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    Chapter 2   

 From Sequence Mapping to Genome Assemblies 

           Thomas     D.     Otto    

    Abstract 

   The development of “next-generation” high-throughput sequencing technologies has made it possible for 
many labs to undertake sequencing-based research projects that were unthinkable just a few years ago. 
Although the scientifi c applications are diverse, e.g., new genome projects, gene expression analysis, 
genome-wide functional screens, or epigenetics—the sequence data are usually processed in one of two 
ways: sequence reads are either mapped to an existing reference sequence, or they are built into a new 
sequence (“de novo assembly”). In this chapter, we fi rst discuss some limitations of the mapping process 
and how these may be overcome through local sequence assembly. We then introduce the concept of de 
novo assembly and describe essential assembly improvement procedures such as scaffolding, contig order-
ing, gap closure, error evaluation, gene annotation transfer and ab initio gene annotation. The results are 
high-quality draft assemblies that will facilitate informative downstream analyses.  

  Key words     Mapping  ,    De novo  assembly  ,   Assembly improvement  ,   Local assemblies  ,   Bin assemblies  , 
  Annotation  

1      Introduction 

 The aim of sequence assembly is to join short sequences of 
n ucleotides (sequence reads 35–1,000 bp in length) into contiguous 
sequences (contigs) that represent the sequenced DNA. Sequence 
assembly is needed when no reference genome is available, or when 
the sequenced DNA is too different from a potential reference 
genome. In contrast, when strains or isolates are similar enough to a 
reference sequence, reads can be mapped against this reference by 
fi nding the unambiguous place where an alignment generates the 
highest score for a given read, similar to a BLAST search. Figure  1  
shows an example of reads from the  Plasmodium falciparum  IT 
clone mapped to the  MSP3  (Merozoite surface protein) gene of the 
reference genome. Most of the regions are covered by mapped reads 
and genetic variation is represented by red lines in the alignments. 
But some regions are too polymorphic for reads to map. In this case, 
only the comparison of the reference with the de novo assembly 
reveals an insertion in the  MSP3  gene in the IT strain.
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   The basic idea of sequence assembly can be summarized as 
follows. First, all the reads are compared against each other to 
fi nd shared identical sequences, as is done by the programs like 
CAP3 [ 1 ] and Celera [ 2 ]. Next, through joining reads by their 
overlaps (identical sequence) the consensus sequence, usually in 
discrete sequences called contigs, is generated (Fig.  2a ). But due 
to the high number of reads generated through recent sequenc-
ing technologies, the step of comparing reads to each other takes 
too much time to be practical. One way around this is to use a 
more effi cient representation of read similarity. Instead of look-
ing for overlaps, it is more effi cient to index all words of a spe-
cifi c length (k-mers) in all reads. Then an algorithm can generate 
contigs by traversing a graphical representation (de Bruijn graph) 
of the k-mers. Many high-throughput read assemblers use this 
approach, like ABYSS [ 3 ], Velvet [ 4 ] or see CITATION 1 in 
work document. A good introduction to the de Bruijn graph is 

  Fig. 1    Mapping versus assembly. Two genes of  P. falciparum  3D7 ( red boxes ) can be seen at the top. The  hori-
zontal green  and  blue lines  are mapped sequencing reads from the IT clone.  Red points  in the reads are dif-
ferences between the IT reads and the 3D7 reference. The lower part shows the de novo assembly of IT. The 
 vertical bars  are blast hits. The graphs are the coverage plots. Some regions of  MSP3  in 3D7 are not covered 
by mapped IT reads. The de novo assembly has an insertion, indicated by the shape of the blast hit. Reads map 
even over this new assembled region       
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[ 5 ]. Unfortunately, assemblers rarely if ever generate one contig 
per chromosome using short reads. The causes are usually repeti-
tive sequences, uneven or the complete lack of reads for particular 
genome regions [ 6 ]. For example, reads from different copies of 
a repeat will collapse into one contig, rather than into separate cop-
ies. To improve the contiguity of assemblies, large insert size librar-
ies can be used to bridge the diffi cult regions and join contigs into 
scaffolds (also called supercontigs) [ 2 ,  7 ,  8 ]. The limitation is the 
insert size, i.e., the distance between the paired reads, which deter-
mines the size of a problematic region that can be bridged.

   If a sequence is reasonably similar to a reference, scaffolds can 
be further joined by ordering them against the reference [ 9 ,  10 ]. 
Comparing against a reference helps to reveal where the genomes 
are different, such as synteny breakpoints, insertions/deletions, or 
differences in gene content. Other post-assembly improvements 
are to close sequencing gaps (in the scaffolds) [ 11 ,  12 ] and to cor-
rect single-base errors [ 13 ,  14 ]. Methods for fi xing the latter are 
based on mapping the reads against the assembly. The distance 
between the two mates of a mapped read pair can also be used to 
identify assembly errors [ 3 ]. If gene annotation (i.e., the positions 
of exons and introns) is available for the reference this annotation 

  Fig. 2    ( a ) Assembly with longer reads: Nearly identical overlap between reads enable the generation of the 
consensus. ( b ) Assembly with short reads, using de Bruijn graph: First the reads are index and the k-mer are 
stored in a hash table, including the k-mer and the frequency. With a k-mer length of 3 the k-mer TCG is non 
unique. Due to this non unique k-mer, the graph quite complicated. ( c ) Overview of typical pipeline for de 
novo assembly and annotation       

 

Sequence Assembly



22

can be transferred to the new assembly in regions where the two 
genomes are syntenic [ 15 ]. For regions of the new assembly without 
synteny, ab initio gene prediction and function annotation must be 
done. The resulting genome models can be merged with the trans-
ferred gene models. 

 In this chapter we present methods to perform local assemblies 
(for example of single genes), an assembly of unmapped reads (a so-
called bin assembly, for example of very diverse gene families), and a 
complete assembly of genomes. Further, we describe methods to 
improve the quality of an assembly and do a fi rst pass annotation.  

2    Materials 

  Bioinformatics analysis, especially in the assembly process, requires 
not only appropriate computers, but also the right environment 
with many installed tools and the knowledge of how to run them. 
This chapter should help you to understand and apply the different 
tools. To do so, we generated a tarball that contains all the needed 
software packages (Table  1 ) of the work described here. This proto-
col is designed to work with the Linux operating system. To facili-
tate the application of the protocol, we generated a test data set that 
can be used to go through the different steps. Finally, you will need 
to bear in mind how much memory your computer will need to 
process the data. For genomes up to 5 Mb we would recommend 
up to 6 GB of memory. Genomes of 20, 100, and 200 Mb require 
up to 20, 200, and 500 GB of memory. Those numbers will vary 
depending on the structure of the genome, the quality of the reads, 
the software used, and preprocessing of the reads. For the presented 
example the computer would require around 2 GB of memory.

      The best way is to download the latest version of the programs 
from their web sites (Table  1 ) and install them. Nevertheless need 
to download the tar ball, see blow, as it contains some custom 
scripts used in this chapter. The custom scripts from the tarball, 
which are described in Table  2 .

   Alternatively it is possible to use a preinstallation, where all 
tools are already installed and the necessary dependencies are set. 
The requirement is a 64 bit Linux operating system. If this is the 
case, do following steps to download and install it. Switch to the 
bash shell and create a directory in which to install the software: 
    $ bash 
 $ mkdir -p ~/bin/Assembly 
 $ cd ~/bin/Assembly 

 Next download the fi le contains the software from the ftp 
server. This fi le has to be extracted in a directory and the system-
wide variables have to be set: 

2.1  Installation 
and Resources

2.1.1  How to Install 
the Programs
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 $ wget 
  ftp://ftp.sanger.ac.uk/pub/resources/software/
pagit/ParasiteProtocols.tgz     
 $ tar xzf ParasiteProtocols.tgz 
 $ ./installme.sh 

      Table 1  
  Description of the tools used in this chapter   

 Name  Description 

  Read quality  
 SGA [ 19 ]  String graph assembler that has 

functions to quality trim and 
correct reads 

   https://github.com/jts/sga     

 Trimmomatic [ 8 ]  Trims adapter from sequences    www.usadellab.org/
cms/?page=trimmomatic     

  Mappers  
 SMALT  Maps reads to a reference    ftp://ftp.sanger.ac.uk/pub4/resources/

software/smalt/     
 SAMTOOLS [ 20 ]  Processes alignment fi les (SAM/

BAM) 
   http://samtools.sourceforge.net/     

  Assemblers  
 Velvet[ 4 ]  Assembler based on de Bruijn 

graphs 
   http://www.ebi.ac.uk/~zerbino/velvet/     

  Post-assembly genome improvement  
 REAPR [ 3 ]  Assesses quality of sequences and 

can break assemblies 
   ftp://ftp.sanger.ac.uk/pub4/resources/

software/reapr/     
 SSPACE [ 7 ]  Scaffolder    http://www.baseclear.com/

landingpages/basetools-a-wide- range-
of-bioinformatics-solutions/
sspacev12/     

 ABACAS [ 9 ]  Tools to order contigs against a 
reference sequence 

   http://abacas.sourceforge.net/     

 IMAGE [ 11 ]  Closes sequencing gaps and extends 
contigs by local assembly 

   http://sourceforge.net/projects/
image2/fi les/     

 ICORN [ 13 ]  Corrects 1–3 bp errors in sequences    http://icorn.sourceforge.net/     
 PAGIT [ 24 ]  Toolkit that joins ABACAS, 

