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RNA Secondary Structure Prediction  
from Multi-Aligned Sequences
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Abstract

It has been well accepted that the RNA secondary structures of most functional non-coding RNAs 
(ncRNAs) are closely related to their functions and are conserved during evolution. Hence, prediction of 
conserved secondary structures from evolutionarily related sequences is one important task in RNA bioin-
formatics; the methods are useful not only to further functional analyses of ncRNAs but also to improve 
the accuracy of secondary structure predictions and to find novel functional RNAs from the genome. 
In this review, I focus on common secondary structure prediction from a given aligned RNA sequence, in 
which one secondary structure whose length is equal to that of the input alignment is predicted. I system-
atically review and classify existing tools and algorithms for the problem, by utilizing the information 
employed in the tools and by adopting a unified viewpoint based on maximum expected gain (MEG) 
estimators. I believe that this classification will allow a deeper understanding of each tool and provide users 
with useful information for selecting tools for common secondary structure predictions.

Key words Common/consensus secondary structures, Comparative methods, Multiple sequence 
alignment, Covariation, Mutual information, Phylogenetic tree, Energy model, Probabilistic model, 
Maximum expected gain (MEG) estimators

1  Introduction

Functional non-coding RNAs (ncRNAs) play essential roles in 
various biological processes, such as transcription and translation 
regulation [11, 45, 49]. Not only nucleotide sequences but also 
secondary structures are closely related to the functions of ncRNAs, 
so secondary structures are conserved during evolution. Hence, 
the prediction of these conserved secondary structures (called 
“common secondary structure prediction” throughout this review) 
from evolutionarily related RNA sequences is among the most 
important tasks in RNA bioinformatics, because it provides useful 
information for further functional analysis of the targeted RNAs 
[4, 6, 28, 41, 46]. It should be emphasized that common second-
ary structure predictions are also useful to improve the accuracy of 
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secondary structure prediction [13, 48] or to find functional RNAs 
from the genome [15, 66].

Approaches to common secondary structure prediction are 
divided into two categories with respect to the input: (1) unaligned 
RNA sequences and (2) aligned RNA sequences. Common sec-
ondary structure predictions from unaligned RNA sequences can 
be solved by utilizing the Sankoff algorithm [54]. However, it is 
known that the Sankoff algorithm has huge computational costs: 
O(L3n) and O(L2n) for time and space, respectively, where L is the 
length of RNA sequences and n is the number of input sequences. 
For this reason, the second approach, whose input is aligned RNA 
sequences, is often used in actual analyses. The problem focused 
on this review is formulated as follows.

Problem  1 (RNA Common Secondary Structure Prediction of 
Aligned Sequences)
Given an input multiple sequence alignment A, predict a secondary 
structure y whose length is equal to the length of the input alignment. 
The secondary structure y is called the common (or consensus) second-
ary structure of the multiple alignment A.

In contrast to conventional RNA secondary structure predic-
tion (see Fig. 1a), the input of common secondary structure predic-
tion is a multiple sequence alignment of RNA sequences (see 
Fig. 1b) and the output is a secondary structure with the same 
length as the alignment. In general, the predicted common RNA 
secondary structure is expected to represent a secondary structure 
that commonly appears in the input alignments or is conserved 
during evolution.

To develop tools (or algorithms) for solving this problem, it 
should be made clear what a better common secondary structure is. 
However, the evaluation method for predicted common RNA sec-
ondary structures is not trivial. A predicted common secondary 
structure depends on not only RNA sequences in the alignment 
but also multiple alignments of input sequences, and in general, no 
reference (correct) common secondary structures are available (see 
Note 1). A predicted common secondary structure is therefore 
evaluated, based on reference RNA secondary structures for each 
individual RNA sequence in the alignment as follows.

Evaluation Procedure 1 (For Problem 1)
Given reference secondary structures for each RNA sequence, evalu-
ate the predicted common secondary structure y as follows. First, map 
y onto each RNA sequence in the alignment A (see the column 
“Mapped structure with gaps” in Fig.  2, for example). Second, remove 
all gaps in each sequence and the corresponding base-pairs in the 
mapped secondary structure in order to maintain the consistency of 
the secondary structures (see the column “Mapped structure without 
gaps” in Fig.  2, for example). Third, calculate the quantities TP, 
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Fig. 1 (a) Conventional RNA secondary structure prediction, in which the input is an individual RNA sequence 
and the output is an RNA secondary structure of the sequence. (b) Common (or consensus) RNA secondary 
structure prediction in which the input is a multiple sequence alignment of RNA sequences and the output is 
an RNA secondary structure whose length is equal to the length of the alignment. The secondary structure is 
called the common (or consensus) secondary structure

RNA Secondary Structure Prediction from Multi-Aligned Sequences
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TN, FP, and FN for each mapped secondary structure y(map) with 
respect to the reference secondary structure (TP, TN, FP, and FN are 
the respective numbers of true positive, true-negative, false-positive 
and false-negative base-pairs of a predicted secondary structure with 
respect to the reference structures). Finally, calculate the evaluation 
measures sensitivity (SEN), positive predictive value (PPV), and 
Matthew correlation coefficient (MCC) for the sum of TP, TN, FP, 
and FN over all the RNA sequences in the alignment A.

