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Chapter 2

Transition Path Sampling with Quantum/Classical 
Mechanics for Reaction Rates

Frauke Gräter and Wenjin Li

Abstract

Predicting rates of biochemical reactions through molecular simulations poses a particular challenge for 
two reasons. First, the process involves bond formation and/or cleavage and thus requires a quantum 
mechanical (QM) treatment of the reaction center, which can be combined with a more efficient molecular 
mechanical (MM) description for the remainder of the system, resulting in a QM/MM approach. Second, 
reaction time scales are typically many orders of magnitude larger than the (sub-)nanosecond scale acces-
sible by QM/MM simulations. Transition path sampling (TPS) allows to efficiently sample the space of 
dynamic trajectories from the reactant to the product state without an additional biasing potential. We 
outline here the application of TPS and QM/MM to calculate rates for biochemical reactions, by means 
of a simple toy system. In a step-by-step protocol, we specifically refer to our implementation within the 
MD suite Gromacs, which we have made available to the research community, and include practical advice 
on the choice of parameters.

Key words Protein folding, Biochemical reactions, QM/MM, Reactive paths, Rate calculations

1  Introduction

Processes such as biochemical reactions or conformational changes of 
biomolecules typically occur on timescales beyond those accessible by 
Molecular Dynamics (MD) simulations at atomistic detail. In many 
cases, reducing the resolution of the simulation by coarse-graining 
the biomolecule is not an option, as critical players such as hydrogen 
bonds or hydrophobic effects involved in the reaction under investi-
gation might be lost or are described at insufficient accuracy.

Purely classical MD simulations at atomistic resolution rou-
tinely can reach microsecond time scales. In a few recent cases, 
millisecond scales were achieved, which allowed the prediction of 
quantitative rates for the folding of proteins, either by highly paral-
lel distributed computing of many short trajectories or by special 
purpose high-performance computing to obtain a small number of 
ultralong trajectories [1–3]. However, the conventionally reached 
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microsecond time scale is mostly insufficient to sample the process 
of interest such as a conformational change or (un)folding fre-
quently enough to compute transition rates.

The problem of too short simulation time scales is even larger 
for the case for chemical reactions, in which covalent bonds are 
broken or formed. Here, a classical molecular mechanical (MM) 
description is not sufficient, as it relies on a harmonic potential for 
a covalent bond, which does not allow dissociation of the bonded 
atoms. Instead, a quantum mechanical (QM) description is 
required to treat the change in bonds within the biomolecule accu-
rately. Taking the electronic degrees of freedom into account, 
however, entails substantially higher computational costs and 
restricts time scales typically to picoseconds or nanoseconds, very 
much depending on the theory and basis set of choice. In turn, 
chemical reactions typically feature high barriers, i.e., rates at the 
microsecond to millisecond scale.

From a computational point of view, the most interesting 
quantity for such processes often is the reaction rate. The reason is 
that, in contrast to a free energy barrier, rates are experimentally 
directly accessible, and thus a straightforward comparison is possi-
ble. Also, the rate is the quantity which is physiologically most 
relevant, as kinetics determine most of the biological processes. 
Rates can be obtained from free energy barriers using the Arrhenius 
or Eyring equations, which requires, however, the assumption of 
an attempt frequency, the value of which is debated and varies with 
the nature of the process and the solvent [4, 5]. An elaborate 
method to directly compute reaction rates is Transition Path 
Sampling (TPS) [6, 7]. TPS is an algorithm which efficiently 
searches the space of transition paths between two states. From the 
ensemble of sampled paths obtained from MD simulations com-
bined with a Monte Carlo sampling scheme, reaction rates can be 
obtained, without the detour of free energy barriers. TPS can be 
straightforwardly used for chemical reactions treated with QM or 
combined QM/MM. It has been proven to be a useful method to 
obtain quantitative insight into the mechanism of, among others, 
the reactions catalyzed by lactate dehydrogenase [8] and human 
purine nucleotide phosphorylase [9]. We have employed QM/
MM and TPS to obtain force-dependent rates for a redox reaction, 
namely, the reduction of a disulfide bond by a small reducing 
agent, dithiothreitol [10], and for peptide hydrolysis [11].

In this chapter, we outline the basics of TPS, and in particular 
the calculation of reaction rates based on TPS. We illustrate the 
methodological details by way of a toy model, namely, three argon 
atoms in a box of water. While our toy model is, for simplicity, 
described solely by MM, the same strategy can be employed to a 
chemical or enzymatic reaction treated by combined QM/
MM. For the reader interested in the details of a QM/MM setup 
for Molecular Dynamics simulations and eventually for TPS, we 
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refer to recent reviews on this subject [12–14], and in combination 
with TPS to our own work [10]. TPS does not restrict the QM–
MM interface in any way. However, as the TPS and rate calculation 
scheme presented here is based on our implementation into 
Gromacs [15], only QM/MM features available within Gromacs 
can be employed along with our implementation. The recent 
review by Groenhof [14] is the most comprehensive introduction 
into the current QM/MM implementation within Gromacs, and 
reviews the available schemes to treat the interactions between the 
regions described by QM and MM, and to cap the QM region in 
case of covalent bonds at the QM–MM interface.