IMAGE, ICORN, and RATT 
   http://www.sanger.ac.uk/resources/

software/pagit/     

  Annotation  
 RATT [ 15 ]  Transfers annotation from a 

reference to a query, based on 
synteny 

   http://ratt.sourceforge.net/     

 AUGUSTUS [ 23 ]  Gene prediction software for 
Eukaryotic organisms 

   http://augustus.gobics.de/binaries/     

 Glimmer [ 22 ]  Gene prediction software for 
bacteria 

   http://www.cbcb.umd.edu/software/
glimmer/     

 Prokka [ 7 ]  Software to annotate bacterial 
genomes 

   http://vicbioinformatics.com/     
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 Each time you want to run one of the programs, do following step: 
 $ source ~/bin/Assembly/sourceme.sh 

 Alternatively, include the last command at the end of the ~/.
bashrc system fi le.  

  There are several software components installed in the package, 
which are summarized in Table  1 . They are ordered by groups: 
read processing tools, assemblers, scaffolders, post-assembly 
improvement tools, annotation tools, and custom Perl scripts that 
will be needed in this protocol, Table  2 . All the tools will be dis-
cussed in detail through this chapter.  

  To help the user to understand the protocol, we included a test 
dataset for each section. The data are from a re-sequencing proj-
ect, concerning the Malaria parasite  P. falciparum . Here we only 
consider chromosome 10 of the IT clone. The complete genome 

2.1.2  Software

2.1.3  Test Dataset

   Table 2  
  Custom scripts from the tarball   

 Scripts from the tarball 

 stats  Returns assembly statistics 

 map.smalt.sh  Wrapper script for smalt 

 revcompFastq.pl  Reverse complements fastq fi les 

 sga2readpair.pl  Generates two paired fastq fi les from a 
merged fastq fi le (SGA correction output) 

 deNovoPlus.sh  Script to run the assembly and the 
correction step in one call 

 gff2gb.sh  Transforms an Artemis gff to a genbank fi le 

 augustusAnnotate.sh  Takes an Augustus gtf and annotates it with 
the fi rst blast hit as embl fi le 

 annotation.MergeAnnotationSecondAway.pl  Joins gene models as embl, and excludes a 
model from the second set, if it overlaps 
with a model from the fi rst set 

 excludeGeneEMBL.pl  Deletes gene models in an EMBL fi le from 
a given list. 

 annotation.giveIDCDS.pl  Generates automatically geneIDs 

 AllCommands.sh  All the commands used in this chapter, 
adapted to the latest version of the 
software and correct for possible errors 

 RemoveSequencesSmaller.pl  Removes fasta entries that are smaller than a 
given parameter 

 BAM2consensus_reads.pl  Script that takes mapped reads and returns 
reads with consensus sequence 
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can be found on Gene DB [ 16 ]. As reference we will be using the 
3D7 clone. 

 To work with the data change to the directory: 
 $ cd $ASSEMBLY_HOME/testdata 
 $ ls 

 The test reads are called reads_1.fastq, reads_2.fastq, 
reads_3k_1.fastq, and reads_3k_2.fastq. The reference chromo-
some 10 from 3D7 is called ref.fa. There are four scripts: 
Mapping.sh, LocalAssembly.sh, BinAssembly.sh, and deNovoAs-
sembly.sh. Type: 
 $ cat *.sh 

 to see all the commands   

  Several sequencing technologies are available to date but it is not 
our aim to discuss them here [ 4 ]. For a successful assembly the 
reads should ideally have the following properties:

    1.    Be fairly uniformly distributed across the genome sequence.   
   2.    Have enough coverage of the genome, i.e., 80× coverage with 

100 bp reads. Longer reads will reduce the coverage need.   
   3.    Read pair information seems to be vital to make a good assem-

bly. The fragment size should be around 500 bp.   
   4.    Large insert size libraries will help to scaffold more complex 

and larger genomes. Those libraries are called from time to 
time also mate pairs.     

 This protocol should be applicable to sequences of the length 
of 76–250 bp in suffi cient depth, as provided by SOLID, Illumina, 
or Ion torrent. For scaffolding the large insert size libraries 
(8/20 kb) of the 454 technology are also helpful. 

 The importance of uniformity of the read distribution is often 
underestimated. This means that the amount obtained from each 
region of the genome should be similar. But due to PCR amplifi ca-
tion steps, extreme GC content is amplifi ed differently. This can 
result in uneven coverage that hinders the performance of assem-
blers. The following publication might be useful for further details 
[ 17 ]. In our experience, good DNA quality and good library prep-
aration are the most crucial steps for a good de novo assembly.   

3    Methods 

 Here we describe the methods of the sections: read preprocess-
ing, mapping, local assembly, de novo assembly, and annotation. 
For most of the step we provide further information in 
Subheading  4 . 

2.2  Sequencing 
Technology

Sequence Assembly
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   Before the reads can be used for assembly, sequencing adapters 
have to be trimmed. Bad quality regions of reads could also be 
trimmed. When not enough coverage is available (<80×), it is 
advisable to correct the reads. However, we would recommend 
trying the assembly without read correction fi rst. If the assembly 
fails due to runtime and memory    requirements, you should use the 
read correction.

    1.    To clip the reads for adapter you can use a program like trim-
momatic [ 8 ]. Assume that your reads are called reads_1.fastq 
 $ java -Xmx1000m -jar $PAGIT_HOME/trimmo-
matic-0.32.jar PE reads_1.fastq reads_2.fastq 
trimmed_1.fastq trimmo_unpaired_1.fq trimmed_2.
fastq trimmo_unpaired_2.fq ILLUMINACLIP:adapters.
fasta:2:10:7:1:MINLEN:50 

 Though the call looks a bit long, the reads with the 
trimmed adapters are in the fi les trimmed_1.fastq trimmed_2.
fastq. The fi le “adapters.fasta” contains the adapters used in 
the sequencing process.   

   2.    To cut low-quality ends of reads, it is possible to use the pro-
gram “preprocess” from the assembler SGA [ 19 ]. 
 $ sga preprocess -m 51--ermute-ambiguous -f 
3 -q 3 -p 1 reads_1.fastq reads_2.fastq > reads_
trimmed.fastq   

   3.    To correct reads from sequencing errors, SGA also has a func-
tion. But fi rst the reads have to be indexed. 
 $ sga index reads_trimmed.fastq 
 $ sga correct -k 51 -x 5 -o 
reads_corrected.fastq reads_trimmed.fastq 

 Here, a k-mer of 41 bp in the reads (-k) that occurs less 
than fi ve times (-x), will be corrected to a k-mer that occurs 
with the expected frequency.   

   4.    The output of SGA will be one merged fi le, where reads might 
have been discarded due to general bad quality. To generate 
again forward and reverse reads (or read one and two), use fol-
lowing command: 
 $ sga2readpair.pl reads_corrected.fastq reads_corr    

          A good fi rst analysis step is to map the reads against a closely related 
reference (i.e., 90 % nucleotide identity), if one exists. Here we are 
going to use the mapper SMALT. The fi nal output of this mapping 
process will be a BAM fi le, which contains all the reads, including 
their sequence and quality, as well as mapping information ( see  Fig.  3 ). 
Assuming your reference is called ref.fa and your reads reads_1.fastq 
and reads_2.fastq, the following steps need to be done:

3.1  Read 
Preprocessing

3.2  Mapping 
the Reads

Thomas D. Otto
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     1.    For pragmatic reasons, it might be good to link the name of 
your fi les to the names used here: 
 $ ln -s YOUR_REFERENCE ref.fa  
 $ ln -s YOUR_READS_1.fastq reads_1.fastq 
 $ ln -s YOUR_READS_2.fastq reads_2.fastq   

   2.    To see the differences between the fasta and the fastq format 
(Fig.  3 ) use the Linux command “head”: 
 $ head ref.fa reads_1.fastq   

   3.    First your reference has to be indexed: 
 $ smalt index -k 17 -s 3 ref.fa ref.fa 

 Here, all words (so-called k-mer) of 13 bp in the genome 
are counted and stored in an effi cient way through hashing. 
A short summary of the number of k-mers and the runtime is 
given. The output will be two fi les: ref.fa.sma and ref.fa.smi.   

