
Chapter 2

LMs, GLMs and GAMs

. . . I have long been a proponent of the following unified field theory for statis-
tics: “Almost all of statistics is linear regression, and most of what is left over
is non-linear regression.”
—R. I. Jennrich (discussion of Green (1984))

2.1 Introduction

This chapter reviews a few details about two building blocks for this book: LMs
and smoothing. These topics naturally draw in two others, viz. GLMs and GAMs,
whose inclusion poses the risk of distracting the reader from the main thrust of this
book by having to include some material that is not quite necessary. Some justifi-
cation and details, such as computational, are deferred to the next two chapters,
where they are described under more general conditions.

2.2 LMs

LMs operate on data (xi, yi), i = 1, . . . , n, where yi is the ith response, xi is
explanatory, and p ≤ n (classically, it is usually not considered good practice if n
is not much more than p). The data is assumed to follow the model

Yi = β1 xi1 + · · ·+ βp xip + εi, εi ∼ N(0, σ2) independently. (2.1)

Note that R has the first column of the model matrix X equal to ones if there is
an intercept, i.e., xi1 = 1. Often, people call (2.1) a multiple linear regression. In
the wide literature, the εi are known under various names, such as the (statistical)
error, white noise, innovations, random noise. The mean of Yi, given xi, is

E(Yi|xi) = μi(xi) = βTxi =

p∑

k=1

βk xik . (2.2)
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34 2 LMs, GLMs and GAMs

Confusingly, some people call the LM a “general linear model”, which has the
same acronym as a “generalized linear model”(GLM). The general linear model
includes generalized least squares, whereas the LM usually refers to ordinary least
squares.

It is more compact to write the LM using vectors and matrices:

Y = Xβ + ε, εi ∼ Nn(0, σ
2 In), (2.3)

where Y = (Y1, . . . , Yn)
T and xik = (X)ik. Later, we will sometimes write X

as XLM to distinguish it from another type of model matrix (design matrix ).
The LM makes strong assumptions. Embedded in the above equations, these

are the following.

(i) Independence of the errors: data such as time series often violate this as-
sumption because the errors are correlated with each other, in particular,
with observations from the past. Independence of the εi is not explicitly
stated in (2.3) because of a property of the multivariate normal distribution
that Cov(εi, εj) = 0 iff εi and εj are independent.

(ii) Linearity : the mean function defines a hyperplane in p-dimensional space.
Each covariate xk is usually modelled having a linear effect on the mean
response, keeping the other variables in x fixed. Actually, LMs are called
LMs because the mean is linear with respect to the parameters, so that a
polynomial in xk is a LM.

(iii) Errors that are normal with mean zero and constant variance: for example,
a common form of heteroscedasticity is when Var(εi) increases with increasing
mean μi.

In practice, all these assumptions should be checked as part of the model-building
process; see Sect. 2.3.2. Relaxing the linearity assumption is the main motivation
of additive models, e.g., see Sect. 2.5 and Chap. 4, and is a major theme of this
book.

To estimate β, it is most common to minimize the residual sum of squares

ResSS(β) =

n∑

i=1

ε2i = (y −Xβ)T (y −Xβ) (2.4)

as a function of β. Of course, this is why the name ‘least squares’ (LS) is used,
and the estimator corresponds to the MLE because the errors are assumed to be
normally distributed. Setting the derivative of ResSS with respect to β as 0 gives
the normal equations

XTXβ = XTY . (2.5)

Provided that X is of full column-rank, then

β̂ =
(
XTX

)−1

XTy (2.6)

is the LS estimate, and so

ŷ = Xβ̂ = X
(
XTX

)−1

XTy = Hy, say, (2.7)
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where H is known as the hat matrix. Then ŷi = xTi β̂ are the fitted values, and ri =

yi − ŷi the residuals. It then follows that Var(β̂) = σ2(XTX)−1, and

β̂ ∼ Np

(

β, σ2
(
XTX

)−1
)

. (2.8)

Provided that an estimate of σ can be obtained, (2.8) can be used for inference, e.g.,

to calculate the standard errors for the β̂k, and construct confidence intervals. We
shall see below that the quantity S2, defined as

∑n
i=1(Yi− Ŷi)2/(n−p), is unbiased

for σ2, therefore it is natural to use σ̂ = s.
Suppose we wish to test the null hypothesis H0 : Aβ = c for some q× p matrix

of known constants A having rank-q, and c is a vector of known constants. For
example, this can be used to test that a subset of the βk are all 0. Fitting the LM
under this constrained (smaller) model results in a residual sum of squares which
can be denoted by ResSS0. Likewise, the unconstrained (larger or full) model has
a ResSS1 which will be generally lower. Then the test statistic F0 is distributed as