2  Theory

Many processes such as chemical reactions or protein folding can 
be simplified to processes with two stable states that are separated 
by a single high energy barrier. In Fig. 1a, regions A and B are the 
two stable states, and the energy barrier is highlighted in between. 
For chemical reactions, regions A and B represent the reactant and 
product states, respectively. In this example, the multidimensional 
space of the system is projected onto two order parameters, R1 and 
R2, both of which change during the reaction. Examples for order 
parameters, often distances, angles, or collective coordinates, are 
given further below. A reactive trajectory (shown as a black solid 
line) leads to the rare but crucial transition between A and B. The 
system spends considerably longer times in the two free energy 
wells of the reactant and product than in the high free energy states 
between the two. Thus, while the transition of interest might only 
take a few 100 fs, the dwell time of the system in A or B might be 
in the microsecond to second time scale. Transition path sampling 
(TPS) has been developed to enhance the sampling of the rare 
reactive trajectories, which are otherwise hardly harvested by con-
ventional simulations [6, 7, 16–18].

The idea of transition path sampling (TPS) is to sample a new tran-
sition path based on an existing (old) one (a transition path refers 
to a reactive trajectory) with a Monte Carlo procedure, and the 
new path is made sure to be equally weighted with the old one in 
the transition path ensemble. In principle, there are many strate-
gies to do this. For illustrating the concept of TPS, we here use the 
shooting move in a deterministic simulation as an example.

	(a)	 Defining the probability of a reactive path. In molecular simula-
tions, the time evolution of a system is represented by an 
ordered sequence of states, X(T) ≡ {X0, XΔt, X2Δt, …, XT} (see 
Fig. 1a, black solid line). Here, Δt is the time increment. X(T) 
consists of L = T/Δt + 1 states, and its starting point is X0. 

2.1  Sampling 
the Transition  
Path Ensemble
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For  deterministic dynamics, the probability of a trajectory 
equals to the probability of the initial state in a given ensemble, 
ρ(X0). Therefore, the probability of trajectory X(T) to be a 
reactive trajectory is given below:

	
P X T h X h X Z TTAB A B AB( )( ) = ( ) ( ) ( ) ( )X0 0ρ /

	
(1)

Fig. 1 Schematic description of the free energy landscape of a system and the 
shooting and shifting moves in TPS. (a) A typical free energy landscape of a pro-
cess is shown with two stable states (labelled with A and B) and a barrier in the 
middle. R1 and R2 are two arbitrary coordinates. A transition pathway (black solid 
line) connecting states A and B is given as well. The transition path is represented 
by an ordered sequence of states X(T) ≡ {X0, XΔt, X2Δt, …, XT}. (b) An example of 
shooting moves. The two filled grey areas represent the states A and B mentioned 
above. A state {q oi Δt, p oi Δt} is randomly chosen from an old transition path (solid line). 
The momentum p oi Δt is perturbed to be piΔt

n, where piΔt
n = piΔt

o + δp, while the 
coordinate is unchanged with q oi Δt = qi Δt

n. From the newly generated state 
{qiΔt

n, piΔt
n}, a new transition path (dashed line) is obtained by evolving the system 

backward in time to zero and forward in time to T. (c) An example of forward shift-
ing moves. A new path is generated by removing a small segment from the begin-
ning of the old path (the starting frame, shown as a black dot, moves forward to a 
new start) and evolving the system forward from the last frame to create a new 
part with the same length as the removed one (the dashed line). Figure adopted 
from Hierarchical Methods for Dynamics in Complex Molecular Systems, Lecture 
Notes, Eds. Grotendorst et al, Juelich, 2012” with permission
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Here, hA(X)(hB(X)) is the characteristic function of region A(B). 
hA(X) equals 1 if state X lies in A, and it equals zero otherwise. 
ZAB(T) is the normalizing factor, the sum of all the possible reac-
tive trajectories with length T in a given ensemble.

	
Z T X h X X h XTAB A B( ) ≡ ( ) ( ) ( )∫d 0 0 0ρ

	
(2)

	(b)	 Sampling the transition path ensemble by shooting. In a transi-
tion path ensemble, the distribution of transition paths is given 
in Eq. 1. To make sure that the correctly weighted transition 
paths are sampled, the following two probabilities should 
equal: the probability to generate a new transition path from a 
old one Pgen(Xo(T) → Xn(T)), and the probability to generate 
the old transition path from the new one Pgen(Xn(T) → Xo(T)). 
In a shooting move, a state XiΔt

o, i ∈ [0, L], is randomly chosen. 
Then, a new state XiΔt

n is generated by adding a small pertur-
bation to XiΔt

o. Here, the superscript o and n refer to the old 
path and the new path, respectively. Note that a state X con-
sists of the coordinate q and the momentum p, X =  
{q, p}, the perturbation can be added to q or/and p. In prac-
tice, it is convenient to keep q untouched and change p by δp. 
As illustrated in Fig. 1b, the selected state XiΔt

o = {qiΔt
o, piΔt

o} in 
an old transition path (the solid line in Fig. 1b) is changed to 
XiΔt

n = {qiΔt
n, piΔt

n}, where piΔt
n = piΔt

o + δp. Starting with XiΔt
n, 

one can evolve the system backward in time to 0 and forward 
in time to T, then a new transition path is generated if it initials 
from region A and ends in region B (the dashed line in Fig. 1b). 
The probability to generate a new transition path from an old 
one is the product of four parts, the probability of the old path 
in the given ensemble, the probability to generate XiΔt

n from 
XiΔt

o (Pgen(XiΔt
o → XiΔt

n)), the probability of that the new path 
is reactive, and the probability to accept the new transition 
path Pacc(Xn(T) → Xo(T)).