   4.    Comparing those k-mers between the reference and the reads, 
the mapper is able to decide where in the genome each read 
could be placed. 
 $ smalt map -i 1000 -m 50 -r 0 -f samsoft -o 
Mapped.sam ref.fa reads_1.fastq reads_2.fastq 

  Fig. 3    Examples of different fi le formats. ( a ) fasta: Each sequence starts with a “>” and a name. Then the 
sequence is followed. ( b ) fastq: Similar to fasta, but with the quality coded in ASCII. ( c ) SAM format: First col-
umn is the name of the read. Next column is the mapping fl ag that can be used for querying a BAM fi le. Third 
and fourth, seven and eight columns are mapped to the reads and its mate, respectively. Column nine is the 
fragment size. The information how well the reads map is in column fi ve and six, mapping quality and cigar 
string, respectively. The sequence and the quality of the reads are stored in column ten and eleven. The last 
column can have many different information, like an alignment score, other possible position to map repeti-
tively. This depends on the mapper       
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 As parameters you can set the maximum expected frag-
ment size for a read pair to be properly paired (-i), place 
reads repetitively (-r), and exclude reads that map with a 
lower Smith- Waterman alignment score than 50 (-s). The 
reads are stored in the fi le Mapped.sam in SAM format [ 20 ] 
(-o -f samsoft). An example of the SAM format can be seen 
in Fig.  3 . It is a well- defi ned format, including for each read 
how and where it is mapped (column 2–6), where its mate is 
mapped, the sequence of the read and its quality and fi nally 
some tags.   

   5.    If you want to map a large insert library (more than 1 kb), fi rst 
the reads have to be reverse complemented. 
 $ revcompFastq.pl reads_3k_1.fastq rev.
reads_3k_1.fastq 
 $ revcompFastq.pl reads_3k_2.fastq rev.
reads_3k_2.fastq 

 For the mapping the settings for the fragment size have 
to be adapted. With a library of 3 kbp, a limit of 5 kbp should 
be set. 
 $ smalt map -i 5000 -j 1000 -m 50 -r 0 -f 
samsoft -o Mapped_3K.sam ref.fa rev.
reads_3k_1.fastq rev.reads_3k_2.fastq 

 The newly introduced -j parameter limits the minimal dis-
tance for mates. If you have more libraries, repeats this step.   

   6.    Next, we will transform the SAM fi le into a binary version, 
called BAM. This will enable us to do more analysis, and save 
disc space, as long as you delete the SAM fi le after the 
transformation: 
 $ samtools view -b Mapped.sam -t ref.fa.fai | 
samtools sort - Mapped 
 $ samtools index Mapped.bam 
 $ rm Mapped.sam 

 For mapping of the large insert, just adapt the commands 
by changing the fi le name Mapped to Mapped_3K.   

   7.    If you would like to visualize the mapping you could use 
Artemis BAMview [ 21 ], 
 $ art -Dbam = Mapped.bam ref.fa    

       Although mapping is a powerful method, there are limitations: 
Some regions in the reference might be too polymorphic for reads 
to be mapped. Nor can larger insertions be detected. In this section 
we will fi rst present steps showing you how to analyze those poly-
morphic regions by reassembling reads that map around it. Then we 
show how to assess larger insertions or new DNA elements through 
the assembly of non-mapped reads, the so-called  bin assembly .

3.3  Local 
Assemblies

Thomas D. Otto
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    1.    To reassemble a specifi c region we will need to gather the reads 
of this region (or at the border of it) and save them in the SAM 
format. We use samtools for this: 
 $ samtools view Mapped.bam Chr:From-To | 
sort>Region1.sam 

 “Chr” is the name of the replicon and “From”-“To” the 
position of the target region. For this example use the 
Pf3D7_10_v3:1404400-1405500.   

   2.    It is always good to have a look at the extracted reads to check if 
they come from the correct region, see column three and four: 
 $ head Region1.sam   

   3.    Those reads can now be assembled. 
 $ velveth Assembly.55 55 -sam -short Region1.sam 
 $ velvetg Assembly.55 -exp_cov auto 

 The fi rst step generates the so-called de Bruijn graph. The 
next step is to generate the contigs from it. The parameters 
specify the input format (-sam), short reads (-short), and the 
expected median k-mer coverage (-exp_cov auto) here deter-
mined automatically.   

   4.    Both programs generate a lot of output: # of reads, # k-mers, 
average coverage etc. To obtain statistics of the assembly, look 
at the last line: The number of nodes indicates the    number of 
contigs, so the pieces obtained from the assembly. The  n50  is a 
continuity metric,  max  is the length of the largest contig, total 
the size of the assembly, and the last two numbers are the 
amount of reads used in the graph versus the total amount. 
Another way to look at the same statistics is the program stats: 
 $ stats Assembly.55/contigs.fa   

   5.    As explained in Subheading  4.3 ,  step 2  the k-mer has the 
strongest impact on the assembly. It is good to iterate through 
different k-mer values in an automated fashion to optimize the 
assembly: 

 $ for ((kmer=31;$kmer<=73;kmer+=6)) ; do 
 velveth Assembly.$kmer $kmer -sam -short 
Region1.sam>out.velh.$kmer.txt; 
 velvetg Assembly.$kmer -exp_cov auto>
out.velg.$kmer.txt 
 done 

 This time each assembly output is written to a different 
fi le, through the “>” command.   

   6.    To analyze the different assemblies, we “grep” the line that starts 
with “Final” in all the output fi le of velvetg and different k-mers: 
 $ grep "^Final" out.velg.*.txt 

Sequence Assembly
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 Which assembly is the best? For local assemblies you would 
expect one contig that represents the targeted region.   

   7.    The result of the assembler is the fasta fi le Assembly.55/con-
tigs.fa (or another k-mer depending on your genome). One 
way to analyze it would be to load it into Artemis or blast it 
against a public database. But in some cases the local assembly 
didn’t return one contigs, but several. Our approach has two 
caveats: Some reads are too divergent to map, or an insertion 
occurred and we are not using the mate pairs. The following 
command will pull in the read’s mate, even if it doesn’t map: 
 $ samtools view Mapped.bam | awk '($3==”Chr” 
&& $4>=From && $4<=To) || ($7==”Chr” && 
$8>=From && $8<=To)' | sort>Region2.sam 
 If you are following the example use Pf3D7_10_
v3, 1394400, and 1400000 for the parameters 
“Chr,” “From,” and “To,” respectively.   

   8.    To assemble paird reads, just adapt the Velvet call as follow: 
 $ velveth AssemblyRP.55 55 -sam -shortPaired 
Region2.sam 
 $ velvetg AssemblyRP.55 -exp_cov auto -ins_
length 400 -ins_length_sd 30 -min_pair_count 15 

 The changes tell Velvet that the input fi le contains mate 
pairs and that their fragment size is 400 with a standard devia-
tion of 30 % of the library. “-min_pair_count” is the number of 
read pairs needed to join two contigs into a scaffold. n.b. Here 
the fragment size is the median, rather than the maximal frag-
ment size, as is the case with SMALT.   

   9.    In case of large insert libraries, repeat  step 8  to gather those 
reads: 
 $ samtools view Mapped_3K.bam | awk ‘($3==”Chr” 
&& $4>=From && $4<=To) || ($7==”Chr” && 
$8>=From && $8<=To)’ | sort>Region2_3K.sam 

 The following parameters are added to the Velvet com-
mands to include a second library: 
 $ velveth AssemblyRP_3K.55 55 -sam -shortPaired 
Region2.sam -sam -shortPaired2 Region2_3K.sam 
 $ velvetg AssemblyRP_3K.55 -exp_cov auto 
-ins_length 400 -ins_length_sd 30 -ins_
length2 3000 -ins_length2_sd 30 

 Again, have a look at the statistics. The number of bases in 
the assembly should have increased signifi cantly.   

   10.    The next step would be to iterate again through the k-mers as 
shown in  step 6 .   In this part we showed you how to assemble 
a specifi c region of the genome. We would encourage the 
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reader to apply those commands to the example of the  MSP3  
and S-antigen gene from the exercise,  see  Subheading  2.1.1 . 
This procedure is appropriate if reads map to the reference but 
have many differences. Next we show how to get hold of the 
sequences that are completely different to the reference, like 
plasmids or very divergent multigene families.   

