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    Chapter 2   

 Plasmodesmata: Channels for Viruses on the Move 

           Manfred     Heinlein    

    Abstract 

   The symplastic communication network established by plasmodesmata (PD) and connected phloem 
 provides an essential pathway for spatiotemporal intercellular signaling in plant development but is also 
exploited by viruses for moving their genomes between cells in order to infect plants systemically. Virus 
movement depends on virus-encoded movement proteins (MPs) that target PD and therefore represent 
important keys to the cellular mechanisms underlying the intercellular traffi cking of viruses and other 
macromolecules. Viruses and their MPs have evolved different mechanisms for intracellular transport and 
interaction with PD. Some viruses move from cell to cell by interacting with cellular mechanisms that 
control the size exclusion limit of PD whereas other viruses alter the PD architecture through assembly of 
specialized transport structures within the channel. Some viruses move between cells in the form of assem-
bled virus particles whereas other viruses may interact with nucleic acid transport mechanisms to move 
their genomes in a non-encapsidated form. Moreover, whereas several viruses rely on the secretory path-
way to target PD, other viruses interact with the cortical endoplasmic reticulum and associated cytoskele-
ton to spread infection. This chapter provides an introduction into viruses and their role in studying the 
diverse cellular mechanisms involved in intercellular PD-mediated macromolecular traffi cking.  
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1      Interaction of Viral Movement Proteins with PD 

 The traffi cking of viruses and other macromolecules through PD 
depends on intracellular transport mechanisms and is restricted by 
the size of the PD aperture. The size exclusion limit (SEL) of PD, 
thus the upper limit of the size of molecules transported by PD, is 
under tight control and changes during plant growth and develop-
ment. Younger leaves that act as physiological sinks for photo-
assimilates have PD with an overall larger SEL than the PD in 
mature source tissues. Leaf maturation and the corresponding 
overall decrease in the SEL of PD have been correlated with a 
change in PD structure from “simple” to “branched” [ 1 ]. 
Nevertheless, despite the restricted SEL of PD in mature leaves, 
cells in both mature and immature leaves interact with neighboring 
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cells and can have PD in various states of aperture (closed, open, 
dilated), thus indicating that the PD aperture of cells is individually 
regulated and able to respond to specifi c signals [ 2 ]. 

 A hallmark feature of viral MPs is their ability to manipulate the 
mechanism that determines the SEL and increase the aperture of 
PD even in mature leaves. This ability of MPs to “gate” PD was 
fi rst discovered for the MP of  Tobacco mosaic virus  (TMV). 
Microinjection of fl uorescent, membrane-impermeable size- specifi c 
dextran probes into the cytoplasm revealed that transgenic tobacco 
plants constitutively expressing the MP allowed the cell-to- cell dif-
fusion of probes with an approximate size of 10 kDa whereas diffu-
sion was restricted to a molecular size of 0.8 kDa in control plants 
[ 3 ]. The protein was then shown to spread itself between cells 
upon injection [ 4 ] or upon transient expression from a plasmid 
(introduced into tissue by microprojectile bombardment [ 2 ] or 
agroinfi ltration [ 5 ]). Experiments using microprojectile bombard-
ment have shown that only 2 % of the cells in mature leaves allowed 
the cell-to-cell diffusion of 2 × GFP (two fused copies of green fl uo-
rescent protein, 54 kDa) whereas 52 % of the cells allowed the traf-
fi cking of GFP fused to MP (MP:GFP; 58 kDa) [ 2 ]. The ability of 
MP to alter PD aperture is usually correlated with the accumula-
tion of the protein at PD. Several studies indicated that MP accu-
mulates preferentially to the complex, branched PD in mature 
tissues [ 6 – 9 ]. However, more recent studies have shown that MP 
also accumulates in simple PD of immature cells [ 2 ,  10 ]. Moreover, 
the presence of accumulated MP in PD does not necessarily indi-
cate that the PD are gated. Microinjection of cytoplasmic probes 
into cells within different radial zones of spreading TMV infection 
sites has demonstrated that the gating of PD by MP is restricted to 
cells at the infection front although the MP resides in PD through-
out the infection site [ 11 ]. Accumulation of MP in PD and gating 
may even represent independent functions of MP, since TMV was 
shown to spread through PD without MP being trapped in PD 
[ 10 ] and certain transiently expressed mutants of MP moved between 
cells in the absence of any accumulation in the channel [ 5 ]. Plants 
that express the MP and are able to complement the movement func-
tion of movement-defi cient TMV mutants do not show obvious 
growth defects, suggesting the existence of mechanisms that tightly 
control the ability of MP to modify PD aperture and thus prevent the 
continuous traffi cking of signaling macromolecules between cells. 
The nature of these mechanisms remains to be elucidated. However, 
the MP has several amino acids that are phosphorylated in vivo [ 12 –
 16 ] and that may play a role in regulating MP functions. The 
C-terminus of MP is dispensable for function in virus movement but 
carries phosphorylation sites that if phosphorylated downregulate 
the ability of MP to move from cell to cell and to gate PD in a host-
dependent manner [ 17 ,  18 ]. Consistent with this type of posttrans-
lational control, PD are associated with several kinases [ 19 – 23 ] 
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and a specifi c kinase, plasmodesmal a ssociated kinase (PAPK), was 
shown to specifi cally phosphorylate the C-terminal phosphoryla-
tion sites of MP in vitro and also to be active on a subset of other 
MPs and non-cell- autonomous plant transcription factors [ 22 ]. 
Another hallmark of MP function is the ability of the protein to 
bind single-stranded nucleic acids in a sequence-independent man-
ner in vitro [ 24 ]. Since TMV does not require its coat protein (CP) 
for intercellular movement [ 25 ], the MP is believed to form an 
MP:RNA complex with viral RNA (vRNA) and to support viral 
movement in the form of a non- encapsidated viral ribonucleopro-
tein complex (vRNP). This non- virion mode of movement by 
TMV has strong potential for providing insights into the cellular 
mechanisms by which cells support the intercellular traffi cking of 
protein and RNA molecules. 

