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    Chapter 2   

 Binding Site Druggability Assessment 
in Fragment-Based Drug Design 

           Yu     Zhou     and     Niu     Huang    

    Abstract 

   Target druggability refers to the propensity that a particular target is amenable to bind high-affi nity drug- like 
molecules. A robust yet accurate computational assessment of target druggability would greatly benefi t the 
fi elds of chemical genomics and drug discovery. Here, we illustrate a structure-based computational 
protocol to quantitatively assess the target binding-site druggability via in silico screening a fragment-like 
compound library. In particular, we provide guidelines, suggestions, and critical thoughts on different 
aspects of this computational protocol, including: construction of fragment library, preparation of target 
structure, in silico fragment screening, and analysis of druggability.  

  Key words     Druggability assessment  ,   Fragment screening  ,   Molecular docking  ,   MM-GB/SA rescor-
ing  ,   Hit rate  

1      Introduction 

 Successful drug development requires a disease target of both bio-
logical relevance and chemical tractability. With the completion of 
the human genome, we now have unprecedented access to large 
numbers of potential therapeutic targets. The question that arises 
is which specifi c protein targets can be modulated by a drug-like 
molecule. Druggability (i.e., propensity that a particular target is 
amenable to bind high-affi nity drug-like molecules) assessment in 
the process of target selection would reduce drug discovery attri-
tion and put effort on those targets most likely to lead to therapeu-
tic intervention [ 1 ]. 

 The fi rst step in evaluating the druggability of a target is to 
identify the presence of binding pockets with suitable size, shape, 
and composition to accommodate drug-like molecules. Many 
approaches for this purpose have been developed that are generally 
classifi ed as geometry-based [ 2 – 5 ], information-based [ 6 ,  7 ], 
and energy-based algorithms [ 8 ,  9 ]. Benchmarking studies using 
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training set data extracted from the Protein Data Bank (PDB), 
most approaches have demonstrated to correctly detect the true 
ligand- binding sites. However, the presence of a suitable protein 
pocket is necessary but not suffi cient to guarantee potent binding 
of drug- like small molecules. 

 The more diffi cult step is to quantitatively predict the drug-
gability index of a given binding site. Early studies have pre-
dicted target druggability on the basis of sequence and structure 
homology to known drug targets [ 10 ,  11 ]. However, not all 
members of the same protein family are equally druggable [ 12 ]. 
More importantly, such methods cannot be used to assess drug-
gability of novel target families. Recently several structure-based 
target druggability methods have been developed and validated 
against a set of reference targets where the degree of tractability 
is known. These methods provide quantitative assessments of 
druggability using physicochemical descriptors derived from the 
ligand binding pockets and apply techniques as varied as bio-
physical modeling [ 13 ], linear regression [ 14 ,  15 ], and support 
vector machines [ 16 ]. 

 Hajduk et al. made a seminal contribution by demonstrating 
that experimental hit rates from the heteronuclear-NMR-based 
fragment screening could serve as an effective druggability index 
within a set of 23 protein targets containing 28 different binding 
sites [ 17 ]. Furthermore, they derived a linear regression model to 
fi t the experimentally measured hit rates to physicochemical 
descriptors of these 28 binding pockets. Applying an appropriate 
cutoff, this model was assessed using an additionally assembled 
binding-site dataset, and 33 out of 35 known drug-like ligand- 
binding sites were correctly identifi ed. Being essentially analog to 
the NMR-based fragment screening, an in silico fragment screen-
ing protocol was also developed to assess target binding-site drug-
gability [ 18 ]. It makes use of a molecular mechanics-based scoring 
method for the protein–ligand interaction and the obtained virtual 
hit rates were demonstrated to correlate with the hits rate mea-
sured experimentally from the NMR-based screening method. 
This protocol can be employed to distinguish known druggable 
and non-druggable targets, and it is generally applicable without 
relying on any assembled training data set that potentially extends 
its capacity toward unexplored target space. 