   11.    The following command returns all the reads that don’t map as 
proper pairs: 
 $ samtools view -F 2 Mapped.bam | head 

 But as discussed before, we would like to get just the mate 
pairs that don’t map. The fl ag 4 is set if the read is not mapping 
and the fl ag 8 is set if the mate is not mapping. Adding the 
fl ags will return when both don’t map: 
 $ samtools view -f 12 Mapped.bam | sort>
NotMapped.sam   

   12.    Now we can assemble the reads as before. You might want to 
run the last call also for the large insert library. Here is the 
assembler call for one library: 
 $ velveth Bin.55 55 -sam -shortPaired 
NotMapped.sam 
 $ velvetg Bin.55 -exp_cov auto -ins_length 400 
 -min_contig_lgth 300 -cov_cutoff 5 

 Two new parameters are introduced. First we want to ignore 
contigs smaller than 300 bp (min_contig_lgth). Next, regions 
(or nodes in the de Bruijn graph) that have a coverage of less 
than 5 k-mer are ignored from the assembly (cov_cutoff). This 
will minimize the possibility of false joins. If the read coverage is 
even you can set this option to (auto). The value will be set to 
half of the “exp_cov” parameter. We chose the name “bin” as 
many users tend to forget about the non- mapped reads.   

   13.    Depending on the size of the organism whose genome you are 
assembling, the number of contigs might be signifi cantly 
higher than in our little example. Now it is even more impor-
tant to use different k-mers. The call would look like: 
 $ for ((kmer=31;$kmer<=73;kmer+=6)) ; do 
 velveth Bin.$kmer $kmer -sam -shortPaired 
NotMapped.sam>out.velh.$kmer.txt; 
 $ velvetg Bin.$kmer -exp_cov auto -ins_length 400 
-min_contig_lgth 300 -cov_cutoff 5>out.velg.
$kmer.txt 
 done   

   14.    To look at the results you could again use the grep call, or use 
the little stats script: 
 $ stats Bin.*/contigs.fa 
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 It is important to keep in mind, that those statistics do not 
tell you, how good (in terms of errors) the assembly really is. 
In the next section we are going to introduce a tool called 
REAPR that can evaluate the quality of the assembly, and 
return corrected assembly statistics.   

   15.    Now include the mate pair library. Redo the  step 11  with 
the Mapped_3K fi le and run the assembly like in  step 9 . 
Use the stats command to see the impact of the library, espe-
cially the N_count.   

   16.    At this step you might have generated larger sequences (several 
kbp) of the target region. In the example those will be subtelo-
meric regions with the genes of different gene families. To look 
at it, you could for example load it into Artemis (fi le Bin.55/
contigs.fa) and detect open reading frames (ORF),  see  
Subheading  4 . Alternatively you run ab initio gene fi nding 
tools like Glimmer [ 22 ] or Augustus [ 23 ],  see  Subheading  3.5 .    

      Although the bin and local assemblies are powerful ways to get results 
quickly, in many cases a complete de novo assembly is necessary. 
Reasons are that no reference is available or is too divergent, or the 
mapping and SNP calls aren’t accurate enough. Also, it is more dif-
fi cult to combine a local assembly with the reference into a contigu-
ous sequence than to do a de novo assembly. We assume that the 
reader has understood the earlier steps, as this section builds on them. 

 In the sections before, we performed de novo assemblies on a 
limited read set. Now we are going to use all the reads. The assem-
bly call won’t be very different, but we are going to do improve-
ment of the assembly. Let’s again assume that your short insert 
reads are called reads_1.fastq and reads_2.fastq and the reads of the 
large insert library are reverse complemented and called rev.
reads_3k_1.fastq rev.reads_3k_2.fastq,  see  Subheading  3.2 ,  step 5 .

    1.    To run the assembly is straight forward: 
 $ for ((kmer=31;$kmer<=73;kmer+=6)) ; do 
 velveth deNovo.$kmer $kmer -fastq -shortPaired 
-separate reads_1.fastq reads_2.fastq -fastq 
-shortPaired2 -separate rev.reads_3k_1.fastq 
rev.reads_3k_2.fastq>out.velh.$kmer.txt; 
 velvetg deNovo.$kmer -exp_cov auto -cov_cut-
off 5 -ins_length 400 -min_contig_lgth 300 
-ins_length2 3000 -ins_length2_sd 30>out.
velg $kmer.txt; 
 done   

   2.    As before you can now look into the assembly with the stats script, 
or grep the line in the output fi les,  see  Subheading  3.3 ,  step 4 .   

   3.    You might not necessarily want to optimize the assembly based 
on the n50. One example would be to increase the number of 
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genes of a specifi c gene family, which is very repetitive. So 
instead of looking at a large n50 you want to increase the num-
bers of genes. In general, a higher k-mer will better separate 
the different copies. Also the modifi cation of the  “-max_diver-
gence” parameter might help.   

   4.    The next step is to check the quality of the assembly. Just 
because the assembly has good statistics, doesn’t mean it is a 
good one with no error. 

 REAPR [ 3 ] is a tool that can fi nd errors in assembled 
sequences by remapping the reads. First, the reads, ideally 
from a large insert library, have to be mapped against the 
assembly. This can be done with the commands of 
Subheading  3.2 , or with this little program from the tarball: 
 $ map.smalt.sh deNovo.55/contigs.fa rev.
reads_3k_1.fastq rev.reads_3k_2.fastq Mapped
Novo55 5000 

 This will generate the BAM “MappedNovo55.bam” of the 
mapped mate pairs on the chosen assembly. As parameter the 
script uses “-x,” “-r 0,” and “-y 0.8.”   

   5.    Now we can run REAPR: 
 $ reapr pipeline deNovo.55/contigs.fa Mapped
Novo55.bam Reapr.55 

 Different metrics are going to be applied to decide which 
bases are correct and which are wrong; scaffolds will be broken 
where there are errors. The important outputs are in the report 
fi le with the new statistics of the assembly (05.summary.report.
txt) and the new assembly fi le 04.break.broken_assembly.fa.   

   6.    In choosing the best assembly it is better to compare the cor-
rected n50s rather than those given by the assembler. For each 
assembly the mapping and REAPR would need to be run.   

   7.    Once we choose the best assembly, we are going to do another 
round of scaffolding using the program SSPACE. Though 
assemblers themselves have a scaffolding step, other scaffold-
ing might improve the assembly. First we are going to iterate 
through different settings of the short library, and then the 
mate pair library. To prepare the call type: 
 $ echo “LIB1 reads_1.fastq reads_2.fastq 400 
0.3 FR”>lib1    

    8.    The resulting fi le will provide SSPACE with the fragment size 
(400 bp), the standard deviation (30 %), and the read orienta-
tion FR (Forward/Reverse). If your library has a different frag-
ment size, adapt the command in  step 7 . Now run SSPACE: 
 $ SSPACE_Basic_v2.0.pl -l lib1 -s 
Reapr.55/04.break.broken_assembly.fa -k 200 
-n 31 -b out.200 
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 The parameters indicate the nature of the reads (-l lib1), 
the input fi le, the result from REAPR (-s), the number of mates 
needed to join two contigs/supercontigs (-t) to a supercontig, 
how many bases must overlap to merge two contigs rather than 
scaffolding them and -b, the output. The fi le out.200.summa-
ryfi le.txt gives a summary of the mapping and scaffolding and 
out.200.fi nal.scaffolds.fasta holds the current assembly.    

    9.    In the step before, we used 200 mates to join two contigs. 
This might sound a lot, but we are looking at fragment 
 coverage, rather than read coverage. Also, the way SSPACE 
works, the best results are obtained by fi rst making the most 
high scoring joins and then running SSPACE again with a 
decreasing k parameter. 
 $ SSPACE_Basic_v2.0.pl -l lib1 -s out.200.
fi nal.scaffolds.fasta -k 100 -n 31 -b out.100 
 $ SSPACE_Basic_v2.0.pl -l lib1 -s out.100.
fi nal.scaffolds.fasta -k 50 -n 31 -b out.50 
 $ SSPACE_Basic_v2.0.pl -l lib1 -s out.50.
fi nal.scaffolds.fasta -k 10 -n 31 -b out.10 

 Looking at the statistics of the scaffolding results you 
should see a clear decrease in the number of contigs/scaffolds. 
 $ stats out*.fi nal.scaffolds.fasta 

 We would encourage the reader to try to scaffold the out-
put directly with 10 read pairs for the -k parameter to compare 
the effect on their assembly.    

    10.    Now we are going to scaffold with the mate pair library. One 
important point must be made. Small contigs of less than 500 bp, 
which belong between two larger contigs, might not be included 
in the scaffold, as the number of large-insert reads between the 
large contigs is higher than between them and the smaller contig. 
To our knowledge no scaffolder solves this problem in a satisfy-
ing manner. Therefore we normally exclude contigs smaller than 
500 bp. The hope is that in the later stages we can regenerate the    
sequence by doing gapclosing,  step 18 . Leaving the contigs in 
would make this more diffi cult. The size limitation can be added 
in the velvetg step or with the following PERL script: 
 $ RemoveSequencesSmaller.pl out.10.fi nal.
scaffolds.fasta 500>SSPACE.1.fasta    

    11.    Here the command to prepare and run SSPACE on the mate 
pair library: 
 $ echo “LIB2 reads_3k_1.fastq reads_3k_2.
fastq 3000 0.3 RF”>lib2 

 Note, you don’t have to use the reverse complemented 
reads; you can set the direction to RF rather than FR. 
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 $ SSPACE_Basic_v2.0.pl -l lib2 -s 
SSPACE.1.fasta -k 500 -n 31 -b out2.500 

 Next rerun the command, decrease k, as shown before for 
the short insert library.    

