2

Returns

2.1 Introduction

The goal of investing is, of course, to make a profit. The revenue from investing,
or the loss in the case of negative revenue, depends upon both the change in
prices and the amounts of the assets being held. Investors are interested in
revenues that are high relative to the size of the initial investments. Returns
measure this, because returns on an asset, e.g., a stock, a bond, a portfolio
of stocks and bonds, are changes in price expressed as a fraction of the initial
price.

2.1.1 Net Returns

Let P, be the price of an asset at time ¢. Assuming no dividends, the net
return over the holding period from time ¢ — 1 to time ¢ is

P P, —-P_
R, = to_qo 1t t-1

P Py

The numerator P, — P;_; is the revenue or profit during the holding period,
with a negative profit meaning a loss. The denominator, P;_1, was the initial
investment at the start of the holding period. Therefore, the net return can
be viewed as the relative revenue or profit rate.

The revenue from holding an asset is

revenue = initial investment X net return.

For example, an initial investment of $10,000 and a net return of 6 % earns
a revenue of $600. Because P; > 0,
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6 2 Returns

so the worst possible return is —1, that is, a 100 % loss, and occurs if the asset
becomes worthless.

2.1.2 Gross Returns

The simple gross return is

Py
Py

=1+ R,

For example, if P, =2 and P4 = 2.1, then 1 + Ry = 1.05, or 105 %, and
Ri11 = 0.05, or 5 %. One’s final wealth at time ¢ is one’s initial wealth at time
t—1 times the gross return. Stated differently, if X is the initial at time ¢t —1,
then Xo(1+ R;) is one’s wealth at time ¢.

Returns are scale-free, meaning that they do not depend on units (dollars,
cents, etc.). Returns are not unitless. Their unit is time; they depend on the
units of ¢ (hour, day, etc.). In this example, if ¢ is measured in years, then,
stated more precisely, the net return is 5 % per year.

The gross return over the most recent k periods is the product of the k
single-period gross returns (from time ¢ — k to time ¢):

P, ( P, >(Pt—1> (Pt—k+1>
1+ Ri(k) = =
o(k) Py, P Py Py,

=(1+Re)--(1+ Ri—py1)-

The k-period net return is R (k).

2.1.3 Log Returns

Log returns, also called continuously compounded returns, are denoted by 74
and defined as

ry = log(1 4+ R;) = log (Ppt > =Pt — Pt—1,
t—1
where p; = log(P;) is called the log price.

Log returns are approximately equal to returns because if z is small, then
log(1+x) ~ x, as can been seen in Fig. 2.1, where log(1+ z) is plotted. Notice
in that figure that log(1 + z) is very close to x if |z| < 0.1, e.g., for returns
that are less than 10 %.

For example, a 5% return equals a 4.88 % log return since log(1 4 0.05) =
0.0488. Also, a —5 % return equals a —5.13 % log return since log(1 — 0.05) =
—0.0513. In both cases, r; = log(1 + R;) =~ R;. Also, log(1 + 0.01) = 0.00995
and log(1 — 0.01) = —0.01005, so log returns of +1% are very close to the
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corresponding net returns. Since returns are smaller in magnitude over shorter
periods, we can expect returns and log returns to be similar for daily returns,
less similar for yearly returns, and not necessarily similar for longer periods
such as 10 years.

0.2

log(x + 1)
0.0 o041

-0.1
1

-0.2
1

. — log(x+1)
- =X

-0.3
1

T T T T T
-0.2 -0.1 0.0 0.1 0.2

Fig. 2.1. Comparison of functions log(1 + z) and x.

The return and log return have the same sign. The magnitude of the log
return is smaller (larger) than that of the return if they are both positive (neg-
ative). The difference between a return and a log return is most pronounced
when both are very negative. Returns close to the lower bound of —1, that is
complete losses, correspond to log return close to —oo.

