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RNA Secondary Structure Prediction
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Abstract

It has been well accepted that the RNA secondary structures of most functional non-coding RNAs
(ncRNAs) are closely related to their functions and are conserved during evolution. Hence, prediction of
conserved secondary structures from evolutionarily related sequences is one important task in RNA bioin-
formatics; the methods are useful not only to further functional analyses of ncRNAs but also to improve
the accuracy of secondary structure predictions and to find novel functional RNAs from the genome.
In this review, I focus on common secondary structure prediction from a given aligned RNA sequence, in
which one secondary structure whose length is equal to that of the input alignment is predicted. I system-
atically review and classify existing tools and algorithms for the problem, by utilizing the information
employed in the tools and by adopting a unified viewpoint based on maximum expected gain (MEG)
estimators. I believe that this classification will allow a deeper understanding of each tool and provide users
with useful information for selecting tools for common secondary structure predictions.

Key words Common/consensus secondary structures, Comparative methods, Multiple sequence
alignment, Covariation, Mutual information, Phylogenetic tree, Energy model, Probabilistic model,
Maximum expected gain (MEG) estimators

1 Introduction

Functional non-coding RNAs (ncRNAs) play essential roles in
various biological processes, such as transcription and translation
regulation [11, 45, 49]. Not only nucleotide sequences but also
secondary structures are closely related to the functions of ncRNAs,
so secondary structures are conserved during evolution. Hence,
the prediction of these conserved secondary structures (called
“common secondary structure prediction” throughout this review)
from evolutionarily related RNA sequences is among the most
important tasks in RNA bioinformatics, because it provides useful
information for further functional analysis of the targeted RNAs
[4, 6, 28,41, 46]. It should be emphasized that common second-
ary structure predictions are also useful to improve the accuracy of
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secondary structure prediction [13,48] or to find functional RNAs
from the genome [15, 66].

Approaches to common secondary structure prediction are
divided into two categories with respect to the input: (1) unaligned
RNA sequences and (2) aligned RNA sequences. Common sec-
ondary structure predictions from unaligned RNA sequences can
be solved by utilizing the Sankoft algorithm [54]. However, it is
known that the Sankoff algorithm has huge computational costs:
O(L*") and O(I?") for time and space, respectively, where L is the
length of RNA sequences and # is the number of input sequences.
For this reason, the second approach, whose input is aligned RNA
sequences, is often used in actual analyses. The problem focused
on this review is formulated as follows.

Problem 1 (RNA Common Secondary Structure Prediction of
Aligned Sequences)

Given an input multiple sequence alignment A, predict a secondary
structure y whose length is equal to the length of the input alignment.
The secondary structure y is called the common (ov consensus) second-
ary structure of the multiple alignment A.

In contrast to conventional RNA secondary structure predic-
tion (see Fig. 1a), the input of common secondary structure predic-
tion is a multiple sequence alignment of RNA sequences (see
Fig.1b) and the output is a secondary structure with the same
length as the alignment. In general, the predicted common RNA
secondary structure is expected to represent a secondary structure
that commonly appears in the input alignments or is conserved
during evolution.

To develop tools (or algorithms) for solving this problem, it
should be made clear what a better common secondary structure is.
However, the evaluation method for predicted common RNA sec-
ondary structures is not trivial. A predicted common secondary
structure depends on not only RNA sequences in the alignment
but also multiple alignments of input sequences, and in general, no
reference (correct) common secondary structures are available (see
Note 1). A predicted common secondary structure is therefore
evaluated, based on reference RNA secondary structures for each
individunl RNA sequence in the alignment as follows.

Evaluation Procedure 1 (For Problem 1)

Given refevence secondary structuves for each RNA sequence, evalu-
ate the predicted common secondary structure y as follows. First, map
y onto each RNA sequence in the alignment A (see the column
“Mapped structure with gaps” in Fig. 2, for example). Second, remove
all gaps in each sequence and the corvesponding base-paivs in the
mapped secondary structure in ovder to maintain the consistency of
the secondary structures (see the column “Mapped structure without
gaps” in Fig. 2, for example). Thivd, calculate the quantities TP,
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Fig. 1 (a) Conventional RNA secondary structure prediction, in which the input is an individual RNA sequence
and the output is an RNA secondary structure of the sequence. (b) Common (or consensus) RNA secondary
structure prediction in which the input is a multiple sequence alignment of RNA sequences and the output is
an RNA secondary structure whose length is equal to the length of the alignment. The secondary structure is
called the common (or consensus) secondary structure
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Fig. 2 An evaluation procedure for the predicted common RNA secondary structure of an input alignment, in
which the reference secondary structure of each RNA sequence in the alignment is given. This procedure is
based on the idea that a common secondary structure should reflect as many of the secondary structures of
each RNA sequence in the input alignment as possible. Mapped RNA secondary structures without gaps are
computed by getting rid of base-pairs that correspond to gaps. Note that it is difficult to compare a predicted
common secondary structure with a reference common secondary structure, because the reference common
RNA secondary structure for an arbitrary input alignment is not available in general. In most studies of com-
mon secondary structure prediction, evaluation is conducted by using this procedure or a variant. See [23] for
a more detailed discussion of evaluation procedures for Problem 1

