Energy-Aware Algorithms for Task Graph
Scheduling, Replica Placement and Checkpoint
Strategies

Guillaume Aupy, Anne Benoit, Paul Renaud-Goud and Yves Robert

1 Introduction

The energy consumption of computational platforms has recently become a critical
problem, both for economic and environmental reasons [35]. To reduce energy con-
sumption, processors can run at different speeds. Faster speeds allow for a faster
execution, but they also lead to a much higher (superlinear) power consumption.
Energy-aware scheduling aims at minimizing the energy consumed during the exe-
cution of the target application, both for computations and for communications. The
price to pay for a lower energy consumption usually is a much larger execution time,
so the energy-aware approach makes better sense when coupled with some prescribed
performance bound. In other words, we have a bi-criteria optimization problem, with
one objective being energy minimization, and the other being performance-related.
In this chapter, we discuss several problems related to data centers, for which
energy consumption is a crucial matter. Indeed, statistics showed that in 2012, some
data centers consume more electricity than 250,000 european houses. If the cloud
was a country, it would be ranked as the fifth world-wide rank in terms of demands
in electricity, and the need is expected to be multiplied by three before 2020. We

G. Aupy (D<) - A. Benoit - Y. Robert
LIP, Ecole Normale Supérieure de Lyon, Lyon, France
e-mail: Guillaume.Aupy @ens-lyon.fr

A. Benoit - Y. Robert
Institut Universitaire de France, Paris, France
e-mail: Anne.Benoit@ens-lyon.fr

P. Renaud-Goud
Chalmers University of technology, Gothenburg, Sweden
e-mail: goud @chalmers.se

Y. Robert
University Tennessee Knoxville, Knoxville, USA
e-mail: Yves.Robert@ens-lyon.fr

© Springer Science+Business Media New York 2015 37
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_2

38 G. Aupy et al.

focus mainly on the energy consumption of processors, although a lot of electricity
is now devoted to cooling the machines, and also for network communications.

Energy models are introduced in Sect. 2. Depending on the different research
areas, several different energy models are considered, but they all share the same
core assumption: there is a static energy consumption, which is independent on the
speed at which a processor is running, and a dynamic energy consumption, which
increases superlinearly with the speed. The most common models for speeds are
either to use continuous speeds in a given interval, or to consider a set of discrete
speeds (the latter being more realistic for actual processors). We discuss further
variants of the discrete model: in the VDD-hopping model, the speed of a task can
be changed during execution, hence allowing to simulate the continuous case; the
incremental model is similar to the discrete model with the additional assumption
that the different speeds are spaced regularly. Finally, we propose a literature survey
on energy models, and we provide an example to compare models.

The first case study is about task graph scheduling (see Sect. 3). We consider a task
graph to be executed on a set of processors. We assume that the mapping is given, say
by an ordered list of tasks to execute on each processor, and we aim at optimizing the
energy consumption while enforcing a prescribed bound on the execution time. While
it is not possible to change the allocation of a task, it is possible to change its speed.
Rather than using a local approach such as backfilling, we consider the problem as
a whole and study the impact of several speed variation models on its complexity.
For continuous speeds, we give a closed-form formula for trees and series-parallel
graphs, and we cast the problem into a geometric programming problem for general
directed acyclic graphs. We show that the classical dynamic voltage and frequency
scaling (DVFS) model with discrete speeds leads to an NP-complete problem, even
if the speeds are regularly distributed (an important particular case in practice, which
we analyze as the incremental model). On the contrary, the VDD-hopping model
leads to a polynomial solution. Finally, we provide an approximation algorithm for
the incremental model, which we extend for the general DVFS model.

Then in Sect. 4, we discuss a variant of the replica placement problem aiming at
an efficient power management. We study optimal strategies to place replicas in tree
networks, with the double objective to minimize the total cost of the servers, and/or to
optimize power consumption. The client requests are known beforehand, and some
servers are assumed to pre-exist in the tree. Without power consumption constraints,
the total cost is an arbitrary function of the number of existing servers that are reused,
and of the number of new servers. Whenever creating and operating a new server has
higher cost than reusing an existing one (which is a very natural assumption), cost
optimal strategies have to trade-off between reusing resources and load-balancing
requests on new servers. We provide an optimal dynamic programming algorithm
that returns the optimal cost, thereby extending known results from Wu, Lin and
Liu [33, 43] without pre-existing servers. With power consumption constraints, we
assume that servers operate under a set of M different speeds depending upon the
number of requests that they have to process. In practice, M is a small number,
typically 2 or 3, depending upon the number of allowed voltages [24, 23]. Power
consumption includes a static part, proportional to the total number of servers, and