 Although TMV and its MP continue to play a major role in 
pioneering work addressing virus movement, many more viruses 
and their MPs have also been studied in the meantime. These stud-
ies revealed that viruses may encode more than one protein 
required for movement and that viral MPs may use different mech-
anisms for targeting PD and for facilitating virus movement 
through the channel. Thus, dependent on the virus species, inter-
cellular virus movement occurs in virion or non-virion form and 
often depends on viral coat protein (CP) in addition to MP. The 
following paragraphs describe different MP-mediated mechanisms 
by which viruses target and move through PD. Since the move-
ment of different viruses has been recently reviewed [ 26 ,  27 ], only 
selected virus models are described here.  

2    Virion Movement of Tubule-Forming Viruses 

 Viruses that move from cell to cell in the form of encapsidated 
virions encounter the problem that the size of the virion particles 
(>10 nm) exceeds the cytoplasmic channel diameter in PD (the 
cytoplasmic sleeve is at most 10 nm in diameter). As a result, the 
viruses must have adopted drastic strategies to allow the particles 
to pass through the pore. Several viruses known to move between 
cells in the form of assembled virions encode MPs able to assemble 
a large tubular transport structure inside PD [ 28 – 30 ] (Fig.  1 ). The 
desmotubule is absent from such modifi ed PD and the overall 
diameter of the PD can be dilated [ 31 ]. The molecular mechanism 
of tubule-guided transport of viral particles through the pore is not 
known. However, some MPs of tubule-forming viruses interact 
with the CP of the respective virus, usually at the C-terminus of the 
MP. The C-terminus of the MP of  Cowpea mosaic virus  (CPMV) is 
located on the inside of the tubule [ 30 ], thus in close proximity to 
the virus particle passing through the tubule. Consistent with a 
requirement of MP:CP interactions between the inner tubule wall 
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and CPMV particles for transport, only “empty” tubules were 
observed, when the C-terminus of the MP was deleted [ 32 ]. 
Specifi c interactions between tubules and virions mediated by the 
C-terminus of MP have also been observed for the  Grapevine fan-
leaf nepovirus  (GFLV) [ 33 ]. The interaction between the tubule- 
forming MPs and the CPs of the respective tubule-forming viruses 
represents an important determinant for movement specifi city. For 
example, the MP of CPMV does not interact with particles of other 
tested virus species [ 34 ] and the MP of the GFLV-related  Arabis 
mosaic virus  failed to support GFLV movement unless the nine 
C-terminal amino acids of the MP were replaced by the nine 
C-terminal amino acids of the GFLV MP [ 33 ]. The interactions of 
tubule-forming MPs with the CP of the respective virus may 
 suggest that virus transport may occur through polar assembly/
disassembly of MP tubules that may propel MP-bound viral parti-
cles in a mechanism analogous to microtubule treadmilling [ 26 ]. 
Such a mechanism would depend on continuous delivery of MP to 
the base of the tubule within the infected cell.

   As shown for GFLV and  Caulifl ower mosaic virus  (CaMV), 
effi cient tubule assembly and virus infection depend on interaction 
of the tubule-forming MP with PD-localized proteins (PDLP), a 
multigene protein family that localizes to PD via the ER-Golgi 
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  Fig. 1    PD structure and modifi cation by viruses. ( a ) General structure of primary PD. The PD pore maintains 
plasma membrane (PM) and endoplasmic reticulum (ER) continuity between cells. The ER traverses the pore 
as a thin tube known as the desmotubule. Callose deposits in the cell wall around the PD neck regions play an 
important role in controling macromolecular transport through the channel. ( b ) Modifi cation of PD by tubule- 
forming viruses. The tubule is assembled from viral MP and permits the movement of whole virion particles 
between cells. Since the tubule replaces the desmotubule, this type of movement disrupts ER continuity 
between cells. ( c ) Modifi cation of PD by viruses that move from cell to cell in a non-encapsidated form. The 
MPs of these viruses cause an increase in PD SEL. An increased SEL is often linked to the degradation of 
PD-associated callose but may also involve a role of PD-associated actin. The viral ribonucleoprotein com-
plexes traverse the PD channel likely in association with the fl uid ER/desmotubule membrane       
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secretory pathway [ 35 ] (Fig.  2a ). The MPs interact with PDLP at 
PD and not earlier within the secretory pathway, since the  treatment 
with the secretory pathway inhibitor Brefeldin A (BFA) resulted in 
the accumulation of the MPs in the cytosol [ 36 – 38 ] and not, as 
would be expected, in BFA bodies, as seen for PDLP [ 35 ,  39 ]. The 
secretory pathway consists of interacting and highly dynamic 
organelles that move intracellularly with support of the actin cyto-
skeleton ([ 40 ] and citations herein). Thus, consistent with the role 
of the secretory pathway in the targeting of PDLP to PD, intracel-
lular transport of PDLP as well as of Golgi bodies is strongly 
affected by the treatment with Latrunculin B (LatB: inhibitor of 
actin polymerization) and 2,3-butanedione monoxime (BDM, 
myosin ATPase inhibitor), both of which inhibit the  actomyosin 
system in Golgi traffi cking along the ER required for secretory 
cargo uptake [ 41 ,  42 ]. In agreement with these fi ndings the PD 
targeting of PDLP as well as of GFLV MP, tubule formation, and 
virus movement depend on the activity of specifi c myosin XI classes 
(particularly myosin XI-2 and XI-K) [ 43 ] that are known to play 
important roles in cell dynamics, including F-actin organization, 
ER motility, and organelle traffi cking [ 44 – 48 ]. The inhibition of 
myosin XI-K did not alter the subcellular distribution of cellular 
markers of the plasma membrane (PM), of lipid raft subdomains 
within the PM and PD, of the PD neck, or the vacuolar membrane, 
thus indicating that the XI-K-dependent PD targeting by PDLP 
follows a specifi c route [ 43 ].