	

P X T X T P X T P X X h X h Xi t i t Tgen
o n

AB
o

gen
o n

A
n

B
n( ) → ( )( ) = ( )( ) →( ) ( ) (∆ ∆ 0 ))

× ( ) → ( )( )P X T X Tacc
o n

	

(3)

Similarly, for generating the old path from the new one, we have

	

P X T X T P X T P X X h X h Xi t i t Tgen
n o

AB
n

gen
n o

A
o

B
o( ) → ( )( ) = ( )( ) →( ) ( ) (∆ ∆ 0 ))

× ( ) → ( )( )P X T X Tacc
n o

	

(4)

The detailed balance of moves in trajectory space requires Pgen 
(Xo(T ) → Xn(T )) = Pgen(Xn(T ) → Xo(T )), which gives

Transition Path Sampling with Quantum/Classical Mechanics for Reaction Rates



32

	

P X T X T

P X T X T

P X T P X Xi t iacc
o n

acc
n o

AB
n

gen
n( ) → ( )( )

( ) → ( )( )
=

( )( ) →∆ ∆tt T

i t i t T

h X h X

P X T P X X h X h X

o
A

o
B

o

AB
o

gen
o n

A
n

B
n

( ) ( ) ( )
( )( ) →( ) ( )

0

0∆ ∆ (( ) 	
(5)

This condition can be satisfied using a Metropolis criterion [19]
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(6)

Note that the old path is reactive, i.e., hA(X0
o) = 1 and hB(XT

o) = 1. 
Equation 6 can be simplified as

	

P X T X T h X h X
X P X X

T
i t i t i

acc
o n

A
n

B
n

n
gen

n

,( ) → ( )( ) = ( ) ( )× ( ) →
0 1min

ρ ∆ ∆ ∆∆

∆ ∆ ∆

t

i t i t i tX P X X

o

o
gen

o n

( )
( ) →( )











ρ

	

(7)

Here, we apply Eq. 1 and the fact that the probabilities of the states 
on the same path in deterministic dynamics are the same. Although 
Eq. 7 is obtained based on deterministic dynamics, it can be also 
inferred based on a general dynamics [18]. In the implementation 
of shooting moves, a symmetric generation probability is normally 
ensured, and thus Pgen(XiΔt

o → XiΔt
n) = Pgen(XiΔt

n → XiΔt
o). Specific 

strategies are always applied to ensure that states XiΔt
o and XiΔt

n are 
within the same microcanonical ensemble, i.e., ρ(XiΔt

o) = ρ(XiΔt
n). 

Thus, the acceptance probability becomes

	
P X T X T h X h XTacc

o n
A

n
B

n( ) → ( )( ) = ( ) ( )0 	
(8)

This equation states that any new trajectory will be accepted if it 
initiates from region A and ends in region B.

A new path can be generated by evolving forward from the last 
frame (forward shifting move, see Fig. 1c) or backward from the 
starting frame (backward shifting move) of the old path to grow a 
new path segment with a certain length and then deleting a path 
segment with the same length from the other end to maintain a 
fixed total length. Such shifting moves can be combined with 
shooting moves to improve the sampling efficiency.

In this section, we explain how to obtain rate constants from the 
transition path ensemble [17]. Given a system with two stable states 
A and B, which are separated by a single high energy barrier, mol-
ecules transit from one state to the other at equilibrium, while the 
populations of states remain unchanged. Since such transitions 
are rare, the time correlation function, C(t), relates to the reaction 
time of the system (τrxn ≡ (kAB + kBA)− 1) via the following formula [20]

	
C t h t( ) − −{ }( )≈ B rxn1 exp / τ

	
(9)

2.2  Computing  
Rate Constants
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If the time required for a system to cross the energy barrier and 
commit to the other stable state (τmol) is far smaller than the reac-
tion time of the system (i.e., τmol < < τrxn), C(t) scales linearly in the 
intermediate time region, and we have

	 C t k t t( ) ≈ < <<AB mol rxn, τ τ 	 (10)

For a system at equilibrium, C(t) characterizes the conditional 
probability to find the system in state B at time t, if it was in state 
A at time zero, and is defined as follows

	
C t

h X h X

h X
t( ) ≡

( ) ( )
( )

A B

A

0

0 	
(11)

Here, 〈 … 〉 is the ensemble average of all initial states. In determin-
istic dynamics, C(t) can be written in terms of the probability of all 
initial states ρ(X0):

	

C t
X X h X h X

X X h X
t( ) =

( ) ( ) ( )
( ) ( )

∫
∫

d

d
A B

A

0 0 0

0 0 0

ρ

ρ
	

(12)

Equations 10 and 12 together provide a way to calculate the for-
ward reaction rate constant kAB by molecular simulations. One can 
simply run a large set of simulations that start in region A and are 
of the same time length t, and then count the probability of the 
end state to be in region B, which gives the value of C(t). The 
derivative of C(t) over time gives the rate constant. However, this 
apparently involves numerous computational efforts.