One advantage of using log returns is simplicity of multiperiod returns. A
k-period log return is simply the sum of the single-period log returns, rather
than the product as for gross returns. To see this, note that the k-period log
return is

re(k) = log{1 + R(k)}
=log{(1+Ry)---(1+ Ri—p41)}
=log(1+ R¢) + -+ +1log(1 4+ Ry—p1)
=TTt Tkl

2.1.4 Adjustment for Dividends

Many stocks, especially those of mature companies, pay dividends that must
be accounted for when computing returns. Similarly, bonds pay interest. If a
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dividend (or interest) D; is paid prior to time ¢, then the gross return at time
t is defined as

14+ Ry = ——1, (2.2)

and so the net return is Ry = (P, + D¢)/P;—1 — 1 and the log return is
ri = log(1+ R;) = log(P; + D) —log(P;—1). Multiple-period gross returns are
products of single-period gross returns so that

Pt+Dt> (Ptl +Dt1> (Pthrl +Dtk+1>

1+ Ri(k) =

o(k) ( P P s Py
=1+R)1+Ri—1) - (14 Ri—g41), (2.3)

where, for any time s, Dy = 0 if there is no dividend between s — 1 and s.
Similarly, a k-period log return is

ri(k) =log{l + Re(k)} =log(1 + R¢) + - - - + log(l + Ry—g+1)

P, +D P, D,
:10g<;3:_1t)+...+10g( : }Hlpjkt }”1).

2.2 The Random Walk Model

The random walk hypothesis states that the single-period log returns, r; =
log(1 + R;), are independent. Because

1+ Re(k) =14+ Ry) - (14 Ri—gt1)
= exp(r¢) - - - exp(rs—k41)
=exp(re+ -+ Te—kt1),

we have
log{l + Rt(k)} =71+ + Tt—k+1- (24)

It is sometimes assumed further that the log returns are N(u,o?) for some
constant mean and variance. Since sums of normal random variables are
themselves normal, normality of single-period log returns implies normality
of multiple-period log returns. Under these assumptions, log{1l + R;(k)} is
N(kpu, ko?).

2.2.1 Random Walks

Model (2.4) is an example of a random walk model. Let Z3, Zs, ... be i.i.d. (in-
dependent and identically distributed) with mean p and standard deviation o.
Let Sy be an arbitrary starting point and

Sy =S8o+Z14-+Z, t>1. (2.5)
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From (2.5), S; is the position of the random walker after ¢ steps starting at Sp.

The process Sy, Sq, ... is called a random walk and Z1, Z, ... are its steps.
If the steps are normally distributed, then the process is called a normal
random walk. The expectation and variance of S;, conditional given Sy, are
E(S|So) = So + ut and Var(S;|So) = o?t. The parameter y is called the drift
and determines the general direction of the random walk. The parameter o
is the wvolatility and determines how much the random walk fluctuates about
the conditional mean Sy + pt. Since the standard deviation of Sy given Sy is
ov/t, (So + ut) £ o/t gives the mean plus and minus one standard deviation,
which, for a normal random walk, gives a range containing 68 % probability.
The width of this range grows proportionally to v/#, as is illustrated in Fig. 2.2,
showing that at time t = 0 we know far less about where the random walk
will be in the distant future compared to where it will be in the immediate
future.

2.2.2 Geometric Random Walks
Recall that log{1 + R:(k)} = r¢ + -+ + r¢_g+1. Therefore,

P,
Py,

=14+ Ri(k) =exp(rs+ -+ r—pt+1), (2.6)

so taking k = t, we have
P, = Pyexp(ry +re—1+---+11). (2.7)

We call such a process whose logarithm is a random walk a geometric random
walk or an exponential random walk. If 71,79, ... are i.i.d. N(u,o?), then P, is
lognormal for all ¢ and the process is called a lognormal geometric random walk
with parameters (u,0?). As discussed in Appendix A.9.4, u is called the log-
mean and o is called the log-standard deviation of the log-normal distribution
of exp(ry). Also, p is sometimes called the log-drift of the lognormal geometric
random walk.

