Chapter 2

Plasmodesmata: Ghannels for Viruses on the Move

Manfred Heinlein

Abstract

The symplastic communication network established by plasmodesmata (PD) and connected phloem
provides an essential pathway for spatiotemporal intercellular signaling in plant development but is also
exploited by viruses for moving their genomes between cells in order to infect plants systemically. Virus
movement depends on virus-encoded movement proteins (MPs) that target PD and therefore represent
important keys to the cellular mechanisms underlying the intercellular trafficking of viruses and other
macromolecules. Viruses and their MPs have evolved different mechanisms for intracellular transport and
interaction with PD. Some viruses move from cell to cell by interacting with cellular mechanisms that
control the size exclusion limit of PD whereas other viruses alter the PD architecture through assembly of
specialized transport structures within the channel. Some viruses move between cells in the form of assem-
bled virus particles whereas other viruses may interact with nucleic acid transport mechanisms to move
their genomes in a non-encapsidated form. Moreover, whereas several viruses rely on the secretory path-
way to target PD, other viruses interact with the cortical endoplasmic reticulum and associated cytoskele-
ton to spread infection. This chapter provides an introduction into viruses and their role in studying the
diverse cellular mechanisms involved in intercellular PD-mediated macromolecular trafficking.
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1 Interaction of Viral Movement Proteins with PD

The trafficking of viruses and other macromolecules through PD
depends on intracellular transport mechanisms and is restricted by
the size of the PD aperture. The size exclusion limit (SEL) of PD,
thus the upper limit of the size of molecules transported by PD, is
under tight control and changes during plant growth and develop-
ment. Younger leaves that act as physiological sinks for photo-
assimilates have PD with an overall larger SEL than the PD in
mature source tissues. Leaf maturation and the corresponding
overall decrease in the SEL of PD have been correlated with a
change in PD structure from “simple” to “branched” [1].
Nevertheless, despite the restricted SEL of PD in mature leaves,
cells in both mature and immature leaves interact with neighboring
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cells and can have PD in various states of aperture (closed, open,
dilated), thus indicating that the PD aperture of cells is individually
regulated and able to respond to specific signals [2].

A hallmark feature of viral MPs is their ability to manipulate the
mechanism that determines the SEL and increase the aperture of
PD even in mature leaves. This ability of MPs to “gate” PD was
first discovered for the MP of Tobacco mosaic virus (TMV).
Microinjection of fluorescent, membrane-impermeable size-specific
dextran probes into the cytoplasm revealed that transgenic tobacco
plants constitutively expressing the MP allowed the cell-to-cell dif-
fusion of probes with an approximate size of 10 kDa whereas diffu-
sion was restricted to a molecular size of 0.8 kDa in control plants
[3]. The protein was then shown to spread itself between cells
upon injection [4] or upon transient expression from a plasmid
(introduced into tissue by microprojectile bombardment [2] or
agroinfiltration [5]). Experiments using microprojectile bombard-
ment have shown that only 2 % of the cells in mature leaves allowed
the cell-to-cell diffusion of 2 x GFP (two tused copies of green fluo-
rescent protein, 54 kDa) whereas 52 % of the cells allowed the traf-
ficking of GFP fused to MP (MP:GFP; 58 kDa) [2]. The ability of
MP to alter PD aperture is usually correlated with the accumula-
tion of the protein at PD. Several studies indicated that MP accu-
mulates preferentially to the complex, branched PD in mature
tissues [6-9]. However, more recent studies have shown that MP
also accumulates in simple PD of immature cells [2, 10]. Moreover,
the presence of accumulated MP in PD does not necessarily indi-
cate that the PD are gated. Microinjection of cytoplasmic probes
into cells within different radial zones of spreading TMV infection
sites has demonstrated that the gating of PD by MP is restricted to
cells at the infection front although the MP resides in PD through-
out the infection site [11]. Accumulation of MP in PD and gating
may even represent independent functions of MP, since TMV was
shown to spread through PD without MP being trapped in PD
[10] and certain transiently expressed mutants of MP moved between
cells in the absence of any accumulation in the channel [5]. Plants
that express the MP and are able to complement the movement func-
tion of movement-deficient TMV mutants do not show obvious
growth defects, suggesting the existence of mechanisms that tightly
control the ability of MP to modify PD aperture and thus prevent the
continuous trafficking of signaling macromolecules between cells.
The nature of these mechanisms remains to be elucidated. However,
the MP has several amino acids that are phosphorylated in vivo [12-
16] and that may play a role in regulating MP functions. The
C-terminus of MP is dispensable for function in virus movement but
carries phosphorylation sites that if phosphorylated downregulate
the ability of MP to move from cell to cell and to gate PD in a host-
dependent manner [17, 18]. Consistent with this type of posttrans-
lational control, PD are associated with several kinases [19-23]
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and a specific kinase, plasmodesmal associated kinase (PAPK), was
shown to specifically phosphorylate the C-terminal phosphoryla-
tion sites of MP in vitro and also to be active on a subset of other
MPs and non-cell-autonomous plant transcription factors [22].
Another hallmark of MP function is the ability of the protein to
bind single-stranded nucleic acids in a sequence-independent man-
ner in vitro [24]. Since TMV does not require its coat protein (CP)
for intercellular movement [25], the MP is believed to form an
MP:RNA complex with viral RNA (VRNA) and to support viral
movement in the form of a non-encapsidated viral ribonucleopro-
tein complex (VRNP). This non-virion mode of movement by
TMV has strong potential for providing insights into the cellular
mechanisms by which cells support the intercellular trafficking of
protein and RNA molecules.

