Chapter 2

Strategies for Altering Plant Traits Using Virus-Induced
Gene Silencing Technologies

Christophe Lacomme

Abstract

The rapid progress in genome sequencing and transcriptome analysis in model and crop plants has made
possible the identification of a vast number of genes potentially associated with economically important
complex traits. The ultimate goal is to assign functions to these genes by using forward and reverse genetic
screens. Plant viruses have been developed for virus-induced gene silencing (VIGS) to generate rapid gene
knockdown phenotypes in numerous plant species. To fulfill its potential for high-throughput phenomics,
it is of prime importance to ensure that parameters conditioning the VIGS response, i.¢., plant-virus inter-
actions and associated loss-of-function screens, are “fit for purpose” and optimized to unequivocally
conclude the role of a gene of interest in relation to a given trait. This chapter will review and discuss the
different strategies used for the development of VIGS-based phenomics in model and crop species.

Key words Plant functional genomics, Virus-induced gene silencing, RNAi, Forward and reverse
screens, Model plants, Crops

1 Introduction

Rapid progress in genome sequencing and transcriptome analysis
using Next Generation Sequencing (NGS) technologies and
microarray platforms are revolutionizing plant science. Genetically
complex plant species are receiving unprecedented interest in
sequencing their genomes with the ultimate aim to link genotype
to phenotype for economically important traits [1]. Gene function
characterization by moditying gene expression and its phenotype is
widely considered the main bottleneck of the postgenomic era [2].
In the past two decades, plant viruses have become instrumental in
studying plant—pathogen interactions and understanding the mul-
tifaceted nature of plant resistance mechanisms. The genetic engi-
neering of viruses has opened up a wide range of applications [ 3]
including the characterization of virus-encoded gene functions and
monitoring their movement iz planta using a fluorescent protein
tag [4]. Scientists have exploited the properties of plant viruses as
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episomal overexpression vectors to develop functional genomic
platforms, first as gain-of-function assays, by expressing functional
full-length cDNAs of endogenous or nonendogenous proteins and
studying their eftect iz planta [ 5-8 ], and further as loss-of-function
assays [9, 10] by switching oft host gene expression.

The first example of virus-induced gene silencing (VIGS),
defined as the induction of a loss-of-function phenotype, was first
reported back in 1995 [9]. In this first VIGS system, a Tobacco
mosaic virus (TMV) expression vector was used to knock down
genes involved in the carotenoid biosynthetic pathway by express-
ing a cDNA fragment of phytoene desaturase in antisense orienta-
tion [9]. This first example of so-called cytoplasmic inhibition of
gene expression illustrated the potential of virus vectors in rapidly
inducing (within 2-3 weeks after inoculation) a loss-of-function
phenotype by expressing antisense virus-encoded transcripts and
opened up avenues for the rapid assessment of gene function in
plants. Since then, an ever growing number of applications using
different virus species or virus-derived episomal genetic elements
have been reported. This has led to the expansion of VIGS to
numerous plant species, with the development of novel loss-of-
function screens, exemplitying the strong potential of this approach
for functional genomics in genetically complex plants [11].

