Chapter 2

Binding Site Druggability Assessment
in Fragment-Based Drug Design

Yu Zhou and Niu Huang

Abstract

Target druggability refers to the propensity that a particular target is amenable to bind high-affinity drug-like
molecules. A robust yet accurate computational assessment of target druggability would greatly benefit the
fields of chemical genomics and drug discovery. Here, we illustrate a structure-based computational
protocol to quantitatively assess the target binding-site druggability via in silico screening a fragment-like
compound library. In particular, we provide guidelines, suggestions, and critical thoughts on different
aspects of this computational protocol, including: construction of fragment library, preparation of target
structure, in silico fragment screening, and analysis of druggability.
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1 Introduction

Successful drug development requires a disease target of both bio-
logical relevance and chemical tractability. With the completion of
the human genome, we now have unprecedented access to large
numbers of potential therapeutic targets. The question that arises
is which specific protein targets can be modulated by a drug-like
molecule. Druggability (i.e., propensity that a particular target is
amenable to bind high-affinity drug-like molecules) assessment in
the process of target selection would reduce drug discovery attri-
tion and put effort on those targets most likely to lead to therapeu-
tic intervention [1].

The first step in evaluating the druggability of a target is to
identify the presence of binding pockets with suitable size, shape,
and composition to accommodate drug-like molecules. Many
approaches for this purpose have been developed that are generally
classified as geometry-based [2-5], information-based [6, 7],
and energy-based algorithms [8, 9]. Benchmarking studies using
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training set data extracted from the Protein Data Bank (PDB),
most approaches have demonstrated to correctly detect the true
ligand-binding sites. However, the presence of a suitable protein
pocket is necessary but not sufficient to guarantee potent binding
of drug-like small molecules.

The more difficult step is to quantitatively predict the drug-
gability index of a given binding site. Early studies have pre-
dicted target druggability on the basis of sequence and structure
homology to known drug targets [10, 11]. However, not all
members of the same protein family are equally druggable [12].
More importantly, such methods cannot be used to assess drug-
gability of novel target families. Recently several structure-based
target druggability methods have been developed and validated
against a set of reference targets where the degree of tractability
is known. These methods provide quantitative assessments of
druggability using physicochemical descriptors derived from the
ligand binding pockets and apply techniques as varied as bio-
physical modeling [13], linear regression [14, 15], and support
vector machines [16].

Hajduk et al. made a seminal contribution by demonstrating
that experimental hit rates from the heteronuclear-NMR-based
fragment screening could serve as an effective druggability index
within a set of 23 protein targets containing 28 different binding
sites [17]. Furthermore, they derived a linear regression model to
fit the experimentally measured hit rates to physicochemical
descriptors of these 28 binding pockets. Applying an appropriate
cutoft, this model was assessed using an additionally assembled
binding-site dataset, and 33 out of 35 known drug-like ligand-
binding sites were correctly identified. Being essentially analog to
the NMR-based fragment screening, an in silico fragment screen-
ing protocol was also developed to assess target binding-site drug-
gability [18]. It makes use of a molecular mechanics-based scoring
method for the protein-ligand interaction and the obtained virtual
hit rates were demonstrated to correlate with the hits rate mea-
sured experimentally from the NMR-based screening method.
This protocol can be employed to distinguish known druggable
and non-druggable targets, and it is generally applicable without
relying on any assembled training data set that potentially extends
its capacity toward unexplored target space.