    12.    Compare the number of scaffolded contigs between the use of 
short and large insert size libraries. Generally, large insert 
libraries have a strong impact on the contiguity of the sequence. 
They enable bridging of repetitive regions. This is very valu-
able for parasites which may have repetitive subtelomeric 
sequences and to improve comparison between different iso-
lates for structural variation.   

   13.    Remember that the assembler already did some scaffolding. It 
might be advantageous to tell velveth not to use the large insert 
size library for scaffolding. Scaffolder can use the complete 
length of the reads to place reads (rather than just the k-mer) 
and they can deal with PCR duplicates. The    call would look as 
follows for a k-mer of 55: 
 $ velveth deNovoSE.55 55 -fastq -shortPaired 
-separate reads_1.fastq reads_2.fastq -fastq 
-short -separate reads_3k_1.fastq rev.
reads_3k_2.fastq 
 $ velvetg deNovoSE.55 -exp_cov auto -cov_cut-
off 5 -ins_length 400 -min_contig_lgth 300    

    14.    In some projects a mix of different sequencing technologies 
are used. The scaffolding step might be the best step at which 
to combine the different technologies. Assuming you have a 
BAM fi le of the mapped reads, do: 
 $ samtools view -F12 Mapped454.bam | awk 
'$7!="="' | sort | BAM2consensus_reads.pl 
Assembly.fa Reads_Scaff    

    15.    We are again using awk, sort, PERL, and pipes. As parameter 
for the PERL program BAM2consensus.pl you have to pro-
vide the assembly sequence (Assembly.fa) and the result prefi x 
for the new read fi les (Reads_Scaff).   

   16.    As mentioned before most of the errors are introduced to the 
assembly in the scaffolding step. Therefore we recommend 
that you rerun REAPR. Caution must be taken for the fact that 
SSPACE renames the scaffolds, including a pipe symbol. The 
following function of REAPR can be used to rename them: 
 $ reapr facheck out2.10.fi nal.scaffolds.fasta 
ForReapr.fa 

 Now we have long scaffolds with sequencing gaps and 
some base errors. In the next steps we are going to try to close 
sequencing gaps with IMAGE ([ 11 ]) and correct base errors 
using ICORN ([ 13 ]). If you have a closely related reference 
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you can order your scaffolds against it and transfer the annota-
tion, using the tools ABACAS and RATT. These programs are 
part of the PAGIT pipeline [ 24 ]. PAGIT has an automated 
way to invoke the tools; however here we are presenting the 
specifi c program calls. For more in-depth information we rec-
ommend to read the PAGIT protocol paper.   

   17.    If you don’t have a reference sequence available, do 
 $ PAGIT.noRef.sh ResultReapr.fa read_1.fastq 
reads_2.fastq 500 Final.fa 

 To call the script successfully give it your current assembly, 
the reads, the insert size, and the fi nal result name.   

   18.    The PAGIT script will fi rst run nine iterations of gapclosing 
and contig extension, decreasing the k-mer length every three 
iterations from 71, to 55 and then 41. The calls look like: 
 $ image.pl -scaffolds ResultReapr.fa -prefi x 
reads -iteration 1 -all_iteration 3 -dir_
prefi x ite -kmer 71 -smalt_minScore 60 
 $ restartIMAGE.pl ite3 55 3 partitioned 
 $ restartIMAGE.pl ite6 41 3 partitioned 

 Local assemblies are done for each sequencing gap and at 
the ends of contigs, by including the mate pairs that don’t 
map, as done in Subheading  3.3 ,  step 7 . The k-mer for the 
assembly can be changed as can the minimal score for a read to 
be placed with SMALT (smalt_minScore - the “-s” parameter 
in Subheading  3.2 ,  step 4 ). Again, we encourage the reader to 
change the parameters and analyze the impact. In the end, the 
contigs are joined and placed in the fi le Res.image.fasta by 
 $ contigs2scaffolds.pl ite9/new.fa 
ite9/new.read.placed 300 10 Res.image    

    19.    After the IMAGE step, 50–80 % of the sequencing gaps should 
be closed and many scaffold ends extended. Next, we are going 
to apply the tool ICORN to correct base errors. Compared to 
REAPR it looks for 1–3 bp errors and corrects them. REAPR 
scores single bases rather than  correcting them. Reads are 
mapped with SMALT and differences between reads and the 
reference are found and corrected. 
 $ icorn2.start.sh Reads 500 Res.image.fa 1 3 

 As before, the reads, fragment size, and the input reference 
from IMAGE are passed to the script. The last two parameters 
are the iteration start and stop. The output will be a summary 
fi le (Res.image.fasta.summary.txt) and the corrected sequence 
fi le (Res.image.fasta.4). If run through the PAGIT pipeline the 
fi nal result will be called Final.fa. The next step for the analysis 
would be to start with the ab initio annotation of genes,  see  
Subheading  3.5 .    
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    20.    In cases where a reference sequence is available, the PAGIT 
pipeline has a tool to order the contigs against the reference, 
and to transfer the annotation. This following call will also 
invoke the gap closing (IMAGE) and correction (iCORN) 
steps: 
 $ PAGIT.sh ResultReapr.fa read_1.fastq reads_
2.fastq 500 Final ref.fa AnnotationDIR 

 The call is very similar to the above one, with the excep-
tion that the reference and a directory with the annotation of 
the reference are given.   

   21.    In the fi rst step, the scaffolds will be ordered against a refer-
ence. A certain caution must be taken however. If it is known 
that the species under study has many synteny breaks relative to 
the reference, the resulting order might not be correct. 
Furthermore, we recommend deleting regions (or replace 
them with n’s—the symbol for an ambiguous base) where 
there is evolutionary pressure, as in virulence factors or the 
subtelomeres of species such as  Plasmodium  or  Trypanosomes . 
To put it another way, you would like the scaffolds to be 
ordered only against the well-conserved parts of the reference.   

   22.    As discussed, the PAGIT pipeline will order the contigs with 
the following command: 
 $ abacas.pl -r ref.fa -q ResultReapr.fa -p 
nucmer -d 

 If you work with more divergent species, you might want 
to change  nucmer  to  promer  in the PAGIT.sh script. Instead of 
using nucleotide similarity, an amino acid comparison will be 
done. The result will be a multifasta fi le. Scaffolds ordered 
against a reference chromosome will be joined with n’s and are 
now named after the reference replicon.   

   23.    After this step, IMAGE and ICORN will be run again ( steps 
16  and  17 ).   

   24.    Now it is possible to transfer the annotation onto the improved 
assembly with RATT. The call used by the PAGIT script is: 
 $ start.ratt.sh AnnotationDIR ForRatt.fa 
Transfer Species 

 Similar to ABACAS, the last parameter determines the 
similarity. Due to the nature of the program it won’t work with 
amino acid comparisons. The parameter  Species  is the most 
robust. If your reference is very similar, and the assembly is 
contiguous, in pieces larger than 10 kb, we would recommend 
the value “Assembly” or “Strain” for this parameter. The value 
“Transfer” is a prefi x for the result fi les. “AnnotationDIR” is 
the position of the reference annotation in embl format. Note 
that you might need to adapt the confi guration fi le of RATT, 
with a simple editor. Here is the position of the fi le: 

Sequence Assembly



38

 $ echo $RATT_CONFIG 
 This confi guration fi le enables you to set the start codons, 

splice sites and if pseudo genes should also be corrected.   
   25.    The result of RATT is one annotation fi le for each replicon, 

starting with Transfer.*.fi nal.embl (ordered and unordered 
scaffolds). You can open them in Artemis. To compare these 
with the reference, use ACT. ACT can be seen as two Artemis 
view joined by a similarity comparison, see Fig  1 . First we will 
generate this comparison fi le for a single chromosome by 
extracting the chromosome sequence from the multifasta fi le, 
preparing it and blasting it. 
 $ samtools faidx ref.fa RefChr>RefChr.fa 
 $ formatdb -p F -i RefChr.fa 
 $ blastall -p blastn -m 8 -e 1e-6 -d RefChr.fa 
-i Sequences/deNovoSuper -o comp.RefChr.blast 

 where RefChr.fa is the name of the reference chromosome. 
Without going into too much detail, the reference chromo-
some is being compared to scaffolds or ordered scaffolds, from 
the PAGIT pipeline. These sequences are in the folder 
“Sequences.” To start ACT, use the reference fi le, which 
should be in the folder “embl,” the comparison fi le you just 
generated. The result fi le from RATT is Transfer.deNovoSu-
per.fi nal.embl. 
 $ act AnnotationDIR/RefChr.embl comp.RefChr.
blast Transfer.deNovoSuper.fi nal.embl   

   26.    In ACT, it is possible to see insertions, deletions, and rear-
rangements in the comparison window. To evaluate the RATT 
transfer, load onto the reference chromosome the fi le Transfer.
RefChr.NOTTransfered.embl (click on File->2nd option 
->Read an Entry). This fi le will show the gene models that 
weren’t transferred. Lastly, load the GFF fi le from the “Query” 
folder, and look for the synteny tag. These regions have no 
synteny to the reference, and are probably insertions. 
Furthermore, those will need to be annotated separately. 
Figure  1  is an example of an ACT view.   