Although TMV and its MP continue to play a major role in
pioneering work addressing virus movement, many more viruses
and their MPs have also been studied in the meantime. These stud-
ies revealed that viruses may encode more than one protein
required for movement and that viral MPs may use different mech-
anisms for targeting PD and for facilitating virus movement
through the channel. Thus, dependent on the virus species, inter-
cellular virus movement occurs in virion or non-virion form and
often depends on viral coat protein (CP) in addition to MP. The
following paragraphs describe different MP-mediated mechanisms
by which viruses target and move through PD. Since the move-
ment of different viruses has been recently reviewed [26, 27], only
selected virus models are described here.

2 Virion Movement of Tubule-Forming Viruses

Viruses that move from cell to cell in the form of encapsidated
virions encounter the problem that the size of the virion particles
(>10 nm) exceeds the cytoplasmic channel diameter in PD (the
cytoplasmic sleeve is at most 10 nm in diameter). As a result, the
viruses must have adopted drastic strategies to allow the particles
to pass through the pore. Several viruses known to move between
cells in the form of assembled virions encode MPs able to assemble
a large tubular transport structure inside PD [28-30] (Fig. 1). The
desmotubule is absent from such modified PD and the overall
diameter of the PD can be dilated [ 31]. The molecular mechanism
of tubule-guided transport of viral particles through the pore is not
known. However, some MPs of tubule-forming viruses interact
with the CP of the respective virus, usually at the C-terminus of the
MP. The C-terminus of the MP of Cowpea mosaic virus (CPMV) is
located on the inside of the tubule [30], thus in close proximity to
the virus particle passing through the tubule. Consistent with a
requirement of MP:CP interactions between the inner tubule wall
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Fig. 1 PD structure and modification by viruses. (a) General structure of primary PD. The PD pore maintains
plasma membrane (PM) and endoplasmic reticulum (ER) continuity between cells. The ER traverses the pore
as a thin tube known as the desmotubule. Callose deposits in the cell wall around the PD neck regions play an
important role in controling macromolecular transport through the channel. (b) Modification of PD by tubule-
forming viruses. The tubule is assembled from viral MP and permits the movement of whole virion particles
between cells. Since the tubule replaces the desmotubule, this type of movement disrupts ER continuity
between cells. (c) Modification of PD by viruses that move from cell to cell in a non-encapsidated form. The
MPs of these viruses cause an increase in PD SEL. An increased SEL is often linked to the degradation of
PD-associated callose but may also involve a role of PD-associated actin. The viral ribonucleoprotein com-
plexes traverse the PD channel likely in association with the fluid ER/desmotubule membrane

and CPMV particles for transport, only “empty” tubules were
observed, when the C-terminus of the MP was deleted [32].
Specific interactions between tubules and virions mediated by the
C-terminus of MP have also been observed for the Grapevine fan-
leaf nepovirus (GFLV) [33]. The interaction between the tubule-
forming MPs and the CPs of the respective tubule-forming viruses
represents an important determinant for movement specificity. For
example, the MP of CPMV does not interact with particles of other
tested virus species [34] and the MP of the GFLV-related Arabis
mosaic virys failed to support GFLV movement unless the nine
C-terminal amino acids of the MP were replaced by the nine
C-terminal amino acids of the GFLV MP [33]. The interactions of
tubule-forming MPs with the CP of the respective virus may
suggest that virus transport may occur through polar assembly/
disassembly of MP tubules that may propel MP-bound viral parti-
cles in a mechanism analogous to microtubule treadmilling [26].
Such a mechanism would depend on continuous delivery of MP to
the base of the tubule within the infected cell.

As shown for GFLV and Cauliflower mosaic virus (CaMV),
efficient tubule assembly and virus infection depend on interaction
of the tubule-forming MP with PD-localized proteins (PDLP), a
multigene protein family that localizes to PD via the ER-Golgi
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secretory pathway [35] (Fig. 2a). The MPs interact with PDLP at
PD and not earlier within the secretory pathway, since the treatment
with the secretory pathway inhibitor Brefeldin A (BFA) resulted in
the accumulation of the MPs in the cytosol [36-38] and not, as
would be expected, in BFA bodies, as seen for PDLP [35, 39]. The
secretory pathway consists of interacting and highly dynamic
organelles that move intracellularly with support of the actin cyto-
skeleton ([40] and citations herein). Thus, consistent with the role
of the secretory pathway in the targeting of PDLP to PD, intracel-
lular transport of PDLP as well as of Golgi bodies is strongly
affected by the treatment with Latrunculin B (LatB: inhibitor of
actin polymerization) and 2,3-butanedione monoxime (BDM,
myosin ATPase inhibitor), both of which inhibit the actomyosin
system in Golgi trafficking along the ER required for secretory
cargo uptake [41, 42]. In agreement with these findings the PD
targeting of PDLP as well as of GFLV MP, tubule formation, and
virus movement depend on the activity of specific myosin XI classes
(particularly myosin XI-2 and XI-K) [43] that are known to play
important roles in cell dynamics, including F-actin organization,
ER motility, and organelle trafficking [44—48]. The inhibition of
myosin XI-K did not alter the subcellular distribution of cellular
markers of the plasma membrane (PM), of lipid raft subdomains
within the PM and PD, of the PD neck, or the vacuolar membrane,
thus indicating that the XI-K-dependent PD targeting by PDLP
follows a specific route [43].