2 Mechanisms and Dynamics of Virus-Induced Gene Silencing in Plants

VIGS is a manifestation of an endogenous RNA-mediated defense
mechanism (referred to as RNA interference or RNAI) that targets
a wide range of genetic elements, including transposons, improp-
erly matured RNAs, and viruses. During this process, double-
stranded (ds)RNA molecules are recognized by RNAse III-like
enzyme, namely, Dicer-like endonuclease (DCL) and cleaved into
small interfering (si)RNAs. Single-stranded siRNAs will be incor-
porated into the RNA-induced Silencing Complex (RISC) involv-
ing Argonaute, and other associated proteins will recognize and
guide an homology-dependent degradation of the homologous
target viral RNA. The viral genome will therefore be the trigger
and the target of RNAI leading to the degradation of the viral RNA
[12]. Introduction of a plant cDNA fragment into the viral genome
will redirect the RNAI response to promote the degradation of
host mRNAs and inhibit corresponding gene expression. While the
majority of plant-infecting viruses have a (+)ssRNA genome, DNA
viruses such as Caulimoviruses and Geminiviruses are both induc-
ers and targets of RNAi. The formation of aberrant dsRNA in these
cases is believed to originate either from RNA replicative interme-
diate by pairing between (-) and (+)ssRNA strands during replica-
tion of (+)ssRNA or overlap of sense and antisense RNAs from
bidirectional promoters or from folded secondary structures of
abundant viral RNAs [13].
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Systemic movement of siRNA has been reported during virus
infection and in transgene-induced silencing [14]; in the case of
VIGS, the RNAI response to endogenous genes is closely associ-
ated with cell layers supporting virus replication. Monitoring the
systemic silencing response generated by knock down of the
Phytoene desaturase (PDS) or Sulphur (SU) gene provides a robust
means to map the distribution of the RNAI response [9, 10, 15].
Significant variations in the efficiency of the silencing response do
occur between viruses and between plant species or closely related
ecotypes or cultivars [16] with fluctuations (cycles of fading and
reappearance in emerging leaves [17]) to a sustained, albeit often
relatively weak, silencing response that can persist through seed
stage in the progeny [18, 19] sometimes up to 2 years after the
initial inoculation [20]. RNAI acts as a counter-selective mecha-
nism hampering virus accumulation and ultimately VIGS efficiency.
Viruses have developed counter-defense mechanisms to evade
RNAI, and some virulence factors of plant viruses act as suppres-
sors of RNAi [21]. The complex dynamics of host RNAi and virus
counter-defense mechanisms might explain the nonuniformity of
the silencing phenotype observed.

3 VIGS Systems

3.1 Viruses,
Satellite-Associated
Molecules, and Virus-
Encoded Genes

Originally, the first examples of virus-induced gene silencing relied
on a limited number of (+)ssRNA virus vectors that were initially
developed and designed to express full-length ¢cDNAs. These
included TMV, Potato virus X (PVX), and Tobacco rattle virus
(TRV) [9, 10, 22]. Their use as silencing vectors was exemplified
by using cDNA fragments in sense or antisense orientation to trig-
ger the silencing of the endogenous reporter gene, PDS. This
approach provided a landmark for the development and improve-
ment of these early VIGS platforms and the development of new
VIGS vectors. Exploiting the patterns of the systemic movement of
a virus offers possibilities to promote or enhance silencing in spe-
cific areas of the plant. This was demonstrated using a modified
TRV-VIGS vector that retains its helper protein, 2b, required for
nematode transmission and provided a means to trigger robust
silencing in root tissues [23]. However, not all ss(+) RNA viruses
are amenable to generating a robust silencing response, as some
virus genera such as potyviruses encode potent silencing-
suppressing proteins which prevent their use as a silencing plat-
form. Other VIGS systems relied on the use of satellite RNA of a
replicating helper TMYV virus to deliver dsRNA in infected plants.
The advantage of this approach is in the uncoupling of virus
replication function from its silencing induction function mediated
by the satellite RNA [24]. This approach triggered strong VIGS
knockdown phenotypes in its host, Nicotiana tabacum [24].
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3.2 Nature