2.2.3 Are Log Prices a Lognormal Geometric Random Walk?

Much work in mathematical finance assumes that prices follow a lognormal
geometric random walk or its continuous-time analog, geometric Brownian
motion. So a natural question is whether this assumption is usually true.
The quick answer is “no.” The lognormal geometric random walk makes two
assumptions: (1) the log returns are normally distributed and (2) the log
returns are mutually independent.

In Chaps. 4 and 5, we will investigate the marginal distributions of several
series of log returns. The conclusion will be that, though the return density
has a bell shape somewhat like that of normal densities, the tails of the log
return distributions are generally much heavier than normal tails. Typically, a
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—— mean
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Fig. 2.2. Mean and bounds (mean plus and minus one standard deviation) on a
random walk with So = 0, p = 0.5, and 0 = 1. At any given time, the probability
of being between the bounds (dashed curves) is 68 % if the distribution of the steps
is normal. Since p > 0, there is an overall positive trend that would be reversed if p
were negative.

t-distribution with a small degrees-of-freedom parameter, say 4-6, is a much
better fit than the normal model. However, the log-return distributions do
appear to be symmetric, or at least nearly so.

The independence assumption is also violated. First, there is some corre-
lation between returns. The correlations, however, are generally small. More
seriously, returns exhibit volatility clustering, which means that if we see high
volatility in current returns then we can expect this higher volatility to con-
tinue, at least for a while. Volatility clustering can be detected by checking
for correlations between the squared returns.

Before discarding the assumption that the prices of an asset are a lognor-
mal geometric random walk, it is worth remembering Box’s dictum that “all
models are false, but some models are useful.” This assumption is sometimes
useful, e.g., for deriving the famous Black—Scholes formula.

2.3 Bibliographic Notes

The random walk hypothesis is related to the so-called efficient market hy-
pothesis; see Ruppert et al. (2003) for discussion and further references. Bodie
et al. (1999) and Sharpe et al. (1995) are good introductions to the random
walk hypothesis and market efficiency. A more advanced discussion of the
random walk hypothesis is found in Chap.2 of Campbell et al. (1997) and
Lo and MacKinlay (1999). Much empirical evidence about the behavior of
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returns is reviewed by Fama (1965, 1970, 1991, 1998). Evidence against the
efficient market hypothesis can be found in the field of behavioral finance
which uses the study of human behavior to understand market behavior; see
Shefrin (2000), Shleifer (2000), and Thaler (1993). One indication of market
inefficiency is excess volatility of market prices; see Shiller (1992) or Shiller
(2000) for a less technical discussion.

R will be used extensively in what follows. Dalgaard (2008) and Zuur et al.
(2009) are good places to start learning R.

2.4 R Lab

2.4.1 Data Analysis

Obtain the data set Stock_bond.csv from the book’s website and put it in
your working directory. Start R' and you should see a console window open
up. Use Change Dir in the “File” menu to change to the working directory.
Read the data with the following command:

dat = read.csv("Stock_bond.csv", header = TRUE)

The data set Stock_bond.csv contains daily volumes and adjusted closing
(AC) prices of stocks and the S&P 500 (columns B-W) and yields on bonds
(columns X-AD) from 2-Jan-1987 to 1-Sep-2006.

This book does not give detailed information about R functions since
this information is readily available elsewhere. For example, you can use R’s
help to obtain more information about the read.csv() function by typing
“?read.csv” in your R console and then hitting the Enter key. You should
also use the manual An Introduction to R that is available on R’s help file and
also on CRAN. Another resource for those starting to learn R is Zuur et al.
(2009).

An alternative to typing commands in the console is to start a new script
from the “file” menu, put code into the editor, highlight the lines, and then
press Ctrl-R to run the code that has been highlighted.? This technique is
useful for debugging. You can save the script file and then reuse or modify it.