Given these insights into the PD targeting of PDLP it now
remains to determine how the MP and the viral particles of GFLV
(and of other PDLP-dependent viruses) are targeted to
PD. Previous studies indicated that the application of inhibitors
that interfere with microtubule polymerization causes GFLV
tubules to form at ectopic cortical sites rather than at PD [37].
This may be consistent with the recent proposal that cortical,
ER-intersecting microtubules form specific cortical ER-associated
landmarks for the proper positioning of organelles and membrane
transport pathways in the cell cortex [49, 50]. Therefore, it is con-
ceivable that the MP interacts with the ER and/or microtubules
and that the lack of microtubules causes the disappearance of
important positional information required for PD targeting. Since
GFLV and CPMV replicate in perinuclear aggregates of recruited
ER membranes [51, 52], the route by which the MP reaches PD
may be via trafficking along the ER membrane, thus similar to the
route taken by several other RNA viruses, like TMV (see below).
The CP of GFLV has been localized to viroplasms and to the tips
of MP tubules in the cell periphery [51]. However, how the CP or
the assembled virions are targeted from viroplasms to PD remains
to be studied.
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Fig. 2 Cellular mechanisms that target viruses to PD. (a) PD targeting by tubule-forming viruses, e.g., GFLV. This
virus replicates in aggregates of recruited ER membrane near the nucleus and requires the secretory pathway
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3 Tubule-Independent Virion Movement

In contrast to the tubule-forming viruses, most plant viruses move
through PD without inducing major structural changes in channel
architecture. This mode of virus movement must be associated
with infectious particles and movement mechanisms that are
adapted to PD structure and function and likely relies on existing
cellular mechanisms for the transport of macromolecules. As a con-
sequence of such adaptation the majority of the viruses not relying
on a tubule-forming MP evolved mechanisms to move from cell to
cell in a non-encapsidated form. These are described further below
(see Subheading 4). Here, I first mention examples of viruses pro-
posed to move through PD in the form of encapsidated virions
despite that they have not been reported to form MP tubules
(see Subheadings 3.1 and 3.2).

3.1 Movement Closteroviruses represent a first example for viruses apparently

of Closteroviruses moving from cell to cell as virions through PD without tubule for-
mation. These viruses have particularly large RNA genomes and
form very long and flexible virions. Their movement involves four
structural proteins and one ER-localized MP, which is required for
virus movement but is not an integral virion component [53].
Three of the four structural components form a narrow tail that
functions in virion movement [54]. One of these components, the
Hsp70 homolog (HSP70h), localizes to PD in a manner depen-
dent on myosin VIII and thus might be involved in targeting the
virion to PD or in transporting the virion through the pore [55].
It has been proposed that the latter may be facilitated by the
ATPase function of Hsp70h, which may generate mechanical force
required for translocation [56].

<
<

Fig. 2 (continued) as well as the actin cytoskeleton and associated myosin motors for intercellular movement.
The mechanism that targets the MP and virions to PD is not known. However, efficient tubule formation and
virus movement depend on the interaction of MP with PD-localized PDLP, which requires the secretory path-
way to reach PD. (b) PD targeting of potyviruses, e.g., TuMV. Movement is thought to occur in the form of virions
and involves the virus-encoded proteins Cl and P3N-PIPO, as well as host-encoded PCaP1. Virions produced
in membrane-associated replication complexes associate with Cl, which targets PD through interaction with
P3N-PIPO and the PM-associated protein PCaP1. The ClI protein accumulates at PD where it forms character-
istic inclusions that may direct the virions into the PD pore. Given that P3N-PIPO moves between cells, the
PCaP1-bound P3N-PIPO may facilitate the movement of the virion through the PD into the neighboring cell. (c)
PD targeting of non-encapsidated virus, e.g., TMV. This virus replicates in association with the ER and uses the
ER-actin network for PD targeting and the transport of replication complexes (VRCs) into the neighboring cell.
The MP interacts with microtubules to assist in the assembly and controlled release of VRCs from cortical
microtubule-associated ER sites (c-MERs). VRCs that remain anchored at these sites continue replication and
form viral factories that produce virions. The MP interacts with, or induces the recruitment of, g-glucanase to
facilitate intercellular movement of the VRC by degradation of PD-associated callose. Both proteins may reach
the PD neck region with support of an endosomal cycling pathway
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3.2 Movement
of Potyviruses

Another virus family potentially moving through PD in the form
of virions without tubule formation may be represented by poty-
viruses, the largest group of plant viruses (Fig. 2b). Evidence for
movement in the form of encapsidated virions comes from muta-
tions in the conserved core region of the Tobacco etch virus (TEV)
CP that abolished both virion assembly and cell-to-cell move-
ment [57, 58]. Virus movement is facilitated by the cylindrical
inclusion (CI) protein, which forms cone-shaped cylindrical
structures at PD. The CI protein of Potato virus A (PVA) binds
and copurifies with virions [59] and the Twurnip mosaic virus
(TuMV) CP, which is required for TuMV movement, co-local-
izes to PD-associated CI cones [60]. The localization of the
TuMV CI protein to PD depends on a more recently identified
potyviral protein termed P3N-PIPO, which targets PD via the
ER-Golgi secretory pathway [60] and interacts with host factors
that facilitate its own movement [61]. P3N-PIPO may function
as the core MP of the virus by facilitating the transport of the CI
with bound virus particles from ER-associated viral replication
complexes (VRCs) to PD. The PIPO domain of P3N-PIPO
interacts with a plasma membrane-associated cation-binding
protein, PCaPl. Virus accumulation, movement, and disease
symptoms were reduced in an Arabidopsis PCaP1 knockout and
it has been suggested that this protein may provide a membrane-
binding function that may be required for potyviral movement
through PD [61]. A recent study using specific inhibitors, domi-
nant negative mutants, and virus-induced gene silencing to tar-
get different host cell transport systems led to the conclusion
that TuMV movement depends on intact pre- and post-Golgi
transport as well as on myosin XI-2 and XI-K but is independent
of endosomes [62]. However, it may still be unclear whether all
potyviruses indeed move between cells in the form of encapsid-
ated virions. Although potyviruses have a flexious filamentous
virion morphology, the longitudinal and lateral dimensions
(680-900 nm long and 11-15 nm wide) of the particles may be
incompatible with the native structure of PD. Moreover, the CI
protein of Plum pox virus (PPV) is an RNA helicase [63] and
microinjection studies with proteins encoded by Lettuce mosaic
potyvirus (LMV) and Bean common mosaic necvotic potyvirus
(BCMNV) indicated that the CP and HC-Pro (helper
component-protease) of these potyviruses are able to modify the
SEL of PD, move from cell to cell, and facilitate the movement
of'viral RNA [64 ], which are hallmark features of the widespread
non-virion mode of virus movement exemplified by TMV. Indeed,
recent in vivo studies provide evidence supporting the conclu-
sion that TuMV infection spreads between cells in the form of
membrane-bound VRCs [65].
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4 \Virion-Independent Virus Movement (as vRNP)