If region B can be defined by an order parameter λ(X), and the 
distribution of the end states, i.e., X(t), along the order parameter 
P(λ, t) is known, C(t) is simply the integral of P(λ, t) along λ over 
region B.

	
C t P t( ) = ( )∫λ

λ
λ λ

_min

_max
.d ,
	

(13)

Here, λ_min and λ_max are the lower and upper bound of region 
B along λ. P(λ, t) is given by

	

P t
X X h X X t

X X h X
λ

ρ δ λ λ

ρ
,

d

d
A

A

( ) =
( ) ( ) − ( )( ) 

( ) ( )
∫

∫
0 0 0

0 0 0

,

	

(14)

where δ(X) is Dirac’s delta function. P(λ, t) can be divided into 
several overlapped windows, and its distribution in each window 
can be estimated separately. The distribution of P(λ, t) over the 
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whole range of λ is then obtained by connecting all windows. 
In each window, transition path sampling can be applied to enhance 
the sampling of paths that connect region A and the window 
region. Therefore, computational efforts to compute C(t) are 
dramatically reduced.

The above-mentioned method can only compute C(t) in time 
t at a time, and the evaluation of kAB requires C(t) at different times 
to be evaluated. Therefore, it is laborious. Fortunately, C(t) can be 
factorized to be written as [18]

	

C t
h t

h t
C t t T( ) =

( )
( ) ( ) < <

′

′B AB

B AB

, 0

	
(15)

where 〈 … 〉AB denotes an average on the ensemble of the reactive 
paths, which start in region A and visit region B within the time 
length of T. T is the time length of the transition path. 〈hB(t)〉AB is 
then the proportion of reactive paths whose configuration at time 
t belongs to region B, and can be estimated by a single transition 
path sampling run. Only C(t′), the C(t) at time t′(t′ < T), is needed 
to be evaluated.

Combining Eqs. 10 and 15, the rate constant is given by

	
k

h t t

h t
C t tAB

B AB

B AB

mol rxn

d d
=

( )
( )

× ( ) < <<
′

′
/

, τ τ
	

(16)

d〈hB(t)〉AB/dt should show a plateau in the intermediate time 
range.

3  Materials

A GROMACS-4.0.7 package [15] with a TPS implementation can 
be downloaded from http://wenjin.people.uic.edu/download/
Gromacs4_tps_patch.tar.gz, which is implemented by Dr. Wenjin 
Li and currently maintained by him as well (see Note 1). The pack-
age can be installed by following the installation instructions of the 
original GROMACS-4.0.7 version at http://www.gromacs.org. A 
Linux or Unix system is required for compilation, as well as FFTW 
libraries.

4  Methods

In this section, we will describe how to (1) establish a toy system, (2) 
define the stable basins, (3) obtain the 〈hB(t)〉AB curve, (4) obtain the 
P(λ, t) distribution, (5) calculate rate constants, and (6) monitor 
TPS. All the files necessary to complete this tutorial are available at 
http://wenjin.people.uic.edu/download/example_3_Ar.tar.gz.  

Frauke Gräter and Wenjin Li
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To complete this tutorial, we assume the reader to have a basic 
knowledge of GROMACS and experience in the use of a Linux or 
Unix operation system.

We here will illustrate how to use TPS to calculate the rate constant 
of a rare event with a toy system, which consists of three Ar atoms 
in a water box (see Fig. 2). All three Ar atoms are lying in a line 
along the Z-axis. Atoms 1 and 3 are held by position restraints 
along the X-, Y-, and Z-axis, while atom 2 is restrained along the 
X- and Y-axis, but free to move along the Z-axis. Position restrains 
were switched on by setting define = -DPOSRES in the .mdp file, 
with parameters for position restraints given in posre.itp. Atoms 1 
and 3 are separated by approximately 1.0 nm. Due to the van der 
Waals interaction with the other two Ar atoms, atom 2 has two 
preferred positions (or stable basins). One position is about 0.2 nm, 
the other 0.8 nm away from atom 1. There is a relatively high bar-
rier between the two minima. Atom 2 can overcome the attraction 
of one Ar atom and transit from one stable basin to the other. 
Here, we will estimate the rate of these transitions with TPS. The 
parameters for van der Waals interaction between two Ar atoms 
have been modified to unrealistic values (see file ffoplsaanb.itp) to 
increase the barrier between the two minima to make sure that the 
transition is a rare event (see Note 2). Therefore, we here are 
looking at an unphysical toy model to solely focus on the proce-
dure to run TPS with the modified GROMACS package.