   27.    Using ACT, it would be possible to look for Open Reading 
Frames (ORFs), not overlapping RATT-transferred annotation 
and follow the description of Subheading  4.3 ,  step 10 .   

   28.    Although at this stage we have an improved, annotated 
genome, one quality check remains to be done. We recom-
mend doing a “bin” assembly as described in Subheading  3.3 . 
During the process, we deleted small contigs, which might 
contain important sequences. Also, some assemblers exclude 
reads with an extreme k-mer coverage, for example those 
derived from mitochondrial or plasmid DNA. Furthermore, 
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maybe something went wrong in the process—there could 
have been a truncated fi le. If the bin assembly contains inter-
esting sequences, join it with the current, improved assembly: 
 $ cat ForRatt.fasta bin.55/contigs.fa>
Joined.Assembly.fasta   

   29.    Each program generates temporary fi les, which use a lot of 
space. For example, IMAGE generates ite*/ directories, 
SSPACE creates several mapping directory or ICORN does 
ICORN2_*/ directories. Those should be deleted on a regu-
lar base with the rm command, i.e: 
 $ rm -rf ICORN2_*/ ite*/ reads/ bowtieouput/   

   30.    Some of you may have noticed that it would be possible to fi rst 
run IMAGE to extend contigs, then run the scaffolder. Or, 
perhaps it would be good to scaffold the bin contigs into the 
improved assembly. Both these points are true and we hope to 
have given the reader the impression that each process can be 
seen as a module. The order can be changed, and processes 
 iterated. The aim of this protocol is to show the reader the pos-
sibilities of generating assemblies and improving them.    

       In the previous section we showed how to improve the quality of a 
genome sequence and how to transfer annotation from a reference 
onto the assembly. But the genome is far from being well annotated: 
Where its sequence is not similar to the reference, like in multigene 
families or insertions, the annotation would be transferred poorly or 
not at all. To annotate those regions, an ab initio gene prediction 
must be done. (The same would need to be done, when no closely 
related reference exists.) Here we present a method of predicting 
gene models and a fi rst pass functional gene annotation. In the end, 
we show how to merge the new annotation with the RATT trans-
ferred annotation. 

 Although the method presented here for gene prediction and 
functional annotation is valid when a closely related reference 
exists, we highly encourage the reader to further study the subject 
of gene prediction and functional annotation, as each program and 
method has its strength and weakness [ 5 ,  6 ].

    1.    First, the gene predictor has to be trained. For simplicity we 
assume that we can use the genes from the reference genome.   

   2.    Load the annotation from the reference genome (you can use 
the one of the test dataset) into Artemis and save it in the GFF 
format (File ->Save An Entry As ->GFF Format). For simplic-
ity, save it as ChrX.gff. Accept all the warnings that some clas-
sifi ers won’t be saved.   

   3.    Next we require to know the names of each chromosome in 
the reference fasta fi le ref.fa. The command 

3.5  Annotation
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 $ grep ‘>’ ref.fa 
 will do the job. Remember the name of the chromosome 

of which you generated the GFF fi le. In this example her for 
simplicity we assume it is called ChrX.    

    4.    This command will transform the gff into the gb format needed 
for Augustus. 
 $ gff2gb.sh ChrX.gff ChrX ChrX.gb 

 In case that you have more than one chromosome, redo 
the steps from number 2 and concatenate the fi les with: 
 $ cat ChrX.gb ChrX2.gb … ChrXn>All.gb    

    5.    Next, we initiate Augustus 
 $ new_species.pl -- pecies=NEW 
 $ etraining -- Species=NEW --
stopCodonExcludedFromCDS=false ChrX.gb 

 The fi rst command will generate a training instance for 
your reference, called “NEW.” This instance is than trained in 
with the gene models saved in Artemis second command. Read 
carefully the output of the programs. Gene models that seem 
to be wrong for Augustus will be excluded.    

    6.    Now we can apply the trained model to the new assembly: 
 $ augustus -- Species=NEW ImprovedAssembly.
fasta>abintio.gtf 

 The output is a gtf fi le that contains all the predicted models.   
   7.    Those models obviously don’t have any functional annotation. 

The next command will attribute to each model the fi rst 
BLAST hit with an E-value of at least 1e-40 of the new model 
against the proteome of the reference genome “ref.aa.fa” in 
the next command. The output will be EMBL fi les in the 
“Augustus” directory. 
 $ augustusAnnotate.sh ImprovedAssembly.fasta 
abintio.gtf ref.aa.fa 

 At this point we have the annotation of the  ab initio  gene 
models. Now we present here how to merge them with the 
gene models of the RATT transfer.   

   8.    The fi rst step is to delete gene models that contain still errors 
in the RATT transfer. Although RATT tries to correct gene 
models, this step can fail. The next command will use the sta-
tistic of each gene stored in the “report” fi les: 
 $ cat Transfer.*txt | perl -nle '@ar=split(/\t/); 
if (($ar[8]+$ar[9]+$ar[10]+$ar[11]+$ar[12]+
$ar[13])>0){print $ar[0]}'>exclude.txt 
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 This command counts the columns 8–13 that represent 
specifi c errors, such as wrong start codon, frame shifts, or 
incorrect splice sites.   

   9.    The next call will exclude all the models that are fl agged to be 
wrong from the EMBL fi les. (The new fi les will be stored in 
the directory RATT_excluded): 
 $ mkdir RATT_excluded 
 $ for x in ` ls Transfer.*fi nal.embl ` ; do 
 cat $x | excludeGeneEMBL.pl exlude.txt>
RATT_excluded/$x; 
 done   

   10.    At this stage it is possible to join the models from the RATT 
model with the models from the gene prediction. The rule is 
that if a predicted gene overlaps with a RATT transferred 
model, it will be deleted. 

 First we generate a directory to store the fi les: 
 $ mkdir Joined 
 $ for x in `grep '>' assembly.fa | sed 
's/>//g'`; do annotation.MergeAnnotation
SecondAway.pl 

RATT_excluded/Transfer.$x.fi nal.embl 

Augustus/$x.embl>Joined/$x.embl; 
 done   

   11.    Now it is possible to examine the annotation in Artemis. 
 $art Joined/ChrX.embl 

 Further you can also add the models from the  ab initio  
gene prediction as a separate track (Menu: File -> Read Entry, 
and select the gff from the “Augustus” directory. If genes are 
wrong, it is advisable to delete those from the RATT transfer 
and redo  step 10 .   

   12.    The last step would be to give the genes systematic ids. This 
can be done in Artemis or with following script: 
 $ mkdir fi nal 
 $ cat Joined/chrX.embl | annotation.giveIDCDS.
pl NameID_01 T>fi nal/chrX.embl 

 This command has to be run for each new chromosome/
supercontigs, in this case “chrX.embl.” The fi rst parameter 
(NameID_01) would be the ID plus the chromosome number, 
here 01. The second parameter is optional: RATT transfers also 
the locus tag from the reference. If this has the prefi x of the sec-
ond parameter (in this case “T”) the reference locus_tag will be 
stored in the ratt_orthologs tag. If not, it gets deleted.    
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4         Notes 

    This protocol uses a wide range of tools and commands. We assume 
that a novice user will probably need a week to work through the 
protocol when assembling a bacterial genome. It is important to 
have a computer with all the tools installed and enough memory, 
around 6 GB. When using the preinstalled tarball (Subheading  2.1 , 
 step 1 ) be sure to run it on a computer with at least 6 GB of 
memory. To run through the provided example will take around 1 
day. 

  It is important to keep in mind that reads can be of poor quality 
and that sequencing might generate insuffi cient depth. Although 
assembly will still be possible, the representation of the genome as 
a whole will be poor, and the range of meaningful downstream 
analyses will be quite small. 

 Another important point is the possibility of contamination. 
Depending on the source of material, host contamination is com-
mon. If host contamination is present, and there is a reference 
sequence for the host, map the reads against the host genome 
(Subheading  3.2 ,  step 3  ff ) and extract those from the results fi le 
with the command in    Subheading 3.2,  step 5 . This will fi lter most 
of the contamination. For the rest, once the assembly is done, blast 
the contigs against the reference. You can also compare the GC 
content of the contigs. The contaminants normally have a different 
GC content from that of the target genome.