   Given these insights into the PD targeting of PDLP it now 
remains to determine how the MP and the viral particles of GFLV 
(and of other PDLP-dependent viruses) are targeted to 
PD. Previous studies indicated that the application of inhibitors 
that interfere with microtubule polymerization causes GFLV 
tubules to form at ectopic cortical sites rather than at PD [ 37 ]. 
This may be consistent with the recent proposal that cortical, 
ER-intersecting microtubules form specifi c cortical ER-associated 
landmarks for the proper positioning of organelles and membrane 
transport pathways in the cell cortex [ 49 ,  50 ]. Therefore, it is con-
ceivable that the MP interacts with the ER and/or microtubules 
and that the lack of microtubules causes the disappearance of 
important positional information required for PD targeting. Since 
GFLV and CPMV replicate in perinuclear aggregates of recruited 
ER membranes [ 51 ,  52 ], the route by which the MP reaches PD 
may be via traffi cking along the ER membrane, thus similar to the 
route taken by several other RNA viruses, like TMV (see below). 
The CP of GFLV has been localized to viroplasms and to the tips 
of MP tubules in the cell periphery [ 51 ]. However, how the CP or 
the assembled virions are targeted from viroplasms to PD remains 
to be studied.  
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  Fig. 2    Cellular mechanisms that target viruses to PD. ( a ) PD targeting by tubule-forming viruses, e.g., GFLV. This 
virus replicates in aggregates of recruited ER membrane near the nucleus and requires the secretory pathway
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3    Tubule-Independent Virion Movement 

 In contrast to the tubule-forming viruses, most plant viruses move 
through PD without inducing major structural changes in channel 
architecture. This mode of virus movement must be associated 
with infectious particles and movement mechanisms that are 
adapted to PD structure and function and likely relies on existing 
cellular mechanisms for the transport of macromolecules. As a con-
sequence of such adaptation the majority of the viruses not relying 
on a tubule-forming MP evolved mechanisms to move from cell to 
cell in a non-encapsidated form. These are described further below 
( see  Subheading  4 ). Here, I fi rst mention examples of viruses pro-
posed to move through PD in the form of encapsidated virions 
despite that they have not been reported to form MP tubules 
( see  Subheadings  3.1  and  3.2 ). 

   Closteroviruses represent a fi rst example for viruses apparently 
moving from cell to cell as virions through PD without tubule for-
mation. These viruses have particularly large RNA genomes and 
form very long and fl exible virions. Their movement involves four 
structural proteins and one ER-localized MP, which is required for 
virus movement but is not an integral virion component [ 53 ]. 
Three of the four structural components form a narrow tail that 
functions in virion movement [ 54 ]. One of these components, the 
Hsp70 homolog (HSP70h), localizes to PD in a manner depen-
dent on myosin VIII and thus might be involved in targeting the 
virion to PD or in transporting the virion through the pore [ 55 ]. 
It has been proposed that the latter may be facilitated by the 
ATPase function of Hsp70h, which may generate mechanical force 
required for translocation [ 56 ].  

3.1  Movement 
of Closteroviruses

Fig. 2 (continued) as well as the actin cytoskeleton and associated myosin motors for intercellular movement. 
The mechanism that targets the MP and virions to PD is not known. However, effi cient tubule formation and 
virus movement depend on the interaction of MP with PD-localized PDLP, which requires the secretory path-
way to reach PD. ( b ) PD targeting of potyviruses, e.g., TuMV. Movement is thought to occur in the form of virions 
and involves the virus-encoded proteins CI and P3N-PIPO, as well as host-encoded PCaP1. Virions produced 
in membrane-associated replication complexes associate with CI, which targets PD through interaction with 
P3N-PIPO and the PM-associated protein PCaP1. The CI protein accumulates at PD where it forms character-
istic inclusions that may direct the virions into the PD pore. Given that P3N-PIPO moves between cells, the 
PCaP1-bound P3N-PIPO may facilitate the movement of the virion through the PD into the neighboring cell. ( c ) 
PD targeting of non-encapsidated virus, e.g., TMV. This virus replicates in association with the ER and uses the 
ER-actin network for PD targeting and the transport of replication complexes (VRCs) into the neighboring cell. 
The MP interacts with microtubules to assist in the assembly and controlled release of VRCs from cortical 
microtubule-associated ER sites (c-MERs). VRCs that remain anchored at these sites continue replication and 
form viral factories that produce virions. The MP interacts with, or induces the recruitment of, β-glucanase to 
facilitate intercellular movement of the VRC by degradation of PD-associated callose. Both proteins may reach 
the PD neck region with support of an endosomal cycling pathway       
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   Another virus family potentially moving through PD in the form 
of virions without tubule formation may be represented by poty-
viruses, the largest group of plant viruses (Fig.  2b ). Evidence for 
movement in the form of encapsidated virions comes from muta-
tions in the conserved core region of the  Tobacco etch virus  (TEV) 
CP that abolished both virion assembly and cell-to-cell move-
ment [ 57 ,  58 ]. Virus movement is facilitated by the cylindrical 
inclusion (CI) protein, which forms cone-shaped cylindrical 
structures at PD. The CI protein of  Potato virus A  (PVA) binds 
and copurifi es with virions [ 59 ] and the  Turnip mosaic virus  
(TuMV) CP, which is required for TuMV movement, co-local-
izes to PD-associated CI cones [ 60 ]. The localization of the 
TuMV CI protein to PD depends on a more recently identifi ed 
potyviral protein termed P3N-PIPO, which targets PD via the 
ER-Golgi secretory pathway [ 60 ] and interacts with host factors 
that facilitate its own movement [ 61 ]. P3N-PIPO may function 
as the core MP of the virus by facilitating the transport of the CI 
with bound virus particles from ER-associated viral replication 
complexes (VRCs) to PD. The PIPO domain of P3N-PIPO 
interacts with a plasma membrane- associated cation-binding 
protein, PCaP1. Virus accumulation, movement, and disease 
symptoms were reduced in an Arabidopsis PCaP1 knockout and 
it has been suggested that this protein may provide a membrane-
binding function that may be required for potyviral movement 
through PD [ 61 ]. A recent study using specifi c inhibitors, domi-
nant negative mutants, and virus-induced gene silencing to tar-
get different host cell transport systems led to the conclusion 
that TuMV movement depends on intact pre- and post-Golgi 
transport as well as on myosin XI-2 and XI-K but is independent 
of endosomes [ 62 ]. However, it may still be unclear whether all 
potyviruses indeed move between cells in the form of encapsid-
ated virions. Although potyviruses have a fl exious fi lamentous 
virion morphology, the longitudinal and lateral dimensions 
(680–900 nm long and 11–15 nm wide) of the particles may be 
incompatible with the native structure of PD. Moreover, the CI 
protein of  Plum pox virus  (PPV) is an RNA helicase [ 63 ] and 
microinjection studies with proteins encoded by  Lettuce mosaic 
potyvirus  (LMV) and  Bean common mosaic necrotic potyvirus  
(BCMNV) indicated that the CP and HC-Pro (helper 
component- protease) of these potyviruses are able to modify the 
SEL of PD, move from cell to cell, and facilitate the movement 
of viral RNA [ 64 ], which are hallmark features of the widespread 
non-virion mode of virus movement exemplifi ed by TMV. Indeed, 
recent in vivo studies provide evidence supporting the conclu-
sion that TuMV infection spreads between cells in the form of 
membrane- bound VRCs [ 65 ].   