Energy-Aware Algorithms for Task . . . 39

a dynamic part, proportional to a constant exponent of the server speed, which
depends upon the model for power. The cost function becomes a more complicated
function that takes into account reuse and creation as before, but also upgrading
or downgrading an existing server from one speed to another. We show that with
an arbitrary number of speeds, the power minimization problem is NP-complete,
even without cost constraint, and without static power. Still, we provide an optimal
dynamic programming algorithm that returns the minimal power, given a threshold
value on the total cost; it has exponential complexity in the number of speeds M,
and its practical usefulness is limited to small values of M. However, experiments
conducted with this algorithm show that it can process large trees in reasonable time,
despite its worst-case complexity.

The last case study investigates checkpointing strategies (see Sect. 5). Nowa-
days, high performance computing is facing a major challenge with the increasing
frequency of failures [18]. There is a need to use fault tolerance or resilience mech-
anisms to ensure the efficient progress and correct termination of the applications in
the presence of failures. A well-established method to deal with failures is check-
pointing: a checkpoint is taken at the end of the execution of each chunk of work.
During the checkpoint, we check for the accuracy of the result; if the result is not
correct, due to a transient failure (such as a memory error or software error), the
chunk is re-executed. This model with transient failures is one of the most used in
the literature, see for instance [17, 48]. In this section, we aim at minimizing the
energy consumption when executing a divisible workload under a bound on the total
execution time, while resilience is provided through checkpointing. We discuss sev-
eral variants of this multi-criteria problem. Given the workload, we need to decide
how many chunks to use, what are the sizes of these chunks, and at which speed
each chunk is executed (under the continuous model). Furthermore, since a failure
may occur during the execution of a chunk, we also need to decide at which speed
a chunk should be re-executed in the event of a failure. The goal is to minimize
the expectation of the total energy consumption, while enforcing a deadline on the
execution time, that should be met either in expectation (soft deadline), or in the
worst case (hard deadline). For each problem instance, we propose either an exact
solution, or a function that can be optimized numerically.

Finally, we provide concluding remarks in Sect. 6.

2 Energy Models

As already mentioned, to help reduce energy dissipation, processors can run at dif-
ferent speeds. Their power consumption is the sum of a static part (the cost for a
processor to be turned on, and the leakage power) and a dynamic part, which is
a strictly convex function of the processor speed, so that the execution of a given
amount of work costs more power if a processor runs in a higher speed [23]. More
precisely, a processor running at speed s dissipates s* watts [4, 12, 15, 25, 38] per
time-unit, hence consumes s> x d joules when operated during d units of time. Faster

40 G. Aupy et al.

speeds allow for a faster execution, but they also lead to a much higher (superlinear)
power consumption.

In this section, we survey different models for dynamic energy consumption,
taken from the literature. These models are categorized as follows:

CONTINUOUS model. Processors can have arbitrary speeds, and can vary them con-
tinuously within the interval [s,,i, Smax]. This model is unrealistic (any possible
value of the speed, say V", cannot be obtained) but it is theoretically appealing
[5]. In the CONTINUOUS model, a processor can change its speed at any time
during execution.

DISCRETE model. Processors have a discrete number of predefined speeds, which
correspond to different voltages and frequencies that the processor can be sub-
jected to [36]. These speeds are denoted as sy, ..., s,,. Switching speeds is not
allowed during the execution of a given task, but two different tasks scheduled
on a same processor can be executed at different speeds.

VDD-HOPPING model. This model is similar to the DISCRETE one, with a set of
different speeds s, ..., 5;u, €xcept that switching speeds during the execution of a
given task is allowed: any rational speed can be simulated, by simply switching,
at the appropriate time during the execution of a task, between two consecutive
speeds [34]. In the VDD-HOPPING model, the energy consumed during the exe-
cution of one task is the sum, on each time interval with constant speed s, of the
energy consumed during this interval at speed s.