F0 =
(ResSS0 − ResSS1)/q

ResSS1/(n− p) ∼ Fq,n−p. (2.9)

The null hypothesis is rejected at the α-significance level if F0 > Fq,n−p(1 − α).
The function linearHypothesis() in car may be used to test hypotheses of this
form. The special cases of testing H0 : βk = 0 versus H1 : βk �= 0, for all k one-
at-a-time, is printed out in the summary(lmObject) output. For these, the test
statistics are labelled “t values” because T 2 ∼ F1,ν for T ∼ tν , and have the

form t0k = (β̂k − 0)/SE(β̂k). The 2-sided p-values are printed as Pr(>|t|), and
any controversial ‘significance stars’ adjacent to them.

A 100(1− α)% confidence ellipsoid for β comprises values of β such that

(
β̂ − β

)T
XTX

(
β̂ − β

)
≤ p σ̂2Fp,n−p(1− α).

Often we wish to look at one coefficient of β at a time, then a 100(1 − α)%

confidence interval for βk is β̂k ± tn−p(1− α/2) SE(β̂k), where the standard error

is s · [(XTX)−1]kk. A call of the form confint(lmObject) returns such intervals.
For prediction at a value x0, say, a 100(1−α)% prediction interval for y(x0) is

xT0 β̂ ± tn−p(1− α/2) σ̂
√

1 + xT0

(
XTX

)−1

x0.

Similarly, a 100(1− α)% confidence interval for μ(x0) is

xT0 β̂ ± tn−p(1− α/2) σ̂
√

xT0

(
XTX

)−1

x0.

Prediction intervals focus on a future (random) value of y and are consequently
wider than a confidence interval for the (fixed) conditional mean E(Y |x0). This
is intuitively so because confidence intervals simply need to account for the un-
certainty in β̂, whereas prediction intervals have the additional randomness due
to Var(εi) as well.
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2.2.1 The Hat Matrix

From (2.7), we have the n× n matrix

H = X
(
XTX

)−1

XT , (2.10)

which is referred to as the ‘hat’ matrix because it adds a ‘hat’ to y (i.e., ŷ)
when y is premultiplied by it. Assuming that X is of rank-p, the hat matrix has
the following properties.

(i) H = HT , i.e., symmetric.
(ii) H2 = H, i.e., idempotent.
(iii) H1 = 1 if the LM has an intercept, i.e., all rows sum to unity.
(iv) rank(H) = trace(H) = p.
(v) H has p unit eigenvalues and n− p zero eigenvalues.
(vi) 0 ≤ hii ≤ 1, where hij = (H)ij is the (i, j)-element of H. If the LM has an

intercept, then n−1 ≤ hii ≤ 1.
(vii) Var(ri) = σ2(1− hii). This serves as motivation for (2.12).

The proofs are not difficult and are left as an exercise (Ex. 2.1). The hat matrix H
is also known as a projection matrix because it is the orthogonal projection of Y
onto the column (range) space of X; it has the two properties of being symmetric
and idempotent.

To show that S2 is unbiased for σ2, E[ResSS] = E[(Y − Ŷ )T (Y − Ŷ )] =
E[Y T (I−H)T (I−H)Y ] = E[Y T(I−H)Y ] = trace((I−H)σ2I)+μ(I−H)μ =
σ2(n − p) + 0 = σ2(n − p), by formulas given in Sect. A.2.5. These results are
generalized later for linear smoothers in, e.g., Sect. 2.4.7.4.

The importance of the hat matrix, especially for diagnostic checking, is due to
its interpretation as containing the weights of all the observations in obtaining the
fitted value at a particular point. This can be seen by focusing on the ith row
of (2.7):

ŷi =

n∑

j=1

hij yj , (2.11)

so that hij can be interpreted as the weight associated with datum (xj , yj) to give
the fitted value for datum (xi, yi). For the p = 2 case, plotting the hij versus xj2
for j = 1, . . . , n, is analogous to the equivalent kernels for smoothers considered in
the next chapter (e.g., Sect. 2.4.7.3).

