Chapter 2
Interpolation of Operators: A Multiplier
Theorem

In this chapter, we shall first study two basic results in interpolation of opera-
tors in L? spaces, the Riesz—Thorin theorem and the Marcinkiewicz interpolation
theorem (diagonal case). As a consequence of the former we shall prove the Hardy—
Littlewood—Sobolev theorem for Riesz potentials. In this regard, we need to introduce
one of the fundamental tools in harmonic analysis, the Hardy-Littlewood maximal
function. In Section 2.4, we shall prove the Mihlin multiplier theorem.

The results deduced in this chapter are used frequently in these notes. In particular,
in Chapter 4 the proof of Theorem 4.2 is based on the Riesz—Thorin theorem and the
Hardy-Littlewood—Sobolev theorem.

2.1 The Riesz—Thorin Convexity Theorem

Let (X, A, u) be ameasurable space (i.e., X is a set, A denotes a o -algebra of subsets
of X, and u is a measure defined on A). L? = LP(X, A, ), 1 < p < oo denotes
the space of complex-valued functions f that are p-measurable such that

1/p

11, = /If(x)|”du < o0,
X

Functionsin L?(X, A, ) are defined almost everywhere with respect to . Similarly,
we have L>*(X, A, n) the space of functions f that are pu-measurable, complex
valued and essentially p-bounded, with || f]lo the essential supremum of f. The
Riesz—Thorin convexity theorem can be obtained as a consequence of a version of
the Hadamard three circles theorem, a result of the Phragmen-Lindelof theorem,
known as the three lines theorem.

Lemma 2.1. Let F be a continuous and bounded function defined on
S={z=x+iy:0<x <1}
which is also analytic in the interior of S. If for each y € R,
|[F(iy)l <My and |F(1+iy)| < M,
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then foranyz = x +iy € S
[Fe+iy)l < My~ M;.

In other words, the function ¢(x) = log k, is convex, where k, = sup {|F(x +iy)| :
y € R} forx € [0, 1].

Proof. Without loss of generality one can assume that My, M; > 0. Moreover,
considering the function F'(z)/ M(; “*M?, the proof reduces to the case My = M; = 1.
Thus, we have that

|[F(iy)l <1 and |F(1+iy)| <1 foranyy € R,
and we want to show that |F(z)| < 1 forany z € S. If

‘llim F(x+iy)=0 uniformlyon0 <x <1,
y|—>o00

the result follows from the maximum principle. In this case, there exists yy > 0 such
that |F(x +iy)| < 1for |y| > yo and |F(z)| < 1 in the boundary of the rectangle
with corners
iyO? 1+ iYO, _iy()’ 1 — ly()
The maximum principle guarantees the same estimate in the interior of the rectangle.
In the general case, we consider the function:

Fu(z) = F(2)e¥ V" ezt
Since
|F,(2)| = |F(x + iy)|e>"/n ¢&=D/n
<|F(x+iyle™/™ =0 as |y| — oo,

uniformly on 0 < x < 1, with |F,(iy)| < | and |F,(1 4+ iy)| < 1, the previous
argument proves that | F,(z)] < 1 for any n € Z*. Letting n — 00, we obtain the
desired estimate. O

Let T be a linear operator from L?(X) to L9(Y). If T is continuous or bounded,
ie.,

T
T = sup 1771,
20 Iflp

00, @2.1)

we call the number || T'|| the norm of the operator T .

Theorem 2.1 (Riesz-Thorin). Let pg # p1, qo 7% q1. Let T be a bounded linear
operator from LP(X, A, u) to L9(Y, B, v) with norm My and from L"'(X, A, 1) to
L7 (Y, B,v) with norm M. Then, T is bounded from L? (X, A, ) in L9(Y,B,v)
with norm My such that

My < My~ MY,
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with

1 1-6 6 1 1-6 06
_ +20 1 +2, e, (2.2)
Do Po P1 4s q0 q1

Proof. (Thorin). Combining the notation
(o) = [ hg0) dviy)
Y

and a duality argument it follows that

2lly = sup {[{h, g)| : llglly = 1}
and

Mpy = sup{{Tf. )l - I fllp = lglly = 1},

where 1/p+1/p' =1/q+1/q' = 1. Since p < oo and ¢’ < 0o, we can assume
that f, g are simple functions with compact support. Thus,

fE) = ajxa,x) and g(y) =Y bexn, ().
Jj k
For 0 < Re z < 1, we define

1 . 1—z b4 1 . 1—z2 n b4
P& p p g@ g4 qf
0(z) = o(x,2) = Z |aj|P9/P(z)eiarg(a,‘)XAj (x),