3.2  Movement 
of Potyviruses
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4     Virion-Independent Virus Movement (as vRNP) 

 Most non-tubule-forming viruses encode MPs that form vRNPs 
with vRNA and facilitate the intercellular spread of the vRNPs by 
interacting with the cellular machinery that transports macromol-
ecules and regulates the SEL of PD. The prototype virus exempli-
fying this type of movement is TMV [ 3 ,  24 ,  66 ]. This type of 
movement can be independent of CP, as in the case of TMV [ 25 ], 
or may require CP as, for example, in the case of the bromoviruses 
 Brome mosaic virus  (BMV) and  Cucumber mosaic virus  (CMV) 
[ 67 – 69 ] or the potexviruses [ 70 ]. However, although the CP of 
TMV is dispensable for local movement of the virus, it is required 
for long-distance movement through the phloem [ 25 ]. As for 
many other viruses, this requirement of CP for long-distance 
movement may not necessarily refl ect a requirement of virion for-
mation but may indicate the requirement of additional stabiliza-
tion of the vRNP for either entry or movement through the 
vasculature [ 71 ]. 

  TMV may still be the best studied virus with regard to movement 
(Fig.  2c ). Cell biological observations and mutational studies sug-
gest that the vRNPs of TMV are associated with viral replication 
complexes (VRCs) that in addition to vRNA and MP also contain 
the viral 126 and 186 kDa replicase proteins and produce CP 
[ 72 – 75 ]. According to microscopical in vivo observations the 
VRCs assemble at sites in the cortical ER-actin network that coin-
cide with cortical microtubules [ 50 ,  76 – 79 ]. These microtubule- 
associated ER sites (c-MERs) may represent important “cortical 
landmarks” at which various endomembrane and motor-driven 
organelle traffi cking pathways are proposed to convene to catalyze 
the encounter and molecular exchange between organelles and 
macromolecular traffi cking and signaling pathways [ 49 ,  50 ,  78 ]. 
The MP exhibits strong binding affi nity to tubulin and microtu-
bules [ 72 ,  80 ,  81 ], and therefore may assist in the anchorage, for-
mation, and maturation of the ER-associated VRCs by an 
aggresomal mechanism that recruits host factors and membranes 
with support of the cytoskeleton and associated motor proteins 
[ 50 ,  78 ]. In addition to binding to microtubules, the MP also 
interacts with important regulators of the microtubule cytoskele-
ton, such as γ-tubulin [ 77 ] and microtubule END-BINDING 1 
(EB1) [ 82 ], which may explain the observation of microtubule 
nucleation events at VRCs during early maturation stages and the 
occurrence of multiple microtubules joined together in the center 
of larger, more mature VRCs at later stages [ 50 ,  78 ]. Expression of 
MP in mammalian cells causes the displacement microtubule 
nucleation activity from the centrosome to ectopic sites in the 
cytoplasm [ 83 ], thus suggesting that the MP may subvert the plant 

4.1  Movement 
of TMV
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microtubule nucleation machinery to support VRC formation and 
growth. The MP may interact with a common mechanism recently 
reported for microtubule reorientation in plants [ 84 ]. This mecha-
nism consists in the recruitment of γ-tubulin and the nucleation of 
new microtubules at existing microtubules and thus to the forma-
tion of microtubule crossovers, which act as templates for the pro-
duction of additional microtubules with support of the 
microtubule-severing protein katanin. It seems possible that the 
MP interacts with γ-tubulin to recruit this mechanism to the site of 
the VRC and thus to support VRC maturation and growth with 
the help of nucleated microtubules. 

 In time-lapse movies monitoring the behavior of fl uorescent 
protein-tagged MP, the MP-associated VRCs/MP particles are 
fi rst visualized as very small cortical particles that either remain 
attached to c-MERs or get detached to move in a directional stop-
and- go fashion along the ER-actin network between c-MERs, in 
a manner depending on a dynamic actin and microtubule cyto-
skeleton [ 50 ,  77 ]. Consistent with their VRC nature, the ability 
of MP to interact with microtubules and the formation of the 
mobile MP particles is correlated with MP function in virus move-
ment [ 76 ,  77 ,  85 ]. Moreover, in agreement with the association 
of the spread of infection with VRC movement along the ER-actin 
network between c-MERs, the effi ciency by which infection 
spreads between cells is independent of the secretory pathway 
[ 86 ] but depends on dynamic microtubules [ 87 ], on the integrity 
of actin fi laments, and on the expression or activity of specifi c 
myosin motors [ 74 ,  88 – 90 ]. 

 VRCs that do not move but remain anchored at c-MERs in the 
infected cell may grow into virus factories [ 50 ,  78 ]. Thus, as infec-
tion spreads forward into yet uninfected cells, the cells behind the 
infection front develop factories (or “X-bodies”) that accumulate 
high levels of replicase, coat protein, and viral RNA in addition to 
MP [ 72 ,  73 ,  91 ]. At this stage, highly expressed MP can show 
profound accumulation of MP in viral factories and along microtu-
bules to which the virus factories are aligned [ 72 ,  81 ]. Subsequently, 
thus soon after accumulation along microtubules, the MP is 
degraded except for MP localized to PD. The process of degrada-
tion may be triggered by ER stress caused by the accumulation of 
unfolded or aggregated MP, which induces the AAA ATPase 
CDC48. This protein extracts the MP from the ER, and thus 
allows the ER to recover, and the delivery of MP to the cytoplasm 
where it fi rst decorates the microtubule cytoskeleton and is then 
degraded by the 26S proteasome [ 92 ]. 