of the Elicitor
of the Silencing
Response

While size constraints in packaging their encapsidated genomic
DNA have hampered the use of DNA viruses as expression plat-
forms of full-length cDNAs, geminiviruses (ssDNA) have proven
to be an efficient VIGS platform (Tomato golden mosaic virus
TGMYV, Cauliflower leaf curl virus CaLCuV, African cassava
mosaic virus ACMV) in a wide variety of plant species such as
Nicotiana  benthamiana and Arabidopsis thaliana (Table 1).
As opposed to RNA viruses whose replication cycle occurs in the
cytoplasm, DNA viruses replicate in the nuclei and trigger
homology-dependent degradation of target transcripts [15].
Silencing of several genes has been reported using a TGMV VIGS
vector, including in meristematic cell layers from which most plant
viruses are excluded [15]. As for RNA viruses, satellite ssDNA
molecules can be transformed as VIGS vectors [25]. Further, Rice
tungro bacilliform virus (RTBV), a dsDNA pararetrovirus from the
Caulimoviridae family, was developed as a VIGS vector for rice
[26], illustrating the potential of dsDNA viruses to trigger an effi-
cient silencing response in this economically important host.

cDNA fragments of different lengths, mainly in antisense orienta-
tion, have been used as elicitors of the silencing response. Previous
studies have reported that cDNA length affects the silencing
response. The barley stripe mosaic virus (BSMV) VIGS vector can
induce silencing with fragments ranging from 128 to 584 nt with
comparable efficiency, suggesting that insert size does not always
correlate with increased silencing response [ 18] in this system. In
contrast, BSMV accumulation was affected in constructs harboring
larger inserts (i.e., 584 nt in length), and the silencing response
lasted to the next generation with BSMV constructs harboring
smaller inserts (80-125 nt). Studies on a PVX-VIGS vector dem-
onstrated that fragments as small as 33 nt in length can trigger
significant silencing of the PDS gene in N. benthamiana [27].

While inverted repeats have proven to be a potent trigger of
PTGS [28] in transgenic plants, hairpin RNA (hpRNA), folding
back as dsRNA upon transcription, has been found to generate a
strong silencing response in some VIGS systems (TMV, BSMV,
TYMV) [29, 30]. This approach offers the possibility of cloning
smaller fragments, i.e., from 40 nt up to 60-80 nt in length per
repeat, with the view of narrowing the size of the target RNA frag-
ment. The benefits of smaller sized RNA and dsRNA lies in mini-
mizing off-target effects by selecting smaller transcript regions that
are unique to the gene family and avoiding unwanted silencing of
closely related gene families [31].

Further refinement of VIGS systems involves the overexpres-
sion of artificial micro (ami)RNAs from a virus vector [32]. In this
approach, the authors used the properties of miRNAs (small non-
coding RNAs of 18-25 nt in length) to regulate gene expression
by promoting target mRNA degradation. amiRNAs can be
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3.3 Strategies Used
to Deliver VIGS Vectors
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designed to silence either single or multiple target genes [33]. This
approach, termed MIR-VIGS, was successfully used to knock
down a range of endogenous genes and, in spite of the small size
of the silencing trigger, compared favorably to classical siRNA-
derived VIGS constructs using larger fragments [32].

The generation of infectious RNA from (+)ssRNA-derived constructs
required an in vitro transcription step from a linearized plasmid tem-
plate driven by a T7 promoter to produce infectious transcripts of
either single genomic RNA (PVX, TMV) or multiple genomic RNAs
(TRV, BSMV) (Table 1). While being widely used, this approach can
be onerous as VIGS screens require the generation of a sufficient
amount of templates (even more so for multipartite virus genomes)
to inoculate a suitable number of biological replicates in several inde-
pendent inoculation experiments of control and target plants.
Alternatives were sought and, when possible, infectious sap can be
used from this initial infection event to produce a larger bulk of infec-
tious VIGS constructs. Further refinements were brought using
biolistically delivered plasmids which generate infectious viral genomic
RNA in planta through CaMV 35S promoter-driven transcription
and linearization by a self-cleaving ribozyme in their 3’-end viral
RNA. Such an approach is currently used to deliver a BSMV-VIGS
vector in monocot hosts ([34], Table 1). A robust alternative relies
on Agrobacterium tumefaciens (agroinoculation) harboring the virus
genome within the T-DNA of'a Ti plasmid which will be transferred
into the genome of the plant. This approach was successtully used for
a range of VIGS vectors such as PVX, TRV, and PEBV (Table 1).
Diverse methods of agroinoculation have been reported (Table 1).
Agroinoculation offers many advantages including: (1) reducing the
cost of generation of infectious viruses, (2) infection of plants at an
carly developmental stage before full leat development using agro-
bacteria suspension for infiltration of root tissues (termed
“agrodrench,” [35]), and (3) infiltration of agrobacteria into specific
tissues such as fruits by syringe-mediated agroinfiltration (Table 1).
Availability of TRV vectors with ligation-independent cloning sys-
tems with a high efficacy of cloning [36] simplified the cloning step
and made VIGS vectors suitable for high-throughput reverse screen-
ing. These advances made it possible to study genes regulating fruit
development and response to numerous biotic and abiotic stresses,
alleviating the initial drawbacks of VIGS which now can be applied to
most, if not all, plant developmental stages (Table 1).