    1.    There are many programs to trim adapters. The key thing is to 
have a fi le of adapter sequences. In our experience, it is most 
often mate pair libraries and bad quality runs that have many 
adapters.   

   2.    Trimming should be done for very bad quality reads. But the 
best cutoff is tricky to set. A base with a quality value of ten still 
has a 90 % chance of being correct. For the    assembly, one out 
of ten reads will be excluded and this generates noise. With 
enough coverage, and without doing read correction, choose a 
quality cut off of 20.   

   3.    The SGA correction will fi rst index the reads and then do the 
correction by looking for k-mers in reads. A read is corrected 
where it contains a k-mer with too low abundance. Depending 
on the complexity of the genome and the read coverage, this 
step takes between 4 h and 4 days. The biggest impact of the 
correction will be on the memory and runtime requirement 
for the assembly.    

    There are many tools that can be used to map reads against a refer-
ence [ 25 ]. SMALT is a tool that gives us more control when a read is 
mapped, using the parameters for minimum score or fragment size.

4.1  Preprocessing

4.2  Mapping Reads
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    1.    The indexing step can be optimized in terms of speed and sen-
sitivity. The k-mer is the length of the identical words and the 
parameter  s  is the step size. With a step size of one every k-mer 
is taken, with a step size of two only every second k-mer is 
used. Low k and  s  parameters will result in many small pieces 
that represent the genome. More divergent reads can be 
mapped, as if you have an SNP every 14 bases a k-mer of 13 
can be found in the reads, but not a higher k-mer. The price 
will be the runtime. Higher parameters like  k  = 20 and  s  = 11 
will result in a more sparse representation. Reads with many 
differences to the reference might not get mapped. But the 
mapping time is signifi cantly shorter. A k-mer smaller than 13 
should not be used, due to the runtime and the fact that k-mers 
which occur very often will be ignored.   

   2.    For the mapping step many parameters can be set ($ smalt map 
-H). Interesting parameters include “-y” to limit the place-
ment of the reads by identity, “-n” to use more than one 
thread, or “-d” to allow multiple hits for each read. In terms of 
runtime, for a 5 MB genome with 100× read coverage, we 
estimate a mapping time of 1 h. The runtime increases linearly 
with the number of reads or the genome size. Normally not 
more than 2 GB of memory is needed.   

   3.    To map large insert libraries, reverse complement the Illumina 
reads. For 454 reads, you just need to reverse complement the 
second read. Although the mappers have functions to reverse 
complement, some just recalculate the fl ag, rather than really 
reverse complementing the reads. This is generally okay, but as 
our analysis builds on the mapped reads, we have to have them 
in the correct orientation.   

   4.    The reason for sorting and indexing the reads is a faster access 
to reads at specifi c positions. Later this will become more 
obvious. This step takes around 10 % of the total mapping 
time. To get a statistic of the mapping, do $ samtools fl agstat 
Mapped.bam.    

          1.    The samtools command “view” prints all the reads mapped to 
the specifi ed chromosome “Chr” between the positions 
“From” to “To.” Select a region slightly larger than the one 
you are interested in. For example if you chose a specifi c gene, 
extend the border by 100 bp.   

   2.    Those two commands will do the assembly. The fi rst command 
builds the graphical representation of the reads. As for the 
mapping, we select a specifi c k-mer, which will represent the 
nodes of the graphs. Two reads are basically joined into a con-
tig if they share an identical k-mer. The k-mer setting will have 
the strongest impact on the quality of the assembly. If the 

4.3  Local 
Assemblies
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k-mer is too long, two reads that should be joined might not 
get joined due to sequencing errors. On the other hand, 
shorter k-mers are more likely to be repetitive, which is a big 
issue for the assembler. This could lead to many small contigs, 
or in some rare cases also to mis-assemblies. The second com-
mand cleans the graph and fi nds an Euler path through the 
graph. A very important parameter is the expected coverage. 
This can be determined automatically by Velvet. The value can 
be obtained manually through the “stats.txt” fi le, see velvet 
manual. Obviously, there are many assemblers that could be 
used at this point. Although the results will vary slightly, we 
think that it will be more important here to explain the general 
procedure than to list all the different assembler calls. In the 
end, they have very similar parameters and ways to be called. 
Both Velvet programs have many parameters. The most impor-
tant will be explained below. To see them all, just type ($ vel-
veth or velvetg).   

   3.    The overview values of the Velvet and the stats program have 
the following meaning. The sum is the total number of bases 
in the assembly. “n” represents the number of contigs in the 
assembly; “mean” and “largest” relate to the contig size. The 
N50 is the length L such that 50 % of the assembly lies in con-
tigs of at least length  L . N60 is defi ned analogously, but for 
60 % of the genome, etc. The N_count is the amount of n’s 
contained in the assembly.   

   4.    The for loop is a feature of bash, the Linux environment you 
are working in. It basically iterates over several values of the 
variable $kmer from 31 to 73, with a step size of 6. This com-
mand will take roughly eight times as long as a single Velvet 
call. For larger read sets you might want to run different Velvet 
calls on different computers, but this kind of optimization is 
not part of this chapter. 

 Depending on the quality of the reads, the amount of cover-
age and the base composition of the genome, a certain k-mer 
will generate a more contiguous and larger assembly. If you have 
coverage over 80×, it is likely to be a larger k-mer. It is possible 
to iterate the k-mer with a lower step size, around the optimum. 
Please note that a k-mer must always be an odd integer value.   

   5.    This command will take some minutes to run. All reads are 
handed (or piped) to the awk command. This one looks to see 
whether a read or its mate map on the specifi ed chromosome 
and position (columns 3, 4 and 7, 8). These two conditions are 
connected with a logical OR (||), so if at least the mate or the 
read fulfi ll the condition, the mapping information of the read 
is piped to a sort command. The sorting is necessary, as the 
assembly step will require a SAM fi le, sorted by read name, so 
all reads in a pair are together. To write the output into a fi le, 
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use the “>” command. As we ensure to collect both mates, a 
local assembly should be able to reconstruct an insertion of 
nearly twice the fragment size. As a look ahead, this method to 
pull in non-mapping reads through mate pairs is the basic idea 
of gap closing software like IMAGE, part of PAGIT that will 
be discussed later.   

   6.    Velvet will fi nally try to scaffold the contigs using the mate 
pairs. Basically the reads are mapped back to the graph (using 
the k-mer as seeds), and if a certain number (value of -min_
pair_count) maps to two contigs, these will be joined into a 
scaffold. Ns are inserted between the contigs, the number of 
which depends on the expected gap size. This step is the most 
likely source of mis-assemblies. Therefore higher values will 
tend to generate more conservative assemblies, with fewer 
errors and more contigs. A good setting is generally to set the 
value to the median coverage, which is returned in the second 
last line of the velvetg output. To set this value, the velvetg call 
would therefore need to be run twice. Finally, although the 
output of Velvet now has supercontigs, the fi le will still be 
called “contigs.fa” The quickest way to check if the results are 
contigs or scaffolds is to use the stats program—if the N_count 
is not zero then the results are scaffolds.   

   7.    Although including the large insert size library reduced the 
number of scaffolds, the effect might not be seen in local 
assemblies.   

   8.    We chose to select only read pairs where neither map, to avoid 
chimeras entering into the read set. Although these could be 
fi ltered out later (parameter -cov_cutoff), they would slow 
down the process and introduce noise. To obtain these reads 
we query their fl ags (the second column of the BAM fi le), in 
this case 12, read and mate don’t map. Next, each line of the 
SAM fi le is passed via the pipe command to the sort program.   

   9.    The mate pair library should make a huge difference to the 
statistics of the supercontigs. Later we are going to discuss fur-
ther problems with scaffolding using large insert libraries. But 
depending on the organism, the fi nal result should be one scaf-
fold per amplicon, which is rarely achieved.   

   10.    To detect and annotate ORFs do the following in Artemis: 
click on Menu Create ->mark open reading frame. Choose a 
minimum length of 200 and enable the option to break at 
contig boundaries. Next, you can blast the obtained ORFs 
against a uniprot database: Select ->Select all CDS; Run ->Run 
blastp on selected feature ->Uniprot_eukaryota. Choose 
Uniprot_bacteria, if you work with bacteria. The blastp gets 
run. Once done you can see the results by selecting a CDS and 
pressing the keys crtl+back quote.      
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      1.    As all the reads are going to be used, the runtime will be 
increased. Genomes below 5 MB will run in around 20 min, 
and need just 2 GB of memory. Larger genomes, up to 30 MB, 
will take around 1 h and the memory can increase up to 
30 GB. To lower the memory requirements, work with a 
higher k-mer (>49) and correct the reads before running the 
assembler (Subheading  3.1 ,  step 3 ). For very large parasites, 
Velvet might need more than 200 GB memory. In this case, 
the SGA assembler is a useful alternative, which normally 
doesn’t use more than 60 GB of memory. When using large 
insert size libraries, a fraction of reads can point in the wrong 
direction, and may result in incorrect scaffolding. To avoid 
this, set the shortMatePaired parameter to yes. 