INCREMENTAL model. In this variant of the DISCRETE model, there is a value §
that corresponds to the minimum permissible speed increment, induced by the
minimum voltage increment that can be achieved when controlling the processor
CPU. Hence, possible speed values are obtained as s = s, + i X §, where
i is an integer such that 0 < i < *me—=min Admissible speeds lie in the interval
[Smins Smax]. This model aims at capturing a realistic version of the DISCRETE
model, where the different speeds are spread regularly between s; = s,,;, and
Sm = Smax, instead of being arbitrarily chosen. It is intended as the modern
counterpart of a potentiometer knob.

After the literature survey in Sect. 2.1, we provide a simple example in Sect. 2.2, in
order to illustrate the different models.

2.1 Literature Survey

Reducing the energy consumption of computational platforms is an important
research topic, and many techniques at the process, circuit design, and micro-
architectural levels have been proposed [22, 30, 32]. The dynamic voltage and
frequency scaling (DVFES) technique has been extensively studied, since it may lead
to efficient energy/performance trade-offs [5, 14, 20, 26, 29, 42, 45]. Current mi-
croprocessors (for instance, from AMD [1] and Intel [24]) allow the speed to be set
dynamically. Indeed, by lowering supply voltage, hence processor clock frequency,

Energy-Aware Algorithms for Task. . . 41

it is possible to achieve important reductions in power consumption, without neces-
sarily increasing the execution time. We first discuss different optimization problems
that arise in this context, then we review energy models.

2.1.1 DVFS and Optimization Problems

When dealing with energy consumption, the most usual optimization function con-
sists of minimizing the energy consumption, while ensuring a deadline on the
execution time (i.e., a real-time constraint), as discussed in the following papers.

In [36], Okuma et al. demonstrate that voltage scaling is far more effective than
the shutdown approach, which simply stops the power supply when the system is
inactive. Their target processor employs just a few discretely variable voltages. De
Langen and Juurlink [31] discuss leakage-aware scheduling heuristics that inves-
tigate both DVS and processor shutdown, since static power consumption due to
leakage current is expected to increase significantly. Chen et al. [13] consider paral-
lel sparse applications, and they show that when scheduling applications modeled by
a directed acyclic graph with a well-identified critical path, it is possible to lower the
voltage during non-critical execution of tasks, with no impact on the execution time.
Similarly, Wang et al. [42] study the slack time for non-critical jobs, they extend
their execution time and thus reduce the energy consumption without increasing the
total execution time. Kim et al. [29] provide power-aware scheduling algorithms for
bag-of-tasks applications with deadline constraints, based on dynamic voltage scal-
ing. Their goal is to minimize power consumption as well as to meet the deadlines
specified by application users.

For real-time embedded systems, slack reclamation techniques are used. Lee and
Sakurai [32] show how to exploit slack time arising from workload variation, thanks
to a software feedback control of supply voltage. Prathipati [37] discusses techniques
to take advantage of run-time variations in the execution time of tasks; the goal is
to determine the minimum voltage under which each task can be executed, while
guaranteeing the deadlines of each task. Then, experiments are conducted on the
Intel StrongArm SA-1100 processor, which has eleven different frequencies, and the
Intel PXA250 XScale embedded processor with four frequencies. In [44], the goal of
Xu et al. is to schedule a set of independent tasks, given a worst case execution cycle
(WCEC) for each task, and a global deadline, while accounting for time and energy
penalties when the processor frequency is changing. The frequency of the processor
can be lowered when some slack is obtained dynamically, typically when a task runs
faster than its WCEC. Yang and Lin [45] discuss algorithms with preemption, using
DVS techniques; substantial energy can be saved using these algorithms, which
succeed to claim the static and dynamic slack time, with little overhead.

Since an increasing number of systems are powered by batteries, maximizing
battery life also is an important optimization problem. Battery-efficient systems
can be obtained with similar techniques of dynamic voltage and frequency scaling,

42 G. Aupy et al.

as described by Lahiri et al. in [30]. Another optimization criterion is the energy-
delay product, since it accounts for a trade-off between performance and energy
consumption, as for instance discussed by Gonzalez and Horowitz in [21].

2.1.2 Energy Models

Several energy models are considered in the literature, and they can all be categorized
in one of the four models investigated in this paper, i.e., CONTINUOUS, DISCRETE,
VDD-HOPPING or INCREMENTAL.