Figure  2 shows an illustrative example of Evaluation 
Procedure 1. Note that there exist a few variants of this procedure 
(e.g., [5]).

In this review, I aim to classify the existing tools (or algorithms) 
for Problem  1; These tools are summarized in Table  1, which 
includes all the tools for common secondary structure prediction 
as of 17th June 2013. To achieve this aim, I describe the informa-
tion that is often utilized in common secondary structure 
predictions, and classify tools from a unified viewpoint based on 
maximum expected gain (MEG) estimators. I also explain the rela-
tions between the MEG estimators and Evaluation Procedure 1.

This review is organized as follows. In Subheading 2, I sum-
marize the information that is commonly utilized when designing 
algorithms for common secondary structure prediction. In 
Subheading 3, several concepts to be utilized in the classification of 
tools are presented, and the currently available tools are classified 
within this framework.

Fig. 2 An evaluation procedure for the predicted common RNA secondary structure of an input alignment, in 
which the reference secondary structure of each RNA sequence in the alignment is given. This procedure is 
based on the idea that a common secondary structure should reflect as many of the secondary structures of 
each RNA sequence in the input alignment as possible. Mapped RNA secondary structures without gaps are 
computed by getting rid of base-pairs that correspond to gaps. Note that it is difficult to compare a predicted 
common secondary structure with a reference common secondary structure, because the reference common 
RNA secondary structure for an arbitrary input alignment is not available in general. In most studies of com-
mon secondary structure prediction, evaluation is conducted by using this procedure or a variant. See [23] for 
a more detailed discussion of evaluation procedures for Problem 1

Michiaki Hamada



Table 1 
List of tools for common secondary structure prediction from aligned sequences

Tool References Description

(Without pseudoknot)

CentroidAlifold [19, 23] Achieved superior performance in a recent benchmark (CompaRNA) 
[48]. Using an MEG estimator with the γ-centroid-type gain 
function (Subheading 3.3.2) in combination with a mixture 
probability distribution, including several types of information 
(Subheading 3.2.4)

ConStruct [37, 72] A semi-automatic, graphical tool based on mutual information 
(Subheading 2.2)

KNetFold [6] Computes a consensus RNA secondary structure from an RNA 
sequence alignment based on machine learning (Bayesian networks)

McCaskill-MEA [32] Adopting majority rule with the McCaskill energy model [40], leading 
to an algorithm that is robust to alignment errors

PETfold [59] Considers both phylogenetic information and thermodynamic stability 
by extending Pfold, in combination with an MEA estimation

Pfold [34, 35] Uses phylogenetic tree information with simple SCFG

PhyloRNAalifold [14] Incorporates the number of co-varying mutations on the phylogenetic 
tree of the aligned sequences into the covariance scoring of 
RNAalifold

PPfold [63] A multi-threaded implementation of the Pfold algorithm, which is 
extended to evolutionary analysis with a flexible probabilistic model 
for incorporating auxiliary data, such as data from structure probing 
experiments

RNAalifold [5, 26, 27] Considers both thermodynamic stability and co-variation in 
combination with RIBOSUM-like scoring matrices [33]

RSpredict [62] Takes into account sequence covariation and employs effective 
heuristics for accuracy improvement

(With pseudoknot)

hxmatch [73] Computes consensus structures including pseudoknots based on 
alignments of a few sequences. The algorithm combines 
thermodynamic and covariation information to assign scores to all 
possible base-pairs, the base-pairs are chosen with the help of the 
maximum weighted matching algorithm

ILM [52] Uses mutual information and helix plot in combination with heuristic 
optimization

IPKnot [57] Uses MEG estimators with γ-centroid gains and heuristic probability 
distribution of RNA interactions together with integer linear 
programming to compute a decoded RNA secondary structure

MIfold [12] A MATLAB(R) toolbox that employs mutual information, or a related 
covariation measure, to display and predict common RNA 
secondary structure

To the best of my knowledge, this is a complete list of tools for the problem as of 17 June 2013. Note that tools for 
common secondary structure prediction from unaligned RNA sequences are not included in this list. See Table 2 for 
further details of the listed tools
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2  Materials

Several pieces of information are generally utilized in tools and 
algorithms for predicting common RNA ondary structures. These 
will now be briefly summarized.