4 Applications of VIGS

4.1 N.benthamiana:
The Model Plant
of Phenomics

The robustness of a VIGS screen requires not only a suitable virus-
silencing vector but also a host that fulfills at least some of the
following criteria: (1) tolerance of virus accumulation and sys-
temic movement in most organs, (2) low symptomatology to virus
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4.2 VIGS-Based
Phenomics in Grop
Species

infection to minimize unwanted effects that could interfere with
the silencing screen, and (3) induction of a robust silencing
response with acceptable intensity (i.e., observable silencing phe-
notype and decrease of target RNA levels), coverage, and
duration.

Albeit VIGS vectors have been developed and demonstrated to
trigger gene silencing in A. thaliana [ 30, 37], N. benthamiana has
become the host of choice for VIGS-based functional genomics
(also termed “phenomics” [2]) due to its early adoption by the
plant virology community for its ability to support infection by
many virus species [38]. N. benthamiana’s amenability to
Agrobacteria-based transient gene expression and susceptibility to
various pathogens and pests (bacteria, fungi, viruses, oomycetes,
nematodes, and insects) allowed scientists to develop many VIGS-
based screens to unravel the molecular nature of many types of
plant—pathogen interactions from elicitor-based response, hyper-
sensitive response, and host and nonhost resistance in a range of
tissues and organs (Table 1) [11].

The development and recent completion of genome sequencing
projects for a number of related economically important solanaceous
crops such as tomato [39] and potato [40] have highlighted the need
for the scientific community to use N. benthamiana as a surrogate
host. Indeed, N. benthamiana is more amenable for robust VIGS-
based phenomics of an increasingly large number of genes from
related solanaceous crops that bear sufficient sequence homologies
for heterologous silencing (Table 1). The draft genome of N. ben-
thamiana (size of 2.6 Gb with 16,000 unigenes deposited in
GenBank) has recently been published [40, 41]. These resources will
contribute not only to the facilitation of cDNA cloning but also to
the design of more refined VIGS constructs to target single or mul-
tiple genes within a family by using a cDNA silencing trigger that
minimizes off-target effects [31]. Together with the availability of
microarrays for transcriptome profiling, EST database, transient and
stable transformation protocols, transgenic marker lines and VIGS
libraries strengthen N. benthamiana as a model plant for phenomics.

The successive improvements of VIGS vectors and their mode of
delivery in host plants have considerably widened the use of VIGS
as a versatile gene knockdown platform. One of the most impor-
tant milestones in VIGS-based phenomics is its expansion from
model plants to crops for the study of unique metabolic or devel-
opmental pathways. VIGS systems have been implemented for
many plant species with economical interest as main sources of
food worldwide (such as rice, wheat, maize, barley, tomato, potato,
soybean, pea, bean, and strawberry), secondary metabolites (alka-
loids in tobacco and poppy), floral morphogenesis in ornamentals
(Solanacene and Orchidaceae), and fibers (cotton) in very diverse
plant species from dicotyledons, monocotyledons, and woody
perennials (apple, pear, and grapevine) (Table 1, [11, 42, 43]).
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VIGS screens were developed to study organ development and
biosynthetic pathways in most plant tissues (leaf, root, flower,
tubers, and seeds) at early or late developmental stages in progeny
plants and to study most types of plant—pathogen interactions
(Table 1). So far, due to their broad host range, TRV and BSMV
VIGS vectors have emerged as generic VIGS systems for many
crop species, including genetically complex hexaploid (wheat) or
octaploid (strawberry) species for which a mutagenesis approach
remains a huge challenge [44, 45].