In this chapter, we illustrate the computational details of this in
silico fragment screening protocol for target druggability assess-
ment (see Fig. 1 for a schematic overview). We outline the criteria
for the construction of fragment library, discuss the method for the
preparation of target structure, and describe the procedure for car-
rying out the in silico fragment screening. Finally, we discuss the
druggability analysis from the virtual screening results.
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Fig. 1 Schematic illustration of druggability prediction via fragment-based dock-
ing and scoring approach

2 Materials

The druggability assessment protocol entails building a fragment-
like compound library and performing in silico fragment screening
experiments, which could be carried out by means of a variety of
Web servers and software. The programs listed here are merely the
ones used as examples for illustrating this procedure. The diverse
set of fragments is selected from the fragment-like subset of the
ZINC database [19, 20]. The DOCK 3.5.54 program [21, 22] is
used to dock the fragment database into the protein binding site.
The Protein Local Optimization Program (PLOP) [23-25] is used
to perform MM-GB /SA refinement and rescoring.

3 Methods

3.1 Fragment Library
Construction

1. Extract compounds from the fragment-like subset of the ZINC
database (see Note 1).

2. Eliminate fragments with more than 15 heavy atoms (se¢ Note 2).
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3.2 Target Structure
Preparation

3.3 In Silico
Fragment Screening

3.3.1 Docking Fragment-
Like Compounds Library

3. Calculate feature key fingerprints using CACTVS [26], and
perform the fingerprint-based similarity analysis with a modi-
fied version of the program SUBSET [27] to reduce redun-
dancy of the fragment library (se¢ Note 3).

1. Select one or more representative structures for the protein
target (see Note 4).

2. Determine the ligand binding pocket (see Note 5). Identify
cofactors, metal ions, and structural waters in the target pro-
tein and treat them as part of the protein if they are involved in
ligand binding.

3. Add hydrogen atoms to the protein. Assign proper proton-
ation states for binding-site residues and optimize the orienta-
tions for polar hydrogen atoms using PLOP (se¢ Note 6).

The in silico screening protocol employs a physics-based hierarchi-
cal scoring method which consists of two steps: predicting the
binding poses of ligands using a docking program, and then refin-
ing and rescoring those protein-ligand complexes using a more
computationally intensive molecular-mechanics based energy func-
tion [28, 29]. This protocol uses a high-throughput docking pro-
gram to initially orient and score the ZINC fragment-like
compounds in the binding site, and subjects the best single dock-
ing pose for each docked compound to a rescoring stage in which
the ligand is fully minimized inside the binding site and the bind-
ing energy is estimated with an all-atom molecular mechanics force
field combined with an implicit solvent model. Finally the results
of all compounds are analyzed based on the binding energy
distribution.

1. Identify binding site residues within a certain range (e.g.,
12 A) away from any heavy atom of the crystallographic ligand
or the residues used to define the site, using the program FILT
(part of the UCSF DOCK suite).

2. Calculate the solvent-accessible molecular surface [30] of the
protein binding site with the program DMS [31] using a probe
radius of 1.4 A.

3. Generate receptor-derived spheres with the program SPHGEN
(part of the UCSF DOCK suite) [32], in combination with the
ligand-derived spheres if necessary (see Note 7).

4. Set the grid box dimensions with edges 15 A beyond the
matching spheres initially. Then refine the box dimensions to
maximize the coverage of the protein without exceeding 2 mil-
lion grid points at a predefined grid resolution (three points
per angstrom by default). Finally, four scoring grids are gener-
ated: an excluded volume grid using DISTMAP [33], a united
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atom AMBER-based van der Waals potential grid using
CHEMGRID [33], an electrostatic potential grid using DelPhi
[34], and a solvent occlusion map using the program
SOLVMAP [35].

. Perform docking with DOCK 3.5.54, a flexible-ligand method

that uses a force-field-based scoring function. Ligand confor-
mations are scored on the basis of the total docking energy
(Eioc= Eac+ Evaw— AGiigsory), Which is the sum of electrostatic
(E..) and van der Waals interaction energies ( E.q,), corrected
by the partial ligand desolvation energy (A Gig-soly)-

. Save a single docking pose with the best total energy score for

each docked molecule for the next stage of scoring (see Note 8).

. Generate OPLS force field parameter for each molecular com-

pound and cofactor (if present), using IMPACT (part of the
Schrodinger suite).