 It is curious why TMV infection is associated with such high 
overaccumulating levels of MP. Indeed, only a small fraction 
(2 %) of the amount of MP produced during TMV infection is 
required for the spread of infection [ 93 ]. Consistently, virus vari-
ants that produce lower amounts of MP spread normally and MP 
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localization is restricted to small cortical MP particles/VRCs and 
to PD in these cases [ 72 ,  94 ]. It appears possible that the accu-
mulating levels of MP during late stages of infection play a regula-
tory role. Accumulation of MP along microtubules, as seen during 
late stages of TMV infection, was shown to interfere with kinesin-
mediated motility [ 80 ], with the movement of MP particles [ 76 ], 
and with virus movement [ 95 ,  96 ]. Thus, by producing high levels 
of MP the virus may be able to prevent the further PD targeting 
and spread of infection between cells that are already behind the 
infection front. Moreover, in agreement with the inhibition of MP 
targeting to PD during late infection stages, the ability of MP to 
alter the SEL is limited to cells at the infection front [ 11 ]. The 
inhibition of virus movement and MP traffi cking between cells 
behind the infection front may facilitate a phase change from 
mechanisms that support virus movement towards mechanisms 
that rather support VRC growth and virion progeny production. 

 Further studies might reveal how the various functions of MP 
are regulated. Apart from the already mentioned C-terminal phos-
phorylation, the MP is regulated by ubiquitinylation [ 80 ,  97 ]. 
Moreover, the MP may assume different folds. The MP is a hydro-
phobic protein with two hydrophobic regions involved in ER asso-
ciation [ 98 ]. A structural model predicted that the hydrophobic 
regions act as transmembrane domains [ 99 ,  100 ]. In this model 
the MP domains required for RNA binding [ 101 ] and interaction 
with microtubules [ 85 ], chaperones [ 102 ], and cell wall-associated 
proteins [ 103 ] are buried in the membrane suggesting that either 
this model is not correct or additional protein folds must exist 
[ 104 ]. Assuming that the model is correct and supported by the 
observation that MP oligomerizes in vivo [ 105 ], we proposed that 
MP may form higher order complexes with monomers carrying 
different folds and thus combine different MP functions within the 
complex [ 50 ,  78 ]. However, according to a recent report the pro-
tein does not form transmembrane helices but rather localizes to 
the cytoplasmic face of the membrane [ 104 ]. In contrast to the 
transmembrane insertion model, the latter model allows cytoplas-
mic accessibility of the MP domains required for function.  

  Membrane-associated replication and transport of VRCs are docu-
mented for a diverse range of viruses [ 106 – 108 ] and, unlike for 
TMV, often involve more than one MP. The rod-shaped hordei- 
like (hordei-, pomo-, peclu-, and beny-) viruses and potexviruses 
encode three MPs in overlapping ORFs, the triple gene block 
(TGB). The mode of action of these proteins has been intensely 
studied [ 70 ,  109 – 111 ] and led to the proposal of somewhat varied 
movement strategies of the TGB-encoding viruses [ 110 ]. The 
general model for movement of these viruses involves the binding 
of viral RNA by TGB1 and the targeting of the TGB1:RNA com-
plex to PD with the help of TGB2 and TGB3, transmembrane 

4.2  Movement 
of “Triple-Gene- Block” 
Viruses
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proteins that are localized to the ER. Unlike for hordeiviruses, the 
movement of potexviruses and, presumably, of other viruses with 
potex-like TGB proteins depends on the CP in addition to the 
TGB proteins. However, whether potexviruses move in the form 
of virions or rather in a non-encapsidated form is unclear. Electron 
micrographs showing fi brillar material that appears to resemble 
PVX virions located within PD of infected leaves and the reaction 
of this material with antibody able to bind to PVX virus particles 
but not to isolated CP subunits led to the proposal that PVX moves 
between cells in the form of encapsidated virions [ 112 ]. In con-
trast, the results of microinjection experiments and the mutational 
analysis of CP indicating that virion formation is not suffi cient for 
virus movement rather favored the proposal that potexvirus trans-
port occurs in the form of a TGB1-CP-RNA complex [ 113 ]. The 
latter model was supported by the observation that potexvirus CP 
mutants capable of virion formation but not capable to move 
between cells could be functionally complemented by the CP of 
unrelated viruses such as the potyviruses  Potato virus A  or Potato 
virus Y or the sobemovirus  Cocksfoot mottle virus , and even by the 
MP of TMV [ 114 ,  115 ]. The currently prevailing model proposes 
that PVX movement occurs in the form of a partially encapsidated 
viral RNA with a 5′ associated TGB1 [ 110 ]. The requirement for 
CP in TGB virus movement may depend on the size and domain 
structure of TGB1. Whereas potexviruses have small TGB1 pro-
teins and require CP for movement the viruses of the hordei-like 
group have TGB1 proteins with extended N-terminal domains and 
do not require CP for movement. The extended N-terminal 
domain may thus act as a chaperone able to suffi ciently protect the 
viral RNA during movement and thus neutralize a need of CP for 
such function [ 116 ]. Recent studies on movement of the  potexvirus 
 Bamboo mosaic virus  (BaMV) confi rmed the role of the TGB2/
TGB3 complex in the targeting of TGB1 to PD. Interestingly, the 
same complex was shown to be stably associated with virions, thus 
suggesting that BaMV targets PD in the form of virions [ 117 ]. 
Future research may show whether this virus moves through PD in 
virion form. 

 Many experiments have provided important insights into the 
host components involved in the targeting of TGB-containing 
viruses to PD. Several observations indicated that the TGB2 and 
TGB3 proteins associate with the ER and with ER-derived, TGB2- 
induced motile granules that are visualized along actin fi laments, 
whereas the TGB1 protein localizes to the cytoplasm and requires 
TGB2 and TGB3 for PD targeting [ 117 – 135 ]. The TGB-RNA 
complexes (TGB-virion complexes in the case of BaMV, [ 117 ]) 
thus reach the cell wall by traffi cking along the ER-actin network 
and once at PD facilitate transport of viral RNA (or virions) 
through the pore, presumably by increasing the PD SEL by mech-
anisms that involve TGB1 [ 136 – 138 ] and TGB2 [ 118 ,  139 ]. 
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Studies with the pomovirus  Potato mop - top virus  (PMTV) indi-
cated that the TGB2 and TGB3 proteins remain in the infected cell 
and are recycled by endosomal membrane traffi cking for further 
rounds of transport [ 118 ]. 