TN, FP, and FN for each mapped secondary structure Y™ with
respect to the veference secondary structurve (TP, TN, FP, and FN are
the respective numbers of true positive, true-negative, fulse-positive
and false-negative base-pairs of a predicted secondary structure with
rvespect to the refevence structurves). Finally, calculate the evaluation
measuves sensitivity (SEN), positive predictive value (PPV), and
Matthew corvelation coefficient (MCC) for the sum of TP, TN, FP,
and FN over all the RNA sequences in the alignment A.

Figure 2 shows an illustrative example of Evaluation
Procedure 1. Note that there exist a few variants of this procedure
(e.g., [5]).

In this review, I aim to classify the existing tools (or algorithms)
for Problem 1; These tools are summarized in Table 1, which
includes all the tools for common secondary structure prediction
as of 17th June 2013. To achieve this aim, I describe the informa-
tion that is often utilized in common secondary structure
predictions, and classify tools from a unified viewpoint based on
maximum expected gain (MEG) estimators. I also explain the rela-
tions between the MEG estimators and Evaluation Procedure 1.

This review is organized as follows. In Subheading 2, I sum-
marize the information that is commonly utilized when designing
algorithms for common secondary structure prediction. In
Subheading 3, several concepts to be utilized in the classification of
tools are presented, and the currently available tools are classified
within this framework.



Table 1
List of tools for common secondary structure prediction from aligned sequences

Tool References Description

(Without pseudoknot)

CentroidAlifold [19, 23] Achieved superior performance in a recent benchmark (CompaRNA)
[48]. Using an MEG estimator with the y-centroid-type gain
function (Subheading 3.3.2) in combination with a mixture
probability distribution, including several types of information
(Subheading 3.2.4)

ConStruct [37,72] A semi-automatic, graphical tool based on mutual information
(Subheading 2.2)

KNetFold [6] Computes a consensus RNA secondary structure from an RNA
sequence alignment based on machine learning (Bayesian networks)

McCaskill-MEA  [32] Adopting majority rule with the McCaskill energy model [40], leading
to an algorithm that is robust to alignment errors

PETtold [59] Considers both phylogenetic information and thermodynamic stability
by extending Pfold, in combination with an MEA estimation

Pfold [34, 35] Uses phylogenetic tree information with simple SCFG

PhyloRNAalifold [14] Incorporates the number of co-varying mutations on the phylogenetic
tree of the aligned sequences into the covariance scoring of
RNAalifold

PPfold [63] A multi-threaded implementation of the Pfold algorithm, which is

extended to evolutionary analysis with a flexible probabilistic model
for incorporating auxiliary data, such as data from structure probing
experiments

RNAalifold [5,26,27] Considers both thermodynamic stability and co-variation in
combination with RIBOSUM-like scoring matrices [33]

RSpredict [62] Takes into account sequence covariation and employs effective
heuristics for accuracy improvement

(With pseudoknot)

hxmatch [73] Computes consensus structures including pseudoknots based on
alignments of a few sequences. The algorithm combines
thermodynamic and covariation information to assign scores to all
possible base-pairs, the base-pairs are chosen with the help of the
maximum weighted matching algorithm

ILM [52] Uses mutual information and helix plot in combination with heuristic
optimization

IPKnot [57] Uses MEG estimators with y-centroid gains and heuristic probability

distribution of RNA interactions together with integer linear
programming to compute a decoded RNA secondary structure

MlIfold [12] A MATLAB(R) toolbox that employs mutual information, or a related
covariation measure, to display and predict common RNA
secondary structure

To the best of my knowledge, this is a complete list of tools for the problem as of 17 June 2013. Note that tools for
common secondary structure prediction from unaligned RNA sequences are not included in this list. See Table 2 for
further details of the listed tools
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Table 2
Comparison of tools (in Table 1) for common secondary structure predictions from aligned sequences