4.1 Movement
of TMV

Most non-tubule-forming viruses encode MPs that form vRNPs
with vRNA and facilitate the intercellular spread of the vVRNPs by
interacting with the cellular machinery that transports macromol-
ecules and regulates the SEL of PD. The prototype virus exempli-
fying this type of movement is TMV [3, 24, 66]. This type of
movement can be independent of CP, as in the case of TMV [25],
or may require CP as, for example, in the case of the bromoviruses
Brome mosaic virus (BMV) and Cucumber mosaic virus (CMV)
[67—69] or the potexviruses [70]. However, although the CP of
TMV is dispensable for local movement of the virus, it is required
for long-distance movement through the phloem [25]. As for
many other viruses, this requirement of CP for long-distance
movement may not necessarily reflect a requirement of virion for-
mation but may indicate the requirement of additional stabiliza-
tion of the VRNP for either entry or movement through the
vasculature [71].

TMYV may still be the best studied virus with regard to movement
(Fig. 2¢). Cell biological observations and mutational studies sug-
gest that the vVRNDPs of TMV are associated with viral replication
complexes (VRCs) that in addition to vRNA and MP also contain
the viral 126 and 186 kDa replicase proteins and produce CP
[72-75]. According to microscopical in vivo observations the
VRCs assemble at sites in the cortical ER-actin network that coin-
cide with cortical microtubules [50, 76-79]. These microtubule-
associated ER sites (c-MERs) may represent important “cortical
landmarks” at which various endomembrane and motor-driven
organelle trafficking pathways are proposed to convene to catalyze
the encounter and molecular exchange between organelles and
macromolecular trafficking and signaling pathways [49, 50, 78].
The MP exhibits strong binding affinity to tubulin and microtu-
bules [72, 80, 81], and therefore may assist in the anchorage, for-
mation, and maturation of the ER-associated VRCs by an
aggresomal mechanism that recruits host factors and membranes
with support of the cytoskeleton and associated motor proteins
[50, 78]. In addition to binding to microtubules, the MP also
interacts with important regulators of the microtubule cytoskele-
ton, such as y-tubulin [77] and microtubule END-BINDING 1
(EB1) [82], which may explain the observation of microtubule
nucleation events at VRCs during early maturation stages and the
occurrence of multiple microtubules joined together in the center
of larger, more mature VRCs at later stages [50, 78]. Expression of
MP in mammalian cells causes the displacement microtubule
nucleation activity from the centrosome to ectopic sites in the
cytoplasm [83], thus suggesting that the MP may subvert the plant



34

Manfred Heinlein

microtubule nucleation machinery to support VRC formation and
growth. The MP may interact with a common mechanism recently
reported for microtubule reorientation in plants [84]. This mecha-
nism consists in the recruitment of y-tubulin and the nucleation of
new microtubules at existing microtubules and thus to the forma-
tion of microtubule crossovers, which act as templates for the pro-
duction of additional microtubules with support of the
microtubule-severing protein katanin. It seems possible that the
MP interacts with y-tubulin to recruit this mechanism to the site of
the VRC and thus to support VRC maturation and growth with
the help of nucleated microtubules.

In time-lapse movies monitoring the behavior of fluorescent
protein-tagged MP, the MP-associated VRCs/MP particles are
first visualized as very small cortical particles that either remain
attached to c-MERs or get detached to move in a directional stop-
and-go fashion along the ER-actin network between c-MERs, in
a manner depending on a dynamic actin and microtubule cyto-
skeleton [50, 77]. Consistent with their VRC nature, the ability
of MP to interact with microtubules and the formation of the
mobile MP particles is correlated with MP function in virus move-
ment [76, 77, 85]. Moreover, in agreement with the association
of the spread of infection with VRC movement along the ER-actin
network between c-MERs, the efficiency by which infection
spreads between cells is independent of the secretory pathway
[86] but depends on dynamic microtubules [87], on the integrity
of actin filaments, and on the expression or activity of specific
myosin motors [ 74, 88-90].

VRCs that do not move but remain anchored at c-MERs in the
infected cell may grow into virus factories [50, 78]. Thus, as infec-
tion spreads forward into yet uninfected cells, the cells behind the
infection front develop factories (or “X-bodies”) that accumulate
high levels of replicase, coat protein, and viral RNA in addition to
MP [72, 73, 91]. At this stage, highly expressed MP can show
profound accumulation of MP in viral factories and along microtu-
bules to which the virus factories are aligned [ 72, 81 ]. Subsequently,
thus soon after accumulation along microtubules, the MP is
degraded except for MP localized to PD. The process of degrada-
tion may be triggered by ER stress caused by the accumulation of
unfolded or aggregated MP, which induces the AAA ATPase
CDCA48. This protein extracts the MP from the ER, and thus
allows the ER to recover, and the delivery of MP to the cytoplasm
where it first decorates the microtubule cytoskeleton and is then
degraded by the 26S proteasome [92].

