
Chapter 2
Interpolation of Operators: A Multiplier
Theorem

In this chapter, we shall first study two basic results in interpolation of opera-
tors in Lp spaces, the Riesz–Thorin theorem and the Marcinkiewicz interpolation
theorem (diagonal case). As a consequence of the former we shall prove the Hardy–
Littlewood–Sobolev theorem for Riesz potentials. In this regard, we need to introduce
one of the fundamental tools in harmonic analysis, the Hardy–Littlewood maximal
function. In Section 2.4, we shall prove the Mihlin multiplier theorem.

The results deduced in this chapter are used frequently in these notes. In particular,
in Chapter 4 the proof of Theorem 4.2 is based on the Riesz–Thorin theorem and the
Hardy–Littlewood–Sobolev theorem.

2.1 The Riesz–Thorin Convexity Theorem

Let (X, A,μ) be a measurable space (i.e., X is a set, A denotes a σ -algebra of subsets
of X, and μ is a measure defined on A). Lp = Lp(X, A,μ), 1 ≤ p < ∞ denotes
the space of complex-valued functions f that are μ-measurable such that

‖f ‖p =
⎛

⎝

∫

X

|f (x)|p dμ

⎞

⎠

1/p

< ∞.

Functions inLp(X, A,μ) are defined almost everywhere with respect toμ. Similarly,
we have L∞(X, A,μ) the space of functions f that are μ-measurable, complex
valued and essentially μ-bounded, with ‖f ‖∞ the essential supremum of f . The
Riesz–Thorin convexity theorem can be obtained as a consequence of a version of
the Hadamard three circles theorem, a result of the Phragmen–Lindelöf theorem,
known as the three lines theorem.

Lemma 2.1. Let F be a continuous and bounded function defined on

S = {z = x + iy : 0 ≤ x ≤ 1}
which is also analytic in the interior of S. If for each y ∈ R,

|F (iy)| ≤ M0 and |F (1 + iy)| ≤ M1,
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then for any z = x + iy ∈ S

|F (x + iy)| ≤ M1−x
0 Mx

1 .

In other words, the function φ(x) = log kx is convex, where kx = sup {|F (x + iy)| :
y ∈ R} for x ∈ [0, 1].

Proof. Without loss of generality one can assume that M0, M1 > 0. Moreover,
considering the functionF (z)/M1−z

0 Mz
1, the proof reduces to the caseM0 = M1 = 1.

Thus, we have that

|F (iy)| ≤ 1 and |F (1 + iy)| ≤ 1 for any y ∈ R,

and we want to show that |F (z)| ≤ 1 for any z ∈ S. If

lim|y|→∞F (x + iy) = 0 uniformly on 0 ≤ x ≤ 1,

the result follows from the maximum principle. In this case, there exists y0 > 0 such
that |F (x + iy)| ≤ 1 for |y| ≥ y0 and |F (z)| ≤ 1 in the boundary of the rectangle
with corners

iy0, 1 + iy0,−iy0, 1 − iy0.

The maximum principle guarantees the same estimate in the interior of the rectangle.
In the general case, we consider the function:

Fn(z) = F (z)e(z2−1)/n, n ∈ Z
+.

Since

|Fn(z)| = |F (x + iy)|e−y2/n e(x2−1)/n

≤ |F (x + iy)|e−y2/n → 0 as |y| → ∞,

uniformly on 0 ≤ x ≤ 1, with |Fn(iy)| ≤ 1 and |Fn(1 + iy)| ≤ 1, the previous
argument proves that |Fn(z)| ≤ 1 for any n ∈ Z

+. Letting n → ∞, we obtain the
desired estimate. �

Let T be a linear operator from Lp(X) to Lq(Y ). If T is continuous or bounded,
i.e.,

|||T ||| = sup
f �=0

‖Tf ‖q
‖f ‖p < ∞, (2.1)

we call the number |||T ||| the norm of the operator T .