 The TGB complex that targets PD may be associated with viral 
replication or may itself represent a VRC. Indeed, the virion- 
associated TGB3-containing ER membrane complex of BaMV also 
contains viral replicase [ 117 ] and interactions between the CP and 
the helicase domain of the replicase are essential for virus move-
ment [ 140 ]. PVX replicates in association with the ER [ 141 ] and 
the TGB2-induced motile ER-derived and TGB3-containing gran-
ules are associated with replicase, as well as with ribosomes and 
virions [ 119 ,  124 ], thus suggesting that these granules contain 
replication complexes (VRCs). At later stages of infection, the 
TGB proteins also colocalize with non-encapsidated viral RNA to 
replication factories (X-bodies) that are formed by TGB1-mediated 
ER membrane recruitment and produce virions [ 142 ,  143 ]. The 
vicinity of the TGB proteins and CP to viral RNA or replicase in 
the motile granules and factories suggests that the proteins are 
locally translated near VRCs and remain associated with them 
through their network interactions in motile granules and X-bodies 
during early and later stages of infection. Taken together, these 
observations suggest the model that during the course of infection 
TGB2/3-associated VRCs form along the ER. Initially motile 
along the dynamic ER-actin network, they soon encounter PD, 
where the TGB2 and TGB3 proteins interact with TGB1 to insert 
CP into the channel, probably in the form of a movement complex 
with viral RNA. This insertion process may be supported by con-
tinuous replication within the PD-associated VRC. At later stages 
of infection, the PD-associated VRCs and also the VRCs that 
remained along the ER network grow into ER-associated granules 
that fi nally accumulate in a perinuclear TGB1 aggregate (X-body) 
that acts as a viral factory and produces viral progeny [ 144 ]. 

 The process by which PVX targets PD may be facilitated by the 
affi nity of the potexvirus TGB3 protein to highly curved ER mem-
brane domains enriched with reticulon-like proteins [ 145 ,  146 ]. It 
has been suggested that this affi nity may target TGB3-containing 
complexes to the desmotubule, which may require reticulons for 
structural stabilization [ 147 ]. The PD targeting of PVX or its 
anchorage near the channel may also involve an interaction with 
specifi c PM domains since PVX movement was inhibited by expres-
sion of Remorin, a protein proposed to localize PD via plasma 
membrane (PM) rafts. Since Remorin was shown to interact with 
TGB1 it may inhibit virus movement by titrating TGB1 away from 
PD [ 148 ]. 

 PD targeting and movement of TGB viruses may also involve 
a function of microtubules. The CP of PVX was shown to interact 
with microtubules and to interfere with MAP2 binding in vitro 
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[ 149 ]. Moreover, PVX movement was inhibited by overexpression 
of the microtubule-binding protein MPB2C [ 150 ]. The TGB1 
protein of PMTV was shown to interact with microtubules in vivo 
and to form cortical particles along them [ 151 ,  152 ]. Deletion 
mutation analysis demonstrated a correlation between the micro-
tubule association of TGB1 and its accumulation in PD. Microtubule 
disruption by colchicine treatment abolished the accumulation of 
TGB1 at PD as well as the formation of TGB1 particles, leading to 
accumulation of the protein along the ER network. These fi ndings 
suggest a role of microtubules in the localized interaction of TGB1 
with the membrane proteins TGB2 and TGB3. Since TGB1 inter-
acts with viral RNA, these microtubule-associated processes may 
refl ect the localized formation and transport of VRCs. Further 
studies may reveal whether or not the formation and transport of 
TGB virus VRCs along the ER occur in analogy to the formation 
and transport pathway proposed for TMV VRCs, thus involving 
c-MERs [ 50 ] (Fig.  2c ).   

5    The Use of Biochemical Inhibitors May Be of Limited Value in the Analysis 
of the Cellular Components Involved in Virus Movement 

 Although there is accumulating evidence for a role of microtubules 
in macromolecular and viral traffi cking and particularly in the for-
mation and guided intracellular traffi cking of VRCs and other mac-
romolecules to PD [ 50 ,  78 ,  153 ], the spread of viruses is usually 
not affected by the presence of microtubule inhibitors [ 74 ,  80 , 
 154 ]. This interesting feature has led to disagreements in the ear-
lier literature but may be explained simply by inhibitors not being 
fully effective, either because they do not reach all cellular targets 
or because microtubules are stabilized. The treatment of plant cells 
with microtubule inhibitors can indeed fail to disrupt parts of the 
microtubule cytoskeleton as was demonstrated, for example, by 
antibody labeling and by showing that the MP of TMV still labels 
microtubules during infection in inhibitor-treated tissues [ 155 ]. In 
the case of TMV, resistance against microtubule inhibitors may be 
partly explained also by the ability of MP to manipulate the micro-
tubule nucleation machinery and to confer superstability to micro-
tubules [ 80 ,  83 ,  85 ]. Moreover, microtubule-associated cortical 
landmarks (c-MERs) are stable structures that require microtu-
bules for their formation but not for their functional maintenance, 
at least over certain periods of time [ 49 ]. Thus, upon inhibition of 
microtubules, TMV may still be able to interact with c-MERs and 
the connecting ER-actin network for spread. 

 The lack of an effect on TMV spread is not limited to inhibi-
tors of microtubules but may also be observed for inhibitors of the 
actin cytoskeleton. Although the virus moves along the ER-actin 
network, infection continued to spread during 24 h of treatment 
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with actin inhibitor [ 90 ]. While the latter fi nding could argue 
against a role of actin fi laments in TMV movement, the same study 
showed that TMV movement was dominantly inhibited upon 
expression of an actin-binding protein that also inhibited the 
motor-dependent traffi cking of Golgi complexes along the ER, 
thus clearly indicating a role of myosin-mediated traffi cking along 
the ER membrane in TMV movement [ 90 ]. Moreover, inhibition 
of TMV movement by actin inhibitors was observed upon pro-
longed treatments with actin inhibitor and in plants silenced for 
actin or myosin motors [ 74 ,  89 ,  156 ]. Actin inhibition was also 
shown not to affect the accumulation of MP to PD [ 157 ], although 
FRAP experiments clearly indicated that the effi cient targeting of 
PD by MP requires an intact ER-actin network [ 158 ]. The careful 
application of biochemical inhibitors may not be able to inhibit 
virus movement because inhibition is rarely complete and virus 
spread depends on the successful cell-to-cell movement of only few 
virus genomes [ 159 ]. Thus, even if the inhibitor is effective to 
some degree and induces a strong bottleneck for virus movement, 
infection may continue to spread normally. Similarly, MP can accu-
mulate in PD over time although actin inhibitors interfere with the 
effi cient functioning of the PD targeting pathway to some extent. 
Given these considerations, it is important that experiments apply-
ing biochemical inhibitors to the analysis of virus movement are 
carefully designed and cautiously interpreted.  