J

and

V@) =Y(.2) = Y _ bl /4O =Wy ().

k

Thus, ¢(z) € LPi, ¥(z) € Lq-/f, and Te(z) € L%,j = 0,1. Also, ¢'(z) €
LPi, /() € LY, and (T)'(z) € L9, j =0,1for 0 < Re z < 1. Therefore, the
function

F(2) = (Te(2), ¥(2)

is bounded and continuous on 0 < Re z < 1 and analytic in the interior. Moreover,

WGl = I1F17/70 Ly = £/ = 1

and
(L + iD= ISPy = IFIR P = 1.

Similarly, |y (in)ll; = 1¥(1 +inll; = 1.
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From the hypotheses it follows that
|[FGD] < ITen)llgy 1Y @)llgy = Mo

and
[F(I+i)| = ITe(1 +iDllg, V(1 +iDlly = M.

Since ¢p(0) = f, ¥(0) = g, and F(0) = (Tf, g), by the three lines theorem we
obtain |(Tf, g)| < M(;_g Mf. This completes the proof. O

Definition 2.1. An operator T is said to be sublinear if T(f + g) is determined by
the values of Tf, Tg, and

IT(f + I <ITfI+1Tgl

We shall say that a linear or sublinear operator T is of (strong) type (p,q) with
constant M, if [T fl; < M4l fl, forany f € LP.
With this definition we can rephrase the statement of the Riesz—Thorin theorem.
Let po # p1, qo # g1, and T be a linear operator of type (po, go) with norm My
and of type (p1, g¢;) with norm M;. Then T is of type (p,q) with
1 1- 6 1 1-60 06
- ) - + ) 9 S (O’ 1)7
p Po Pt q q0 q1

with norm
M < My M}.

2.1.1 Applications

Next we use the Riesz—Thorin theorem to establish some properties of the Fourier
transform and the convolution operator. We fix X = ¥ = R" and © = v = dx the
Lebesgue measure.

Theorem 2.2 (Young’s inequality). Ler f € LP(R")and g € L1(R"), 1 < p,q <
1 1 1 1 1

oo with — 4+ — > 1. Then f x g € L"(R"), where — = — + — — 1. Moreover,
P q r.p q

If gl = 11Flplgllg- (2.3)

Proof. For g € LY(R"), we define the operator

Tf(x) = / Flx = »gdy = (f %)),

Rn

The Minkowski integral inequality shows

ITf g < llglgll flli-
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On the other hand, using Holder’s inequality one sees that

ITflloo = ligllgllfllg

Thus, T is of type (1,¢) and (¢g’,00) with norm bounded by |gll,. Hence,
Theorem 2.1 (Riesz—Thorin) guarantees that T is of type (p, r), where
1 1-06 0 0

= ( ) + 1

p 1 q' q
and
1 (1-9) 1 0 1 1
- = +0==-4+({1-=)=-1==-4+—-=1,
r q q q q P
with norm less than || g||,. O

Theorem 2.3 (Hausdorff-Young’s inequality). Ler f € LP(R"), 1 < p < 2.
Then f € LP (R") with % + pi =1and

1N < ILF1,- 2.4)

Proof. From (1.2) and (1.11) it follows that the Fourier transform is of type (1, co)
and (2, 2) with norm 1. Hence, Theorem 2.1 tells us that it is also of type (p, g) with

1 1-6 0 0 1 0 1 1

—=( )+—=1—— and - =0+-=1——=—

P 1 2 2 q 2 p 0
withnorm M < 10-9 19 =1, O
This estimate is the best possible when p = 1 or 2. This is not the case for

1 < p < 2. Beckner [B] found the best constant for the Hausdorff—Young inequality.
He showed that if f € LP(R"), 1 < p < 2, then

R pl/p 1/2
If lpy < AR I fllp, where Ay =|—7= ) .
P /1

2.2 Marcinkiewicz Interpolation Theorem (Diagonal Case)

Let (X, A, 1) be a measurable space.

Definition 2.2. For a measurable function f : X — C, we define its distribution
function as:

mQ, f) = ux € X 1 | f(0)] > 1)) = u(E}).