. Submit the free ligand, free protein and docked protein—

ligand complex to multi-scale Truncated Newton (MSTN)
energy minimization [25] in all-atom OPLS force field [36,
37] and Generalized Born (GB) solvent [38, 39] using PLOP
(see Note 9).

. Calculate the binding energy ( E,q= ER~ EX - E}) by subtract-

ing the energies of the optimized free ligand in solution (EY)
and the free protein in solution (ER) from the optimized pro-
tein-ligand complex’s energy in solution ( E*) (see Note 10).

. Report the energy scores distribution for the protein target.

. Compute the “hit rate” for the in silico screening based on a

chosen energy cutoft value (=40 kcal/mol) (see Note 11).

. Calculate the druggability score which is defined as log(hit

rate).

. Compare the druggability score with the cutoff value of 0.36

to classify the assessed target as druggable or non-druggable
(see Note 12).

4 Notes

. Fragments are molecules of low complexity, which sample

chemical space exponentially more effectively than drug-sized
molecules. Different estimates exist of the size of chemical
space. Here, the fragment-like subset of the ZINC database
(version 6, December 2005) contains 49,134 compounds with
relatively low molecular weight (MW <250), few rotatable
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bonds (RB < 3), low hydrophobicity (-2 <log P< 3), and weak
hydrogen bonding potentials (HBgonor < 3 and HB,ccepror <6).

. Kuntz et al. observed that the maximal binding free energy

increases more slowly for ligands containing more than 15
heavy atoms [40]. Therefore, fragments with more than 15
heavy atoms were eliminated. This filter reduced the library
size to 32,717 molecules.

. Representative structures were selected for each structural

cluster with Tanimoto coefficient (Tc) less than 0.9 to other
clusters. This further reduced the library to 11,129 diverse
molecules. To assess any potential bias resulting from the
diversity-based filtering, redo the screening using 32,717
ZINC fragment-like compounds for the training dataset, leads
to very similar energy distributions.

. Targets may have multiple crystal complex structures available

and some display significant side-chain movement upon bind-
ing to different ligands [41]. In most cases, we found that the
changes of the histograms of energy scores and the druggabil-
ity scores calculated from them are remarkably small when
using different crystal structures. Nevertheless, multiple con-
formations are recommended for the binding sites with large
structural variation, especially for the protein—protein interac-
tion (PPI) interfaces. Applying our protocol, specific drugga-
ble conformations could also be identified.

. The identification of the protein binding pocket is straightfor-

ward for ligand-bound complex structures. However, the
binding site is not known from a 3-D structure or from other
experimental data, a “suitable” pocket is required to be
detected firstly by pocket detection programs or virtual
inspection.

. Ideally, the target protein should be prepared as if the crystal

ligand was absent, as adjusting the protein to favor crystal
ligands is a source of bias.

. Spheres are generated to fill the binding site. Matching spheres

required for the orientation of the ligand within the binding
site are obtained by augmenting the ligand-derived spheres
with receptor-derived spheres. By default, spheres furthest
away from ligand-derived spheres, furthest from the centroid
of the remaining spheres, too close to receptor atoms, or too
close to each other are removed iteratively until the total num-
ber of sphere is 35 or less. However, for large binding surfaces
like protein—protein interfaces, we use a maximum of 120
matching spheres to ensure adequate ligand sampling.

. One major limitation of the current protocol is that it relies

entirely on the docking algorithm to identity the correct
binding pose. A simple extension of this protocol is to subject
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a small number of dissimilar binding poses to minimization in
the MM-GB/SA rescoring step and use the most favorable
binding energy for rank-ordering ligands. Therefore, multiple
(usually hundreds of) docking poses could be saved in docking
stage and subjected for structural descriptor-based filtering and
KGS-penalty function-based conformational clustering [42].
Tens of poses might be finally obtained for next MM-GB/SA
rescoring.