Table 2 
Comparison of tools (in Table 1) for common secondary structure predictions from aligned sequences

Softwarea Used informationb Gainc Prob. dist.d

Name SA WS TS ML CV PI MI MR EI

(Without pseudoknot)

CentroidAlifold ✓ ✓ ✓ ✓ ✓ ✓ ✓ e γ-cent Anyf

ConStruct ✓ ✓ ✓ ✓ ✓ na na

KNetFold ✓ ✓ ✓ na na

McCaskill-MEA ✓ ✓ Contra Av(Mc)

PETfold ✓ ✓ ✓ Contra Pf+Av(Mc)

Pfold ✓ ✓ ✓ Delta Pf

PhyloRNAalifold ✓ ✓ ✓ Delta Ra

PPfold ✓ ✓ ✓ ✓ Delta Pf

RNAalifold ✓ ✓ ✓ ✓ Delta Ra

RSpredict ✓ ✓ ✓ ✓ na na

(With pseudoknot)

hxmatch ✓ ✓ ✓ na na

ILM ✓ ✓ ✓ ✓ na na

IPKnot ✓ ✓ ✓ ✓ ✓ ✓ γ-cent Anyf

MIfold ✓g ✓ na na
a Type of software available. SA stand alone, WS web server, TS thermodynamic stability (Subheading 2.1.1)
b In the “Information used” columns, ML machine learning (Subheading 2.1.2); CV covariation (Subheading 2.3); PI 
phylogenetic (evolutionary) information(Subheading 2.4); MI mutual information (Subheading 2.2); MR majorityrule 
(Subheading 2.5); EI experimental information (Subheading 2.1.3)
c In the column“Gain,” γ-cent:γ-centroid-type gain function (Subheading 3.3.2); contra: CONTRAfold-type gain func-
tion (Subheading 3.3.3)
d In the column “Prob. dist.,” Pf Pfold model (Subheading  3.2.2); Ra RNAalipffold model (Subheading  3.2.1); 
Av(Mc) averaged probability distribution with McCaskill model (Subheading 3.2.3); “+” indicates a mixture distribu-
tion (of several models). “na” means “Not available” due to no use of probabilistic models
e If the method proposed in [16] is used, experimental information derived from SHAPE [36] and PARS [31] is easily 
incorporated in CentroidAlign
f CentroidAlifold and IPKnot can employ a mixed distribution given by an arbitrary combination of RNAalipffold, 
Pfold, and an averaged probability distribution based on the McCaskill or CONTRAfold modelsgMATLAB codes 
are available

Michiaki Hamada
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The common RNA secondary structure should be a representative 
secondary structure among RNA sequences in the alignment. 
Therefore, the fitness of a predicted common secondary structure 
to each RNA sequence in the alignment is useful information. In 
particular, in Evaluation Procedure  1, the fitness of a predicted 
common secondary structure to each RNA sequence is evaluated.

This fitness is based on probabilistic models for RNA second-
ary structures of individual RNA sequence, such as the energy-
based and machine learning models shown in Subheadings 2.1.1 
and 2.1.2, respectively. These models provide a probability distri-
bution of secondary structures of a given RNA sequence. (p(θ | x) 
denotes a probability distribution of RNA secondary structures for 
a given RNA sequence x.)

Turner’s energy model [38] is an energy-based model, which con-
siders the thermodynamic stability of RNA secondary structures. 
This model is widely utilized in RNA secondary structure predic-
tions, in which experimentally determined energy parameters 
[38, 39, 75] are employed. In the model, structures with a lower 
free energy are more stable than those with a higher free energy. 
Note that Turner’s energy model leads to a probabilistic model for 
RNA sequences, providing a probability distribution of secondary 
structures, which is called the McCaskill model [40].

In addition to the energy-based models described in the previous 
subsection, probabilistic models for RNA secondary structures 
based on machine learning (ML) approaches have been proposed. 
In contrast to the energy-based models, machine learning models 
can automatically learn parameters from training data (i.e., a set of 
RNA sequences with secondary structures). There are several mod-
els based on machine learning which adopt different approaches: 
(1) Stochastic context free grammar (SCFG) models [10]; (2) the 
CONTRAfold model [9] (a conditional random field model); (3) 
the Boltzmann Likelihood (BL) model [1–3]; and (4) non-
parametric Bayesian models [56].

See Rivas et al. [51] for detailed comparisons of probabilistic 
models for RNA secondary structures.

Recently, experimental techniques to probe RNA structure by 
high-throughput sequencing (SHAPE [36]; PARS [31]; FragSeq 
[64]) have enabled genome-wide measurements of RNA struc-
ture. Those experimental techniques stochastically estimate the 
flexibility of an RNA strand, which can be considered as a kind of 
loop probability for every nucleotide in an RNA sequence. 
Remarkably, secondary structures of long RNA sequences, such as 
HIV-1 [69], HCV (hepatitis C virus) [44], and large intergenic 
ncRNA (the steroid receptor RNA activator) [43], have been 
recently determined by combining those experimental techniques 

2.1  Fitness to Each 
Sequence in the Input 
Alignment

2.1.1  Thermodynamic 
Stability: Energy-Based 
Models

2.1.2  Machine Learning 
(ML) Models

2.1.3  Experimental 
Information

RNA Secondary Structure Prediction from Multi-Aligned Sequences
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with computational approaches. If available, such experimental 
information is useful in common secondary structure predictions, 
because they provide reliable secondary structures for each RNA 
sequence.