However, it is usually the diagonal elements of H that are of greatest relevance
to people fitting LMs. Element hii measures how much impact yi has on ŷi, and
consequently it quantifies the amount of influence that observation i has on the fit.
Indeed, the hii are called leverages or leverage scores, and they measure how far xi
is away from the centre of all the data (x). Intuitively, as ResSS is being minimized,
observations xi that are isolated from the rest cause the regression plane μ(x) to
be ‘pulled’ unduly towards them. The leverages can be defined as ∂ŷi/∂yi. Since
the sum of the hii is p, any individual diagonal element that is substantially higher
than the mean value can be considered influential. It is common to use the rule-
of-thumb: if hii > 2p/n, say, then observation i is influential or has high leverage.
Others use hii > 3p/n instead. As high-leverage points may ‘pull’ the regression
line or plane towards them, they do not necessarily have a large residual.
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2.2.1.1 LM Residuals and Diagnostics

A major component in checking the underlying LM assumptions is the exam-
ination of the residuals. Indeed, the use of diagnostic plots and other tools to
check the adequacy of a fitted regression model separates competent practitioners
from amateurs. From above, the ordinary residuals do not have equal variances,
therefore

rstdi =
yi − ŷi

s
√
1− hii

(2.12)

are used commonly, called standardized residuals or (internally) Studentized resid-
uals. Here, s follows from the result that S2 is an unbiased estimator for σ2.
However, if (xi, yi) is an outlier, then s may be affected, therefore it is safer to use
the (externally) Studentized residuals (or simply Studentized residuals)

rstui =
yi − ŷi

s[−i]
√
1− hii

(2.13)

where s[−i] is the estimate of σ by deleting observation i. The function hat-

values() returns diag(H), and rstandard() and rstudent() return (2.12)
and (2.13), respectively.

LM diagnostics are quite a large subject and beyond the scope of this book. Here
is a small listing of popular diagnostic plots for detecting violations in some of the
underlying LM assumptions. Here, ‘residuals’ are best standardized or Studentized
residuals, although ordinary residuals are often used.

1. When the residuals are plotted against their fitted values, ideally one would
want a patternless horizontal band. A common form of departure from this is
a ‘funnel-effect’, where there is less spread at lower fitted values—this suggests
non-constant variance of the errors.

2. Plot the partial residuals against each xk, e.g., ri+β̂kxik versus xik. These types
of residuals attempt to remove the effect of xk from the regression temporarily.
If indeed xk has a linear effect on the response, then removing β̂kxik from
the residual should leave white-noise. Any nonlinear trend would suggest that
the βkxk term might be generalized to some smooth function fk(xk), i.e., an
additive model. Not surprising, partial residuals are central to the backfitting
algorithm for fitting VGAMs (Sect. 4.3.2).

3. Check the normality of the errors by a normal Q-Q plot of the residuals or a
histogram, e.g., with qqnorm() and hist().

4. As a check of the independence of the errors, plotting ε̂i−1 versus ε̂i and ob-
taining a pattern with a nonzero slope suggests a violation of the independence
assumption. For this, the Durbin-Watson test is popular, and there are imple-
mentations for this in, e.g., car and lmtest. More fundamentally, how the data
was generated and collected needs to be considered in the broader context of
the analysis.

Some of the above are produced by a call of the form plot(lmObject). Common
remedies to violations of the LM assumptions include transforming the response
or the xk, adding polynomial terms in xk, using weighted least squares (WLS) or
generalized least squares (GLS), and fitting additive models.
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From an inference point-of-view, it is generally thought that independence of the
errors is the most crucial assumption, followed by constant variance of the errors
and linearity with respect to each xk. Normality of the errors is the least important
assumption, and the Shapiro-Wilk test can be used for this (shapiro.test()). Of
course, gross features such as outliers and high-leverage points must be attended
to. Other potential problems include

• multicollinearity (sets of xk which are highly correlated or almost linearly de-
pendent, e.g., x2 = log width and x3 = log breadth would be highly correlated
with x4 = log area if regions were approximately rectangular in shape),

• interactions (e.g., the effect of xs on Y changes with the value of another ex-
planatory variable xt); these can be complicated and hard to deal with,

• variable selection, e.g., trying to determine which variables should be included
in the model. This problem is exacerbated in an age of Big Data, where many
variables are collected routinely.

Consequently, good linear modelling requires skill and diligence; it is an art as well
as a science.

Regarding variable selection, a simple technique for moderate p that can be
performed manually, called backward elimination, involves fitting a model with
all the explanatory variables in, and then removing the least significant variable
(i.e., the one with the largest p-value) and refitting a new model. This procedure
is repeated until all remaining variables are ‘significant’. The criterion for a ‘sig-
nificant’ variable might be one whose p-value less than 5% or 10%; it should be
decided upon beforehand.