. The molecular mechanics forces are divided into short-range

(bond, angle, torsion, and local non-bonded) and long-range
components, with the long-range forces updated only inter-
mittently. The algorithm is also optimized for minimizations
with GB solvent that increases the computational expense by
only a factor of ~3 relative to the vacuum. Thus, this scoring
approach accounts for accurate and efficient calculations of
ligand—protein interaction energies, the ligand /receptor desol-
vation, and to a lesser extent, ligand strain energies. In this
work, the protein was kept rigid during protein—ligand mini-
mization to reduce the computational expense.

Accurate free energy calculations depend on a proper balance
of many different energetic components. The MM-GB/SA
rescoring method strikes a balance between computational
speed and accuracy, and in particular neglects entropic loss and
protein flexibility. Empirically scaling certain energy compo-
nents as a post-rescoring process, in a manner similar to LIE
scheme, may be useful to compensate for some of these limita-
tions [43]. It has been suggested that the MM-GB /SA scoring
function underestimates the nonpolar binding contributions
to the free energy of binding [28]. In this study, we empirically
scaled the van der Waals energy component by a factor of 2.

This cutoft value was empirically chosen to maximally differen-
tiate druggable and non-druggable binding site. We visually
inspected the energy distributions for the 13 druggable bind-
ing sites and 11 non-druggable binding sites in Hajduk et al.
training data set and explored the effect of varying the cutotf
with respect to differentiating between druggable and non-
druggable binding sites. We found the correlation between the
docking screening hit rates and the NMR screening results is
relatively insensitive to the value of the energy cutoff within a
certain range (from -40 to -34 kcal/mol). In this work, an
energy cutoft of —40 kcal /mol was used for computing the in
silico hit rate.

The calculated druggability scores correlate reasonably well
with the NMR-based fragment screening results. Hajduk et al.
defined binding sites as “highly druggable” if they have a
experimental log(hit rate)>-1.0. The corresponding value of
computational log(hit rate) is 0.36, and we used this value to



20

Yu Zhou and Niu Huang

classify proteins as druggable or non-druggable in this work.
Although Hajduk et al. distinguish between “highly drugga-
ble” and “moderately druggable,” we use a simple binary clas-
sification for simplicity. Nevertheless, the higher druggability
score a target is assigned, the more druggable it might be.

The Chinese Ministry of Science and Technology “973” Grant
2011CB812402 (to N.H.) is acknowledged for financial support,
Shoichet Lab at UCSF for the DOCK3.5.54 program and Jacobson

Acknowledgement
Lab at UCSF for PLOP.
References
1. Fauman EB, Rai BK, Huang ES (2011)

- An

. Glaser

Structure-based druggability assessment—iden-
tifying suitable targets for small molecule thera-
peutics. Curr Opin Chem Biol 15:463-468

. Brady GP Jr, Stouten PF (2000) Fast predic-

tion and visualization of protein binding pock-
ets with PASS. J Comput Aided Mol Des
14:383-401

. Hendlich M, Rippmann F, Barnickel G (1997)

LIGSITE: automatic and efficient detection of
potential small molecule-binding sites in pro-
teins. J Mol Graph Model 15(359-363):389

. Laskowski RA (1995) SURFNET: a program

for visualizing molecular surfaces, cavities, and
intermolecular interactions. ] Mol Graph
13(323-330):307-328

. Liang J, Edelsbrunner H, Woodward C (1998)

Anatomy of protein pockets and cavities: mea-
surement of binding site geometry and impli-
cations for ligand design. Protein Sci
7:1884-1897

. Soga S, Shirai H, Kobori M, Hirayama N

(2007) Use of amino acid composition to pre-
dict ligand-binding sites. ] Chem Inf Model
47:400-406

. Stuart AC, Ilyin VA, Sali A (2002) LigBase: a

database of families of aligned ligand binding
sites in known protein sequences and struc-
tures. Bioinformatics 18:200-201

Totrov M, Abagyan R (2004)
Comprehensive identification of “druggable”
protein ligand binding sites. Genome Inform
15:3141

F, Morris RJ, Najmanovich R]J,
Laskowski RA, Thornton JM (2006) A
method for localizing ligand binding pockets
in protein structures. Proteins 62:479—488

10.