4.1  A Toy System

Fig. 2 Simulation setup of the toy system. Black spheres: Ar atoms. Grey lines: water molecules

Transition Path Sampling with Quantum/Classical Mechanics for Reaction Rates
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TPS requires reasonable definitions of the stable basins in terms of 
one or multiple order parameters. The chosen order parameter 
should be able to distinguish the two stable basins, but must not 
necessarily be a good reaction coordinate. Here, the order param-
eter we choose to distinguish the two minima is Δd = d12 − d23, where 
d12 is the distance between atoms 1 and 2, and d23 is the distance 
between atoms 2 and 3. Then, region A is defined as −1 < Δd < −0.5 
and region B as 0.5 < Δd < 1. The modified Gromacs version includes 
a section to define these TPS parameters. To define the stable states 
mentioned above, the parameters are (see Note 3),

=========================
tps_npost                        = 4

tps_grps1                        = a_1 a_2

tps_grps2                        = a_2 a_3

tps_dimension                  = one

tps_weight_dim                 = 1    -1

tps_initial_max                 = -0.5

tps_initial_min                  = -1

tps_final_max                   = 1

tps_final_min                    = 0.5

========================= 

Here, tps_grps1 and tps_grps2 define the groups to build the 
order parameters. Currently, the order parameters consist of only dis-
tances between two atoms (or two groups of atoms). tps_grps1 speci-
fies the first group, while tps_grps2 specifies the second group. The 
coordinate is the distance between the ith group in tps_grps1 and 
tps_grps2. For example, d12 is calculated by the distance between the 
first group in tps_grps1 and tps_grps2. a_1, a_2, and a_3 are the name 
of atom 1, atom 2, and atom 3 in the index file. tps_dimension = one 
means the two coordinates specified by tps_grps1 and tps_grps2 
are combined into one parameter using the weights in tps_
weight_dim. tps_weight_dim = 1  -1 means the order parameter 
Δd = 1 × d12 + (−1) × d23 or d12 − d23 (see Note 4). The values of the 
upper bound and lower bound of region A and region B are given by 
tps_initial_max, tps_initial_min, tps_final_max, and tps_final_min. 
The number of groups in tps_grps1 and tps_grps2 should be the same. 
tps_npost is the total number of groups in tps_grps1 and tps_grps2.

In TPS, the shooting and shifting moves are based on an initial 
path, which is not necessary to be physically meaningful, as the sub-
sequent TPS will allow to relax towards more representative paths 
(see Note 5). There are many ways to get an initial path. Here, we 
generate the first path by shooting forward and backward from a 
structure near the transition state to ensure that we can get an initial 
reactive path with high probability. Velocities are adapted from a 
Boltzmann distribution at the given temperature. The setting of the 

4.1.1  Definition 
of Stable Basins

4.2  Obtaining 
an Initial Transition 
Path
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parameters in the TPS section are (the complete parameter file is 
available in tps_ini.mdp provided in the tutorial package),

===== Part of tps_ini.mdp =====

tps_npost                          = 4

tps_grps1                         = a_1 a_2

tps_grps2                         = a_2 a_3

tps_dimension                   = one

tps_weight_dim                 = 1    -1

tps_initial_max                 = -0.5

tps_initial_min                 = -1

tps_final_max                   = 1

tps_final_min                    = 0.5

tps                                 = rand_ini 

tps_maxcycle                    = 5

tps_maxshoot                    = 10

tps_endpoint                     = yes

tps_kin_ref                       = 100

tps_Temperature                = 300

tps_forward_steps              = 400

tps_backward_steps            = 400

tps_maxframe                   = 1

tps_ntrrout                       = 1

=========================  

tps = rand_ini defines the attempt to get an initial transition 
path. tps_maxcycle and tps_maxshoot specifies the number of sam-
pling circles and the number of samples in each circles. Here, we try 
5 × 10 = 50 times to get an initial path. The search will stop immedi-
ately if we find one. tps_endpoint = yes means the endpoint of the 
path should be in region B. tps_forward_steps and tps_backward_
steps specify the number of frames saved for forward and backward 
shooting, respectively. The total frames of the trajectory generated 
will be the sum of them. Here, the number of frames in the transi-
tion path will be 800. The frequency of saving frames in the transi-
tion path is defined by nstxout = 10 and the integration step is 2 fs 
(see Note 6). Therefore, we will obtain a reactive path with 800 
frames, with an interval between each frame of 20  fs and a total 
length of t = 16  ps. tps_Temperature = 300 produces initial atomic 
velocities from a Boltzmann distribution at a temperature of 300K. 
tps_kin_ref specifies the amount of perturbation to the momenta of 
the atoms in the frame to which a shooting move is applied. The 
value will affect the acceptance ratio of shooting moves, with larger 
perturbations leading to smaller acceptance ratios. tps_maxframe 
is  the number of frames in the input trajectory. In this case, tps_
maxframe = 1 because the input is a .gro file which contains only 
one frame. tps_ntrrout = 1 makes the MD code saving every reactive 
trajectories.
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The following input commands initiate the search for an 
initial path:

tar -zxvf example_3_Ar.tar.gz

cd example_3_Ar && mkdir -p tps/initial

grompp -f tps_ini.mdp -c 3_Ar.gro -n index.ndx -p topol.top -o tps/initial/tps.tpr

cd tps/initial &&  mdrun -s tps.tpr -rerun ../../TS.gro -deffnm tps_output  

The input structure is read via option -rerun. TS.gro is the 
structure near the transition region. 3_Ar.gro is a structure at 
region A. index.ndx and topol.top define the index of groups used 
in the .mdp file and the topology of the system, respectively. 
Tutorials to prepare these files can be found elsewhere [21] and is 
out of the scope of this chapter. We therefore provide them in the 
tutorial package. This run will take about 10 min on a single pro-
cessor to generate an initial transition path saved as traj_0.trr. We 
rename it as tps.trr by executing

mv traj_0.trr ../tps.trr 

A requisite to compute the rate constant using TPS is the flux ver-
sus time, or the 〈hB(t)〉AB curve, and the probability distribution 
along an order parameter P(λ, t), or specifically P(Δd) in this case, 
which is then used to calculate the value of C(t) at a specific time t 
(see Theory). With an initial path at hand, we can start TPS to 
obtain these ingredients for the rate constant calculations. The set-
tings for this purpose are:

=====Part of tps.mdp =====
tps_npost                = 4
tps_grps1                = a_1 a_2
tps_grps2                = a_2 a_3
tps_dimension          = one
tps_weight_dim        = 1  -1
tps_initial_max        = -0.5
tps_initial_min         = -1
tps_final_max          = 1
tps_final_min           = 0.5
tps                        = normal
tps_maxcycle           = 150
tps_maxshoot          = 10
tps_maxshift            = 10
tps_endpoint            = no
tps_kin_ref              = 100
tps_reput_length       = 300
tps_maxframe          = 800
tps_ntrrout              = 0
========================= 

4.3  Obtaining 
the 〈hB(t)〉AB Curve
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tps = normal means that we now perform TPS with an initial 
path already at hand. tps_maxcycle specifies the number of TPS 
cycles. In each cycle, we perform several shooting moves and shift-
ing moves, and the number of these moves is specified by tps_max-
shoot and tps_maxshift, respectively. tps_endpoint = no means the 
end structure of a reactive trajectory, given the trajectory starts in 
A, may not be in B, but the structure should reach B at some point 
within the trajectory (see Theory). tps_reput_length specifies the 
maximum shifting length in shifting moves. tps_ntrrout =0 means 
no intermediate reactive trajectories are saved.

Performing the TPS requires executing the following 
commands:

cd ../../ && grompp -f tps.mdp -c 3_Ar.gro -n index.ndx -p topol.top -o tps/tps.tpr

cd tps && mdrun -s tps.tpr -rerun tps.trr -deffnm tps_output  

We read the initial reactive path again via the option -rerun. 
Here, we run 150 cycles of TPS, with 10 shooting moves and 10 
shifting moves in each cycle. In total there are 3,000 TPS runs. 
This will take about 4 days to complete on a single standard pro-
cessor. The results of the 〈hB(t)〉AB curve is saved in hahb.dat. 
To obtain an accurate 〈hB(t)〉AB curve, we recommend the reader to 
run five independent simulations (see Note 7), and to then com-
bine the resulting five hahb.dat files into one by simple averaging 
(Fig. 3a). Here, the derivative of 〈hB(t)〉AB reaches a plateau at 13 ps 
with d〈hB(t)〉AB/dt = 0.1 ps− 1 as shown in Fig. 3b (see Note 8).

In the next step, we run TPS in different windows to obtain the 
distribution of the end points of transition paths (the P(Δd) dis-
tribution in Eq. 14). Here, we set the length of the trajectory t to 
be t′ = 6 ps, with each path containing 300 frames, which is much 

4.4  Obtaining 
the P(λ, t) Distribution

Fig. 3 Results for the 〈hB(t )〉AB curve. (a) Black curve: the averaged 〈hB(t )〉AB curve. Grey curves: the five 
〈hB(t)〉AB curves obtained from five independent samplings. (b) The derivative of the 〈hB(t )〉AB curve shows a 
plateau, indicating a length of 16 ps to be sufficient. Grey: the derivative of the black curve in a. Black: the 
smoothed curve of the grey one by averaging over five nearby points
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shorter than 16 ps or 800 frames and saves computational cost 
(see Note 9). Therefore, we read 〈hB(t′)〉AB = 0.14 from Fig. 3a, as 
t′ = 6 ps. In order to get the P(Δd) distribution, we divide the 
configuration space into five windows, which are defined as win-
dow 1: −1 < Δd < −0.45, window 2: −0.55 < Δd < −0.15, window 
3: −0.25 < Δd < 0.25, window 4: 0.15 < Δd < 0.55, and window 5: 
0.45 < Δd < 1. A small overlap between adjacent windows is nec-
essary to merge the distributions of adjacent windows into one. 
By deleting the segments from the termini of the transition path 
obtained above (16 ps long), one can easily get an initial path of 
6 ps long (see Note 10). The sampling procedures in each win-
dow are similar. For each window, we define the correct region B 
and adjust tps_kin_ref and tps_reput_length to maintain a reason-
able acceptance ratio. The parameter files for all windows are pro-
vided in the tutorial package and are named as tps_win1.mdp to 
tps_win5.mdp. We here show the TPS parameters for window 5 as 
an example to illustrate the procedure.