Thus, m(X, f) as a function of A € [0, oo] is well defined and takes values in [0, c0).
Moreover, it is nonincreasing and continuous from the right.
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Proposition 2.1. For any measurable function f : X — C and for any A > 0 it
follows that

1. (Tchebychev)

m, f) = )»_”/ |fQOI” du(x) < 2721 fII.

£
2. If1 < p <oo
o0 o0
Il = — / AP dm(h, ) = p / AP, f)dh.
0 0

If p=o0,
[ fllo =inf {A : m(x, f) = 0}.

3 mh, f+g) <m(A/2, f)+m(h/2,g).

Proof. It is left as an exercise. O

Definition 2.3. For 1 < p < oo, we denote by L?*(X, A, n) (weak LP-spaces) the
space of all measurable functions f : X — C such that

A1 = iugx(m(x,f»'“’ < 00.

Observe that L°* = L.
Proposition 2.2. If1 < p < oo, then
1. LP(RMGLP*(R).

2.0 f + gl = 201115, + lgly)-

Proof. It is left as an exercise. O
Therefore, LP*(X, A, ) is a quasinormed vector space

ILf+gll < kALFI+llglD

with k = 2, i.e., it only satisfies a quasitriangular inequality. The spaces L” and LP*
are particular cases of the Lorentz spaces L7 (see [BeL]).

Definition 2.4. Let (X;, A;,1;), j = 1,2, be two measurable spaces. Let M(X>)
be the space of complex-valued, measurable functions defined on X,. A linear or
sublinear operator 7' : LP(X;) — M(X;) with 1 < p < oo is said to be of weak
type (p, q) if there exists a constant ¢ > 0 such that for any f € L?(X))

ITf15 < clfllp

If ¢ = oo, type (p, 00) and weak type (p, 0o) agree. Tchebychev’s inequality shows
that if 7 is of type (p, q), then it is of weak type (p, q).
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In the rest of this chapter, we shall consider X; =R", j =1,2.
Theorem 2.4 (Marcinkiewicz). Let 1 < r < oo and
T:L'R") + L' (R") - M(R")
be a sublinear operator (see Definition 2.1). If T is of weak type (1, 1) and of weak
type (r,r), then T is of (strong) type (p, p) for any p € (1,r).

Proof. First we consider the case r = co. Changing the operator T by ||T||~'T one
can assume that

I7flloo = 11 flloo-
Given f € L'(R") + L"(R"), for each A € R* we define

f), if [f(x)] = A/2

A _
fiw = 0, if |f(x)| <Ar/2

and f3-(x) = f(x) — f}(x). Therefore,
ITf)| < ITfH0]+4/2,

and
(x eR":Tfx)| > A} C {x e R" : |Tf(x)| > 1/2}.

Since T is of weak type (1, 1), it follows that

5\ !
{x e R" : ITfl(x)| > 1/2})| < ¢ (5> /Iff(X)Idx
Rn

— 2er”! / 0Ol dx,
[fl>A/2

where |- | denotes the Lebesgue measure. Combining this estimate, part (2) of
Proposition 2.1, and a change in the order of integration, one has:

[e¢]

/ITf(x)I”dx _ p/xﬂ—'ux € R |Tf(x)| > 2} dA
Rn

0

5p/w*1 2er7! / | f)dx | dx

0 [fI>2/2
o0
= 2cp / AP2 / | f()dx | dn
0 [f1>1/2
21 f(x0)l

2P
=2cp/ fwm If(X)Idx=—Cpl||f||”,
Py

R 0
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which yields the result for the case r = oc.
In the case r < 0o, we have

m,Tf) = [{x e R" : |Tf(x)| > A}|
<mO/2, Tf])+mO/2,Tf)

)" - A r )" - A r
<0 (5) f|f, Oldx + ¢ (5) /Ifz(x)l dx
R"

Rn

=2¢17! / | f(O)ldx 4+ 2c)' A" / | fGOI" dx.
1f1=2/2 If1<r/2

As in the proof of the case r = co , we have that

00 . 2p—l
[l [ irwras ] a= s,
0 [f1=2/2
A similar argument shows that
oo
—1—r r 2p—r
/K” / |fI"dx | dh = I
r—=p
0 1£l<i/2

Combining these inequalities and part (2) of Proposition 2.1, we find that

r 1/p
) 1 c,
ITf 1 < cpll fll with cp=2</5<p_1+r_p> :

2.2.1 Applications

We shall use the Marcinkiewicz interpolation theorem to study some basic properties
of the Hardy-Littlewood maximal function. First, we introduce some notation.
We denote by LIIOC(R”) the spaces of functions f : R* — C such that f x |1 fldx <

oo for any compact K C R”. The volume of the unit ball in R” will be denoted by
w, and B,(x) = {y € R" : ||x — y|| < r}is the ball of center x and radius r.