 In this chapter, we illustrate the computational details of this in 
silico fragment screening protocol for target druggability assess-
ment ( see  Fig.  1  for a schematic overview). We outline the criteria 
for the construction of fragment library, discuss the method for the 
preparation of target structure, and describe the procedure for car-
rying out the in silico fragment screening. Finally, we discuss the 
druggability analysis from the virtual screening results.   
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2    Materials 

 The druggability assessment protocol entails building a fragment- 
like compound library and performing in silico fragment screening 
experiments, which could be carried out by means of a variety of 
Web servers and software. The programs listed here are merely the 
ones used as examples for illustrating this procedure. The diverse 
set of fragments is selected from the fragment-like subset of the 
ZINC database [ 19 ,  20 ]. The DOCK 3.5.54 program [ 21 ,  22 ] is 
used to dock the fragment database into the protein binding site. 
The Protein Local Optimization Program (PLOP) [ 23 – 25 ] is used 
to perform MM-GB/SA refi nement and rescoring.  

3    Methods 

      1.    Extract compounds from the fragment-like subset of the ZINC 
database ( see   Note 1 ).   

   2.    Eliminate fragments with more than 15 heavy atoms ( see   Note 2 ).   

3.1  Fragment Library 
Construction

  Fig. 1    Schematic illustration of druggability prediction via fragment-based dock-
ing and scoring approach       
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   3.    Calculate feature key fi ngerprints using CACTVS [ 26 ], and 
perform the fi ngerprint-based similarity analysis with a modi-
fi ed version of the program SUBSET [ 27 ] to reduce redun-
dancy of the fragment library ( see   Note 3 ).      

      1.    Select one or more representative structures for the protein 
target ( see   Note 4 ).   

   2.    Determine the ligand binding pocket ( see   Note 5 ). Identify 
cofactors, metal ions, and structural waters in the target pro-
tein and treat them as part of the protein if they are involved in 
ligand binding.   

   3.    Add hydrogen atoms to the protein. Assign proper proton-
ation states for binding-site residues and optimize the orienta-
tions for polar hydrogen atoms using PLOP ( see   Note 6 ).      

  The in silico screening protocol employs a physics-based hierarchi-
cal scoring method which consists of two steps: predicting the 
binding poses of ligands using a docking program, and then refi n-
ing and rescoring those protein–ligand complexes using a more 
computationally intensive molecular-mechanics based energy func-
tion [ 28 ,  29 ]. This protocol uses a high-throughput docking pro-
gram to initially orient and score the ZINC fragment-like 
compounds in the binding site, and subjects the best single dock-
ing pose for each docked compound to a rescoring stage in which 
the ligand is fully minimized inside the binding site and the bind-
ing energy is estimated with an all-atom molecular mechanics force 
fi eld combined with an implicit solvent model. Finally the results 
of all compounds are analyzed based on the binding energy 
distribution. 

      1.    Identify binding site residues within a certain range (e.g., 
12 Å) away from any heavy atom of the crystallographic ligand 
or the residues used to defi ne the site, using the program FILT 
(part of the UCSF DOCK suite).   

   2.    Calculate the solvent-accessible molecular surface [ 30 ] of the 
protein binding site with the program DMS [ 31 ] using a probe 
radius of 1.4 Å.   

   3.    Generate receptor-derived spheres with the program SPHGEN 
(part of the UCSF DOCK suite) [ 32 ], in combination with the 
ligand-derived spheres if necessary ( see   Note 7 ).   

   4.    Set the grid box dimensions with edges 15 Å beyond the 
matching spheres initially. Then refi ne the box dimensions to 
maximize the coverage of the protein without exceeding 2 mil-
lion grid points at a predefi ned grid resolution (three points 
per angstrom by default). Finally, four scoring grids are gener-
ated: an excluded volume grid using DISTMAP [ 33 ], a united 

3.2  Target Structure 
Preparation

3.3  In Silico 
Fragment Screening

3.3.1  Docking Fragment- 
Like Compounds Library
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atom AMBER-based van der Waals potential grid using 
CHEMGRID [ 33 ], an electrostatic potential grid using DelPhi 
[ 34 ], and a solvent occlusion map using the program 
SOLVMAP [ 35 ].   

