevzner PA, Tesler G (2011)
How to apply de Bruijn graphs to genome
assembly. Nat Biotechnol 29(11):987–991

 6. Alkan C, Sajjadian S, Eichler EE (2011)
Limitations of next-generation genome
sequence assembly. Nat Methods 8(1):61–65

 7. Boetzer M et al (2011) Scaffolding pre-
assembled contigs using SSPACE.
Bioinformatics 27(4):578–579

 8. Pop M, Kosack D, Salzberg S (2004)
Hierarchical scaffolding with bambus. Genome
Res 14:149–159

 9. Assefa S et al (2009) ABACAS: algorithm-
based automatic contiguation of assembled
sequences. Bioinformatics 25(15):
1968–1969

 10. van Hijum S et al (2005) Projector 2: contig
mapping for effecient gap-closure of prokary-
otic genome sequence assemblies. Nucleic Acid
Res 33:560–566

 11. Tsai IJ, Otto TD, Berriman M (2010)
Improving draft assemblies by iterative mapping
and assembly of short reads to eliminate gaps.
Genome Biol 11:R41

 12. Boetzer M, Pirovano W (2012) Toward almost
closed genomes with GapFiller. Genome Biol
13(6):R56

 13. Otto TD et al (2010) Iterative correction of ref-
erence nucleotides (iCORN) using second gen-

eration sequencing technology. Bioinformatics
26(14):1704–1707

 14. Ronen R et al (2012) SEQuel: improving the
accuracy of genome assemblies. Bioinformatics
28:i188–i196

 15. Otto TD et al (2011) RATT: rapid annotation
transfer tool. Nucleic Acids Res 39:e57

 16. Logan-Klumpler FJ et al (2012) GeneDB—an
annotation database for pathogens. Nucleic
Acids Res 40(Database issue):D98–D108

 17. Quail MA et al (2012) Optimal enzymes for
amplifying sequencing libraries. Nat Methods
9:10–11

 18. Simpson JT, Durbin R (2012) Effi cient de novo
assembly of large genomes using compressed
data structures. Genome Res 22(3):549–556

 19. Li H et al (2009) The sequence alignment/
map format and SAMtools. Bioinformatics
25(16):2078–2079

 20. Carver T et al (2012) BamView: visualizing
and interpretation of next-generation sequenc-
ing read. Brief Bioinform 14:203–212

 21. Delcher AL et al (1999) Improved microbial
gene identifi cation with GLIMMER. Nucleic
Acids Res 27(23):4636–4641

 22. Stanke M, Morgenstern B (2005) AUGUSTUS:
a web server for gene prediction in eukaryotes
that allows user-defi ned constraints. Nucleic
Acids Res 22:W465–W467

 23. Swain MT et al (2012) A post-assembly
genome-improvement toolkit (PAGIT) to
obtain annotated genomes. Nat Protoc 7(7):
1260–1284

 24. Fonseca NA et al (2012) Tools for mapping
high-throughput sequencing data. Bioin-
formatics 28:3169–3177

 25. Parra G, Bradnam K, Korf I (2007) CEGMA: a
pipeline to accurately annotate core genes in
eukaryotic genomes. Bioinformatics 23(9):
1061–1067

Thomas D. Otto

http://www.springer.com/978-1-4939-1437-1

	Chapter 2: From Sequence Mapping to Genome Assemblies
	1 Introduction
	2 Materials
	2.1 Installation and Resources
	2.1.1 How to Install the Programs
	2.1.2 Software
	2.1.3 Test Dataset

	2.2 Sequencing Technology

	3 Methods
	3.1 Read Preprocessing
	3.2 Mapping the Reads
	3.3 Local Assemblies
	3.4 Whole Genome Assembly
	3.5 Annotation

	4 Notes
	4.1 Preprocessing
	4.2 Mapping Reads
	4.3 Local Assemblies
	4.4 De Novo Assembly
	4.5 Gene Prediction

	References