It is curious why TMYV infection is associated with such high
overaccumulating levels of MP. Indeed, only a small fraction
(2 %) of the amount of MP produced during TMYV infection is
required for the spread of infection [93]. Consistently, virus vari-
ants that produce lower amounts of MP spread normally and MP
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localization is restricted to small cortical MP particles/VRCs and
to PD in these cases [72, 94]. It appears possible that the accu-
mulating levels of MP during late stages of infection play a regula-
tory role. Accumulation of MP along microtubules, as seen during
late stages of TMV infection, was shown to interfere with kinesin-
mediated motility [80], with the movement of MP particles [76],
and with virus movement [95, 96]. Thus, by producing high levels
of MP the virus may be able to prevent the further PD targeting
and spread of infection between cells that are already behind the
infection front. Moreover, in agreement with the inhibition of MP
targeting to PD during late infection stages, the ability of MP to
alter the SEL is limited to cells at the infection front [11]. The
inhibition of virus movement and MP trafficking between cells
behind the infection front may facilitate a phase change from
mechanisms that support virus movement towards mechanisms
that rather support VRC growth and virion progeny production.

Further studies might reveal how the various functions of MP
are regulated. Apart from the already mentioned C-terminal phos-
phorylation, the MP is regulated by ubiquitinylation [80, 97].
Moreover, the MP may assume different folds. The MP is a hydro-
phobic protein with two hydrophobic regions involved in ER asso-
ciation [98]. A structural model predicted that the hydrophobic
regions act as transmembrane domains [99, 100]. In this model
the MP domains required for RNA binding [101] and interaction
with microtubules [85], chaperones [102], and cell wall-associated
proteins [103] are buried in the membrane suggesting that either
this model is not correct or additional protein folds must exist
[104]. Assuming that the model is correct and supported by the
observation that MP oligomerizes in vivo [ 105], we proposed that
MP may form higher order complexes with monomers carrying
different folds and thus combine different MP functions within the
complex [50, 78]. However, according to a recent report the pro-
tein does not form transmembrane helices but rather localizes to
the cytoplasmic face of the membrane [104]. In contrast to the
transmembrane insertion model, the latter model allows cytoplas-
mic accessibility of the MP domains required for function.

Membrane-associated replication and transport of VRCs are docu-
mented for a diverse range of viruses [106-108] and, unlike for
TMYV, often involve more than one MP. The rod-shaped hordei-
like (hordei-, pomo-, peclu-, and beny-) viruses and potexviruses
encode three MPs in overlapping ORFs, the triple gene block
(TGB). The mode of action of these proteins has been intensely
studied [70, 109-111] and led to the proposal of somewhat varied
movement strategies of the TGB-encoding viruses [110]. The
general model for movement of these viruses involves the binding
of viral RNA by TGBI and the targeting of the TGB1:RNA com-
plex to PD with the help of TGB2 and TGB3, transmembrane
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proteins that are localized to the ER. Unlike for hordeiviruses, the
movement of potexviruses and, presumably, of other viruses with
potex-like TGB proteins depends on the CP in addition to the
TGB proteins. However, whether potexviruses move in the form
of virions or rather in a non-encapsidated form is unclear. Electron
micrographs showing fibrillar material that appears to resemble
PVX virions located within PD of infected leaves and the reaction
of this material with antibody able to bind to PVX virus particles
but not to isolated CP subunits led to the proposal that PVX moves
between cells in the form of encapsidated virions [112]. In con-
trast, the results of microinjection experiments and the mutational
analysis of CP indicating that virion formation is not sufficient for
virus movement rather favored the proposal that potexvirus trans-
port occurs in the form of a TGB1-CP-RNA complex [113]. The
latter model was supported by the observation that potexvirus CP
mutants capable of virion formation but not capable to move
between cells could be functionally complemented by the CP of
unrelated viruses such as the potyviruses Potato virus A or Potato
virus Y or the sobemovirus Cocksfoot mottle virus, and even by the
MP of TMV [114, 115]. The currently prevailing model proposes
that PVX movement occurs in the form of a partially encapsidated
viral RNA with a 5" associated TGB1 [110]. The requirement for
CP in TGB virus movement may depend on the size and domain
structure of TGB1. Whereas potexviruses have small TGB1 pro-
teins and require CP for movement the viruses of the hordei-like
group have TGB1 proteins with extended N-terminal domains and
do not require CP for movement. The extended N-terminal
domain may thus act as a chaperone able to sufficiently protect the
viral RNA during movement and thus neutralize a need of CP for
such function [116]. Recent studies on movement of the potexvirus
Bamboo mosaic virus (BaMV) confirmed the role of the TGB2/
TGB3 complex in the targeting of TGB1 to PD. Interestingly, the
same complex was shown to be stably associated with virions, thus
suggesting that BaMYV targets PD in the form of virions [117].
Future research may show whether this virus moves through PD in
virion form.

Many experiments have provided important insights into the
host components involved in the targeting of TGB-containing
viruses to PD. Several observations indicated that the TGB2 and
TGB3 proteins associate with the ER and with ER-derived, TGB2-
induced motile granules that are visualized along actin filaments,
whereas the TGBI protein localizes to the cytoplasm and requires
TGB2 and TGB3 for PD targeting [117-135]. The TGB-RNA
complexes (TGB-virion complexes in the case of BaMV, [117])
thus reach the cell wall by trafficking along the ER-actin network
and once at PD facilitate transport of viral RNA (or virions)
through the pore, presumably by increasing the PD SEL by mech-
anisms that involve TGB1 [136-138] and TGB2 [118, 139].
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Studies with the pomovirus Potato mop-top virus (PMTV) indi-
cated that the TGB2 and TGB3 proteins remain in the infected cell
and are recycled by endosomal membrane trafficking for further
rounds of transport [118].