4.3 VIGS-Based While VIGS has been mainly used as a reverse genetics approach to
Forward Genetics characterize defined target genes, high-throughput forward genet-
Screens ics screens have been developed by cloning normalized ¢cDNA

libraries into VIGS vectors and screening for a phenotype of inter-
est. The potential of this approach has been exemplified by screen-
ing about 5,000 cDNAs for the suppression of localized cell death
associated with the hypersensitive response (HR) during resistance
to the bacterial phytopathogen Pseudomonas syringae using a PVX
VIGS vector [46]. Among the six candidates that suppressed HR,
the authors identified Heat Shock Protein 90 (HSP90) as a cochap-
erone of disease resistance proteins whose knockdown resulted in
the suppression of HR cell death [46]. The authors estimated that
this forward screen might have covered about 10 % of the N. ben-
thamiana transcriptome (~2,500 genes). In a separate study, a
TRV-VIGS vector was used to screen 1,500 cDNAs for their abil-
ity to alter cell death development in N. benthamiana. This led to
the identification of Beclin I whose knockdown phenotype resulted
in uncontrolled cell death, thereby defining Beclinl as a key regula-
tor of autophagy-associated pathways by restricting HR cell death
to the initial infection site [47]. Since then, other examples of
VIGS-based forward screening of cDNA libraries have been
reported (Table 1).

5 Current Limitations of VIGS

The properties of virus-derived expression vectors offer many
advantages over conventional stable transformation, allowing rapid
functional studies on plants that are recalcitrant to transient or
stable transformation. As the intensity and coverage of the VIGS
response vary between plants and experiments, it is therefore
important to ensure that a gene in a specific tissue is efficiently
silenced and associated to the phenotype of interest, highlighting
the influence of environmental conditions in the development and
sustainability of the VIGS response [48, 49]. Cosilencing of
reporter genes together with a gene of interest from the same
VIGS vector has been reported and offers a means to identify
plants or tissues that undergo silencing [37]. However, the choice
of reporter gene is crucial because steady state RNA and protein
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turnover vary between genes and, in the case of GFP transgene
systemic noncell autonomous silencing, has been reported in N.
benthamiana [50] and might not represent faithfully the extent of
the silencing response of other endogenous genes of interest in this
system. Recently, other transgenic reporter systems were described
to visualize silenced areas in tomato fruits [51].

While efforts are made to select a VIGS plant system that does
not display strong symptoms of viral infection, the virus life cycle
induces substantial cellular modifications from the host machinery
to perform viral replication and movement that will impact plant
metabolism [52]. VIGS screens require careful selection of variet-
ies/ecotypes that tolerate virus accumulation and suitable control
plants (i.e., virus infected with closely related constructs that trig-
ger and do not trigger VIGS) to get an accurate representation of
the phenotype associated with the knockdown of the selected gene.

The influence of the genetic background of the host is likely to
impact the robustness of virus accumulation and, concomitantly,
the VIGS response generated. N. benthamiana was shown to lack
a RNA-dependent RNA polymerase 1 (RDRI) activity which is a
component of the antiviral defense mechanisms making the plant
more susceptible to viruses [53]. Further reverse engineering of
selected plants or screening for ecotypes that are deficient in RDR
activity might prove to be an efficient means to engineer recalci-
trant host plants more amenable to VIGS-based approaches.