Once a file is saved, the entire file can be run by “sourcing” it. You can
use the “file” menu in R to source a file or use the source() function. If
the file is in the editor, then it can be run by hitting Ctrl-A to highlight the
entire file and then Ctrl-R.

The next lines of code print the names of the variables in the data set,
attach the data, and plot the adjusted closing prices of GM and Ford.

! You can also run R from Rstudio and, in fact, Rstudio is highly recommended.
The authors switched from R to Rstudio while the second edition of this book
was being written.

2 Or click the “run” button in Rstudio.
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names (dat)
attach(dat)
par (mfrow = c(1, 2))
plot (GM_AC)
plot (F_AC)

1< S

Here and elsewhere in this book, line numbers are often added when listing R
code. The line numbers are not part of the code.

By default, as in lines 4 and 5, points are plotted with the character “o”.
To plot a line instead, use, for example plot (GM_AC, type = "1"). Similarly,
plot (GM_AC, type = "b") plots both points and a line.

The R function attach() puts a database into the R search path. This
means that the database is searched by R when evaluating a variable, so objects
in the database can be accessed by simply giving their names. If dat was not
attached, then line 4 would be replaced by plot(dat$GM_AC) and similarly
for line 5.

The function par() specifies plotting parameters and mfrow=c(nl,n2)
specifies “make a figure, fill by rows, nl rows and n2 columns.” Thus, the first
nl plots fill the first row and so forth. mfcol(nl,n2) fills by columns and so
would put the first n2 plots in the first column. As mentioned before, more
information about these and other R functions can be obtained from R’s online
help or the manual An Introduction to R.

Run the code below to find the sample size (n), compute GM and Ford
returns, and plot GM net returns versus the Ford returns.

1 n = dim(dat) [1]

2 GMReturn = GM_AC[-1] / GM_AC[-n] - 1
3 FReturn = F_AC[-1] / F_AC[-n] - 1

4 par(mfrow = c(1, 1))

5 plot(GMReturn,FReturn)

On lines 2 and 3, the index -1 means all indices except the first and
similarly -n means all indices except the last.

Problem 1 Do the GM and Ford returns seem positively correlated? Do you
notice any outlying returns? If “yes,” do outlying GM returns seem to occur
with outlying Ford returns?

Problem 2 Compute the log returns for GM and plot the returns versus the
log returns. How highly correlated are the two types of returns? (The R function
cor() computes correlations.)

Problem 3 Repeat Problem 1 with Microsoft (MSFT) and Merck (MRK).
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When you exit R, you can “Save workspace image,” which will create an
R workspace file in your working directory. Later, you can restart R and load
this workspace image into memory by right-clicking on the R workspace file.
When R starts, your working directory will be the folder containing the R
workspace that was opened. A useful trick when starting a project in a new
folder is to put an empty saved workspace into this folder. Double-clicking on
the workspace starts R with the folder as the working directory.

2.4.2 Simulations

Hedge funds can earn high profits through the use of leverage, but leverage
also creates high risk. The simulations in this section explore the effects of
leverage in a simplified setting.

Suppose a hedge fund owns $1,000,000 of stock and used $50,000 of its
own capital and $950,000 in borrowed money for the purchase. Suppose that
if the value of the stock falls below $950,000 at the end of any trading day,
then the hedge fund will sell all the stock and repay the loan. This will wipe
out its $50,000 investment. The hedge fund is said to be leveraged 20:1 since
its position is 20 times the amount of its own capital invested.

Suppose that the daily log returns on the stock have a mean of 0.05/year
and a standard deviation of 0.23/year. These can be converted to rates per
trading day by dividing by 253 and /253, respectively.

Problem 4 What is the probability that the value of the stock will be below
$950,000 at the close of at least one of the next 45 trading days? To answer
this question, run the code below.