   5.    Perform docking with DOCK 3.5.54, a fl exible-ligand method 
that uses a force-fi eld-based scoring function. Ligand confor-
mations are scored on the basis of the total docking energy 
( E  tot  =  E  ele  +  E  vdw  − Δ G  lig-solv ), which is the sum of electrostatic 
( E  ele ) and van der Waals interaction energies ( E  vdw ), corrected 
by the partial ligand desolvation energy (Δ G  lig-solv ).   

   6.    Save a single docking pose with the best total energy score for 
each docked molecule for the next stage of scoring ( see   Note 8 ).      

      1.    Generate OPLS force fi eld parameter for each molecular com-
pound and cofactor (if present), using IMPACT (part of the 
Schrödinger suite).   

   2.    Submit the free ligand, free protein and docked protein–
ligand complex to multi-scale Truncated Newton (MSTN) 
energy minimization [ 25 ] in all-atom OPLS force fi eld [ 36 , 
 37 ] and Generalized Born (GB) solvent [ 38 ,  39 ] using PLOP 
( see   Note 9 ).   

   3.    Calculate the binding energy ( E  bind  =  E  RL  −  E  L  −  E  R ) by subtract-
ing the energies of the optimized free ligand in solution ( E  L ) 
and the free protein in solution ( E  R ) from the optimized pro-
tein–ligand complex’s energy in solution ( E  RL ) ( see   Note 10 ).      

      1.    Report the energy scores distribution for the protein target.       

      1.    Compute the “hit rate” for the in silico screening based on a 
chosen energy cutoff value (−40 kcal/mol) ( see   Note 11 ).   

   2.    Calculate the druggability score which is defi ned as log(hit 
rate).   

   3.    Compare the druggability score with the cutoff value of 0.36 
to classify the assessed target as druggable or non-druggable 
( see   Note 12 ).       

4    Notes 

     1.    Fragments are molecules of low complexity, which sample 
chemical space exponentially more effectively than drug-sized 
molecules. Different estimates exist of the size of chemical 
space. Here, the fragment-like subset of the ZINC database 
(version 6, December 2005) contains 49,134 compounds with 
relatively low molecular weight (MW ≤ 250), few  rotatable 

3.3.2  MM-GB/SA 
Refi nement and Rescoring

3.3.3  Histogram Analysis 
of Energy Score

3.4  Druggability 
Analysis
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bonds (RB < 3), low hydrophobicity (−2 < log  P  < 3), and weak 
hydrogen bonding potentials (HB donor  < 3 and HB acceptor  < 6).   

   2.    Kuntz et al. observed that the maximal binding free energy 
increases more slowly for ligands containing more than 15 
heavy atoms [ 40 ]. Therefore, fragments with more than 15 
heavy atoms were eliminated. This fi lter reduced the library 
size to 32,717 molecules.   

   3.    Representative structures were selected for each structural 
cluster with Tanimoto coeffi cient (Tc) less than 0.9 to other 
clusters. This further reduced the library to 11,129 diverse 
molecules. To assess any potential bias resulting from the 
diversity-based fi ltering, redo the screening using 32,717 
ZINC fragment-like compounds for the training dataset, leads 
to very similar energy distributions.   

   4.    Targets may have multiple crystal complex structures available 
and some display signifi cant side-chain movement upon bind-
ing to different ligands [ 41 ]. In most cases, we found that the 
changes of the histograms of energy scores and the druggabil-
ity scores calculated from them are remarkably small when 
using different crystal structures. Nevertheless, multiple con-
formations are recommended for the binding sites with large 
structural variation, especially for the protein–protein interac-
tion (PPI) interfaces. Applying our protocol, specifi c drugga-
ble conformations could also be identifi ed.   

