Chapter 2
An Introduction to Good Practices in Cognitive

Modeling

Andrew Heathcote, Scott D. Brown and Eric-Jan Wagenmakers

Abstract Cognitive modeling can provide important insights into the underlying
causes of behavior, but the validity of those insights rests on careful model develop-
ment and checking. We provide guidelines on five important aspects of the practice
of cognitive modeling: parameter recovery, testing selective influence of experi-
mental manipulations on model parameters, quantifying uncertainty in parameter
estimates, testing and displaying model fit, and selecting among different model
parameterizations and types of models. Each aspect is illustrated with examples.

2.1 Introduction

One of the central challenges for the study of the human mind is that cognitive
processes cannot be directly observed. For example, most cognitive scientists feel
confident that people can shift their attention, retrieve episodes from memory, and
accumulate sensory information over time; unfortunately, these processes are latent
and can only be measured indirectly, through their impact on overt behavior, such as
task performance.

Another challenge, one that exacerbates the first, is that task performance is often
the end result of an unknown combination of several different cognitive processes.
Consider the task of deciding quickly whether an almost vertical line tilts slightly
to the right or to the left. Even in this rather elementary task it is likely that at
least four different factors interact to determine performance: (1) the speed with
which perceptual processes encode the relevant attributes of the stimulus; (2) the
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efficiency with which the perceptual evidence is accumulated; (3) the threshold level
of perceptual evidence that an individual deems sufficient for making a decision;
and (4) the speed with which a motor response can be executed after a decision has
been made. Hence, observed behavior (i.e., response speed and percentage correct)
cannot be used blindly to draw conclusions about one specific process of interest,
such as the efficiency of perceptual information accumulation. Instead, one needs to
untangle the different cognitive processes and estimate both the process of interest
and the nuisance processes. In other words, observed task performance needs to be
decomposed in terms of the separate contributions of relevant cognitive processes.
Such decomposition almost always requires the use of a cognitive process model.

Cognitive process models describe how particular combinations of cognitive pro-
cesses and mechanisms give rise to observed behavior. For example, the linear
ballistic accumulator model (LBA; [1]) assumes that in the line-tilt task there ex-
ist two accumulators—one for each response—that each race towards an evidence
threshold. The psychological processes in the LBA model are quantified by pa-
rameters; for instance, the threshold parameter reflects response caution. Given the
model assumptions, the observed data can be used to estimate model parameters,
and so draw conclusions about the latent psychological processes that drive task
performance. This procedure is called cognitive modeling (see Chap. 1 for details).

Cognitive modeling is perhaps the only way to isolate and identify the contribution
of specific cognitive processes. Nevertheless, the validity of the conclusions hinges
on the plausibility of the model. If the model does not provide an adequate account of
the data, or if the model parameters do not correspond to the psychological processes
of interest, then conclusions can be meaningless or even misleading. There are several
guidelines and sanity checks that can guard against these problems. These guidelines
are often implicit, unspoken, and passed on privately from advisor to student. The
purpose of this chapter is to be explicit about the kinds of checks that are required
before one can trust the conclusions from the model parameters. In each of five
sections we provide a specific guideline and demonstrate its use with a concrete
application.

2.2 Conduct Parameter Recovery Simulations

One of the most common goals when fitting a cognitive model to data is to estimate
the parameters so that they can be compared across conditions, or across groups of
people, illuminating the underlying causes of differences in behavior. For example,
when Ratcliff and colleagues compared diffusion-model parameter estimates from
older and younger participants, they found that the elderly were slower mainly due to
greater caution rather than reduced information processing speed as had previously
been assumed [2].

A basic assumption of investigations like these is adequate parameter recovery—
that a given cognitive model and associated estimation procedure produces accurate
and consistent parameter estimates given the available number of data points. For
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standard statistical models there is a wealth of information about how accurately
parameters can be recovered from data. This information lets researchers know when
parameters estimated from data can, and cannot, be trusted. Models of this sort
include standard statistical models (such as general linear models) and some of the
simplest cognitive models (e.g., multinomial processing trees [3]).

However, many interesting cognitive models do not have well-understood esti-
mation properties. Often the models are newly developed, or are new modifications
of existing models, or sometimes they are just existing models whose parameter es-
timation properties have not been studied. In these cases it can be useful to conduct
a parameter recovery simulation study. An extra advantage of running one’s own
parameter recovery simulation study is that the settings of the study (sample sizes,
effect sizes, etc.) can be matched to the data set at hand, eliminating the need to
extrapolate from past investigations. When implementing estimation of a model for
the first time, parameter recovery with a large simulated sample size also provides
an essential bug check.