 Some users might want to try a tool called velvetoptimser.
pl. It automatically tries different settings in velvet to optimize 
a specifi c value, such as a large N50 or assemblies with many 
bases. Interestingly, in our experience, manually iterating 
through the parameters generates still better results for larger 
genomes.   

   2.    To test the different assemblies for the best representation, one 
could blast conserved motifs against the different assemblies 
and assume that the one with the highest number might best 
represent the gene family. Obviously, one must fi nd a  balance 
with the other statistics, such as the N50.   

   3.    It is a very common procedure to join several steps of process-
ing into one script. This reduces not only the amount of time, 
but also the likelihood of typing errors.   

   4.    REAPR generates many statistics. A very useful feature is the 
generation of the per-base quality. Every base will be scored for 
correctness, try $ reapr perfectmap. REAPR with    only break 
scaffolds if the error is over a gap (n’s). If an error is within a 
contig, the bases are replaced with Ns and the deleted sequence 
is written into the “bin” fi le (Contig errors can also be broken 
with reapr break -a). Plots for the different errors can be loaded 
into Artemis. The command $ reapr plot<chromosomeName> 
will generate all the plots and a script to start Artemis auto-
matically. For genomes under 4 MB REAPR takes less than 
10 min. For larger genome, the runtime and memory require-
ment is similar to the mapping step.   

   5.    The application of automatically mapping reads and correcting 
assemblies needs a bit of scripting. Supplied in the tarball is a 
script called “deNovoPlus.sh.” It is a very trivial script, which 
has as parameters the k-mer and the insert size. The following 
commands will be run: 
 $kmer=$1 
 $insersize=$2 

4.4  De Novo 
Assembly
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 velveth deNovo.$kmer $kmer -fastq -shortPaired 
-separate reads_1.fastq reads_2.fastq velvetg 
deNovo.$kmer -exp_cov auto -cov_cutoff 5 -ins_
length $insersize -min_contig_lgth 300 
 map.smalt.sh deNovo.$kmer/contigs.fa rev.
reads_3k_1.fastq rev.reads_3k_2.fastq Mapped
Novo$kmer 5000 
 reapr pipeline deNovo.$kmer/contigs.fa Mapped
Novo$kmer Reapr.$kmer 

 The script basically joins all the commands explained 
before, and assumes a very stringent naming convention. This 
is a simple example how powerful and easy scripts can be. One 
would call it through a for loop and use different k-mers, or 
start the job on different computers to save time.   

   6.    Compared to the assemblers, a scaffolder will use the complete 
length of the reads to determine its position in the assembly. 
Also it should ignore duplicate reads, where mate pairs that 
came from the same DNA fragment are overrepresented due 
to the PCR amplifi cation step. We use SSPACE as it is straight-
forward to use and was one of the fi rst using Illumina data. As 
mentioned later in Subheading  3.4 ,  step 12 , the scaffolding of 
SSPACE is better than that of velvet. Therefore one could dis-
able the scaffolding with the large insert size library.   

   7.    At fi rst it might sound weird to iterate through different 
 settings, decreasing the evidence. But again, this optimizes the 
results, without generating more errors.   

   8.    As for most of the tools, there are limitations. To further scaf-
fold you would need combinatorial PCR. Alternatively you can 
order contigs of at least 40 kb using optical maps.   

   9.    This step will have more impact on larger genomes, where 
more k-mers are repetitive, more duplicate reads are expected, 
and the order of contigs is not so obvious. There are also 
limitations of the existing scaffolders. If three copies of a repeat 
are joined into one contig, the scaffolder should not join the 
contigs. It would be better to exclude those reads from the 
assembly, and hope that local assemblies ( see  Subheading  3.4 , 
 step 17 ) will regenerate them, or split the collapsed repeat into 
three copies. This is not a problem if the repeat is smaller than 
the largest mate pair library.   

   10.    SSPACE is designed to work with Illumina reads. But you may 
have 454 8 kb/20 kb libraries available for scaffolding. Here 
we present a script that returns fake reads from a BAM fi le, 
with the consensus sequence taken from the reference using 
the correct read length. This preprocessing step will also reduce 
the reads that have to be analyzed by SSPACE, by excluding 
reads not holding scaffolding information (as mapping for 
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example onto the same contig). First you have to reverse com-
plement your reads so that they point towards each other ( see  
Subheading  3.2 ,  step 5 ). Next map them with SMALT 
(Subheading  3.4 ,  step 4 ). Then you can do  step 14 . The reads 
can now be given to SSPACE. If you have a large genome, you 
can also do this to speed up the runtime of SSPACE 
signifi cantly.   

   11.    There is always a trade-off between automated pipelines and run-
ning the tools one by one. Here we provide an automated 
approach, while also explaining the main parameters for each tool.   

   12.    IMAGE is a powerful tool to improve your assemblies. The 
price is a long runtime. In each iteration, the reads are mapped, 
gathered for each gap or scaffold end, and a local assemblies 
are done. Subsequent iterations are faster, as properly paired 
reads will not be remapped and regions that could not be 
improved in the previous iteration will not be touched. But 
this method is still much faster than fi lling gaps by 
PCR. Interestingly, other gapfi lling tools close different types 
of gaps than IMAGE. For the remaining sequencing gaps, you 
would need to do PCR, if considered necessary.   

   13.    ICORN is an iterative tool that takes 30 min per iteration for 
genomes around    4 Mb and 8–24 h for genomes around 
200 GB.   

   14.    Some scaffolds will not get ordered. These may be the most 
interesting sequences, as they will be the most different from 
the reference (if they are not contamination). It is important 
not to forget them! 

 After running ABACAS, you should rename your ordered 
scaffolds. Naming is always important and mostly needs to be 
done in a manual matter, through an editor. For those who 
would like a more automated way, look into the Linux “sed” 
program.   

   15.    As mentioned RATT can only transfer annotation where 
synteny exists. But those regions without synteny are the ones 
to be examined in more detail. Furthermore, it will be neces-
sary to annotate them separately, Subheading  3.5 .   

   16.    It might be surprising, but indeed errors occur that no one 
expected. To do a “bin” assembly is an effi cient way to double- 
check the assembly for errors.      

  Although stated before, we must iterate that the ab initio gene 
prediction and functional annotation we present is not the most 
sophisticated,  but valid as a fi rst pass annotation if a closely related 
reference genome exists. The reference genome will be used to 
train the gene fi nder and as a database for the functional annota-
tion. General errors of the gene prediction are overprediction, 

4.5  Gene Prediction
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missing exons, and wrong splice sites. In the functional annota-
tion, it can be wrong to assume homology due to similarity to 
homology, especially when paralogous exists. Nevertheless, as a 
starting point (and merged with the RATT transfer) the method 
presented here will be extremely helpful. 

 For bacterial gene prediction we would recommend Glimmer 
or Prokka [ 7 ], which are easy to use.

    1.    In case that you don't have a closely related reference, you will 
need to generate 200–400 high-quality gene models. This 
training set should cover as many different type of genes, not 
just the core genes, like predicted from CEGMA [ 26 ].   

   2.    A lot of time in bioinformatics is spent on transforming fi les to 
different formats. To ensure that this won’t be a problem for 
this protocol, we generated the gff fi le through Artemis. Users 
that are more experienced with scripting will have their own 
methods, especially, when the genome has many 
chromosomes.   

   3.    This script    hides some ugly code. From the gff a gtf is gener-
ated, with the name of the sequence. This is then transformed 
to a genbank fi le, using an augustus script. For more advanced 
users, it might worth to look into the script and modify the 
parameters to obtain better results.   

   4.    If the second command returns a lot of errors, like wrong 
models, then in the transformation step something went 
wrong. One solution might be to name the gene models with 
locus_tag in Artemis, without using any special characters in 
the name.   

   5.    All the above steps run within minutes. This step might need 
several hours if the genome is over 30 Mb.   

   6.    To generate a full EMBL fi le the program “ratt.main.pl 
doEMBL” can be used. It combines the sequence (fasta fi le) 
with the annotation (EMBL format).   

   7.    In some case, it is desirable to exclude also specifi c gene fami-
lies, as it is likely that the transfer will be wrong, for example 
missing exon, and the  ab initio  gene prediction might be better. 
$ cat Transfer.*txt | grep "variant erythro-
cyte" | cut -f 1 >>exclude.txt will add all genes ids 
that have the annotation “variant erythrocyte” as product to 
the list to exclude genes.   

   8.    Depending on the expected quality of the annotation, here a 
lot of time can be spent. Further, several information from the 
reference transferred onto the new assembly might not be rel-
evant. This information should be deleted.   

   9.    Actually, the geneID should be obtained from a database like 
EBI, to agree with their submission format.          
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