Software*  Used information® Gain®  Prob. dist.®
Name SA WS TS ML CV PI MI MR E
(Without pseudoknot)
CentroidAlifold v v v 7/ v / v ¢ y-cent  Anyf
ConStruct v 4 v v / na na
KNetFold v v v na na
McCaskill- MEA 4 v Contra  Av(Mc)
PETfold v v v Contra  Pf+Av(Mc)
Pfold v v v Delta Pt
PhyloRNAalifold v o/ Delta Ra
PPfold v v v v Delta Pf
RNAalifold v v v/ v/ Delta Ra
RSpredict v v 4 v na na
(With pseudoknot)
hxmatch v v v na na
ILM v v 4 v na na
IPKnot v v oo/ v v y-cent  Anyf
MIfold Ve v na na

* Type of software available. SA stand alone, WS web server, TS thermodynamic stability (Subheading 2.1.1)

® In the “Information used” columns, ML machine learning (Subheading 2.1.2); CV covariation (Subheading 2.3); PI
phylogenetic (evolutionary) information(Subheading 2.4); MI mutual information (Subheading 2.2); MR majorityrule
(Subheading 2.5); EI experimental information (Subheading 2.1.3)

¢ In the column“Gain,” y-cent:y-centroid-type gain function (Subheading 3.3.2); contra: CONTRA(fold-type gain func-
tion (Subheading 3.3.3)

4 In the column “Prob. dist.,” Pf Pfold model (Subheading 3.2.2); Ra RNAalipffold model (Subheading 3.2.1);
Av(Mc) averaged probability distribution with McCaskill model (Subheading 3.2.3); “+” indicates a mixture distribu-
tion (of several models). “na” means “Not available” due to no use of probabilistic models

¢ If the method proposed in [16] is used, experimental information derived from SHAPE [36] and PARS [31] is casily
incorporated in CentroidAlign

f CentroidAlifold and IPKnot can employ a mixed distribution given by an arbitrary combination of RNAalipffold,
Pfold, and an averaged probability distribution based on the McCaskill or CONTRAfold modelssMATLAB codes
are available

2 Materials

Several pieces of information are generally utilized in tools and
algorithms for predicting common RNA ondary structures. These
will now be briefly summarized.



2.1 Fitness to Each
Sequence in the Input
Alignment

2.1.1 Thermodynamic
Stability: Energy-Based
Models

2.1.2 Machine Learning
(ML) Models

2.1.3 Experimental
Information
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The common RNA secondary structure should be a representative
secondary structure among RNA sequences in the alignment.
Therefore, the fitness of a predicted common secondary structure
to each RNA sequence in the alignment is useful information. In
particular, in Evaluation Procedure 1, the fitness of a predicted
common secondary structure to each RNA sequence is evaluated.

This fitness is based on probabilistic models for RNA second-
ary structures of individual RNA sequence, such as the energy-
based and machine learning models shown in Subheadings 2.1.1
and 2.1.2, respectively. These models provide a probability distri-
bution of secondary structures of a given RNA sequence. (p(6]x)
denotes a probability distribution of RNA secondary structures for
a given RNA sequence x.)

Turner’s energy model [38] is an energy-based model, which con-
siders the thermodynamic stability of RNA secondary structures.
This model is widely utilized in RNA secondary structure predic-
tions, in which experimentally determined energy parameters
[38, 39, 75] are employed. In the model, structures with a lower
free energy are more stable than those with a higher free energy.
Note that Turner’s energy model leads to a probabilistic model for
RNA sequences, providing a probability distribution of secondary
structures, which is called the McCaskill model [40].

In addition to the energy-based models described in the previous
subsection, probabilistic models for RNA secondary structures
based on machine learning (ML) approaches have been proposed.
In contrast to the energy-based models, machine learning models
can automatically learn parameters from training data (i.e., a set of
RNA sequences with secondary structures). There are several mod-
els based on machine learning which adopt different approaches:
(1) Stochastic context free grammar (SCFG) models [10]; (2) the
CONTRAfold model [9] (a conditional random field model); (3)
the Boltzmann Likelihood (BL) model [1-3]; and (4) non-
parametric Bayesian models [56].

See Rivas et al. [51] for detailed comparisons of probabilistic
models for RNA secondary structures.

Recently, experimental techniques to probe RNA structure by
high-throughput sequencing (SHAPE [36]; PARS [31]; FragSeq
[64]) have enabled genome-wide measurements of RNA struc-
ture. Those experimental techniques stochastically estimate the
flexibility of an RNA strand, which can be considered as a kind of
loop probability for every nucleotide in an RNA sequence.
Remarkably, secondary structures of long RNA sequences, such as
HIV-1 [69], HCV (hepatitis C virus) [44], and large intergenic
ncRNA (the steroid receptor RNA activator) [43], have been
recently determined by combining those experimental techniques
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2.2 Mutual
Information

M

2.3 Sequence
Covariation
of Base-Pairs

with computational approaches. If available, such experimental
information is useful in common secondary structure predictions,
because they provide reliable secondary structures for each RNA
sequence.