The mutual information of the ith and jth columns in the input 
alignment is defined by 
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where fi(X) is the frequency of base X at alignment position i; 
fij(XY ) is the joint frequency of finding X in the ith column and Y 
in the jth column, and KL(⋅ | | ⋅ ) denotes the Kullback–Liebler dis-
tance between two probability distributions. As a result, the com-
plete set of mutual information can be represented as an upper 
triangular matrix: {Mij}i < j.

Note that the mutual information score makes no use of base-
pairing rules of RNA secondary structure. In particular, mutual 
information does not account for consistent non-compensatory 
mutations at all, although information about them would be useful 
when predicting common secondary structures as described in the 
next subsection.

Because secondary structures of ncRNAs are related to their func-
tions, mutations that preserve base-pairs (i.e., covariations of a 
base-pair) often occur during evolution. Figure 3 shows an exam-
ple of covariation of base-pairs of tRNA sequences, in which many 
covariations of base-pairs are found, especially in the stem parts in 
the tRNA structure.

The covariation of the ith and jth columns in the input align-
ment is evaluated by the averaged number of compensatory muta-
tions defined by 
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 where N is the number of sequences in the input alignment A. For 
an RNA sequence x in A, Pij

x = 1  if xi and xj form a base-pair and 
Pij

x = 0  otherwise, and 
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 where δ is the delta function: δ(a, b) = 1 only if a = b, and δ(a, b) = 0 
otherwise.

For instance, RNAalifold [65] uses the information of covaria-
tion in combination with the thermodynamic stability of common 
secondary structures.

2.2  Mutual 
Information

2.3  Sequence 
Covariation 
of Base-Pairs
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Because most secondary structures of functional ncRNAs are 
conserved in evolution, the phylogenetic (evolutionary) informa-
tion with respect to the input alignment is useful for predicting 
common secondary structures, and is employed by several tools. 
Pfold [34, 35] incorporates this information into probabilistic 
model for common secondary structures (Subheading 3.2.2) for 
the first time.

Kiryu et al. [32] proposed the use of the majority rule of base-
pairs in predictions of common secondary structures. This rule 
states that base-pairs supported by many RNA sequences should 
be included in a predicted common secondary structure. 
Specifically, Kiryu et al. utilized an averaged probability distri-
bution of secondary structures among RNA sequences to pre-
dict a common RNA secondary structure from a given alignment 
(Subheading 3.2.3).

The aim of this approach is to mitigate alignment errors, 
because the effects of a minor alignment errors can be disregarded 
in the prediction of common secondary structures.

2.4  Phylogenetic 
(Evolutionary) 
Information

2.5  Majority Rule 
of Base-Pairs

(((((((..((((.........)))).(((((.......))))).....(((((......
Seq1/1-74 GGGCCUGUAGCUCAGAGGAUUAGAGCACGUGGCUACGAACCACGGUGUCGGGGGUUCGAA 60
Seq2/1-74 GGGCUAUUAGCUCAGUUGGUUAGAGCGCACCCCUGAUAAGGGUGAGGUCGCUGAUUCGAA 60
Seq3/1-72 GGCGCCGUGGCGCAGUGGA--AGCGCGCAGGGCUCAUAACCCUGAUGUCCUCGGAUCGAA 58
Seq5/1-72 GCGUUGGUGGUAUAGUGGUG-AGCAUAGCUGCCUUCCAAGCA-GUUGACCCGGGUUCGAU 58
Seq4/1-68 ACUCCCUUAGUAUAAUU----AAUAUAACUGACUUCCAAUUA-GUAGAUUCUGAAU-AAA 54
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Fig. 3 An example of covariation of base-pairs in an alignment of tRNA sequences: (a) a multiple alignment of 
tRNA sequences and (b) a predicted common secondary structure of the alignment. The figures are taken from 
the output of an example on the RNAalifold [5] Web Server (http://rna.tbi.univie.ac.at/cgi-bin/RNAalifold.cgi)

RNA Secondary Structure Prediction from Multi-Aligned Sequences
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3  Methods

In this section, I classify the existing algorithms for common RNA 
secondary structure prediction (shown in Table 1) from a unified 
viewpoint, based on a previous study [23] in which the following 
type of estimator [18, 24] was employed. 
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where S A( ) denotes a set of possible secondary structures with 
length | A | (the length of the alignment A), G(θ, y) is called a “gain 
function” and returns a measure of the similarity between two com-
mon secondary structures, and p(θ | A) is a probabilistic distribution 
on S A( ) . This type of estimator is an MEG estimator; When the 
gain function is designed according to accuracy measures for target 
problems, the MEG estimator is often called a “maximum expected 
accuracy (MEA) estimator” [18] (see Note 2).