Definition 2.5. Foragiven f € Ll (R"), wedefine M f(x), the Hardy-Littlewood

loc
maximal function associated to f, as:

1
MICO = sup 7]

1
f [f(D)dy = sup — [f(x —ry)ldy
r>0 @,

n
B (x) B1(0)

1
= sup <|f| * mXBr(O)> (x).
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Proposition 2.3.

1. M defines a sublinear operator; i.e.,
IM(f + @)0)] < IMf(x)]+ IMg(x)l, x eR™
2. If f € L(R"), then
M Flloo < I1f lloo- (2.5)

Proof. It is left as an exercise. O
Part (2) of Proposition 2.3 tells us that M is of type (oo, 00). Next, we show that
M is of weak type (1, 1). For this purpose, we need the following result.

Lemma 2.2 (Vitali’s covering lemma). Let E C R” be a measurable set such that
E C Uy B, (x4) with the family of open balls { B, (xy)}4 satisfying supr, = ¢ < 00.

Then there exists a subfamily {B,;(x;)}; disjoint and numerable such that

oo
|E| <5" ) |B,(x))].

j=1
Proof. Choose B, (x;) such that r; > ¢o/2. For j > 2, take B,}. (x;) such that

j—1
B,,(x))N U B, (x;) = ¥ and
k=1

1
rj > Esup{ra : B, (xg) N By (xx) =9 for k=1,...,j—1}.

It is clear that the B, (x;) are disjoint. If > |B;;(x;)| = 0o, we have completed the
proof. In the case ) |B,j (xj)| < oo (hence, lim r; = 0), it will suffice to show that
j—oo

B, (xy) €U Bs,, (x;), forany a.
J

If B, (xq) = B, (x;) for some j, there is nothing to prove. Thus, we assume that
B, (xq) # B;;(x;) for any j. Define j, as the smallest j such thatr; < r,/2. By the
construction of B, (x;), there exists j € {1,..., jo— 1} suchthat B,, (xo)N B, (x;) #
). Denoting by j* this index it follows that B, (x,) € BSrj* (xj+) since rj« > 1o /2.0

Theorem 2.5 (Hardy-Littlewood). Let 1 < p < oo. Then M is a sublinear
operator of type (p, p), i.e., there exists ¢, such that

IMFfllp < cpll fllp, forany f e LP(R"). (2.6)

Proof. We first show that M is of weak type (1, 1), that is, there exists a constant ¢;
such that for any f € L'(R")

sup A m(rh, M f) < c1ll flh- 2.7)

A>0
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Once (2.7) has been established, a combination of (2.5), (2.7), and the Marcinkiewicz
theorem yields (2.6).
To obtain (2.7), we define EA ={x e R": M f(x) > A} for any A > 0. Thus, if

xeFE } then there exists B, (x) such that

LfO)Idy > A|By, (x)].

By, (x)

Clearly, we have that
E* S U B, (x),

A
XEEJ

then the Vitali covering lemma guarantees the existence of a countable, disjoint
subfamily {B,Xj (x j)}jEZ . such that

|EA|<5"Z|BM (xj)l < 5" ‘Z / |fldy < 5"A7 I f 1

j= Brx (x/)

which implies (2.7). O
Next, we extend the estimates (2.6) and (2.7) to a large class of kernels.

Proposition 2.4. Let ¢ € L'(R") be a radial, positive, and nonincreasing function
of r = ||x|| € [0,00). Then

sup @i * f(x)| = sup

t>0

_1 B
f uf(y)dy <ol Mf@).  28)

R?

Proof. First, we assume that, in addition to the hypotheses, ¢ is a simple function

p(x) = Zakxgrk(o)(x), with a; > 0.
k

Hence,

@ * f(x) = Zakwrk(on X5, % f(X) < @l Mf(x).

| By, (O)I

(observe that [l¢|l; = Y, ax| B, (0))).

In the general case, we approximate ¢ by an increasing sequence of simple func-
tions satisfying the hypotheses. Since dilations of ¢ satisfy the same hypotheses and
preserve the L'-norm, they verify (2.8). Finally, passing to the limit we obtain the
desired result. |
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