The mutual information of the sth and jth columns in the input
alignment is defined by

f--(XT)logﬂ = KL(f;(XT1) || £(X)f;(T)) (1)
’ [(X)f(T) ’ Y

where f{X) is the frequency of base X at alignment position 7
fi{ XT) is the joint frequency of finding X in the sth column and T
in the jth column, and KI(-||-) denotes the Kullback-Liebler dis-
tance between two probability distributions. As a result, the com-
plete set of mutual information can be represented as an upper
triangular matrix: {M,},.;.

Note that the mutual information score makes no use of base-
pairing rules of RNA secondary structure. In particular, mutual
information does not account for consistent non-compensatory
mutations at all, although information about them would be useful
when predicting common secondary structures as described in the
next subsection.

Because secondary structures of ncRNAs are related to their func-
tions, mutations that preserve base-pairs (i.e., covariations of a
base-pair) often occur during evolution. Figure 3 shows an exam-
ple of covariation of base-pairs of tRNA sequences, in which many
covariations of base-pairs are found, especially in the stem parts in
the tRNA structure.

The covariation of the sth and jth columns in the input align-
ment is evaluated by the averaged number of compensatory muta-
tions defined by

C. =——— AT 2
i N(N—1><x%;l4 ij 77} ( )

where Nis the number of sequences in the input alignment A. For
an RNA sequence xin 4, T =1 if &, and x; form a base-pair and
[1; =0 otherwise, and

d;’y :2_5<xi>yi>_5<xf’yf) (3)

where 6 is the delta function: §(a,5)=1 only if a=b, and §(a,b5)=0
otherwise.

For instance, RNAalifold [65] uses the information of covaria-
tion in combination with the thermodynamic stability of common
secondary structures.
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AGAGGAUU‘ CUACGA CGGUGUC] GUUCGAA 60
AGUUGGUUA CUGAUA UGAGGUC| UUCGAA 60
AGUGGA--A CUCAUA UGAUGUC GAUCGAA 58
AGUGGUG-A CUUCCA —-GUUGAC GUUCGAU 58
cuucc —-GUAGAU] AAU-AAA 54

Fig. 3 An example of covariation of base-pairs in an alignment of tRNA sequences: (a) a multiple alignment of
tRNA sequences and (b) a predicted common secondary structure of the alignment. The figures are taken from
the output of an example on the RNAalifold [5] Web Server (http://rna.tbi.univie.ac.at/cgi-bin/RNAalifold.cgi)

2.4 Phylogenetic
(Evolutionary)
Information

2.5 Majority Rule
of Base-Pairs

Because most secondary structures of functional ncRNAs are
conserved in evolution, the phylogenetic (evolutionary) informa-
tion with respect to the input alignment is useful for predicting
common secondary structures, and is employed by several tools.
Pfold [34, 35] incorporates this information into probabilistic
model for common secondary structures (Subheading 3.2.2) for
the first time.

Kiryu et al. [32] proposed the use of the majority rule of base-
pairs in predictions of common secondary structures. This rule
states that base-pairs supported by many RNA sequences should
be included in a predicted common secondary structure.
Specifically, Kiryu et al. utilized an averaged probability distri-
bution of secondary structures among RNA sequences to pre-
dict a common RNA secondary structure from a given alignment
(Subheading 3.2.3).

The aim of this approach is to mitigate alignment errors,
because the effects of a minor alignment errors can be disregarded
in the prediction of common secondary structures.
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3 Methods

3.1 MEG Estimators

3.2 Choice
of Probabilistic Models
p@O14)

3.2.1  RNAalipffold Model

In this section, I classify the existing algorithms for common RNA
secondary structure prediction (shown in Table 1) from a unified
viewpoint, based on a previous study [23] in which the following
type of estimator [ 18, 24] was employed.

y= argmax, g 4) Z G(0,)p(0 | A) (4)

0eY

where S(A) denotes a set of possible secondary structures with
length | A|(the length of the alignment A), G(6,y) is called a “gain
function” and returns a measure of the similarity between two com-
mon secondary structures, and p(0| A) is a probabilistic distribution
on S(A). This type of estimator is an MEG estimator; When the
gain function is designed according to accuracy measures for target
problems, the MEG estimator is often called a “maximum expected
accuracy (MEA) estimator” [18] (see Note 2).

In the following, a common secondary structure 6 € S(A) is

represented as an upper triangular matrix 6 = {9;.].}1( e In this
<i<j<

matrix 6;=1 if the /th column in A forms a base-pair with the jth
column in A, and 6,;=0 otherwise.

The choices of p(@|A) and G(0,y) are described in
Subheadings 3.2 and 3.3, respectively.

The probabilities p(6] A) provide a distribution of common RNA
secondary structures given a multiple sequence alignment A. This
distribution is given by the following models.