In the following, a common secondary structure q ÎS A( ) is 
represented as an upper triangular matrix q q= { }

£ < £ij i j A1 | |
. In this 

matrix θij = 1 if the ith column in A forms a base-pair with the jth 
column in A, and θij = 0 otherwise.

The choices of p(θ | A) and G(θ, y) are described in 
Subheadings 3.2 and 3.3, respectively.

The probabilities p(θ | A) provide a distribution of common RNA 
secondary structures given a multiple sequence alignment A. This 
distribution is given by the following models.

The RNAalipffold model is a probabilistic version of RNAalifold 
[27], which provides a probability distribution of common RNA 
secondary structures given a multiple sequence alignment. The 
distribution on S A( ) is defined by 
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 where E(θ, A) is the averaged free energy of RNA sequences in the 
alignment with respect to the common secondary structure θ in A 
and Cov(θ, A) is the base covariation (cf. Subheading  2.3) with 
respect to the common secondary structure θ. The ML estimate of 
this distribution is equivalent to the prediction of RNAalifold.

Note that the negative part of the exponent in Eq. 5 is called 
the pseudo energy and it plays an essential role in finding ncRNAs 
from multiple alignments [15, 67].

3.1  MEG Estimators

3.2  Choice 
of Probabilistic Models 
p(θ | A)

3.2.1  RNAalipffold Model

Michiaki Hamada
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The Pfold model [34, 35] incorporates phylogenetic (evolution-
ary) information about the input alignments into a probabilistic 
distribution of common secondary structures: 

	
p A p A T M
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where T is a phylogenetic tree, A is the input data (i.e., an align-
ment), M is a prior model for secondary structures (based on 
SCFGs; see Note 3). Unless the original phylogenetic tree T is 
obtained, T is taken to be the ML estimate of the tree, TML, given 
the model M and the alignment A.

Predictions based on RNAalipffold and Pfold models tend to be 
affected by alignment errors in the input alignment. To address 
this, averaged probability distributions of RNA sequences involved 
in the input alignment were introduced by Kiryu et al. [32]. This 
leads to an MEG estimator with the probability distribution 
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where p(θ | x) is a probabilistic model for RNA secondary struc-
tures, for example, the McCaskill model [40], the CONTRAfold 
model [9], the BL model [1–3], and others [56]. Note that nei-
ther covariation nor phylogenetic information about alignments is 
considered in this probability distribution.

In [32], the authors utilized the McCaskill model as a proba-
bilistic model for individual RNA sequences (i.e., they used p(θ | x) 
in Eq. 14), and showed that their method was more robust with 
respect to alignment errors than RNAalifold and Pfold. Using 
averaged probability distributions for RNA sequences in an input 
alignment is compatible with Evaluation Procedure 1. See Hamada 
et al. [23] for a detailed discussion.

Hamada et al. [23] pointed out that arbitrary information can be 
incorporated into common secondary structure predictions by uti-
lizing a mixture of probability distributions. For example, the 
probability distribution 

	 p A w p A w p A w p A( | ) ( | ) ( | ) ( | ),( ) ( ) ( )q q q q= × + × + ×1 2 3
pfold alifold ave

	 (8)

where w1, w2, and w3 are positive values that satisfy w w w1 2 3 1+ + = , 
includes covariation (Subheading 2.3), phylogenetic tree (Sub
heading 2.4), and majority rule (Subheading 2.5) information.

In CentroidAlifold [23], users can employ a mixed distribution 
given by an arbitrary combination of RNAalipffold (Subheading 3.2.1), 
Pfold (Subheading 3.2.2), and an averaged probability distribution 

3.2.2  Pfold Model

3.2.3  Averaged 
Probability Distribution 
of Each RNA Sequence

3.2.4  Mixture of Several 
Distributions

RNA Secondary Structure Prediction from Multi-Aligned Sequences
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(Subheading 3.2.3) based on the McCaskill or CONTRAfold model. 
An example of a result from the CentroidAlifold Web Server is shown 
in Fig. 4, in which colors of base-pairs indicate the marginal base-
pairing probability with respect to this mixture distribution. Hamada 
et al. also showed that computation of MEG estimators with a mix-
ture distribution can be easily conducted by utilizing base-pairing 
probability matrices (see also the next section), when certain gain 
functions are employed. Moreover, computational experiments indi-
cated that CentroidAlifold with a mixture model is significantly bet-
ter than RNAalifold, Pfold, or McCaskill-MEA.

A choice of the gain function in MEG estimators corresponds to the 
decoding method (i.e., prediction of one final common secondary 
structure from the distribution) of common RNA secondary struc-
tures, given a probabilistic model of common secondary structures.