The basic approach of a parameter recovery simulation study is to generate syn-
thetic data from the model, which of course means that the true model parameters are
known. The synthetic data can then be analysed using the same techniques applied
to real data, and the recovered parameter estimates can be compared against the true
values. This gives a sense of both the bias in the parameter estimation methods (ac-
curacy), and the uncertainty that might be present in the estimates (reliability). If the
researcher’s goal is not just to estimate parameters, but in addition to discriminate
between two or more competing theoretical accounts, a similar approach can be used
to determine the accuracy of discrimination, called a “model recovery simulation”.
Synthetic data are generated from each model, fit using both models, and the results
of the fits used to decide which model generated each synthetic data set. The accuracy
of these decisions shows the reliability with which the models can be discriminated.

When conducting a parameter recovery simulation, it is important that the analysis
methods (the model fitting or parameter estimation methods) are the same as those
used in the analysis of real data. For example, both synthetic data and real data
analyses should use the same settings for optimisation algorithms, sample sizes, and
so on. Even the model parameters used to generate synthetic data should mirror those
estimated from real data, to ensure effect sizes etc. are realistic. An exception to this
rule is when parameter recovery simulations are used to investigate methodological
questions, such as what sample size might be necessary in order to identify an effect
of interest. If the researcher has in mind an effect of interest, parameter recovery
simulations can be conducted with varying sizes of synthetic samples (both varying
numbers of participants, and of data points per participant) to identify settings that
will lead to reliable identification of the effect.
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2.2.1 Examples of Parameter Recovery Simulations

Evidence accumulation models are frequently used to understand simple decisions, in
paradigms from perception to reading, and short term memory to alcohol intoxication
[4, 5, 6, 7, 8, 9]. The most frequently-used evidence accumulation models for
analyses such as these are the diffusion model, the EZ-diffusion model, and the
linear ballistic accumulator (LBA) model [10, 11, 1]. As the models have become
more widely used in parameter estimation analyses, the need for parameter recovery
simulations has grown. As part of addressing this problem, in previous work, Donkin
and colleagues ran extensive parameter recovery simulations for the diffusion and
LBA models [12]. A similar exercise was carried out just for the EZ diffusion model
when it was proposed, showing how parameter estimates from that model vary when
estimated from known data of varying sample sizes [11].

Donkin and colleagues also went one step further, and examined the nature of
parameters estimated from wrongly-specified models [12]. They generated synthetic
data from the diffusion model and the LBA model, and examined parameter estimates
resulting from fitting those data with the other model (i.e., the wrong model). This
showed that most of the core parameters of the two models were comparable—for ex-
ample, if the non-decision parameter was changed in the data-generating model, the
estimated non-decision parameter in the other model faithfully recovered that effect.
There were, however, parameters for which such relationships did not hold, primar-
ily the response-caution parameters. These results can help researchers understand
when the results they conclude from analysing parameters of one model might trans-
late to the parameters of the other model. They can also indicate when model-based
inferences are and are not dependent on assumptions not shared by all models.

To appreciate the importance of parameter recovery studies, consider the work by
van Ravenzwaaij and colleagues on the Balloon Analogue Risk Task (BART, [13]).
On every trial of the BART, the participant is presented with a balloon that represents
a specific monetary value. The participant has to decide whether to transfer the money
to a virtual bank account or to pump the balloon, an action that increases the balloon’s
size and value. After the balloon has been pumped the participant is faced with the
same choice again: transfer the money or pump the balloon. There is some probability,
however, that pumping the balloon will make it burst and all the money associated
with that balloon is lost. A trial finishes whenever the participant has transferred the
money or the balloon has burst. The BART task was designed to measure propensity
for risk-taking. However, as pointed out by Wallsten and colleagues, performance
on the BART task can be influenced by multiple psychological processes [14]. To
decompose observed behavior into psychological processes and obtain a separate
estimate for the propensity to take risk, Wallsten and colleagues proposed a series of
process models.