The RNAalipffold model is a probabilistic version of RNAalifold
[27], which provides a probability distribution of common RNA
secondary structures given a multiple sequence alignment. The
distribution on S(A) is defined by

Aaliptfold 1 _E(0> A>
(RNAalipffold) A) = A
p0].4) = sexp[ Ee A e, )| 9

where E(0, A) is the averaged free energy of RNA sequences in the
alignment with respect to the common secondary structure € in A
and Cov(6, A) is the base covariation (cf. Subheading 2.3) with
respect to the common secondary structure 6. The ML estimate of
this distribution is equivalent to the prediction of RNAalifold.

Note that the negative part of the exponent in Eq.5 is called
the psendo energy and it plays an essential role in finding ncRNAs
from multiple alignments [15, 67].



3.2.2 Pfold Model

3.2.3 Averaged
Probability Distribution
of Each RNA Sequence

3.2.4 Mixture of Several
Distributions
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The Pfold model [34, 35] incorporates phylogenetic (evolution-
ary) information about the input alignments into a probabilistic
distribution of common secondary structures:

P(A10,T)p(6 | M)
p(A|T,M)

PEOVO | A) = pPONO | AT, M) = (6)

where T'is a phylogenetic tree, A is the input data (i.e., an align-
ment), M is a prior model for secondary structures (based on
SCFGs; see Note 3). Unless the original phylogenetic tree 7 is
obtained, T'is taken to be the ML estimate of the tree, ML given
the model M and the alignment A.

Predictions based on RNAalipffold and Pfold models tend to be
affected by alignment errors in the input alignment. To address
this, averaged probability distributions of RNA sequences involved
in the input alignment were introduced by Kiryu et al. [32]. This
leads to an MEG estimator with the probability distribution

P01 4) =3 p(6 | (7)

xeA

where p(6|x) is a probabilistic model for RNA secondary struc-
tures, for example, the McCaskill model [40], the CONTRAfold
model [9], the BL. model [1-3], and others [56]. Note that nei-
ther covariation nor phylogenetic information about alignments is
considered in this probability distribution.

In [32], the authors utilized the McCaskill model as a proba-
bilistic model for individual RNA sequences (i.e., they used p(0| x)
in Eq.14), and showed that their method was more robust with
respect to alignment errors than RNAalifold and Pfold. Using
averaged probability distributions for RNA sequences in an input
alignment is compatible with Evaluation Procedure 1. See Hamada
et al. [23] for a detailed discussion.

Hamada et al. [23] pointed out that arbitrary information can be
incorporated into common secondary structure predictions by uti-
lizing a mxture of probability distributions. For example, the
probability distribution

pO]A)=w, - p"V O | A)+w, - pO | A)+wy - pM (0] A), (8)

where w,, w,, and w; are positive values that satisty w, +w, +w; =1,
includes covariation (Subheading 2.3), phylogenetic tree (Sub-
heading 2.4), and majority rule (Subheading 2.5) information.

In CentroidAlifold [23], users can employ a mixed distribution
given byanarbitrary combination of RNAalipffold (Subheading 3.2.1),
Pfold (Subheading 3.2.2), and an averaged probability distribution
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3.3 Choice of Gain
Functions G(9,y)

Fig. 4 Example of a predicted common secondary structure from the Centroid
Alifold Web Server [55] (http://www.ncrna.org/centroidfold). The input is a mul-
tiple sequence alignment of the traJ 5’ UTR. The color of a base-pair indicates
the averaged base-pairing probabilities (among RNA sequences in the align-
ment) of the base-pair, where warmer colors represent higher probabilities

(Subheading 3.2.3) based on the McCaskill or CONTRAfold model.
An example of a result from the CentroidAlifold Web Server is shown
in Fig.4, in which colors of base-pairs indicate the marginal base-
pairing probability with respect to this mixture distribution. Hamada
et al. also showed that computation of MEG estimators with a mix-
ture distribution can be easily conducted by utilizing base-pairing
probability matrices (see also the next section), when certain gain
functions are employed. Moreover, computational experiments indi-
cated that CentroidAlifold with a mixture model is significantly bet-
ter than RNAalifold, Pfold, or McCaskill-MEA.

A choice of the gain function in MEG estimators corresponds to the
decoding method (i.e., prediction of one final common secondary
structure from the distribution) of common RNA secondary struc-
tures, given a probabilistic model of common secondary structures.


http://www.ncrna.org/centroidfold
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3.3.1 The Kronecker
Delta Function

3.3.2 The y-Centroid-
Type Gain Function [19]

A straightforward choice of the gain function is the Kronecker
delta function:

1 if yis the exactly same as 0

(delta) _ —
GEO9)(=50,7) {O otherwise
The MEG estimator with this gain function is equivalent to the
“maximum likelihood estimator” (ML estimator) with respect to a
given probabilistic model for RNA common secondary structures
(cf. Subheading 3.2), which predicts the secondary structure with
the highest probability.