   5.    The identifi cation of the protein binding pocket is straightfor-
ward for ligand-bound complex structures. However, the 
binding site is not known from a 3-D structure or from other 
experimental data, a “suitable” pocket is required to be 
detected fi rstly by pocket detection programs or virtual 
inspection.   

   6.    Ideally, the target protein should be prepared as if the crystal 
ligand was absent, as adjusting the protein to favor crystal 
ligands is a source of bias.   

   7.    Spheres are generated to fi ll the binding site. Matching spheres 
required for the orientation of the ligand within the binding 
site are obtained by augmenting the ligand-derived spheres 
with receptor-derived spheres. By default, spheres furthest 
away from ligand-derived spheres, furthest from the centroid 
of the remaining spheres, too close to receptor atoms, or too 
close to each other are removed iteratively until the total num-
ber of sphere is 35 or less. However, for large binding surfaces 
like protein–protein interfaces, we use a maximum of 120 
matching spheres to ensure adequate ligand sampling.   

   8.    One major limitation of the current protocol is that it relies 
entirely on the docking algorithm to identify the correct 
 binding pose. A simple extension of this protocol is to subject 
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a small number of dissimilar binding poses to minimization in 
the MM-GB/SA rescoring step and use the most favorable 
binding energy for rank-ordering ligands. Therefore, multiple 
(usually hundreds of) docking poses could be saved in docking 
stage and subjected for structural descriptor-based fi ltering and 
KGS-penalty function-based conformational clustering [ 42 ]. 
Tens of poses might be fi nally obtained for next MM-GB/SA 
rescoring.   

   9.    The molecular mechanics forces are divided into short-range 
(bond, angle, torsion, and local non-bonded) and long-range 
components, with the long-range forces updated only inter-
mittently. The algorithm is also optimized for minimizations 
with GB solvent that increases the computational expense by 
only a factor of ~3 relative to the vacuum. Thus, this scoring 
approach accounts for accurate and effi cient calculations of 
ligand–protein interaction energies, the ligand/receptor desol-
vation, and to a lesser extent, ligand strain energies. In this 
work, the protein was kept rigid during protein–ligand mini-
mization to reduce the computational expense.   

   10.    Accurate free energy calculations depend on a proper balance 
of many different energetic components. The MM-GB/SA 
rescoring method strikes a balance between computational 
speed and accuracy, and in particular neglects entropic loss and 
protein fl exibility. Empirically scaling certain energy compo-
nents as a post-rescoring process, in a manner similar to LIE 
scheme, may be useful to compensate for some of these limita-
tions [ 43 ]. It has been suggested that the MM-GB/SA scoring 
function underestimates the nonpolar binding contributions 
to the free energy of binding [ 28 ]. In this study, we empirically 
scaled the van der Waals energy component by a factor of 2.   

   11.    This cutoff value was empirically chosen to maximally differen-
tiate druggable and non-druggable binding site. We visually 
inspected the energy distributions for the 13 druggable bind-
ing sites and 11 non-druggable binding sites in Hajduk et al. 
training data set and explored the effect of varying the cutoff 
with respect to differentiating between druggable and non- 
druggable binding sites. We found the correlation between the 
docking screening hit rates and the NMR screening results is 
relatively insensitive to the value of the energy cutoff within a 
certain range (from −40 to −34 kcal/mol). In this work, an 
energy cutoff of −40 kcal/mol was used for computing the in 
silico hit rate.   

   12.    The calculated druggability scores correlate reasonably well 
with the NMR-based fragment screening results. Hajduk et al. 
defi ned binding sites as “highly druggable” if they have a 
experimental log(hit rate) > −1.0. The corresponding value of 
computational log(hit rate) is 0.36, and we used this value to 

Binding Site Druggability Assessment



20

classify proteins as druggable or non-druggable in this work. 
Although Hajduk et al. distinguish between “highly drugga-
ble” and “moderately druggable,” we use a simple binary clas-
sifi cation for simplicity. Nevertheless, the higher druggability 
score a target is assigned, the more druggable it might be.         
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