One of the Wallsten models for the BART task (i.e., “Model 3” from [14], their
Table 2) has four parameters: «, 8, ¥+, and w. For the present purposes, the precise
specification of the model and the meaning of the parameters is irrelevant (for a
detailed description see [15, 14]). What is important here is that van Ravenzwaaij
and colleagues conducted a series of studies to examine the parameter recovery
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Fig. 2.1 The 4-parameter BART model recovers parameters y = and 8, but fails to recover param-
eters o and p (results based on a 300-trial BART). The dots represent the median of 1000 point
estimates from 1000 different BARTs performed by a single synthetic agent. The violin shapes
around the dots are density estimates for the entire distribution of point estimates, with the extreme
5 % truncated [16]. The horizontal lines represent the true parameter values

for this model [15].! The results of one of those recovery studies are presented in
Fig. 2.1. This figure shows the results of 1000 simulations of a single synthetic
participant completing 300 BART trials?, for each of six sets of data-generating
parameter values. For each of the 1000 simulations, van Ravenzwaaij et al. obtained
a point estimate for each parameter. In Fig. 2.1, the dots represent the median of
the 1000 point estimates, and the “violins” that surround the dots represent density
estimates that represent the entire distribution of point estimates, with the extreme
5 % truncated. The horizontal lines show the true parameter values that were used to
generate the synthetic data (also indicated on top of each panel).

Figure 2.1 shows good parameter recovery for ¥+ and B, with only a slight
overestimation of y*. The o and p parameters are systematically overestimated.
The overestimation of « increases when the true value of y becomes smaller (in
the bottom left panel, compare the fourth, second, and fifth violin from the left or
compare the leftmost and rightmost violins). The overestimation of x increases when
the true value of o becomes larger (in the bottom right panel, compare the first and

! Extensive details are reported here: http://www.donvanravenzwaaij.com/Papers_files/BART _
Appendix.pdf.
2 With only 90 trials—the standard number—parameter recovery was very poor.
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the fourth violin from the left). Both phenomena suggest that parameter recovery
suffers when the true value of « is close to the true value of u. For the six sets of
data-generating parameter values shown on the x-axis from Fig. 2.1, the correlations
between the point estimates of o and u were all high: 0.97, 0.95, 0.93, 0.99, 0.83,
0.89, respectively.

The important lesson here is that, even though a model may have parameters that
are conceptually distinct, the way in which they interact given the mathematical form
of a model may mean that they are not distinct in practice. In such circumstances
it is best to study the nature of the interaction and either modify the model or de-
velop new paradigms that produce data capable of discriminating these parameters.
The complete set of model recovery studies led van Ravenzwaaij and colleagues to
propose a two-parameter BART model ([15]; but see [17]).

2.3 Carry Out Tests of Selective Influence

Cognitive models can be useful tools for understanding and predicting behavior,
and for reasoning about psychological processes, but—as with all theories—utility
hinges on validity. Establishing the validity of a model is a difficult problem. One
method is to demonstrate that the model predicts data that are both previously unob-
served, and ecologically valid. For example, a model of decision making, developed
for laboratory tasks, might be validated by comparison against the decisions of con-
sumers in real shopping situations. External data of this sort are not always available;
even when they are, their ecological validity is not always clear. For example, it is in-
creasingly common to collect neural data such as electroencephalography (EEG) or
functional magnetic resonance imaging (fMRI) measurements simultaneously with
behavioral data. Although it is easy to agree that the neural data should have some
relationship to the cognitive model, it is not often clear what that relationship should
be—which aspects of the neural data should be compared with which elements of
the cognitive model.

An alternative way to establish model validity is via tests of selective influence.
Rather than using external data as the benchmark of validity, this method uses exper-
imental manipulations. Selective influence testing is based on the idea that a valid
model can titrate complex effects in raw data into separate and simpler accounts in
terms of latent variables. From this perspective, a model is valid to the extent that it
make sense of otherwise confusing data. For example, signal detection models can
explain simultaneous changes in false alarms and hit rates—and maybe confidence
too—as simpler effects on underlying parameters (i.e., sensitivity and bias). Simi-
larly, models of speeded decision-making can convert complex changes in the mean,
variance, and accuracy of response time data into a single effect of just one latent
variable.

Testing for selective influence begins with a priori hypotheses about experimental
manipulations that ought to influence particular latent variables. For instance, from
the structure of signal detection theory, one expects payoff manipulations to influence
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bias, but not sensitivity. Empirically testing this prediction of selective influence
becomes a test of the model structure itself.