3.3  Choice of Gain 
Functions G(θ, y)

Fig. 4 Example of a predicted common secondary structure from the Centroid 
Alifold Web Server [55] (http://www.ncrna.org/centroidfold). The input is a mul-
tiple sequence alignment of the traJ 5′ UTR. The color of a base-pair indicates 
the averaged base-pairing probabilities (among RNA sequences in the align-
ment) of the base-pair, where warmer colors represent higher probabilities

Michiaki Hamada
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A straightforward choice of the gain function is the Kronecker 
delta function: 

	
G y y
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The MEG estimator with this gain function is equivalent to the 
“maximum likelihood estimator” (ML estimator) with respect to a 
given probabilistic model for RNA common secondary structures 
(cf. Subheading 3.2), which predicts the secondary structure with 
the highest probability.

It is known that the probability of the ML estimation is extremely 
small, due to the immense number of secondary structures that 
could be predicted; this fact is known as the “uncertainty” of the 
solution, and often leads to issues in bioinformatics [17]. Because 
the MEG estimator with the delta function considers only the solu-
tion with the highest probability, it is affected by this uncertainty. 
A choice of gain function that partially overcomes this uncertainty 
of solutions is the γ-centroid-type gain function [19]: 
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where γ > 0 is a parameter that adjusts the relative importance of 
the SEN and PPV of base-pairs in a predicted structure (i.e., a 
larger γ produces more base-pairs in a predicted secondary struc-
ture). This gain function is motivated by the concept that more 
true base-pairs (TP and TN) and fewer false base-pairs (FP and 
FN) should be predicted [19] when the entire distribution of sec-
ondary structures is considered. Note that, when γ = 1, the gain 
function is equivalent to that of the centroid estimator [8].

In conventional RNA secondary structure predictions, another 
gain function has been proposed (see Note 4), which is based on 
the number of accurate predictions of every single position (not 
base-pair) in an RNA sequence (see Note 5).The CONTRAfold-
type gain function is 
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where θ∗ and y∗ are symmetric extensions of θ and y, respectively 
(i.e., θij

∗ = θij for i < j and θij
∗ = θji for j < i). This gain function is also 

applicable to MEG estimators for common secondary structure 
predictions. It should be emphasized that MEG estimators based 
on the CONTRAfold-type gain function (for any γ > 0) do not 
include centroid estimators, while the γ-centroid-type gain func-
tion includes the centroid estimator as a special case (i.e., γ = 1).

3.3.1  The Kronecker 
Delta Function

3.3.2  The γ-Centroid-
Type Gain Function [19]

3.3.3  The CONTRAfold-
Type Gain Function [9]
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From a theoretical viewpoint, the γ-centroid-type gain function is 
more appropriate for Evaluation Procedure 1 than either the delta 
function or the CONTRAfold-type gain function (see Note 6), 
which is also supported by several empirical (computational) 
experiments. See Hamada et al. [23] for a detailed discussion.

Another choice of the gain function is MCC (or F-score), 
which takes a balance between SEN and PPV of base-pairs, and the 
MEG estimator with this gain function leads to an algorithm that 
maximizes pseudo-expected accuracy [22]. In addition, the estima-
tor with this gain function includes only one parameter for predict-
ing secondary structure (see Note 7).

The MEG estimator with the delta function (that predicts the 
common secondary structure with the highest probability with 
respect to a given probabilistic model) can be computed by employ-
ing a CYK (Cocke–Younger–Kasami)-type algorithm. For exam-
ple, see [65] for details.

The MEG estimator with the γ-centroid-type (or CONTRAfold-
type) gain function is computed based on “base-pairing probability 
matrices” (BPPMs) (see Note 8) and Nussinov-style dynamic pro-
gramming (DP) [9, 23]: 
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where Mi, j is the optimal score of the subsequence xi⋯j and Sij is a 
score computed from the BPPM(s). For instance, for the γ-centroid 
estimator with the RNAalipffold model, the score Sij is equal to 
S pij ij= + -( ) ( )g 1 1alipffold  where pij

(alipffold) is the base-pairing probabil-
ity with respect to the RNAalipffold model. This DP algorithm 
maximizes the sum of (base-pairing) probabilities pij

(alipffold) which 
are larger than 1 1/ ( )g + , and requires O( | A | 3) time.

The MEG estimator with an averaged probability distribution 
(Subheading  3.2.3) can be computed by using averaged base-
pairing probabilities, {pij}i < j: 

	
p

n
pij

x A
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x(ave) = å

Î
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 where 

3.3.4  Remarks About 
Choice of Gain Function

3.4  Computation 
of Common Secondary 
Structure Through 
MEG Estimators

3.4.1  MEG Estimator 
with Delta Function

3.4.2  MEG Estimator 
with γ-Centroid (or 
CONTRAfold) Type Gain 
Function

3.4.3  MEG Estimators 
with Averaged Probability 
Distributions
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In the above, x′ is the RNA sequence given by removing gaps from 
x and n is the number of sequences in the alignment A. The 
function τ(i) returns the position in x′ corresponding to the posi-
tion i in x.