It is known that the probability of the ML estimation is extremely
small, due to the immense number of secondary structures that
could be predicted; this fact is known as the “uncertainty” of the
solution, and often leads to issues in bioinformatics [17]. Because
the MEG estimator with the delta function considers only the solu-
tion with the highest probability, it is affected by this uncertainty.
A choice of gain function that partially overcomes this uncertainty
of solutions is the y-centroid-type gain function [19]:

G0, y) = 3 [y1(6, = V)I(y, =1)+ 1(6, = 0)I(y, = 0)] (10)

3.3.3 The CONTRAfold-
Type Gain Function [9]

G contra) 9 y

]

where y>0 is a parameter that adjusts the relative importance of
the SEN and PPV of base-pairs in a predicted structure (i.e., a
larger y produces more base-pairs in a predicted secondary struc-
ture). This gain function is motivated by the concept that more
true base-pairs (TP and TN) and fewer false base-pairs (FP and
FN) should be predicted [19] when the entire distribution of sec-
ondary structures is considered. Note that, when y=1, the gain
function is equivalent to that of the centroid estimator [8].

In conventional RNA secondary structure predictions, another
gain function has been proposed (see Note 4), which is based on
the number of accurate predictions of every single position (noz
base-pair) in an RNA sequence (see Note 5). The CONTRAfold-
type gain function is

14|

=Y | v 2 16; =DI(y; =1 +[ [16; = 0)1(y; = 0) (11)

i=1 Jiy# Jij#i

where 6" and y* are symmetric extensions of € and y, respectively
(i.e., 0,/ =0, for i<jand 0, =0, for j<i). This gain function is also
applicable to MEG estimators for common secondary structure
predictions. It should be emphasized that MEG estimators based
on the CONTRAfold-type gain function (for any y>0) do not
include centroid estimators, while the y-centroid-type gain func-
tion includes the centroid estimator as a special case (i.e., y=1).
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3.3.4 Remarks About
Choice of Gain Function

3.4 CGomputation

of Common Secondary
Structure Through
MEG Estimators

3.4.1 MEG Estimator
with Delta Function

34.2 MEG Estimator
with y-Centroid (or
CONTRAfold) Type Gain
Function

3.4.3 MEG Estimators
with Averaged Probability
Distributions

From a theoretical viewpoint, the y-centroid-type gain function is
more appropriate for Evaluation Procedure 1 than either the delta
function or the CONTRAfold-type gain function (see Note 6),
which is also supported by several empirical (computational)
experiments. See Hamada et al. [23] for a detailed discussion.

Another choice of the gain function is MCC (or F-score),
which takes a balance between SEN and PPV of base-pairs, and the
MEG estimator with this gain function leads to an algorithm that
maximizes psendo-expected accuracy [22]. In addition, the estima-
tor with this gain function includes only one parameter for predict-
ing secondary structure (sec Note 7).

The MEG estimator with the delta function (that predicts the
common secondary structure with the highest probability with
respect to a given probabilistic model) can be computed by employ-
ing a CYK (Cocke-Younger—Kasami)-type algorithm. For exam-
ple, see [65] for details.

The MEG estimator with the y-centroid-type (or CONTRAfold-
type) gain function is computed based on “base-pairing probability
matrices” (BPPMs) (see Note 8) and Nussinov-style dynamic pro-
gramming (DP) [9, 23]:

M

i+l,j
M

ij-1

M. . =max M +Sij

l’
J i1, j-1

mkaX[Mi’,z + Mm,]‘]

where M;;is the optimal score of the subsequence x;..;and §;is a
score computed from the BPPM(s). For instance, for the y-centroid
estimator with the RNAalipffold model, the score §;;is equal to
S, = (y +1)p"™ Y =1 where p, I js the base-pairing probabil-
ity with respect to the RNAalipffold model. This DP algorithm
maximizes the sum of (base-pairing) probabilities p, @) which

are larger than 1/(y +1), and requires O(| A|?) time.

The MEG estimator with an averaged probability distribution
(Subheading 3.2.3) can be computed by using averaged base-
pairing probabilities, {p;},.:

1
(ave) __ (%)
gy oo “ z pij

xeA

(13)

where
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p(x) = < BeS(x)
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10

ey = V(0 | x')  if bothx,andx ;are not gaps

(14)
0 otherwise

In the above, & is the RNA sequence given by removing gaps from
x and # is the number of sequences in the alignment A. The
function 7(#) returns the position in &’ corresponding to the posi-
tion 7 in x.