6 Novel Approaches

6.1 Hijacking
the microRNA
Pathway: mirVIGS

6.2 CGoupling VIGS
with Other Omics
Platforms: Reverse
Engineering

of Metabolic Pathways

As described earlier in Subheading 3.2, micro RNAs (miRNA) can
be used to promote specific gene silencing. The authors have dem-
onstrated that artificial miRNAs can be designed and expressed
from a cabbage leaf-curl geminivirus (CaLCV) to silence the
expression of several endogenous reporter genes (PDS, SU), flower
development (CLA), and the genes involved in N-mediated resis-
tance to TMV (8GT1I) [32]. Using artificial miRNAs (MIR VIGS)
offers a means to design a VIGS construct which minimizes
off-target effects and ensures that a phenotype is associated with
the selected gene target. Moreover, this approach opens up a way
to study miRNA function rapidly and a powerful screening method
to engineer stable knockdown assays.

The development of a visually traceable VIGS response was recently
reported in tomato fruit [50]. The overexpression of Antirrhinum
majus Delin and Roseal transcription factors in tomato yielded
anthocyanin-rich purple tomato fruits, in combination with a TRV
tandem VIGS vector cosilencing Delila/Roseal together with the
gene of interest. The recovery of red-colored segments of fruits
provided a convenient means to identify the silenced area, which,
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Gene Silencing
From Invading
Microorganisms
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coupled with metabolic (volatile) profiling, exemplified the poten-
tial of this approach to assess the impact of gene knockdown on the
metabolome and a means to map regulatory networks [51].

While most of the applications of VIGS focus on the alteration of
the phenotype of the plant host, recent studies have demonstrated
that gene silencing generated in plants can target invading
microorganisms.

This was exemplified using a TRV-VIGS vector to generate
dsRNA into the feeding cells and to mediate gene silencing to
invading root-knot nematodes [54]. Interestingly, the knockdown
of the targeted genes was observed in the progeny of the feeding
nematodes, suggesting that this approach could be used for the
functional analysis of genes involved in the early development of
nematodes iz planta. One of the main drawbacks of this approach
is the heterogeneity in RNAI efficiency between inoculated plants
which yet prevent its use for the high-throughput functional analy-
sis of selected nematode genes.

Using transgenic plants and the BSMV VIGS system, Nowara
et al. [55] demonstrated that RNA interference with gene expres-
sion of the biotrophic fungus Blumeria graminis (powdery mil-
dew) in barley and wheat was effective and inhibited Blumeria
colonization. In this approach, termed Host-induced Gene
Silencing (HIGS), the authors triggered RNAi of the Blumeria
avirulence gene Avrl0whose knockdown promoted fungal growth
in barley cultivars harboring the matching Mlal0 resistance gene.
Since then, HIGS was demonstrated to knock down the expression
of three potential pathogenicity genes from the wheat rust fungus
Puccinia triticina which resulted in a suppressed disease pheno-
type [56].

Host-induced knockdown of invading pathogen genes has a
strong potential to expand functional genomics to invading patho-
gens and to develop an efficient means of protecting plants against
pathogens and pests.

7 Perspectives

The strength of VIGS lies in its versatility and rapidity of altering
gene expression in a range of plant species within a few weeks from
cloning to visual assessment of the knockdown phenotype in vivo.
VIGS-based phenomics have greatly contributed to the recent
advances in many areas of plant science. In turn, the development
of VIGS phenomics has benefited from the knowledge of RNA
regulatory pathways that shape the molecular and cellular nature of
plant—virus interactions and plant developmental pathways. The
ongoing development of new virus-derived expression vectors and
novel phenomics screens will undoubtedly broaden our knowledge
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of gene function in many plant species. Getting further insight on
these key mechanisms in model and genetically complex crop spe-
cies will allow the scientific community to get a broader under-
standing of the regulation of complex traits and ultimately the
development of sustainable strategies for crop production and pro-
tection against pathogens and pests.
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