11.

12.

13.

14.

15.

16.

17.

18.

Hopkins AL, Groom CR (2002) The drugga-
ble genome. Nat Rev Drug Discov 1:727-730

Blundell TL, Sibanda BL, Montalvao RW,
Brewerton S, Chelliah V, Worth CL, Harmer
NJ, Davies O, Burke D (2006) Structural biol-
ogy and bioinformatics in drug design: oppor-
tunities and challenges for target identification
and lead discovery. Philos Trans R Soc Lond B
Biol Sci 361:413-423

Fauman EB, Hopkins AL, Groom CR (2003)
Structural bioinformatics in drug discovery.
Methods Biochem Anal 44:477-497

Cheng AC, Coleman RG, Smyth KT, Cao Q,
Soulard P, Caffrey DR, Salzberg AC, Huang
ES (2007) Structure-based maximal affinity
model predicts small-molecule druggability.
Nat Biotechnol 25:71-75

Sheridan RP, Maiorov VN, Holloway MK,
Cornell WD, Gao YD (2010) Drug-like den-
sity: a method of quantifying the “bindability”
of a protein target based on a very large set of
pockets and drug-like ligands from the Protein
Data Bank. ] Chem Inf Model 50:2029-2040

Halgren TA (2009) Identifying and character-
izing binding sites and assessing druggability. J
Chem Inf Model 49:377-389

Nayal M, Honig B (2006) On the nature of
cavities on protein surfaces: application to the
identification of drug-binding sites. Proteins
63:892-906

Hajduk PJ, Huth JR, Fesik SW (2005)
Druggability indices for protein targets derived
from NMR-based screening data. ] Med Chem
48:2518-2525

Huang N, Jacobson MP (2010) Binding-site
assessment by virtual fragment screening.
PLoS One 5:¢10109



19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Irwin JJ, Shoichet BK (2005) ZINC-a free
database of commercially available compounds
for virtual screening. ] Chem Inf Model
45:177-182

Irwin JJ, Sterling T, Mysinger MM, Bolstad
ES, Coleman RG (2012) ZINC: a free tool to
discover chemistry for biology. J Chem Inf
Model 52:1757-1768

Lorber DM, Shoichet BK (2005) Hierarchical
docking of databases of multiple ligand con-
formations. Curr Top Med Chem 5:739-749

Wei BQ, Baase WA, Weaver LH, Matthews
BW, Shoichet BK (2002) A model binding site
for testing scoring functions in molecular
docking. ] Mol Biol 322:339-355

Jacobson MP, Kaminski GA, Friesner RA,
Rapp CS (2002) Force field validation using
protein side chain prediction. J Phys Chem B
106:11673-11680

Jacobson MP, Pincus DL, Rapp CS, Day T7J,
Honig B, Shaw DE, Friesner RA (2004) A
hierarchical approach to all-atom protein loop
prediction. Proteins 55:351-367

Zhu K, Shirts MR, Friesner RA, Jacobson MP
(2007) Multiscale optimization of a truncated
newton minimization algorithm and applica-
tion to proteins and protein-ligand complexes.
J Chem Theory Comput 3:640-648

Thlenfeldt WD, Takahashi Y, Abe S, Sasaki S
(1994) Computation and management of
chemical properties in CACTVS: an extensible
networked approach toward modularity and
flexibility. ] Chem Inf Comput Sci 34:109-116
Voigt JH, Bienfait B, Wang S, Nicklaus MC
(2001) Comparison of the NCI open database
with seven large chemical structural databases.
J Chem Inf Comput Sci 41:702-712