1 niter = leb # number of iterations
2 below = rep(0, niter) # set up storage
3 set.seed(2009)
4+ for (i in 1:niter)
- {
6 r = rnorm(45, mean = 0.05/253,
7 sd = 0.23/sqrt(253)) # generate random numbers
8 logPrice = log(le6) + cumsum(r)
9 minlogP = min(logPrice) # minimum price over next 45 days
10 below[i] = as.numeric(minlogP < 1log(950000))
11
}

2 mean(below)

-

On line 10, below[i] equals 1 if, for the ith simulation, the minimum price
over 45 days is less that 950,000. Therefore, on line 12, mean(below) is the
proportion of simulations where the minimum price is less than 950,000.

If you are unfamiliar with any of the R functions used here, then use R’s
help to learn about them; e.g., type ?rnorm to learn that rnorm() generates
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normally distributed random numbers. You should study each line of code,
understand what it is doing, and convince yourself that the code estimates
the probability being requested. Note that anything that follows a pound sign
is a comment and is used only to annotate the code.

Suppose the hedge fund will sell the stock for a profit of at least $100,000
if the value of the stock rises to at least $1,100,000 at the end of one of the
first 100 trading days, sell it for a loss if the value falls below $950,000 at the
end of one of the first 100 trading days, or sell after 100 trading days if the
closing price has stayed between $950,000 and $1,100,000.

The following questions can be answered by simulations much like the one
above. Ignore trading costs and interest when answering these questions.

Problem 5 What is the probability that the hedge fund will make a profit of
at least $100,0007

Problem 6 What is the probability the hedge fund will suffer a loss?
Problem 7 What is the expected profit from this trading strategy?

Problem 8 What is the expected return? When answering this question, re-
member that only $50,000 was invested. Also, the units of return are time,
e.g., one can erpress a return as a daily return or a weekly return. Therefore,
one must keep track of how long the hedge fund holds its position before selling.

2.4.3 Simulating a Geometric Random Walk

In this section you will use simulations to see how stock prices evolve when the
log-returns are i.i.d. normal, which implies that the price series is a geometric
random walk.

Run the following R code. The set.seed () command insures that everyone
using this code will have the same random numbers and will obtain the same
price series. There are 253 trading days per year, so you are simulating 1 year
of daily returns nine times. The price starts at 120.

The code par(mfrow=c(3,3)) on line 3 opens a graphics window with
three rows and three columns and rnorm() on line 6 generates normally dis-
tributed random numbers.

1 set.seed(2012)

2 n = 253

3 par(mfrow=c(3,3))
4 for (i in (1:9))
s {

6 logr = rnorm(n, 0.05 / 253, 0.2 / sqrt(253))
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7 price = c(120, 120 * exp(cumsum(logr)))
] plot(price, type = "b")

o}

Problem 9 In this simulation, what are the mean and standard deviation of
the log-returns for 1year?

Problem 10 Discuss how the price series appear to have momentum. Is the
appearance of momentum real or an illusion?

Problem 11 Ezplain what the code c(120,120*exp (cumsum(logr))) does.

2.4.4 Let’s Look at McDonald’s Stock

In this section we will be looking at daily returns on McDonald’s stock over
the period 2010-2014. To start the lab, run the following commands to get
daily adjusted prices over this period:

1 data = read.csv(’MCD_PriceDaily.csv’)
> head(data)
s adjPrice = datal, 7]

Problem 12 Compute the returns and log returns and plot them against each
other. As discussed in Sect. 2.1.3, does it seem reasonable that the two types
of daily returns are approrimately equal?

Problem 13 Compute the mean and standard deviation for both the returns
and the log returns. Comment on the similarities and differences you perceive
in the first two moments of each random wvariable. Does it seem reasonable
that they are the same?

Problem 14 Perform a t-test to compare the means of the returns and the
log returns. Comment on your findings. Do you reject the null hypothesis that
they are the same mean at 5 % significance? Or do you accept it? [Hint: Should
you be using an independent samples t-test or a paired-samples t-test?]

What are the assumptions behind the t-test? Do you think that they are met
in this example? If the assumptions made by the t-test are not met, how would
this affect your interpretation of the results of the test?