The TGB complex that targets PD may be associated with viral
replication or may itself represent a VRC. Indeed, the virion-
associated TGB3-containing ER membrane complex of BaMV also
contains viral replicase [117] and interactions between the CP and
the helicase domain of the replicase are essential for virus move-
ment [140]. PVX replicates in association with the ER [141] and
the TGB2-induced motile ER-derived and TGB3-containing gran-
ules are associated with replicase, as well as with ribosomes and
virions [119, 124], thus suggesting that these granules contain
replication complexes (VRCs). At later stages of infection, the
TGB proteins also colocalize with non-encapsidated viral RNA to
replication factories (X-bodies) that are formed by TGB1-mediated
ER membrane recruitment and produce virions [142, 143]. The
vicinity of the TGB proteins and CP to viral RNA or replicase in
the motile granules and factories suggests that the proteins are
locally translated near VRCs and remain associated with them
through their network interactions in motile granules and X-bodies
during early and later stages of infection. Taken together, these
observations suggest the model that during the course of infection
TGB2/3-associated VRCs form along the ER. Initially motile
along the dynamic ER-actin network, they soon encounter PD,
where the TGB2 and TGB3 proteins interact with TGB1 to insert
CP into the channel, probably in the form of a movement complex
with viral RNA. This insertion process may be supported by con-
tinuous replication within the PD-associated VRC. At later stages
of infection, the PD-associated VRCs and also the VRCs that
remained along the ER network grow into ER-associated granules
that finally accumulate in a perinuclear TGB1 aggregate (X-body)
that acts as a viral factory and produces viral progeny [144].

The process by which PVX targets PD may be facilitated by the
affinity of the potexvirus TGB3 protein to highly curved ER mem-
brane domains enriched with reticulon-like proteins [ 145, 146]. It
has been suggested that this affinity may target TGB3-containing
complexes to the desmotubule, which may require reticulons for
structural stabilization [147]. The PD targeting of PVX or its
anchorage near the channel may also involve an interaction with
specific PM domains since PVX movement was inhibited by expres-
sion of Remorin, a protein proposed to localize PD via plasma
membrane (PM) rafts. Since Remorin was shown to interact with
TGBI it may inhibit virus movement by titrating TGB1 away from
PD [148].

PD targeting and movement of TGB viruses may also involve
a function of microtubules. The CP of PVX was shown to interact
with microtubules and to interfere with MAP2 binding in vitro
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[149]. Moreover, PVX movement was inhibited by overexpression
of the microtubule-binding protein MPB2C [150]. The TGB1
protein of PMTV was shown to interact with microtubules in vivo
and to form cortical particles along them [151, 152]. Deletion
mutation analysis demonstrated a correlation between the micro-
tubule association of TGB1 and itsaccumulationin PD. Microtubule
disruption by colchicine treatment abolished the accumulation of
TGB1 at PD as well as the formation of TGB1 particles, leading to
accumulation of the protein along the ER network. These findings
suggest a role of microtubules in the localized interaction of TGB1
with the membrane proteins TGB2 and TGB3. Since TGB1 inter-
acts with viral RNA, these microtubule-associated processes may
reflect the localized formation and transport of VRCs. Further
studies may reveal whether or not the formation and transport of
TGB virus VRCs along the ER occur in analogy to the formation
and transport pathway proposed for TMV VRCs, thus involving
c-MERs [50] (Fig. 2¢).

5 The Use of Biochemical Inhibitors May Be of Limited Value in the Analysis
of the Cellular Components Involved in Virus Movement

Although there is accumulating evidence for a role of microtubules
in macromolecular and viral trafficking and particularly in the for-
mation and guided intracellular trafficking of VRCs and other mac-
romolecules to PD [50, 78, 153], the spread of viruses is usually
not affected by the presence of microtubule inhibitors [74, 80,
154]. This interesting feature has led to disagreements in the ear-
lier literature but may be explained simply by inhibitors not being
fully effective, either because they do not reach all cellular targets
or because microtubules are stabilized. The treatment of plant cells
with microtubule inhibitors can indeed fail to disrupt parts of the
microtubule cytoskeleton as was demonstrated, for example, by
antibody labeling and by showing that the MP of TMYV still labels
microtubules during infection in inhibitor-treated tissues [ 155]. In
the case of TMYV, resistance against microtubule inhibitors may be
partly explained also by the ability of MP to manipulate the micro-
tubule nucleation machinery and to confer superstability to micro-
tubules [80, 83, 85]. Morcover, microtubule-associated cortical
landmarks (c-MERs) are stable structures that require microtu-
bules for their formation but not for their functional maintenance,
at least over certain periods of time [49]. Thus, upon inhibition of
microtubules, TMV may still be able to interact with ¢-MERs and
the connecting ER-actin network for spread.

The lack of an effect on TMYV spread is not limited to inhibi-
tors of microtubules but may also be observed for inhibitors of the
actin cytoskeleton. Although the virus moves along the ER-actin
network, infection continued to spread during 24 h of treatment
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with actin inhibitor [90]. While the latter finding could argue
against a role of actin filaments in TMV movement, the same study
showed that TMV movement was dominantly inhibited upon
expression of an actin-binding protein that also inhibited the
motor-dependent trafficking of Golgi complexes along the ER,
thus clearly indicating a role of myosin-mediated trafficking along
the ER membrane in TMV movement [90]. Moreover, inhibition
of TMV movement by actin inhibitors was observed upon pro-
longed treatments with actin inhibitor and in plants silenced for
actin or myosin motors [74, 89, 156]. Actin inhibition was also
shown not to affect the accumulation of MP to PD [157], although
FRAP experiments clearly indicated that the efficient targeting of
PD by MP requires an intact ER-actin network [158]. The careful
application of biochemical inhibitors may not be able to inhibit
virus movement because inhibition is rarely complete and virus
spread depends on the successful cell-to-cell movement of only few
virus genomes [159]. Thus, even if the inhibitor is effective to
some degree and induces a strong bottleneck for virus movement,
infection may continue to spread normally. Similarly, MP can accu-
mulate in PD over time although actin inhibitors interfere with the
efficient functioning of the PD targeting pathway to some extent.
Given these considerations, it is important that experiments apply-
ing biochemical inhibitors to the analysis of virus movement are
carefully designed and cautiously interpreted.