The CONTINUOUS model is used mainly for theoretical studies. For instance, Yao
et al. [46], followed by Bansal et al. [5], aim at scheduling a collection of tasks (with
release time, deadline and amount of work), and the solution is the time at which
each task is scheduled, but also, the speed at which the task is executed. In these
papers, the speed can take any value, hence following the CONTINUOUS model.

We believe that the most widely used model is the DISCRETE one. Indeed, proces-
sors have currently only a few discrete number of possible frequencies [1, 24, 36, 37].
Therefore, most of the papers discussed above follow this model. Some studies ex-
ploit the continuous model to determine the smallest frequency required to run a
task, and then choose the closest upper discrete value, as for instance [37] and [47].

Recently, a new local dynamic voltage scaling architecture has been developed,
based on the VDD-HOPPING model [6, 7, 34]. It was shown in [32] that signif-
icant power can be saved by using two distinct voltages, and architectures using
this principle have been developed (see for instance [28]). Compared to traditional
power converters, a new design with no needs for large passives or costly technolog-
ical options has been validated in a STMicroelectronics CMOS 65-nm low-power
technology [34].

The INCREMENTAL model was introduced in [2]. The main rationale is that fu-
ture technologies may well have an increased number of possible frequencies, and
these will follow a regular pattern. For instance, note that the SA-1100 processor,
considered in [37], has eleven frequencies that are equidistant, i.e., they follow the
INCREMENTAL model. Lee and Sakurai [32] exploit discrete levels of clock frequency
as f, /2, f/3, ..., where f is the master (i.e., the higher) system clock frequency.
This model is closer to the DISCRETE model, although it exhibits a regular pattern
similarly to the INCREMENTAL model.

2.2 Example

Energy-aware scheduling aims at minimizing the energy consumed during the exe-
cution of the target application. Obviously, it makes better sense only if it is coupled
with some performance bound to achieve. For instance, whenever static energy can

Energy-Aware Algorithms for Task . . . 43

Fig. 1 Execution graph for
the example Ty — 15

\

T3 —>T4

be neglected, the optimal solution always is to run each processor at the slowest possi-
ble speed. In the following, we do neglect static energy and discuss how to minimize
dynamic energy consumption when executing a small task graph onto processors.

Consider an application with four tasks of costs w; = 3, w, = 2, w3 = 1 and
wy = 2, and three precedence constraints, as shown in Fig. 1. We assume that 77 and
T, are allocated, in this order, onto processor P;, while 73 and T, are allocated, in
this order, on processor P,. The deadline on the execution time is D = 1.5.

We set the minimum and maximum speeds to s,,;,, = 0 and s,,,, = 6 for the
CONTINUOUS model. For the DISCRETE and VDD-HOPPING models, we use the set
of speeds sid) =2, sgd) = 5 and sgd) = 6. Finally, for the INCREMENTAL model,
we set § = 2, s, = 2 and s,,,4, = 6, so that possible speeds are sgi) =2, sg) =4
and sgi) = 6. We aim at finding the optimal execution speed s; for each task T;
(1 <i <4),i.e., the values of s; that minimize the energy consumption.

With the CONTINUOUS model, the optimal speeds are non rational values, and we
obtain:

~ 3.83.

2
si=303+ 35'3) ~ 4.18; 5, =5 x

3
~2.56;53=s54=571 X 35173

35173
Note that all speeds are in the interval [, Smax]- These values are obtained
thanks to the formulas derived in Sect. 3.2 below. The energy consumption is
then ES), = B4, wi x s? = 3.57 + 2.5 + 3.3 = 109.6. The execution time is
o ma (1,
both processors reach the deadline, otherwise we could slow down the execution of
one task).

For the DISCRETE model, if we execute all tasks at speed s
an energy E = 8 x 5% = 200. A better solution is obtained with s; = séd) =6,
S, = 853 = sfd) = 2and 54 = séd) = 5, which turns out to be optimal: Egjl,), =
336+ 2+ 1) x4+2x25 = 170. Note that ESoy > EL), i.e., the optimal
energy consumption with the DISCRETE model is much higher than the one achieved
with the CONTINUOUS model. Indeed, in this case, even though the first processor
executes during 3/6 4+ 2/2 = D time units, the second processor remains idle since
3/6+1/2+42/5 = 1.4 < D. The problem turns out to be NP-hard (see Sect. 3.3.2),
and the solution was found by performing an exhaustive search.