=====Part of tps_win5.mdp =====
tps_npost                      = 4
tps_grps1                      = a_1 a_2
tps_grps2                      = a_2 a_3
tps_dimension                = one
tps_weight_dim               = 1      -1
tps_initial_max               = -0.5
tps_initial_min               = -1
tps_final_max                = 1
tps_final_min                 = 0.45
tps                              = normal
tps_maxcycle                 = 300
tps_maxshoot                 = 10
tps_maxshift                  = 10
tps_endpoint                  = yes
tps_kin_ref                    = 200
tps_reput_length             = 100
tps_maxframe                = 300
tps_ntrrout                    = 0
=========================== 

To obtain the endpoint distribution, we need to make sure the 
endpoints of the transition path to be within the defined region B 
by setting tps_endpoint = yes. The simulation is started as follows:

cd ../ && mkdir win5

grompp -f tps_win5.mdp -c 3_Ar.gro -n index.ndx -p topol.top -o win5/tps_win5.tpr

cd win5 && mdrun -s tps_win5.tpr -rerun tps_win5.trr -deffnm tps_output  

Here, tps_win5.trr is the constructed initial transition path. 
The endpoints of each transition path are saved in endpoint.dat. 
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We recommend the reader to run three independent simulations 
for each window and then collect all the endpoints into a single file 
of endpoint.dat. From the endpoint.dat file, the distribution along 
Δd can be easily obtained. The distributions of in the overlapped 
regions are the same but weighted differently. Therefore, we can 
connect all windows by re-weighting them properly. The con-
nected window is then normalized. The distributions in different 
windows and the normalized distribution are shown in Fig. 4. By 
integrating the distribution in the range of 0.5 < Δd < 1, we obtain 
a value of C(t ′) of 0.00056 (see Theory).

Given C(t ′) is 0.00056, 〈hB(t ′)〉AB is 0.14, and d〈hB(t)〉AB/dt is 
0.1  ps−1, we get a rate constant k of 4.0 × 10−4  ps using Eq.  16  
(see Note 11).

The mdrun command will generate four output files that help to 
monitor the progress of the sampling: acc.dat, endpoint.dat, hahb.
dat, and summary.dat. They are explained below:
acc.dat: It summarizes the number of shooting trials, the number 
of successful shooting trials, the number of shifting trials, and the 
number of successful shifting trials at each frame. It also includes 
the acceptance ratio for shooting and shifting.
endpoint.dat: It gives the endpoints of the transition paths in the 
value of the order parameter, which is used to calculate P(λ, t) 
when tps_endpoint = yes.
hahb.dat: It gives the 〈hB(t)〉AB curve when tps_endpoint = no.
summary.dat: It summarizes the overall number of shooting and 
shifting cycles and their acceptance ratio. An example is given 
below:

4.5  Calculating 
the Rate Constant

4.6  Monitoring TPS

Fig. 4 Calculation of P (Δd ) through TPS in windows. (a) Distribution of P (Δd ) in different windows. (b) The 
connected distribution of P (Δd ) over the whole configuration space. Dashed grey lines: the boundaries 
between regions A and B and the transition region
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=============== summary.dat ==================
The totol TPS cycle is -----------------------------3000
The totol shooting cycle is ------------------------1524
The totol leftshift cycle is -----------------------747
The totol rightshift cycle is ---------------------729
The totol acceptance is ---------------------------0.3076667
The acceptance for shooting is --------------------0.0577428
The acceptance for leftshift is ------------------0.5689424
The acceptance for rightshift is ------------------0.5624143
===================================  

Here, the acceptance for shooting is quite low, around 0.06. 
Adjusting tps_kin_ref and tps_reput_length allows to tune the prob-
ability of generating a reactive trajectory. A higher acceptance ratio 
can be achieved by shortening the length of the transition path  
(see Note 12). To achieve a better sampling efficiency, the accep-
tance for shooting it recommended to be about 0.4 [22].

5  Notes

	 1.	The modified GROMACS package supports simulations on 
only a single CPU and not in parallel, as neither domain 
decomposition nor particle decomposition are supported 
in the current implementation.

	 2.	Equation 10 is based on the assumption that the barrier is so 
high that the time of the actual transition is much smaller than 
the inverse of the rate constant. Therefore, Eq. 10 is only appli-
cable to systems with high energy barriers, i.e., of several kBT.

	 3.	For many systems, the choice of an order parameter is trivial. 
One can run a relatively long simulation at the two stable states, 
and then find an order parameter to distinguish the stable states 
by inspection of the coordinate spaces that the two simulations 
sampled at both basins. Usually, an inspection by eye is enough. 
If not, principle component analysis [23] can assist in identify-
ing an order parameter. Once an order parameter is found, one 
defines the two stable states according to their distribution of 
the sampled configuration along the order parameter. Make 
sure that the two basins are separated and cover the major part 
of the sampled configurations in that state.

	 4.	One can use multiple coordinates to define regions A and B if 
the interest is to investigate the mechanism of the transition 
process rather than the rate constant. If one want to get the 
rate constant, region A can be defined with multiple coordi-
nates, while region B is preferably defined with a single coordi-
nate, as this reduces the computational expense. If defining 
region B by multiple coordinates is nevertheless essential, the 
distribution of P(λ, t) is required in the multidimensional 
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space, which might be feasible but is not recommended. It is 
generally beneficial to invest some efforts to find a single coor-
dinate to define region B. The coordinates to define regions A 
and B are not required to be identical.

	 5.	One can generate an initial transition path in many ways, 
depending on the system under investigation. In general, one 
can apply a bias to the system to enforce the transition to hap-
pen with high probability and short transition times. The bias 
can be from for example high temperature [24], replica 
exchange [24], position restraints [10], steering forces [26], 
conformational flooding [27], or metadynamics [28]. The 
resulting transition path is a biased transition path, but the bias 
can be removed gradually [26], or by generating an unbiased 
path by TPS with shooting moves starting from one frame 
(e.g., a frame within or close to the transition state ensemble) 
of the biased path.