6 Viral Mechanisms to Gontrol PD Aperture

6.1 Interference
with PD-Associated
Actin

Upon arrival at PD, the VRCs could, in principle, continue to dif-
fuse along the ER membrane to pass along the desmotubule and
into the adjacent cell. ER membrane-intrinsic and luminal probes
readily diffuse between cells [ 160, 161 ], thus supporting the fluid-
ity of the desmotubular membrane [162, 163] and the ability of
the desmotubule to transport macromolecules. However, due to
the large size of the viral complex, additional mechanisms that
expand the PD aperture are necessary.

Several studies indicate that the aperture of PD is directly or indi-
rectly controlled by actin filaments [ 164, 165 ] and structural mod-
els depict the PD channel with actin filaments wrapped around the
desmotubule [166, 167]. Consistent with a role of actin in con-
trolling PD aperture, the MPs of TMV and of Cucumber mosaic
virus were shown to exhibit actin-severing activity in vitro.
Moreover, the stabilization of actin filaments by treatment with
phalloidin prevented the ability of MP to increase PD SEL
in vivo [164]. Nevertheless, although these findings suggest that
MPs manipulate actin to control the PD aperture, it remains to be
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6.2 Interference
with Callose
Deposition

shown whether the actin-severing activity of these MPs occurs at
PD or elsewhere in the cell. It is also yet unclear whether these
MPs indeed interact with actin in vivo.

Another important mechanism that restricts PD aperture and that
is indeed likely to be modified by the infecting virus is the deposi-
tion of callose in the cell walls surrounding the PD neck regions
(Fig. 1). Callose is a p-glucan polysaccharide that is deposited at
the PD neck region during different stresses, including wounding
and pathogen attack [168]. The deposition of callose at PD has
been linked to the salicylic acid (SA) defense signaling pathway
that induces callose synthase activity [169] and leads to callose
deposition at PD by a pathway involving EDS1, NPR1, and the
PD-associated protein PDLP5 [170, 171]. Experimental evidence
indicates that the MP of TMV allows VRC movement through the
PD by preventing the deposition of callose induced by infection.
To account for this effect it has been proposed that the MP may
recruit f-1,3 glucanases to degrade stress-induced callose at PD
[160, 172] (Fig. 2¢). This hypothesis is based on previous reports
indicating a positive correlation between f-1,3-glucanase expres-
sion and viral spread [173-175]. A glucanase isoform that may be
targeted to PD during TMV infection is AtBG_pap. Similar to
several recently isolated PD proteins, this protein is predicted to
be a glycosylphosphatidylinositol (GPI)-anchored protein. This
protein was localized to the ER, the cell periphery, and PD, and
mutation of the protein-encoding gene by a T-DNA insertion led
to a reduction in GFP cell-to-cell movement and stress-induced
callose deposition at PD [176]. Moreover, the cell-to-cell move-
ment of GFP-tagged Turnip vein clearving virus (TVCV), a TMV-
related tobamovirus, was reduced in Arabidopsis atbg_pap
mutants. The same mutants showed highly increased PD-associated
callose levels, thus confirming the role of AtBG_pap-mediated cal-
lose degradation during virus movement [177]. While a direct
role of this or another glucanase in the degradation of callose
deposits during virus movement awaits to be demonstrated, the
ability of MP to inhibit callose deposition at PD was shown to
involve an ankyrin-repeat-containing protein (ANK), which facili-
tates TMV spread and interacts with MP [178]. The regulation of
callose deposition at PD during infection may also involve the viral
replicase. Evidence comes from the analysis of MP-transgenic
Nicotiana benthamiana plants in which MP facilitated the non-
cell-autonomous diffusion of ER-localized, GFP-tagged probes in
the presence but not in the absence of infection and/or replicase
[160]. This finding supports virus movement in the form of a
VRC and is also consistent with a role of the replicase-encoding
region of TMV in virus movement [75].

A role of callose deposition in restricting virus movement was
also established for PVX [175] and a two-hybrid screen led to the
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isolation of TGB2-interacting proteins (TIP1, TIP2, TIP3) that
interact with f-1,3, glucanase and may play a role in regulating PD
SEL [179].

A number of observations indicate that the callose deposition
at PD and the regulation of PD SEL are regulated by redox homeo-
stasis [180-182] and calcium [183-185]. Thus, it is conceivable
that MPs may alter the PD SEL and facilitate virus movement also
through interaction with pathways that influence the redox and
calcium states of the infected cell.

7 Requirement of Structural Unfolding for Movement Through PD

In addition to the modification of PD SEL, viral movement
through PD may also require the structural modification of the
transported complex. The observation that in vitro-assembled
MP:RNA complexes have a thin and elongated appearance raised
the proposal that the MP chaperones the VRNA through the
dilated PD [101]. The hordeivirus TGB1 proteins have three
RNA-binding domains and the interaction of these domains may
play arole in VRC remodeling during movement [116]. Consistent
with a requirement for structural unfolding for movement, the
cell-to-cell movement of the non-cell-autonomous protein
(NCAP) KN1 (see below) was inhibited by chemical cross-linking
[186]. Moreover several chaperone proteins have been associated
with macromolecular trafficking through PD [102, 187-190].