With the VDD-HOPPING model, we set s; = séd) = 5; for the other tasks, we run
() ()
2 1

), and with this solution, it is equal to the deadline D (actually,

éd) = 5, we obtain

part of the time at speed s, © = 5, and part of the time at speed s;° = 2 in order to use
the idle time and lower the energy consumption. 75 is executed at speed sid) during

time % and at speed séd) during time % (i.e., the first processor executes during time

44 G. Aupy et al.

3/5+5/6+2/30 =1.5 = D, and all the work for 7, is done: 2 x 5/64+5 x2/30 =
2 = wy). T; is executed at speed séd) (during time 1/5), and finally 7y is executed at
speed sid) during time 0.5 and at speed séd) during time 1/5 (i.e., the second processor
executes during time 3/5 4+ 1/54 0.5+ 1/5 = 1.5 = D, and all the work for 7} is
done: 2x0.545x1/5 = 2 = wy). This set of speeds turns out to be optimal (i.e., it is
the optimal solution of the linear program introduced in Sect. 3.3.1), with an energy
consumption ESy = (3/5 + 2/30 + 1/5 + 1/5) x 5% + (5/6 + 0.5) x 2° = 144.
As expected, Eécp), < Ef,;,), < E((,f,),, i.e., the VDD-HOPPING solution stands between
the optimal CONTINUOUS solution, and the more constrained DISCRETE solution.

For the INCREMENTAL model, the reasoning is similar to the DISCRETE case, and
the optlmal solution is obtained by an exhaustive search all tasks should be executed
at speed 32 = 4, with an energy consumption Eop, =8x4%>=128 > Ef,;), It turns
out to be better than DISCRETE and VDD-HOPPING, since it has different discrete
values of energy that are more appropriate for this example.

3 Minimizing the Energy of a Schedule

In this section, we investigate energy-aware scheduling strategies for executing a task
graph on a set of processors. The main originality is that we assume that the mapping
of the task graph is given, say by an ordered list of tasks to execute on each processor.
There are many situations in which this problem is important, such as optimizing
for legacy applications, or accounting for affinities between tasks and resources, or
even when tasks are pre-allocated [39], for example for security reasons. In such
situations, assume that a list-schedule has been computed for the task graph, and that
its execution time should not exceed a deadline D. We do not have the freedom to
change the assignment of a given task, but we can change its speed to reduce energy
consumption, provided that the deadline D is not exceeded after the speed change.
Rather than using a local approach such as backfilling [37, 42], which only reclaims
gaps in the schedule, we consider the problem as a whole, and we assess the impact
of several speed variation models on its complexity. We give the main complexity
results without proofs (refer to [2] for details).

3.1 Optimization Problem

Consider an application task graph G = (V, &), with n = |V/| tasks denoted as
V = {11, T»,...,T,}, and where the set £ denotes the precedence edges between
tasks. Task 7; has a cost w; for 1 < i < n. We assume that the tasks in G have
been allocated onto a parallel platform made up of identical processors. We define
the execution graph generated by this allocation as the graph G = (V, E), with the
following augmented set of edges:

Energy-Aware Algorithms for Task . . . 45

* £ C E: if an edge exists in the precedence graph, it also exists in the execution
graph;

e if T} and T, are executed successively, in this order, on the same processor, then
(Tl’ Tz) e E.

The goal is to the minimize the energy consumed during the execution while enforc-
ing a deadline D on the execution time. We formalize the optimization problem in
the simpler case where each task is executed at constant speed. This strategy is op-
timal for the CONTINUOUS model (by a convexity argument) and for the DISCRETE
and INCREMENTAL models (by definition). For the VDD-HOPPING model, we refor-
mulate the problem in Sect. 3.3.1. Let d; be the duration of the execution of task
T;, t; its completion time, and s; the speed at which it is executed. We obtain the
following formulation of the MINENERGY(G, D) problem, given an execution graph
G =(V, E) and a deadline D; the s; values are variables, whose values are constrained
by the energy model:

Minimize st xd

subjectto (i) w; =s; x d; foreachtask 7; € V)
(ii)) t +d; <t;foreachedge (7;,T;) € E

(iii)) t; < D foreachtask T; € V

Constraint (i) states that the whole task can be executed in time d; using speed s;.
Constraint (ii) accounts for all dependencies, and constraint (iii) ensures that the
execution time does not exceed the deadline D. The energy consumed throughout
the execution is the objective function. It is the sum, for each task, of the energy
consumed by this task, as we detail in the next section. Note that d; = w;/s;, and

therefore the objective function can also be expressed as X', si2 X W;.