Theorem 2.1 (Riesz–Thorin). Let p0 �= p1, q0 �= q1. Let T be a bounded linear
operator from Lp0 (X, A,μ) to Lq0 (Y , B, ν) with norm M0 and from Lp1 (X, A,μ) to
Lq1 (Y , B, ν) with norm M1. Then, T is bounded from Lpθ (X, A,μ) in Lqθ (Y , B, ν)
with norm Mθ such that

Mθ ≤ M1−θ
0 Mθ

1 ,
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with

1

pθ

= 1 − θ

p0
+ θ

p1
,

1

qθ
= 1 − θ

q0
+ θ

q1
, θ ∈ (0, 1). (2.2)

Proof. (Thorin). Combining the notation

〈h, g〉 =
∫

Y

h(y)g(y) dν(y)

and a duality argument it follows that

‖h‖q = sup {|〈h, g〉| : ‖g‖q ′ = 1}
and

Mpq ≡ sup{|〈Tf , g〉| : ‖f ‖p = ‖g‖q ′ = 1},
where 1/p + 1/p′ = 1/q + 1/q ′ = 1. Since p < ∞ and q ′ < ∞, we can assume
that f , g are simple functions with compact support. Thus,

f (x) =
∑

j

ajχAj
(x) and g(y) =

∑

k

bkχBk
(y).

For 0 ≤ Re z ≤ 1, we define

1

p(z)
= 1 − z

p0
+ z

p1
,

1

q ′(z)
= 1 − z

q ′0
+ z

q ′1
,

ϕ(z) = ϕ(x, z) =
∑

j

|aj |pθ /p(z)eiarg(aj )χAj
(x),

and
ψ(z) = ψ(y, z) =

∑

k

|bk|q ′θ /q ′(z)eiarg(bk )χBk
(y).

Thus, ϕ(z) ∈ Lpj , ψ(z) ∈ L
q ′j , and T ϕ(z) ∈ Lqj , j = 0, 1. Also, ϕ′(z) ∈

Lpj , ψ ′(z) ∈ L
q ′j , and (T ϕ)′(z) ∈ Lqj , j = 0, 1 for 0 < Re z < 1. Therefore, the

function
F (z) = 〈T ϕ(z),ψ(z)〉

is bounded and continuous on 0 ≤ Re z ≤ 1 and analytic in the interior. Moreover,

‖ϕ(it)‖p0 = ‖|f |pθ /p0‖p0 = ‖f ‖pθ /p0
pθ

= 1

and
‖ϕ(1 + it)‖p1 = ‖|f |pθ /p1‖p1 = ‖f ‖pθ /p1

pθ
= 1.

Similarly, ‖ψ(it)‖q ′0 = ‖ψ(1 + it)‖q ′1 = 1.
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From the hypotheses it follows that

|F (it)| ≤ ‖T ϕ(it)‖q0 ‖ψ(it)‖q ′0 ≤ M0

and
|F (1 + it)| ≤ ‖T ϕ(1 + it)‖q1 ‖ψ(1 + it)‖q ′1 ≤ M1.

Since ϕ(θ ) = f , ψ(θ ) = g, and F (θ ) = 〈Tf , g〉, by the three lines theorem we
obtain |〈Tf , g〉| ≤ M1−θ

0 Mθ
1 . This completes the proof. �

Definition 2.1. An operator T is said to be sublinear if T (f + g) is determined by
the values of Tf , T g, and

|T (f + g)| ≤ |Tf | + |T g|.
We shall say that a linear or sublinear operator T is of (strong) type (p, q) with
constant Mpq if ‖Tf ‖q ≤ Mpq‖f ‖p for any f ∈ Lp.

With this definition we can rephrase the statement of the Riesz–Thorin theorem.
Let p0 �= p1, q0 �= q1, and T be a linear operator of type (p0, q0) with norm M0

and of type (p1, q1) with norm M1. Then T is of type (p, q) with

1

p
= 1 − θ

p0
+ θ

p1
,

1

q
= 1 − θ

q0
+ θ

q1
, θ ∈ (0, 1),

with norm
M ≤ M1−θ

0 Mθ
1 .

2.1.1 Applications

Next we use the Riesz–Thorin theorem to establish some properties of the Fourier
transform and the convolution operator. We fix X = Y = R

n and μ = ν = dx the
Lebesgue measure.

Theorem 2.2 (Young’s inequality). Let f ∈ Lp(Rn) and g ∈ Lq(Rn), 1 ≤ p, q ≤
∞ with

1

p
+ 1

q
≥ 1. Then f ∗ g ∈ Lr (Rn), where

1

r
= 1

p
+ 1

q
− 1. Moreover,

‖f ∗ g‖r ≤ ‖f ‖p‖g‖q . (2.3)

Proof. For g ∈ Lq(Rn), we define the operator

Tf (x) =
∫

Rn

f (x − y)g(y)dy = (f ∗ g)(x).