The common secondary structure of MEG estimator with the
y-centroid gain function and the averaged probability distribution
are computed by using the DP recursion in Eq.12 where
S;=(r+1 2™ —1. This procedure has a time complexity of

;
O(n| A|?®) where # is the number of sequences in the alignment.

The MEG estimator with a mixture of distribution (Subheading
3.2.4) and the delta function (Subheading 3.3.1) cannot be com-
puted efficiently. However, if the y-centroid-type (or CONTRA(fold-
type) gain function is utilized, the prediction can be conducted
using a similar DP recursion to that in Eq. 12. For instance, the DP
recursion of the y-centroid-type gain function with respect to Eq. 8

is equivalent to the one in Eq. 12 with §; =(y +1)p; —1 where

- (pfold) (alipffold) |, W3 (%)
pij _Wl'sz +W2'pij +72pij . (15)
xeA

In the above, p;/P®9 and p;/#P™4) are base-pairing probabilities
for the Pfold and RNAalipffold models, respectively, and {p,/*} is a
base-pairing probability matrix with respect to a probabilistic
model for secondary structures of single RNA sequence x
(McCaskill or CONTRAfold model). Note that the total compu-
tational time of CentroidAlifold with a mixture of distributions still
remains O(n| A|?3).

Using probability distributions of secondary structures with pseu-
doknots in MEG estimators generally has higher computational
cost [42]. To overcome this, for example, IPKnot [57] utilizes an
approximated method for determining the probability distribution
as along with integer linear programming for predicting a final
common secondary structure.

Table 1 shows a comprehensive list of tools for common secondary
structure prediction from aligned RNA sequences (in alphabetical
order within groups that do or do not consider pseudoknots
(see Note 9)). To the best of my knowledge, Table 1 is a complete
list of tools for Problem 1 as of 17 June 2013.
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3.6 Discussion

3.6.1 Multiple Sequence
Alignment of RNA
Sequences

3.6.2 Improvement

of RNA Secondary
Structure Predictions Using
Common Secondary
Structure

In Table 2, the tools in Table 1 are classified based on the
considerations of Subheadings 2 and 3. The classification leads
to much useful information: (1) the pros and cons of each tool;
(2) the similarity (or dissimilarity) among tools; (3) which tools are
more suited to Evaluation Procedure 1; and (4) a unified frame-
work within which to design algorithms for Problem 1. I believe
that the classification will bring a deeper understanding of each
tool, although several tools (which are not based on probabilistic
models and depend fundamentally on heuristic approaches) cannot
be classified in terms of MEG estimators.

Predicting a multiple sequence alignment (point estimation) from
unaligned sequences is not reliable because the probability of the
alignment becomes extremely small. This is called the “uncer-
tainty” of alignments which raises serious issues in bioinformatics
[17]. In one Science paper [74], for instance, the authors argued
that the uncertainty of multiple sequence alignment greatly influ-
ences phylogenetic topology estimations: phylogenetic topologies
estimated from multiple alignments predicted by five widely used
aligners are different from one another. Similarly, point estimation
of multiple sequence alignment will greatly affect consensus sec-
ondary structure prediction.

In Problem 1, because the quality of the multiple sequence
alignment influences the prediction of common secondary struc-
ture, the input multiple alignment should be given by a multiple
aligner which is designed specifically for RNA sequences. Although
strict algorithms for multiple alignments taking into account sec-
ondary structures are equivalent to the Sankoft algorithm [54] and
have huge computational costs, several multiple aligners which are
fast enough to align long RNA sequences are available: these are
CentroidAlign [20, 76], R-coffee [71], PicXXA-R [53], DAES
[58], and MAFFT [30]. In those multiple aligners, not only nucle-
otide sequences but also secondary structures are considered in the
alignment, and they are, therefore, suitable for generating input
multiple alignments for Problem 1.

Because the common secondary structure depends on mul-
tiple alignment, an approach adopted in RNAG [70] also seems
promising. This approach iteratively samples from the condi-
tional probability distributions P(Structure | Alignment) and
P(Alignment | Structure). Note, however, that RNAG does not
solve Problem 1 directly.

Although several studies have been conducted for RNA secondary
structure predictions for a single RNA sequence [9, 19, 38, 47],
the accuracy is still limited, especially for long RNA sequences. By
employing comparative approaches using homologous sequence
information, the accuracy of RNA secondary structure prediction
will be improved. In many cases, homologous RNA sequences of
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the target RNA sequence are obtained, and someone would like to
know the common secondary structure of those sequences.
Gardner and Giegerich [13] introduced three approaches for
comparative analysis of RNA sequences, and common secondary
structure prediction is essentially utilized in the first of these.
However, if the aim is to improve the accuracy of secondary struc-
ture predictions, common secondary structure prediction is not
always the best solution, because it is not designed to predict the
optimal secondary structure of a specific target RNA sequence. If
you have a target RNA sequence for which the secondary structure
is to be predicted, the approach adopted by the CentroidHomfold
[21, 25] software is more appropriate than a method based on
common RNA secondary structure prediction.