The common secondary structure of MEG estimator with the 
γ-centroid gain function and the averaged probability distribution 
are computed by using the DP recursion in Eq. 12 where 
S pij ij= + -( ) ( )g 1 1ave . This procedure has a time complexity of 
O(n | A | 3) where n is the number of sequences in the alignment.

The MEG estimator with a mixture of distribution (Subheading 
3.2.4) and the delta function (Subheading 3.3.1) cannot be com-
puted efficiently. However, if the γ-centroid-type (or CONTRAfold-
type) gain function is utilized, the prediction can be conducted 
using a similar DP recursion to that in Eq. 12. For instance, the DP 
recursion of the γ-centroid-type gain function with respect to Eq. 8 
is equivalent to the one in Eq. 12 with S pij ij= + -*( )g 1 1  where 

	
p w p w p
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In the above, pij
(pfold) and pij

(alipffold) are base-pairing probabilities  
for the Pfold and RNAalipffold models, respectively, and {pij

(x)} is a 
base-pairing probability matrix with respect to a probabilistic 
model for secondary structures of single RNA sequence x 
(McCaskill or CONTRAfold model). Note that the total compu-
tational time of CentroidAlifold with a mixture of distributions still 
remains O(n | A | 3).

Using probability distributions of secondary structures with pseu-
doknots in MEG estimators generally has higher computational 
cost [42]. To overcome this, for example, IPKnot [57] utilizes an 
approximated method for determining the probability distribution 
as along with integer linear programming for predicting a final 
common secondary structure.

Table 1 shows a comprehensive list of tools for common secondary 
structure prediction from aligned RNA sequences (in alphabetical 
order within groups that do or do not consider pseudoknots  
(see Note 9)). To the best of my knowledge, Table 1 is a complete 
list of tools for Problem 1 as of 17 June 2013.

3.4.4  MEG Estimators 
with a Mixture Distribution

3.4.5  MEG Estimators 
with Probability 
Distribution Including 
Pseudoknots

3.5  A Classification 
of Tools for Problem 1
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In Table  2, the tools in Table  1 are classified based on the 
considerations of Subheadings  2 and  3. The classification leads  
to much useful information: (1) the pros and cons of each tool;  
(2) the similarity (or dissimilarity) among tools; (3) which tools are 
more suited to Evaluation Procedure 1; and (4) a unified frame-
work within which to design algorithms for Problem 1. I believe 
that the classification will bring a deeper understanding of each 
tool, although several tools (which are not based on probabilistic 
models and depend fundamentally on heuristic approaches) cannot 
be classified in terms of MEG estimators.

Predicting a multiple sequence alignment (point estimation) from 
unaligned sequences is not reliable because the probability of the 
alignment becomes extremely small. This is called the “uncer-
tainty” of alignments which raises serious issues in bioinformatics 
[17]. In one Science paper [74], for instance, the authors argued 
that the uncertainty of multiple sequence alignment greatly influ-
ences phylogenetic topology estimations: phylogenetic topologies 
estimated from multiple alignments predicted by five widely used 
aligners are different from one another. Similarly, point estimation 
of multiple sequence alignment will greatly affect consensus sec-
ondary structure prediction.

In Problem  1, because the quality of the multiple sequence 
alignment influences the prediction of common secondary struc-
ture, the input multiple alignment should be given by a multiple 
aligner which is designed specifically for RNA sequences. Although 
strict algorithms for multiple alignments taking into account sec-
ondary structures are equivalent to the Sankoff algorithm [54] and 
have huge computational costs, several multiple aligners which are 
fast enough to align long RNA sequences are available: these are 
CentroidAlign [20, 76], R-coffee [71], PicXXA-R [53], DAFS 
[58], and MAFFT [30]. In those multiple aligners, not only nucle-
otide sequences but also secondary structures are considered in the 
alignment, and they are, therefore, suitable for generating input 
multiple alignments for Problem 1.

Because the common secondary structure depends on mul-
tiple alignment, an approach adopted in RNAG [70] also seems 
promising. This approach iteratively samples from the condi-
tional probability distributions P(Structure | Alignment) and 
P(Alignment | Structure). Note, however, that RNAG does not 
solve Problem 1 directly.

Although several studies have been conducted for RNA secondary 
structure predictions for a single RNA sequence [9, 19, 38, 47], 
the accuracy is still limited, especially for long RNA sequences. By 
employing comparative approaches using homologous sequence 
information, the accuracy of RNA secondary structure prediction 
will be improved. In many cases, homologous RNA sequences of 

3.6  Discussion

3.6.1  Multiple Sequence 
Alignment of RNA 
Sequences

3.6.2  Improvement 
of RNA Secondary 
Structure Predictions Using 
Common Secondary 
Structure
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the target RNA sequence are obtained, and someone would like to 
know the common secondary structure of those sequences. 
Gardner and Giegerich [13] introduced three approaches for 
comparative analysis of RNA sequences, and common secondary 
structure prediction is essentially utilized in the first of these. 
However, if the aim is to improve the accuracy of secondary struc-
ture predictions, common secondary structure prediction is not 
always the best solution, because it is not designed to predict the 
optimal secondary structure of a specific target RNA sequence. If 
you have a target RNA sequence for which the secondary structure 
is to be predicted, the approach adopted by the CentroidHomfold 
[21, 25] software is more appropriate than a method based on 
common RNA secondary structure prediction.