The Minkowski integral inequality shows

‖Tf ‖q ≤ ‖g‖q‖f ‖1.
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On the other hand, using Hölder’s inequality one sees that

‖Tf ‖∞ ≤ ‖g‖q‖f ‖q ′ .
Thus, T is of type (1, q) and (q ′,∞) with norm bounded by ‖g‖q . Hence,
Theorem 2.1 (Riesz–Thorin) guarantees that T is of type (p, r), where

1

p
= (1 − θ )

1
+ θ

q ′
= 1 − θ

q

and
1

r
= (1 − θ )

q
+ 0 = 1

q
+
(

1 − θ

q

)

− 1 = 1

q
+ 1

p
− 1,

with norm less than ‖g‖q . �

Theorem 2.3 (Hausdorff–Young’s inequality). Let f ∈ Lp(Rn), 1 ≤ p ≤ 2.
Then ̂f ∈ Lp′

(Rn) with 1
p
+ 1

p′ = 1 and

‖̂f ‖p′ ≤ ‖f ‖p. (2.4)

Proof. From (1.2) and (1.11) it follows that the Fourier transform is of type (1,∞)
and (2, 2) with norm 1. Hence, Theorem 2.1 tells us that it is also of type (p, q) with

1

p
= (1 − θ )

1
+ θ

2
= 1 − θ

2
and

1

q
= 0 + θ

2
= 1 − 1

p
= 1

p′

with norm M ≤ 1(1−θ ) 1θ = 1. �

This estimate is the best possible when p = 1 or 2. This is not the case for
1 < p < 2. Beckner [B] found the best constant for the Hausdorff–Young inequality.
He showed that if f ∈ Lp(Rn), 1 ≤ p ≤ 2, then

‖̂f ‖p′ ≤ (Ap)n‖f ‖p, where Ap =
(

p1/p

p′1/p′

)1/2

.

2.2 Marcinkiewicz Interpolation Theorem (Diagonal Case)

Let (X, A,μ) be a measurable space.

Definition 2.2. For a measurable function f : X → C, we define its distribution
function as:

m(λ, f ) = μ({x ∈ X : |f (x)| > λ}) = μ(Eλ
f ).

Thus, m(λ, f ) as a function of λ ∈ [0,∞] is well defined and takes values in [0,∞).
Moreover, it is nonincreasing and continuous from the right.
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Proposition 2.1. For any measurable function f : X → C and for any λ ≥ 0 it
follows that

1. (Tchebychev)

m(λ, f ) ≤ λ−p

∫

Eλ
f

|f (x)|p dμ(x) ≤ λ−p‖f ‖pp.

2. If 1 ≤ p < ∞,

‖f ‖pp = −
∞
∫

0

λp dm(λ, f ) = p

∞
∫

0

λp−1m(λ, f ) dλ.

If p = ∞,
‖f ‖∞ = inf {λ : m(λ, f ) = 0}.

3. m(λ, f + g) ≤ m(λ/2, f ) +m(λ/2, g).

Proof. It is left as an exercise. �

Definition 2.3. For 1 ≤ p < ∞, we denote by Lp∗(X, A,μ) (weak Lp-spaces) the
space of all measurable functions f : X → C such that

‖f ‖∗p = sup
λ>0

λ(m(λ, f ))1/p < ∞.

Observe that L∞∗ = L∞.

Proposition 2.2. If 1 ≤ p < ∞, then

1. Lp(Rn) /⊆Lp∗(Rn).
2. ‖f + g‖∗p ≤ 2(‖f ‖∗p + ‖g‖∗p).

Proof. It is left as an exercise. �

Therefore, Lp∗(X, A,μ) is a quasinormed vector space

‖f + g‖ ≤ k(‖f ‖ + ‖g‖)

with k = 2, i.e., it only satisfies a quasitriangular inequality. The spaces Lp and Lp∗
are particular cases of the Lorentz spaces Lp,q (see [BeL]).

Definition 2.4. Let (Xj , Aj ,μj ), j = 1, 2, be two measurable spaces. Let M(X2)
be the space of complex-valued, measurable functions defined on X2. A linear or
sublinear operator T : Lp(X1) → M(X2) with 1 ≤ p < ∞ is said to be of weak
type (p, q) if there exists a constant c > 0 such that for any f ∈ Lp(X1)

‖Tf ‖∗q ≤ c‖f ‖p.
If q = ∞, type (p,∞) and weak type (p,∞) agree. Tchebychev’s inequality shows
that if T is of type (p, q), then it is of weak type (p, q).
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In the rest of this chapter, we shall consider Xj = R
n, j = 1, 2.