	 6.	The number of steps for a simulation defined by nsteps in the 
.mdp file should be larger than the total length of the TPS 
trajectory. Here, nsteps should be no less than 8,000 given the 
integral timestep of 2 fs.

	 7.	The TPS simulation will generate files with predefined names 
in the working directory. If one runs multiple independent 
simulations, it is recommended to start them from separate 
directories to avoid overwriting output files.

	 8.	In addition to the 〈hB(t)〉AB curve, the simulation will harvest 
an ensemble of transition paths (one can save the transition 
paths by setting tps_ntrrout to a positive integer to specify the 
frequency of saving the transition paths). Based on the transi-
tion path ensemble, the mechanism of the studied rare events 
can be elucidated at the atomistic level. Applications include 
(just to name a few) a reaction catalyzed by lactate dehydroge-
nase [8], the β-hairpin folding [25], and the chorismate-
mutase-catalyzed conversion of chorismate into prephenate 
[29]. If committor probabilities of the frames in the transition 
path ensemble are estimated, transition states [10, 29] and 
reaction coordinates [30] can be identified as well.

	 9.	Choosing a small t ′ reduces the computational costs of the 
TPS, but increases the uncertainty of 〈hB(t ′)〉AB. As a compro-
mise, we recommend to choose t ′ such that 〈hB(t ′)〉AB is about 
0.2. Usually, the cost to calculate C(t ′) is several times higher 
than the cost to obtain 〈hB(t)〉AB. For this reason, it is worth to 
invest more efforts into an accurate 〈hB(t)〉AB curve, and to 
then use a smaller t ′ to calculate C(t ′).

	10.	The initial path for each window to obtain the 〈hB(t)〉AB curve 
can be obtained following the same procedure as the one for 
the initial path for the TPS. Alternatively, the initial path for 
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	 1.	Lane TJ, Bowman GR, Beauchamp K et  al 
(2011) Markov state model reveals folding and 
functional dynamics in ultra-long MD trajecto-
ries. J Am Chem Soc 133:18413–18419

	 2.	Bowman GR, Pande VS (2010) Protein folded 
states are kinetic hubs. Proc Natl Acad Sci U S A 
107:10890–10895

	 3.	van der Spoel D, Seibert MM (2006) Protein 
folding kinetics and thermodynamics from 
atomistic simulations. Phys Rev Lett 96:238102

	 4.	Best RB, Hummer G (2006) Diffusive model 
of protein folding dynamics with Kramers turn-
over in rate. Phys Rev Lett 96:228104

	 5.	Popa I, Fernández JM, Garcia-Manyes S (2011) 
Direct quantification of the attempt frequency 
determining the mechanical unfolding of ubiq-
uitin protein. J Biol Chem 286:31072–31079

	 6.	Dellago C, Bolhuis PG, Csajka FS et al (1998) 
Transition path sampling and the calculation of 
rate constants. J Chem Phys 108:1964

	 7.	Dellago C, Bolhuis PG, Chandler D (1998) 
Efficient transition path sampling: application 

to Lennard-Jones cluster rearrangements. 
J Chem Phys 108:9236

	 8.	Quaytman SL, Schwartz SD (2007) Reaction 
coordinate of an enzymatic reaction revealed 
by transition path sampling. Proc Natl Acad Sci 
U S A 104:12253–12258

	 9.	Saen-Oon S, Quaytman-Machleder S, Schramm 
VL et al (2008) Atomic detail of chemical trans-
formation at the transition state of an enzymatic 
reaction. Proc Natl Acad Sci U S A 
105:16543–16548

	10.	Li W, Gräter F (2010) Atomistic evidence of 
how force dynamically regulates thiol/disulfide 
exchange. J Am Chem Soc 132:16790–16795

	11.	Xia F, Bronowska AK, Cheng S et al (2011) 
Base-catalyzed peptide hydrolysis is insensi-
tive to mechanical stress. J Phys Chem B 
115:10126–10132

	12.	van der Kamp MW, Mulholland AJ (2013) 
Combined quantum mechanics/molecular 
mechanics (QM/MM) methods in computa-
tional enzymology. Biochemistry 52:2708–2728

window 5 should have 300 frames, which can be constructed 
by shortening the transition paths sampled in the section of 
obtaining the 〈hB(t)〉AB curve, which comprises 800 frames. 
Then, the initial path for window 4 can be obtained from one 
of transition paths sampled in window 5. The initial path for 
other windows can be taken from one of transition paths from 
the subsequent window.

	11.	As a way of validating the computed rates, one can vary t and/
or t  ′ as well as the definitions of regions A and/or B to test if 
the results are quantitatively consistent.

	12.	It is not necessary to randomly select a frame from the entire 
transition path to do shooting moves. Specifying the range from 
which shooting frames are selected allows to increase the accep-
tance ratio. One possibility is to choose points near the previous 
shooting point from which a reactive trajectory has been gener-
ated. Alternatively, one can choose points only from the barrier 
region to improve the acceptance ratio. In this case the range to 
choose shooting points is variable, and the probability to accept 
a reactive trajectory needs to be modified accordingly [25].
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