Problem 15 After looking at return and log return data for McDonald’s, are
you satisfied that for small values, log returns and returns are interchangeable?
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Problem 16 Assume that McDonald’s log returns are normally distributed
with mean and standard deviation equal to their estimates and that you have
been made the following proposition by a friend: If at any point within the
next 20 trading days, the price of McDonald’s falls below 85 dollars, you will
be paid $100, but if it does not, you have to pay him $1. The current price
of McDonald’s is at the end of the sample data, $93.07. Are you willing to
make the bet? (Use 10,000 iterations in your simulation and use the command
set.seed(2015) to ensure your resullts are the same as the answer key)

Problem 17 After coming back to your friend with an unwillingness to make
the bet, he asks you if you are willing to try a slightly different deal. This time
the offer stays the same as before, except he would pay an additional $25 if
the price ever fell below $84.50. You still only pay him $1 for losing. Do you
now make the bet?

2.5 Exercises

1. Suppose that the daily log returns on a stock are independent and nor-
mally distributed with mean 0.001 and standard deviation 0.015. Suppose
you buy $1,000 worth of this stock.

(a) What is the probability that after one trading day your investment is
worth less than $9907 (Note: The R function pnorm() will compute a
normal CDF, so, for example, pnorm(0.3, mean = 0.1, sd = 0.2)
is the normal CDF with mean 0.1 and standard deviation 0.2 evaluated
at 0.3.)

(b) What is the probability that after five trading days your investment
is worth less than $9907

2. The yearly log returns on a stock are normally distributed with mean 0.1
and standard deviation 0.2. The stock is selling at $100 today. What is
the probability that 1year from now it is selling at $110 or more?

3. The yearly log returns on a stock are normally distributed with mean 0.08
and standard deviation 0.15. The stock is selling at $80 today. What is
the probability that 2 years from now it is selling at $90 or more?

4. Suppose the prices of a stock at times 1, 2, and 3 are P; = 95, P, = 103,
and P; = 98. Find r3(2).

5. The prices and dividends of a stock are given in the table below.

(a) What is Ry?

(b) What is R4(3)?

(¢) What is r3?
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The prices and dividends of a stock are given in the table below.
(a) Find R3(2),
(b) Find r4(3).

. Let 7 be a log return. Suppose that 71,73, ... are i.i.d. N(0.06,0.47).

(a) What is the distribution of r4(4) = ry + r4—1 + 74— + 1437
(b) What is P{r1(4) < 2}?

(c) What is the covariance between ro(1) and r2(2)?

(d) What is the conditional distribution of 7(3) given r,_s = 0.6?

. Suppose that X7, X5, ... is a lognormal geometric random walk with pa-

rameters (p,0?). More specifically, suppose that X = Xgexp(ry + -+ +

1), where X is a fixed constant and 71,79, .. are i.i.d. N(u,o?).

(a) Find P(X; > 1.3 Xo).

(b) Use (A.4) to find the density of X.

(¢) Find a formula for the 0.9 quantile of X} for all k.

(d) What is the expected value of X7 for any k? (Find a formula giving
the expected value as a function of k.)

(e) Find the variance of X}, for any k.

. Suppose that X7, X5, ... is a lognormal geometric random walk with pa-

rameters y = 0.1,0 = 0.2.

(a) Find P(X3 > 1.2X)).

(b) Find the conditional variance of Xy /k given X for any k.

(¢) Find the minimum number of days before the probability is at least
0.9 of doubling one’s money, that is, find the small value of ¢ such that
P(P;/Py>2)>0.9.

The daily log returns on a stock are normally distributed with mean 0.0002

and standard deviation 0.03. The stock price is now $97. What is the

probability that it will exceed $100 after 20 trading days?

Suppose that daily log-returns are N(0.0005,0.012). Find the smallest

value of ¢ such that P(P,/Py > 2) > 0.9, that is, that after ¢ days the

probability the price has doubled is at least 90 %.
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