Theorem 2.4 (Marcinkiewicz). Let 1 < r ≤ ∞ and

T : L1(Rn) + Lr (Rn) → M(Rn)

be a sublinear operator (see Definition 2.1). If T is of weak type (1, 1) and of weak
type (r , r), then T is of (strong) type (p,p) for any p ∈ (1, r).

Proof. First we consider the case r = ∞. Changing the operator T by ‖T ‖−1T one
can assume that

‖Tf ‖∞ ≤ ‖f ‖∞.

Given f ∈ L1(Rn) + Lr (Rn), for each λ ∈ R
+ we define

f λ
1 (x) =

{

f (x), if |f (x)| ≥ λ/2

0, if |f (x)| < λ/2

and f λ
2 (x) = f (x) − f λ

1 (x). Therefore,

|Tf (x)| ≤ |Tf λ
1 (x)| + λ/2,

and
{x ∈ R

n : |Tf (x)| > λ} ⊆ {x ∈ R
n : |Tf λ

1 (x)| > λ/2}.
Since T is of weak type (1, 1), it follows that

|{x ∈ R
n : |Tf λ

1 (x)| > λ/2}| ≤ c

(

λ

2

)−1 ∫

Rn

|f λ
1 (x)| dx

= 2cλ−1
∫

|f |>λ/2

|f (x)| dx,

where | · | denotes the Lebesgue measure. Combining this estimate, part (2) of
Proposition 2.1, and a change in the order of integration, one has:

∫

Rn

|Tf (x)|p dx = p

∞
∫

0

λp−1|{x ∈ R
n : |Tf (x)| > λ}| dλ

≤ p

∞
∫

0

λp−1

⎛

⎜

⎝2cλ−1
∫

|f |>λ/2

|f (x)| dx
⎞

⎟

⎠ dλ

= 2cp

∞
∫

0

λp−2

⎛

⎜

⎝

∫

|f |>λ/2

|f (x)| dx
⎞

⎟

⎠ dλ

= 2cp
∫

Rn

⎛

⎝

2|f (x)|
∫

0

λp−2 dλ

⎞

⎠ |f (x)| dx = 2pcp

p − 1
‖f ‖pp,
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which yields the result for the case r = ∞.
In the case r < ∞, we have

m(λ, Tf ) = |{x ∈ R
n : |Tf (x)| > λ}|

≤ m(λ/2, Tf λ
1 ) +m(λ/2, Tf λ

2 )

≤ c1

(

λ

2

)−1 ∫

Rn

|f λ
1 (x)| dx + crr

(

λ

2

)−r ∫

Rn

|f λ
2 (x)|r dx

= 2c1λ
−1

∫

|f |≥λ/2

|f (x)| dx + (2cr )
rλ−r

∫

|f |<λ/2

|f (x)|r dx.

As in the proof of the case r = ∞ , we have that

∞
∫

0

λp−2

⎛

⎜

⎝

∫

|f |≥λ/2

|f (x)| dx
⎞

⎟

⎠ dλ = 2p−1

p − 1
‖f ‖pp.

A similar argument shows that

∞
∫

0

λp−1−r

⎛

⎜

⎝

∫

|f |<λ/2

|f (x)|r dx
⎞

⎟

⎠ dλ = 2p−r

r − p
‖f ‖pp.

Combining these inequalities and part (2) of Proposition 2.1, we find that

‖Tf ‖p ≤ cp‖f ‖p, with cp = 2 p
√
p

(

c1

p − 1
+ crr

r − p

)1/p

.

�

2.2.1 Applications

We shall use the Marcinkiewicz interpolation theorem to study some basic properties
of the Hardy–Littlewood maximal function. First, we introduce some notation.

We denote by L1
loc(Rn) the spaces of functions f : R

n → C such that
∫

K
|f |dx <

∞ for any compact K ⊆ R
n. The volume of the unit ball in R

n will be denoted by
ωn and Br (x) = {y ∈ R

n : ‖x − y‖ < r} is the ball of center x and radius r .

Definition 2.5. For a given f ∈ L1
loc(Rn), we define Mf (x), the Hardy–Littlewood

maximal function associated to f , as:

Mf (x) = sup
r>0

1

|Br (x)|
∫

Br (x)

|f (y)| dy = sup
r>0

1

ωn

∫

B1(0)

|f (x − ry)| dy

= sup
r>0

(

|f | ∗ 1

|Br (0)|χBr (0)

)

(x).
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Proposition 2.3.

1. M defines a sublinear operator, i.e.,

|M(f + g)(x)| ≤ |Mf (x)| + |Mg(x)|, x ∈ R
n.