Huang N, Kalyanaraman C, Bernacki K,
Jacobson MP (2006) Molecular mechanics
methods for predicting protein-ligand binding.
Phys Chem Chem Phys 8(44):5166-5177
Huang N, Kalyanaraman C, Irwin JJ, Jacobson
MP (2006) Physics-based scoring of protein-
ligand complexes: enrichment of known inhib-
itors in large-scale virtual screening. J Chem
Inf Model 46:243-253

Connolly ML (1983) Solvent-accessible sur-
faces of proteins and nucleic acids. Science
221:709-713

Ferrini TE, Huang CC, Jarvis LE, Roberts L
(1988) The MIDAS display system. J Mol
Graph 6:13-27

Binding Site Druggability Assessment 21

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Kuntz ID, Blaney JM, Oatley SJ, Langridge R,
Ferrin TE (1982) A geometric approach to
macromolecule-ligand interactions. ] Mol Biol
161:269-288

Meng EC, Shoichet BK, Kuntz ID (1992)
Automated docking with grid-based energy
evaluation. ] Comput Chem 13:505-524

Nicholls A, Honig B (1991) A raid finite-
difference algorithm, utilizing successive over-
relaxation to solve the Poisson-Boltzmann
equation. ] Comput Chem 12:435-445

Mysinger MM, Shoichet BK (2010) Rapid
context-dependent ligand desolvation in

molecular docking. J Chem Inf Model
50:1561-1573

Jorgensen WL, Maxwell DS, Tirado-Rives J
(1996) Development and testing of the OPLS
all-atom force field on conformational ener-
getics and properties of organic liquids. ] Am
Chem Soc 118:11225-11236

Kaminski GA, Friesner RA, Tirado-Rives ],
Jorgensen WL (2001) Evaluation and repa-
rametrization of the OPLS-AA force field for
proteins via comparison with accurate quan-
tum chemical calculations on peptides. J Phys
Chem B 105:6474-6487

Gallicchio E, Zhang LY, Levy RM (2002) The
SGB /NP hydration free energy model based on
the surface generalized born solvent reaction
field and novel nonpolar hydration free energy
estimators. ] Comput Chem 23:517-529

Ghosh A, Rapp CS, Friesner RA (1998)
Generalized born model based on a surface
integral formulation. J Phys Chem B
102:10983-10990

Kuntz ID, Chen K, Sharp KA, Kollman PA
(1999) The maximal affinity of ligands. Proc
Natl Acad Sci U S A 96:9997-10002

Sherman W, Day T, Jacobson MP, Friesner
RA, Farid R (2006) Novel procedure for
modeling ligand /receptor induced fit effects.
J Med Chem 49:534-553

Peng SM, Zhou Y, Huang N (2013) Improving
the accuracy of pose prediction in molecular
docking via structural filtering and conforma-
tional  clustering. Chin  Chem  Lett
24:1001-1004

Zhou Z, Madura JD (2004) CoMFA 3D-QSAR
analysis of HIV-1 RT non nucleoside inhibitors,
TIBO derivatives based on docking conforma-

tion and alignment. J Chem Inf Comput Sci
44:2167-2178



2 Springer
http://www.springer.com/978-1-4939-2485-1

Fragment-Based Methods in Drug Discovery
Klon, A.E. (Ed.)

2015, I¥, 230 p. 68 illus., 53 illus. in color., Hardcover
ISEM: 978-1-4939-2485-1
& product of Humana Press



	Chapter 2: Binding Site Druggability Assessment in Fragment-Based Drug Design
	1 Introduction
	2 Materials
	3 Methods
	3.1 Fragment Library Construction
	3.2 Target Structure Preparation
	3.3 In Silico Fragment Screening
	3.3.1 Docking Fragment-�Like Compounds Library
	3.3.2 MM-GB/SA Refinement and Rescoring
	3.3.3 Histogram Analysis of Energy Score

	3.4 Druggability Analysis

	4 Notes
	References