3.2 The ContiNvoUS Model

With the CONTINUOUS model, processor speeds can take any value between s,
and s,,,,. We assume for simplicity that s,,;, = 0, i.e., there is no minimum speed.
First we prove that, with this model, the processors do not change their speed during
the execution of a task:

Lemma 1 (constant speed per task) With the CONTINUOUS model, each task is
executed at constant speed, i.e., a processor does not change its speed during the
execution of a task.

We derive in Sect. 3.2.1 the optimal speed values for special execution graph
structures, expressed as closed form algebraic formulas, and we show that these
values may be irrational (as already illustrated in the example in Sect. 2.2). Finally,
we formulate the problem for general DAGs as a convex optimization program in
Sect. 3.2.2.

46 G. Aupy et al.
3.2.1 Special Execution Graphs

Consider the problem of minimizing the energy of n independent tasks (i.e., each
task is mapped onto a distinct processor, and there are no precedence constraints in
the execution graph), while enforcing a deadline D.

Proposition 1 (independent tasks) When G is composed of independent tasks
{T1,...,T,}, the optimal solution to MINENERGY (G, D) is obtained when each task T;
(1 <i < n)is computed at speed s; = %. If there is a task T; such that s; > Spax,
then the problem has no solution.

Consider now the problem with a linear chain of tasks. This case corresponds
for instance to n independent tasks {77, ..., T,} executed onto a single processor.
The execution graph is then a linear chain (order of execution of the tasks), with
T, »> Tiyq,for 1 <i <n.

Proposition 2 (linearchain) When G is a linear chain of tasks, the optimal solution
to MINENERGY(G,D) is obtained when each task is executed at speed s = %, with
W= El-nzlwi.

If s > Siax, then there is no solution.

Corollary 1 A linear chain with n tasks is equivalent to a single task of cost
W= Ei”zlw,-.

Indeed, in the optimal solution, the n tasks are executed at the same speed, and
they can be replaced by a single task of cost W, which is executed at the same speed
and consumes the same amount of energy.

Finally, consider fork and join graphs. Let V ={T}, ..., T,}. We consider either
a fork graph G = (V U {Ty}, E), with E = {(Ty, T;),T; € V}, or a join graph
G = (VU{Ty}, E), with E = {(T;, Ty), T; € V}. Ty is either the source of the fork
or the sink of the join.

Theorem 1 (fork and join graphs) When G is a fork (resp. join) execution graph
with n + 1 tasks Ty, T, ..., T,, the optimal solution to MINENERGY(G,D) is the
following:

1
; . . (Zw))® +wo
* the execution speed of the source (resp. sink) Ty is s = ————;

D
e for the other tasks T;, 1 <i < n, we have s; =sy X Ll if 5o < Smax-
(E?:IW?) }
Otherwise, Ty should be executed at speed sy = Smax, and the other speeds are
5; =2 withD' = D— v:V,_i; ifthey do not exceed 4, (Proposition I for independent

tasks). Otherwise there is no solution.
If no speed exceeds Sy, the corresponding energy consumption is
| 3
(i) +wo)

minE(G, D) = 2

Corollary 2 (equivalent tasks for speed) Consider a fork or join graph with tasks T;,
0 <i < n, and a deadline D, and assume that the speeds in the optimal solution

2 Springer
http://www.springer.com/978-1-4939-2091-4

Handbook on Data Centers
Khan, S.U.; Zomaya, AY. (Eds.)

2015, X, 1334 p, 439 illus., 283 illus, in color.,
Hardcover

ISBM: 978-1-4935-209]1-4

	Part I Energy Efficiency
	Energy-Aware Algorithms for Task Graph Scheduling, Replica Placement and Checkpoint Strategies
	1 Introduction
	2 Energy Models
	2.1 Literature Survey
	2.1.1 DVFS and Optimization Problems
	2.1.2 Energy Models

	2.2 Example

	3 Minimizing the Energy of a Schedule
	3.1 Optimization Problem
	3.2 The CONTINUOUS Model
	3.2.1 Special Execution Graphs