2. If f ∈ L∞(Rn), then

‖Mf ‖∞ ≤ ‖f ‖∞. (2.5)

Proof. It is left as an exercise. �

Part (2) of Proposition 2.3 tells us that M is of type (∞,∞). Next, we show that
M is of weak type (1, 1). For this purpose, we need the following result.

Lemma 2.2 (Vitali’s covering lemma). Let E ⊆ R
n be a measurable set such that

E ⊆ ∪αBrα (xα) with the family of open balls {Brα (xα)}α satisfying sup
α

rα = c0 < ∞.

Then there exists a subfamily {Brj (xj )}j disjoint and numerable such that

|E| ≤ 5n

∞
∑

j=1

|Brj (xj )|.

Proof. Choose Br1 (x1) such that r1 ≥ c0/2. For j ≥ 2, take Brj (xj ) such that

Brj (xj ) ∩
j−1
⋃

k=1
Brk (xk) = ∅ and

rj >
1

2
sup {rα : Brα (xα) ∩ Brk (xk) = ∅ for k = 1, . . . , j − 1}.

It is clear that the Brj (xj ) are disjoint. If
∑ |Brj (xj )| = ∞, we have completed the

proof. In the case
∑ |Brj (xj )| < ∞ (hence, lim

j→∞ rj = 0), it will suffice to show that

Brα (xα) ⊆ ∪
j
B5rj (xj ), for any α.

If Brα (xα) = Brj (xj ) for some j , there is nothing to prove. Thus, we assume that
Brα (xα) �= Brj (xj ) for any j . Define jα as the smallest j such that rj < rα/2. By the
construction ofBrj (xj ), there exists j ∈ {1, . . . , jα−1} such thatBrα (xα)∩Brj (xj ) �=
∅. Denoting by j∗ this index it follows that Brα (xα) ⊆ B5rj∗ (xj∗ ) since rj∗ ≥ rα/2.�

Theorem 2.5 (Hardy–Littlewood). Let 1 < p ≤ ∞. Then M is a sublinear
operator of type (p,p), i.e., there exists cp such that

‖Mf ‖p ≤ cp‖f ‖p, for any f ∈ Lp(Rn). (2.6)

Proof. We first show that M is of weak type (1, 1), that is, there exists a constant c1

such that for any f ∈ L1(Rn)

sup
λ>0

λ m(λ, Mf ) ≤ c1‖f ‖1. (2.7)
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Once (2.7) has been established, a combination of (2.5), (2.7), and the Marcinkiewicz
theorem yields (2.6).

To obtain (2.7), we define Eλ
f = {x ∈ R

n : Mf (x) > λ} for any λ > 0. Thus, if
x ∈ Eλ

f , then there exists Brx (x) such that

∫

Brx (x)

|f (y)|dy > λ|Brx (x)|.

Clearly, we have that
Eλ

f ⊆ ∪
x∈Eλ

f

Brx (x),

then the Vitali covering lemma guarantees the existence of a countable, disjoint
subfamily {Brxj

(xj )}
j∈Z+ such that

|Eλ
f | ≤ 5n

∞
∑

j=1

|Brxj
(xj )| ≤ 5nλ−1

∞
∑

j=1

∫

Brxj
(xj )

|f (y)| dy ≤ 5nλ−1‖f ‖1,

which implies (2.7). �

Next, we extend the estimates (2.6) and (2.7) to a large class of kernels.

Proposition 2.4. Let ϕ ∈ L1(Rn) be a radial, positive, and nonincreasing function
of r = ‖x‖ ∈ [0,∞). Then

sup
t>0

|ϕt ∗ f (x)| = sup
t>0

∣

∣

∣

∫

Rn

ϕ(t−1(x − y))

tn
f (y) dy

∣

∣

∣ ≤ ‖ϕ‖1Mf (x). (2.8)

Proof. First, we assume that, in addition to the hypotheses, ϕ is a simple function

ϕ(x) =
∑

k

akχBrk
(0)(x), with ak > 0.

Hence,

ϕ ∗ f (x) =
∑

k

ak|Brk (0)| 1

|Brk (0)|χBrk
(0) ∗ f (x) ≤ ‖ϕ‖1Mf (x).

(observe that ‖ϕ‖1 =∑k ak|Brk (0)|).
In the general case, we approximate ϕ by an increasing sequence of simple func-

tions satisfying the hypotheses. Since dilations of ϕ satisfy the same hypotheses and
preserve the L1-norm, they verify (2.8). Finally, passing to the limit we obtain the
desired result. �
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