8 Plant Viruses Use Existing Mechanisms for Macromolecular Transport

The MP of TMV was the first protein shown to alter the SEL of
PD and to support its own spread between cells [3]. Later, it was
demonstrated that this is a hallmark property of many viral MPs as
well as of a special class of endogenous proteins commonly referred
to as non-cell-autonomous proteins (NCAPs). Many NCAPs act as
transcription factors playing important non-cell-autonomous roles
in cell-type specification and differentiation [191-193]. NCAPs
may also be involved in the cell-to-cell and long-distance transport
of' various RNA molecules, including mRNAs [ 193-197] and small
RNAs [198-202]. It is likely that the ability of viruses to target and
spread through PD evolved as an adaptation to essential mecha-
nisms that also contribute to the transport of endogenous macro-
molecules. This hypothesis is supported by several observations.
For example, expression of a dominant-negative form of the NON-
CELL AUTONOMOUS PATHWAY PROTEIN 1 (NCAPP1)
blocked the cell-to-cell trafficking of the MP of TMV as well as of
the Cucurbita maxima PHLOEM PROTEIN 16 (CmPPl6)
[187]. Moreover, expression of the microtubule-associated protein
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MPBP2C interfered with the cell-to-cell movement of TMV [96],
PVX[150], as well as the Zea mays homeobox protein KNOTTED
1 (KN1) [203]. In addition, the intercellular trafficking of both
KN1 and TMV was shown to be sensitive to mutations in CCTS,
a chaperonin complex believed to act in the post-translocational
refolding of transported proteins [188]. Also, the MP of TMV
facilitated the spread of silencing signal [ 5] which may suggest that
small RNAs and viral RNAs share a common pathway or mecha-
nism for spread.

9 Virus Movement and Defense Responses

The efficiency of virus movement through PD is affected by plant
defense responses that cause a reduction of the PD SEL, reduce viral
replication, or lead to degradation of the viral proteins or genome.
As already mentioned above, virus infection triggers the salicylic acid
(SA) signaling pathway that involves the deterrence of pathogens
through increasing callose deposition at PD and viruses may have
evolved a recruitment of glucanase enzymes to degrade callose and
thus to reverse this defense-induced constriction of PD.

The efficiency of virus infection is also determined by the inter-
action of viruses with posttranscriptional RNA silencing that targets
viral and host RNAs for cleavage or translational repression. As a
counter strategy against this important defense response, plant
viruses have evolved proteins able to suppress RNA silencing by
interfering with different components of the RNA silencing pathway
[204, 205]. The silencing suppressor of TMV resides in the
126 kDa small replicase subunit and likely acts through sequestra-
tion of virus-derived small RNAs [206, 207]. The ability of the viral
MP to facilitate the spread of silencing [5] suggests that TMV and
potentially also other viruses may facilitate their movement not only
by suppression but also by exploitation of the host RNA silencing
machinery. It is conceivable that MP enhances host cell susceptibil-
ity for the incoming virus by facilitating the PD-mediated intercel-
lular spreading of virus- and host-derived small RNAs that may act
as RNA-based eftectors to downregulate defense-related genes in
cells at the virus front, whereas the silencing suppressor may act
only after virus movement, i.e., in cells containing replication facto-
ries and producing virions [208]. Pathogen-encoded small RNA
effectors that target host defense genes are well known for several
mammalian viruses [209] and have been recently reported also for
the plant pathogenic fungus Botrytis cinerea [210]. However,
whether motile, small RNA-based effectors spreading through PD
indeed play a role in facilitating the cell-to-cell propagation of virus
infection remains to be investigated. Recent observations indicate
that Arabidopsis plants are able to sense virus infection by pathogen-
recognition receptors (PRR) and to mount pathogen-associated
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molecular pattern (PAMP)-triggered immunity (PTI) through
the PAMP co-receptor BAK1l (for BRASSINOSTEROID
INSENSITIVE] (BRI1)-ASSOCIATED RECEPTOR KINASEL)
[211]. It will be interesting to see whether this response, or its
potential signaling propagation between cells, involves PD.

10 Conclusions

Viruses transport their genomes between cells to spread infection
and thus are convenient systems to study the cellular pathways by
which macromolecules are targeted and transported through
PD. As pathogens, viruses are also excellent systems to determine
the manifold mechanisms by which cells defend themselves at PD
against invaders. Although numerous viral systems suitable to
address these questions are available, only few could be mentioned
here. Plant viruses illuminate different pathways by which viruses
and other macromolecules can be transported to and through
PD. TMV exemplifies a mechanism that involves the viral manipu-
lation of the PD SEL and depends on the ER-actin network that in
coordination with specific microtubule system activities supports
both the replication and the movement of the virus in a non-
encapsidated form. Tubule-forming viruses are systems that depend
on the secretory ER-Golgi-plasma membrane pathway for move-
ment. The tubules formed by these viruses replace the desmotu-
bule in PD and thus disrupt the ER connectivity between cells used
by other viruses like TMV. Cytoplasmic plant viruses provide
important insights into the structural and functional organization
of the cortical cytoplasm. Studies with TMV suggest a role of spe-
cialized microtubule-associated ER sites (c-MERs) in the assembly
of VRC:s for either movement (early infection) or growth into viral
factories (late infection). It will be interesting to see whether the
same sites play a role also in the assembly of complexes of other
viruses or in the intercellular movement of cellular proteins and
RNAs [50]. Viruses also continue to provide important informa-
tion with regard to the role of callose in the regulation of the PD
SEL. However, since viruses are pathogens, many events occur-
ring in the infected cells may be related to replication, defense,
and degradation processes rather than to macromolecular move-
ment through PD. Thus, it is important to dissect the in vivo
observations with respect to their functional significance in move-
ment. Future research can make use of an excellent panel of novel
helpful in vivo techniques, such as superresolution microscopy
[212]; fluorescent in vivo detection of RNA and RNA spread,
e.g., [62, 77, 91, 213, 214]; in vivo analysis of complexes by
FLIM-FRET and BiFC, e.g., [35, 61, 82, 105]; dominant-nega-
tive inhibition of cellular processes, e.g., [43, 62]; and novel dye
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loading methods to measure PD conductivity, e.g., [171], to just
name a few. In combination with genetic and novel next-genera-
tion sequencing-based approaches these will lead to a new era of
understanding about the mechanisms of PD-mediated intercellu-
lar communication in plant development and disease.
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