As shown in this review, there are two ways to incorporate several 
pieces of information into an algorithm for common secondary 
structure prediction. The first approach is to modify the (internal) 
algorithm itself in order to handle the additional information. For 
example, PhyloRNAalifold [14] incorporates phylogenetic infor-
mation into the RNAalifold algorithm by modifying the internal 
algorithm and PPfold [63] modifies the Pfold algorithm to handle 
experimental information. The drawbacks of this approach are the 
relatively large implementation cost and the heuristic combination 
of the information.

On the other hand, another approach adopted in 
CentroidAlifold [23] is promising because it can easily incorporate 
many pieces of information into predictions if a base-pairing prob-
ability matrix is available. Because the approach depends on only 
base-pairing probability matrices, and does not depend on the 
detailed design of the algorithm, it is easy to implement an algo-
rithm using a mixture of distributions.

Moreover, a method to update a base-pairing probability 
matrix (computed using sequence information only) which incor-
porates experimental information [16] has recently been proposed. 
The method is independent of the probabilistic models of RNA 
secondary structures, and is suitable for incorporating experimen-
tal information into common RNA secondary structure predic-
tion. A more sophisticated method by Washietl et al. [68] can also 
be used to incorporate experimental information into common 
secondary structure predictions, because it produces a BPPM that 
takes experimental information into account.

Problem 1, which is considered in this paper, can be extended to 
predictions of RNA–RNA interactions, another important task in 
RNA bioinformatics (e.g., [29, 50]).

Problem 2 (Common Joint Structure Predictions of Two Aligned 
RNA Sequences)

3.6.3  How to Incorporate 
Several Pieces 
of Information 
in Algorithms

3.6.4  A Problem that Is 
Mathematically Related 
to Problem 1
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Given two multiple alignments A1 and A2 of RNA sequences, then 
predict a joint secondary structure between A1 and A2.

Because the mathematical structure of Problem 2 is similar to 
that of Problem 1, the ideas utilized in designing the algorithms 
for common secondary structure predictions can be adopted in the 
development of methods for this new problem. In fact, Seemann 
et al. [60, 61] have employed similar idea, adapting the PETfold 
algorithm to Problem 2 (implemented in the PETcofold software). 
Note that the problem of (pairwise) alignment between two mul-
tiple alignments (cf. see [24] for the details) has a similar mathe-
matical structure to Problem 1.

In this review, I focused on RNA secondary structure predictions 
from aligned RNA sequences, in which a secondary structure 
whose length is equal to the length of the input alignment is pre-
dicted. A predicted common secondary structure is useful not only 
for further functional analyses of the ncRNAs being studied but 
also for improving RNA secondary structure predictions and for 
finding ncRNAs in genomes. In this review, I systematically classi-
fied existing algorithms on the basis of (1) the information utilized 
in the algorithms and (2) the corresponding MEG estimators, 
which consist of a gain function and a probability distribution of 
common secondary structures. This classification will provide a 
deeper understanding of each algorithm.

4  Notes

	 1.	Reference common secondary structures are available for only 
reference multiple sequence alignments in the Rfam database 
[7] (http://rfam.sanger.ac.uk/).

	 2.	The gain G(θ, y) is equal to the accuracy measure Acc(θ, y) for 
a prediction and references, so the MEG estimator maximizes 
the expected accuracy under a given probabilistic distribution.

	 3.	The SCFG is based on the rules S → LS | L, F → dFd | LS, 
L → s | dFd.

	 4.	Historically, the CONTRAfold-type gain function was pro-
posed earlier than the γ-centroid-type gain function.

	 5.	This is not consistent with Evaluation Procedure 1, because 
accurate predictions of base-pairs with respect to reference 
structures are evaluated in it.

	 6.	The CONTRAfold-type gain function has a bias toward accu-
rate predictions of base-pairs, compared to the γ-centroid-type 
gain function.

	 7.	The γ-centroid-type and CONTRAfold-type gain functions 
contain a parameter adjusting the ratio of SEN and PPV for a 
predicted secondary structure.

3.7  Conclusion

Michiaki Hamada
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	 8.	The BPPM is a probability matrix {pij} in which pij is the 
marginal probability that the ith base xi and the jth base xj 
form a base-pair with respect to a given probabilistic distribu-
tion of secondary structures. For many probabilistic models, 
including the McCaskill model and the CONTRAfold model, 
the BPPM for a given sequence can be computed efficiently by 
utilizing inside–outside algorithms. See [40] for the details.

	 9.	Tools for predicting common secondary structures without 
pseudoknots are much faster than those for predicting second-
ary structures with pseudoknots.
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