2.3.1 Examples of Selective Influence Tests

Signal detection theory has a long history of checking selective influence. Nearly half
acentury ago, Parks [18] demonstrated that participants tended to match the probabil-
ity of their responses to the relative frequency of the different stimulus classes. This
behavior is called probability matching, and it is statistically optimal in some situa-
tions. Probability matching requires decision makers to adjust their decision threshold
(in SDT terms: bias) in response to changes in relative stimulus frequencies. Parks—
and many since—have demonstrated that decision-makers, from people to pigeons
and rats, do indeed change their bias parameters appropriately (for areview, see [19]).
This demonstrates selective influence, because the predicted manipulation influences
the predicted model parameter, and only that parameter. Similar demonstrations have
been made for changes in signal detection bias due to other manipulations (e.g., the
strength of memories: [20]).

Models of simple perceptual decision making, particularly Ratcliff’s diffusion
model ([5, 21, 10]), have around six basic parameters. Their apparent complexity can
be justified, however, through tests of selective influence. In seminal work, Ratcliff
and Rouder orthogonally manipulated the difficulty of decisions and instructions
about cautious vs. speedy decision-making, and demonstrated that manipulations
of difficulty selectively influenced a stimulus-related model parameter (drift rate)
while changes to instructions influenced a caution-related model parameter (deci-
sion boundaries). Voss, Rothermund and Voss [22] took this approach further and
separately tested selective influences on the diffusion model’s most fundamental pa-
rameters. For example, one experiment manipulated relative payoffs for different
kinds of responses, and found selective influence on the model parameter represent-
ing bias (the “start point” parameter). These kinds of tests can alleviate concerns
about model complexity by supporting the idea that particular model parameters
are necessary, and by establishing direct relationships between the parameters and
particular objective changes or manipulations.

Deciding whether one parameter is or is not influenced by some experimental
manipulation is an exercise in model selection (i.e., selection between models that
do and do not impose the selective influence assumption). Both Voss et al. and Ratcliff
and Rouder approached this problem by estimating parameters freely and examining
changes in the estimates between conditions; a significant effect on one parameter
and non-significant effects on other parameters was taken as evidence of selective
influence. Ho, Brown and Serences [23] used model selection based on BIC [24] and
confirmed that changes in the response production procedure—f{rom eye movements
to button presses—influenced only a “non-decision time” parameter which captures
the response-execution process. However, a number of recent studies have rejected
the selective influence of cautious vs. speedy decision-making on decision boundaries
[25, 26, 27]. In a later section we show how model-selection was used in this context.
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2.4 Quantify Uncertainty in Parameter Estimates

In many modeling approaches, the focus is on model prediction and model fit for a
single “best” set of parameter estimates. For example, suppose we wish to estimate
the probability 6 that Don correctly discriminates regular beer from alcohol-free
beer. Don is repeatedly presented with two cups (one with regular beer, the other
with non-alcoholic beer) and has to indicate which cup holds the regular beer. Now
assume that Don answers correctly in 3 out of 10 cases. The maximum likelihood
estimate 0 equals 3/10 = 0.3, but it is evident that this estimate is not very precise.
Focusing on only a single point estimate brings with it the danger of overconfidence:
predictions will be less variable than they should be.

In general, when we wish to use a model to learn about the cognitive processes
that drive task performance, it is appropriate to present the precision with which
these processes have been estimated. The precision of the estimates can be obtained
in several ways. Classical or frequentist modelers can use the bootstrap [28], a
convenient procedure that samples with replacement from the original data and then
estimates parameters based on the newly acquired bootstrap data set; the distribution
of point estimates across the bootstrap data sets provides a close approximation to
the classical measures of uncertainty such as the standard error and the confidence
interval. Bayesian modelers can represent uncertainty in the parameter estimates by
plotting the posterior distribution or a summary measure such as a credible interval.

2.4.1 Example of Quantifying Uncertainty in Parameter Estimates

Inanelegant experiment, Wagenaar and Boer assessed the impact of misleading infor-
mation on earlier memories [29]. They showed 562 participants a sequence of events
in the form of a pictorial story involving a pedestrian-car collision at an intersection
with a traffic light. In some conditions of the experiment, participants were later asked
whether they remembered a pedestrian crossing the road when the car approached
the “stop sign”. This question is misleading (the intersection featured a traffic light,
not a stop sign), and the key question centers on the impact that the misleading
information about the stop sign has on the earlier memory for the traffic light.3

Wagenaar and Boer constructed several models to formalize their predictions.
One of these models is the “destructive updating model”, and its critical parameter d
indicates the probability that the misleading information about the stop sign (when
properly encoded) destroys the earlier memory about the traffic light. When d = 0,
the misleading information does not affect the earlier memory and the destructive
updating model reduces to the “no-conflict model”. Wagenaar and Boer fit the de-
structive updating model to the data and found that the single best parameter estimate
wasd = 0.