As shown in this review, there are two ways to incorporate several
pieces of information into an algorithm for common secondary
structure prediction. The first approach is to modify the (internal)
algorithm itself in order to handle the additional information. For
example, PhyloRNAalifold [14] incorporates phylogenetic infor-
mation into the RNAalifold algorithm by modifying the internal
algorithm and PPfold [63] modifies the Pfold algorithm to handle
experimental information. The drawbacks of this approach are the
relatively large implementation cost and the heuristic combination
of the information.

On the other hand, another approach adopted in
CentroidAlifold [23] is promising because it can easily incorporate
many pieces of information into predictions if a base-pairing prob-
ability matrix is available. Because the approach depends on only
base-pairing probability matrices, and does not depend on the
detailed design of the algorithm, it is easy to implement an algo-
rithm using a mixture of distributions.

Moreover, a method to update a base-pairing probability
matrix (computed using sequence information only) which incor-
porates experimental information [ 16] has recently been proposed.
The method is independent of the probabilistic models of RNA
secondary structures, and is suitable for incorporating experimen-
tal information into common RNA secondary structure predic-
tion. A more sophisticated method by Washietl et al. [68] can also
be used to incorporate experimental information into common
secondary structure predictions, because it produces a BPPM that
takes experimental information into account.

Problem 1, which is considered in this paper, can be extended to
predictions of RNA-RNA interactions, another important task in
RNA bioinformatics (e.g., [29, 50]).

Problem 2 (Common Joint Structure Predictions of Two Aligned
RNA Sequences)
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3.7 CGonclusion

Given two multiple alignments A, and A, of RNA sequences, then
predict a joint secondary structure between Ay, and A,.

Because the mathematical structure of Problem 2 is similar to
that of Problem 1, the ideas utilized in designing the algorithms
for common secondary structure predictions can be adopted in the
development of methods for this new problem. In fact, Seemann
et al. [60, 61] have employed similar idea, adapting the PETfold
algorithm to Problem 2 (implemented in the PETcofold software).
Note that the problem of (pairwise) alignment between two mul-
tiple alignments (cf. see [24] for the details) has a similar mathe-
matical structure to Problem 1.

In this review, I focused on RNA secondary structure predictions
from aligned RNA sequences, in which a secondary structure
whose length is equal to the length of the input alignment is pre-
dicted. A predicted common secondary structure is useful not only
for further functional analyses of the ncRNAs being studied but
also for improving RNA secondary structure predictions and for
finding ncRNAs in genomes. In this review, I systematically classi-
fied existing algorithms on the basis of (1) the information utilized
in the algorithms and (2) the corresponding MEG estimators,
which consist of a gain function and a probability distribution of
common secondary structures. This classification will provide a
deeper understanding of each algorithm.

4 Notes

1. Reference common secondary structures are available for only
reference multiple sequence alignments in the Rfam database
[7] (http://rfam.sanger.ac.uk /).

2. The gain G(6,y) is equal to the accuracy measure Acc(6,y) for
a prediction and references, so the MEG estimator maximizes
the expected accuracy under a given probabilistic distribution.

3. The SCFG is based on the rules S— LS|L, F— dFd|LS,
L—s|dFd.

4. Historically, the CONTRAfold-type gain function was pro-
posed earlier than the y-centroid-type gain function.

5. This is not consistent with Evaluation Procedure 1, because

accurate predictions of base-pairs with respect to reference
structures are evaluated in it.

6. The CONTRAfold-type gain function has a bias toward accu-
rate predictions of base-pairs, compared to the y-centroid-type
gain function.

7. The y-centroid-type and CONTRAfold-type gain functions

contain a parameter adjusting the ratio of SEN and PPV for a
predicted secondary structure.


http://rfam.sanger.ac.uk/

RNA Secondary Structure Prediction from Multi-Aligned Sequences

35

8. The BPPM is a probability matrix {p;} in which p; is the
marginal probability that the ith base x; and the jth base x;
form a base-pair with respect to a given probabilistic distribu-
tion of secondary structures. For many probabilistic models,
including the McCaskill model and the CONTRAfold model,
the BPPM for a given sequence can be computed efficiently by
utilizing inside—outside algorithms. See [40] for the details.

9. Tools for predicting common secondary structures without
pseudoknots are much faster than those for predicting second-
ary structures with pseudoknots.
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