6    Viral Mechanisms to Control PD Aperture 

 Upon arrival at PD, the VRCs could, in principle, continue to dif-
fuse along the ER membrane to pass along the desmotubule and 
into the adjacent cell. ER membrane-intrinsic and luminal probes 
readily diffuse between cells [ 160 ,  161 ], thus supporting the fl uid-
ity of the desmotubular membrane [ 162 ,  163 ] and the ability of 
the desmotubule to transport macromolecules. However, due to 
the large size of the viral complex, additional mechanisms that 
expand the PD aperture are necessary. 

  Several studies indicate that the aperture of PD is directly or indi-
rectly controlled by actin fi laments [ 164 ,  165 ] and structural mod-
els depict the PD channel with actin fi laments wrapped around the 
desmotubule [ 166 ,  167 ]. Consistent with a role of actin in con-
trolling PD aperture, the MPs of TMV and of  Cucumber mosaic 
virus  were shown to exhibit actin-severing activity in vitro. 
Moreover, the stabilization of actin fi laments by treatment with 
phalloidin prevented the ability of MP to increase PD SEL 
in vivo [ 164 ]. Nevertheless, although these fi ndings suggest that 
MPs manipulate actin to control the PD aperture, it remains to be 
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shown whether the actin-severing activity of these MPs occurs at 
PD or elsewhere in the cell. It is also yet unclear whether these 
MPs indeed interact with actin in vivo.  

  Another important mechanism that restricts PD aperture and that 
is indeed likely to be modifi ed by the infecting virus is the deposi-
tion of callose in the cell walls surrounding the PD neck regions 
(Fig.  1 ). Callose is a β-glucan polysaccharide that is deposited at 
the PD neck region during different stresses, including wounding 
and pathogen attack [ 168 ]. The deposition of callose at PD has 
been linked to the salicylic acid (SA) defense signaling pathway 
that induces callose synthase activity [ 169 ] and leads to callose 
deposition at PD by a pathway involving EDS1, NPR1, and the 
PD-associated protein PDLP5 [ 170 ,  171 ]. Experimental evidence 
indicates that the MP of TMV allows VRC movement through the 
PD by preventing the deposition of callose induced by infection. 
To account for this effect it has been proposed that the MP may 
recruit β-1,3 glucanases to degrade stress-induced callose at PD 
[ 160 ,  172 ] (Fig.  2c ). This hypothesis is based on previous reports 
indicating a positive correlation between β-1,3-glucanase expres-
sion and viral spread [ 173 – 175 ]. A glucanase isoform that may be 
targeted to PD during TMV infection is AtBG_pap. Similar to 
several recently isolated PD proteins, this protein is predicted to 
be a glycosylphosphatidylinositol (GPI)-anchored protein. This 
protein was localized to the ER, the cell periphery, and PD, and 
mutation of the protein-encoding gene by a T-DNA insertion led 
to a reduction in GFP cell-to-cell movement and stress-induced 
callose deposition at PD [ 176 ]. Moreover, the cell-to-cell move-
ment of GFP-tagged  Turnip vein clearing virus  (TVCV), a TMV-
related tobamovirus, was reduced in Arabidopsis  atbg _ pap  
mutants. The same mutants showed highly increased PD-associated 
callose  levels, thus confi rming the role of AtBG_pap-mediated cal-
lose degradation during virus movement [ 177 ]. While a direct 
role of this or another glucanase in the degradation of callose 
deposits during virus movement awaits to be demonstrated, the 
ability of MP to inhibit callose deposition at PD was shown to 
involve an ankyrin-repeat- containing protein (ANK), which facili-
tates TMV spread and interacts with MP [ 178 ]. The regulation of 
callose deposition at PD during infection may also involve the viral 
replicase. Evidence comes from the analysis of MP-transgenic 
 Nicotiana benthamiana  plants in which MP facilitated the non-
cell-autonomous diffusion of ER-localized, GFP-tagged probes in 
the presence but not in the absence of infection and/or replicase 
[ 160 ]. This fi nding supports virus movement in the form of a 
VRC and is also consistent with a role of the replicase-encoding 
region of TMV in virus movement [ 75 ]. 

 A role of callose deposition in restricting virus movement was 
also established for PVX [ 175 ] and a two-hybrid screen led to the 
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isolation of TGB2-interacting proteins (TIP1, TIP2, TIP3) that 
interact with β-1,3, glucanase and may play a role in regulating PD 
SEL [ 179 ]. 

 A number of observations indicate that the callose deposition 
at PD and the regulation of PD SEL are regulated by redox homeo-
stasis [ 180 – 182 ] and calcium [ 183 – 185 ]. Thus, it is conceivable 
that MPs may alter the PD SEL and facilitate virus movement also 
through interaction with pathways that infl uence the redox and 
calcium states of the infected cell.   

7    Requirement of Structural Unfolding for Movement Through PD 

 In addition to the modifi cation of PD SEL, viral movement 
through PD may also require the structural modifi cation of the 
transported complex. The observation that in vitro-assembled 
MP:RNA complexes have a thin and elongated appearance raised 
the proposal that the MP chaperones the vRNA through the 
dilated PD [ 101 ]. The hordeivirus TGB1 proteins have three 
RNA-binding domains and the interaction of these domains may 
play a role in VRC remodeling during movement [ 116 ]. Consistent 
with a requirement for structural unfolding for movement, the 
cell-to-cell movement of the non-cell-autonomous protein 
(NCAP) KN1 (see below) was inhibited by chemical cross-linking 
[ 186 ]. Moreover several chaperone proteins have been associated 
with macromolecular traffi cking through PD [ 102 ,  187 – 190 ].  