3 The memory for the traffic light was later assessed by reminding participants that there was a
traffic light at the intersection, and asking them to indicate its color.
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Fig. 2.2 Prior and posterior distributions for the d parameter in the destructive updating model
from Wagenaar and Boer (1987), based on data from 562 participants. When d = 0, the destructive
updating model reduces to the no-conflict model in which earlier memory is unaffected by mis-
leading information presented at a later stage. The posterior distribution was approximated using
60,000 Markov chain Monte Carlo samples. (Figure downloaded from Flickr, courtesy of Eric-Jan
Wagenmakers)

Superficial consideration may suggest that the result of Wagenaar and Boer refutes
the destructive updating model, or at least makes this model highly implausible.
However, a more balanced perspective arises once the uncertainty in the estimate
of d is considered. Figure 2.2 shows the prior and posterior distributions for the d
parameter (for details see [30]). The prior distribution is uninformative, reflecting the
belief that all values of d are equally likely before seeing the data. The observed data
then update this prior distribution to a posterior distribution; this posterior distribution
quantifies our knowledge about d [31]. Itis clear from Fig. 2.2 that the most plausible
posterior value is d = 0, in line with the point estimate from Wagenaar and Boer, but
it is also clear that this point estimate is a poor summary of the posterior distribution.
The posterior distribution is quite wide and has changed relatively little compared to
the prior, despite the fact that 562 people participated in the experiment. Values of
d < 0.4 are more likely under the posterior than under the prior, but not by much;
in addition, the posterior ordinate at d = 0 is only 2.8 times higher than the prior
ordinate at value d = 0. This constitutes evidence against the destructive updating
model that is is merely anecdotal or “not worth more than a bare mention” [32].4

In sum, a proper assessment of parameter uncertainty avoids conclusions that are
overconfident. In the example of Wagenaar and Boer, even 562 participants were not
sufficient to yield strong support for or against the models under consideration.

4 Wagenaar and Boer put forward a similar conclusion, albeit not formalized within a Bayesian
framework.
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Fig. 2.3 Anscombe’s quartet highlights the importance of plotting data to confirm the validity of the
model fit. In each panel, the Pearson correlation between the x and y values is the same, r = 0.816.
In fact, the four different data sets are also equal in terms of the mean and variance of the x and y
values. Despite the equivalence of the four data patterns in terms of popular summary measures, the
graphical displays reveal that the patterns are very different from one another, and that the Pearson
correlation (a linear measure of association) is only valid for the data set from the top left panel.
(Figure downloaded from Flickr, courtesy of Eric-Jan Wagenmakers)

2.5 Show Model Fit

When a model is unable to provide an adequate account of the observed data, conclu-
sions based on the model’s parameters are questionable. It is, therefore, important
to always show the fit of the model to the data. A compelling demonstration of
this general recommendation is known as Anscombe’s quartet [33] replotted here
as Fig. 2.3. The figure shows four data sets that have been equated on a number of
measures: the Pearson correlation between the x and y values, the mean of the x
and y values, and the variance of the x and y values. From the graphical display
of the data, however, it is immediately obvious that the data sets are very different
in terms of the relation between the x values and the y values. Only for the data
set shown in the top left panel does it make sense to report the Pearson correlation
(a linear measure of association). In general, we do not recommend relying on a
test of whether a single global measure of model misfit is “significant”. The latter
practice is not even suitable for linear models [34], let alone non-linear cognitive
process models, and is subject to the problem that with sufficient power rejection is
guaranteed, and therefore meaningless [35]. Rather we recommend that a variety of



2 Springer
http://www.springer.com/978-1-4939-2235-2

An Introduction to Model-Based Cognitive Meuroscience
Forstmann, B.U.; Wagenmakers, E.-. (Eds.)

2015, X, 354 p. 81 illus., 55 illus. in color., Hardcover
ISBN: @78-1-4939-2235-2



	Part I Tutorials
	Chapter 2 An Introduction to Good Practices in Cognitive Modeling
	2.1 Introduction
	2.2 Conduct Parameter Recovery Simulations
	2.2.1 Examples of Parameter Recovery Simulations

	2.3 Carry Out Tests of Selective Influence
	2.3.1 Examples of Selective Influence Tests

	2.4 Quantify Uncertainty in Parameter Estimates
	2.4.1 Example of Quantifying Uncertainty in Parameter Estimates

	2.5 Show Model Fit