8    Plant Viruses Use Existing Mechanisms for Macromolecular Transport 

 The MP of TMV was the fi rst protein shown to alter the SEL of 
PD and to support its own spread between cells [ 3 ]. Later, it was 
demonstrated that this is a hallmark property of many viral MPs as 
well as of a special class of endogenous proteins commonly referred 
to as non-cell-autonomous proteins (NCAPs). Many NCAPs act as 
transcription factors playing important non-cell-autonomous roles 
in cell-type specifi cation and differentiation [ 191 – 193 ]. NCAPs 
may also be involved in the cell-to-cell and long-distance transport 
of various RNA molecules, including mRNAs [ 193 – 197 ] and small 
RNAs [ 198 – 202 ]. It is likely that the ability of viruses to target and 
spread through PD evolved as an adaptation to essential mecha-
nisms that also contribute to the transport of endogenous macro-
molecules. This hypothesis is supported by several observations. 
For example, expression of a dominant-negative form of the NON- 
CELL AUTONOMOUS PATHWAY PROTEIN 1 (NCAPP1) 
blocked the cell-to-cell traffi cking of the MP of TMV as well as of 
the  Cucurbita maxima  PHLOEM PROTEIN 16 (CmPP16) 
[ 187 ]. Moreover, expression of the microtubule-associated protein 
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MPBP2C interfered with the cell-to-cell movement of TMV [ 96 ], 
PVX [ 150 ], as well as the  Zea mays  homeobox protein KNOTTED 
1 (KN1) [ 203 ]. In addition, the intercellular traffi cking of both 
KN1 and TMV was shown to be sensitive to mutations in CCT8, 
a chaperonin complex believed to act in the post-translocational 
refolding of transported proteins [ 188 ]. Also, the MP of TMV 
facilitated the spread of silencing signal [ 5 ] which may suggest that 
small RNAs and viral RNAs share a common pathway or mecha-
nism for spread.  

9    Virus Movement and Defense Responses 

 The effi ciency of virus movement through PD is affected by plant 
defense responses that cause a reduction of the PD SEL, reduce viral 
replication, or lead to degradation of the viral proteins or genome. 
As already mentioned above, virus infection triggers the salicylic acid 
(SA) signaling pathway that involves the deterrence of pathogens 
through increasing callose deposition at PD and viruses may have 
evolved a recruitment of glucanase enzymes to degrade callose and 
thus to reverse this defense-induced constriction of PD. 

 The effi ciency of virus infection is also determined by the inter-
action of viruses with posttranscriptional RNA silencing that targets 
viral and host RNAs for cleavage or translational repression. As a 
counter strategy against this important defense response, plant 
viruses have evolved proteins able to suppress RNA silencing by 
interfering with different components of the RNA silencing  pathway 
[ 204 ,  205 ]. The silencing suppressor of TMV resides in the 
126 kDa small replicase subunit and likely acts through sequestra-
tion of virus-derived small RNAs [ 206 ,  207 ]. The ability of the viral 
MP to facilitate the spread of silencing [ 5 ] suggests that TMV and 
potentially also other viruses may facilitate their movement not only 
by suppression but also by exploitation of the host RNA silencing 
machinery. It is conceivable that MP enhances host cell susceptibil-
ity for the incoming virus by facilitating the PD-mediated intercel-
lular spreading of virus- and host-derived small RNAs that may act 
as RNA-based effectors to downregulate defense-related genes in 
cells at the virus front, whereas the silencing suppressor may act 
only after virus movement, i.e., in cells containing replication facto-
ries and producing virions [ 208 ]. Pathogen-encoded small RNA 
effectors that target host defense genes are well known for several 
mammalian viruses [ 209 ] and have been recently reported also for 
the plant pathogenic fungus  Botrytis cinerea  [ 210 ]. However, 
whether motile, small RNA-based effectors spreading through PD 
indeed play a role in facilitating the cell-to- cell propagation of virus 
infection remains to be investigated. Recent observations indicate 
that Arabidopsis plants are able to sense virus infection by pathogen-
recognition receptors (PRR) and to mount pathogen-associated 
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molecular pattern (PAMP)-triggered immunity (PTI) through 
the PAMP co-receptor BAK1 (for BRASSINOSTEROID 
INSENSITIVE1 (BRI1)-ASSOCIATED RECEPTOR KINASE1) 
[ 211 ]. It will be interesting to see whether this response, or its 
potential signaling propagation between cells, involves PD.  

10    Conclusions 

 Viruses transport their genomes between cells to spread infection 
and thus are convenient systems to study the cellular pathways by 
which macromolecules are targeted and transported through 
PD. As pathogens, viruses are also excellent systems to determine 
the manifold mechanisms by which cells defend themselves at PD 
against invaders. Although numerous viral systems suitable to 
address these questions are available, only few could be mentioned 
here. Plant viruses illuminate different pathways by which viruses 
and other macromolecules can be transported to and through 
PD. TMV exemplifi es a mechanism that involves the viral manipu-
lation of the PD SEL and depends on the ER-actin network that in 
coordination with specifi c microtubule system activities supports 
both the replication and the movement of the virus in a non- 
encapsidated form. Tubule-forming viruses are systems that depend 
on the secretory ER-Golgi-plasma membrane pathway for move-
ment. The tubules formed by these viruses replace the desmotu-
bule in PD and thus disrupt the ER connectivity between cells used 
by other viruses like TMV. Cytoplasmic plant viruses provide 
important insights into the structural and functional organization 
of the cortical cytoplasm. Studies with TMV suggest a role of spe-
cialized microtubule-associated ER sites (c-MERs) in the assembly 
of VRCs for either movement (early infection) or growth into viral 
factories (late infection). It will be interesting to see whether the 
same sites play a role also in the assembly of complexes of other 
viruses or in the intercellular movement of cellular proteins and 
RNAs [ 50 ]. Viruses also continue to provide important informa-
tion with regard to the role of callose in the regulation of the PD 
SEL. However, since viruses are pathogens, many events occur-
ring in the infected cells may be related to replication, defense, 
and degradation processes rather than to macromolecular move-
ment through PD. Thus, it is important to dissect the in vivo 
observations with respect to their functional signifi cance in move-
ment. Future research can make use of an excellent panel of novel 
helpful in vivo techniques, such as superresolution microscopy 
[ 212 ]; fl uorescent in vivo detection of RNA and RNA spread, 
e.g., [ 62 ,  77 ,  91 ,  213 ,  214 ]; in vivo analysis of complexes by 
FLIM-FRET and BiFC, e.g., [ 35 ,  61 ,  82 ,  105 ]; dominant-nega-
tive inhibition of cellular processes, e.g., [ 43 ,  62 ]; and novel dye 
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loading methods to measure PD conductivity, e.g., [ 171 ], to just 
name a few. In combination with genetic and novel next-genera-
tion sequencing-based approaches these will lead to a new era of 
understanding about the mechanisms of PD-mediated intercellu-
lar communication in plant development and disease.     
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