For lm() fits, influence.measures() is the primary high-level function for
diagnostics. It returns a number of quantities such as DFBETAS, DFFITS, Cook’s
distances, and diag(H). These are ‘leave-one-out’ diagnostics because they measure
the effect of removing one observation at a time. In particular, DFBETA are the
quantities β̂ − β̂[−i], the dif ference in the beta vector of coefficients. DFBETAS
is the scaled version of DFBETA, DFFITS is a scaled version of DFFIT (which

is ŷi−xTi β̂[−i] = xTi (β̂− β̂[−i])). These quantities plus more are defined in Belsley
et al. (1980, Chap.2). Cook’s distances measure the effect of the ith observation

on β̂, in a way that picks up high-leverage points and observations with large
Studentized residuals—cooks.distance() can return these quantities.

2.2.2 WLS and GLS

The assumption in (2.3) that Var(ε) = σ2 In is commonly unrealistic in real
data analysis, as the previous section indicated. A generalization that relaxes ho-
moscedastic errors is to allow Var(ε) = σ2 diag(w1, . . . , wn)

−1 for positive known
weights wi. Then fitting an LM by minimizing

∑
i wi(yi− ŷi)2 is known as weighted

least squares (WLS). Note that the εi are still independent, as in ordinary least
squares (OLS).

It is necessary to generalize WLS further. If Var(ε) = σ2 Σ for any known
positive-definite matrix Σ, then estimating β by minimizing (y −Xβ)TΣ−1(y −
Xβ) is called generalized least squares (GLS). GLS is needed when considering
VGLMs and VGAMs, whereas WLS is sufficient for fitting GLMs. GLS allows the
errors εi to be correlated.
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The following formulas hold for GLS, and it is left to the reader to supply their
proofs (Ex. 2.5):

β̂ =
(
XTΣ−1X

)−1

XTΣ−1 y, (2.14)

Var(β̂) = σ2
(
XTΣ−1X

)−1

, (2.15)

(y −Xβ̂)TΣ−1(y −Xβ̂)

σ2
∼ χ2

n−p. (2.16)

Also, its hat matrix (defined as H such that ŷ = Hy), is idempotent, but not
symmetric in general. Equation (2.16) implies that σ̂2 = ResSS/(n − p) is an
unbiased estimator of σ2.

2.2.3 Fitting LMs in R

The fitting function lm() is used to fit LMs. It has arguments

> args(lm)

function (formula, data, subset, weights, na.action, method = "qr",

model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,

contrasts = NULL, offset, ...)

NULL

Arguments formula and data should be used all the time. Arguments subset,
weights and na.action can be very useful at times, and offset can be incorpo-
rated into the formula instead by addition of the term offset(<value> ).

LMs may be fitted using glm(), albeit with slightly less efficiency. The normal
distribution being known as the Gaussian distribution, gaussian() is the default
for its family argument.

2.3 GLM Basics

This section gives a bare-bones and incomplete overview of GLMs. Such is not
really required for an understanding of the VGLMs described in Chap. 3, however
it does provide some background for such. Hence this section is given more for
completion than for necessity.

GLMs as proposed by Nelder and Wedderburn (1972) provide a unifying frame-
work for a number of important models in the exponential family. In particular,
these include the normal (Gaussian), binomial and Poisson distributions. One con-
sequence is that a single algorithm (IRLS) can be used to fit them all.

As with LMs, we have independent sample data (xi, yi), i = 1, . . . , n, where yi
is the response (more general now), n is the sample size, and xi = (xi1, . . . , xip)

T

is a vector of p explanatory variables (xi1 = 1 is the intercept if there is one).
A GLM is composed of three parts:
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(i) a random component f(y;μ) specifying the distribution of Y ,
(ii) a systematic component η = βTx specifying the variation in Y accounted for

by known covariates, and
(iii) a link function g(μ) = βTx that ties the two together. Often, g is simply

called the link.

The η is known as the linear predictor, and the random component f(y;μ) is
typically an exponential family distribution with E(Y |x) = μ(x) being the mean
function. GLMs thus fit

g(μ(xi)) = ηi = βTxi = β1 xi1 + · · ·+ βp xip, (2.17)

where g is known. The required properties of g are strict monotonicity and being
twice-differentiable in the range of μ. The main purpose of g is to transform the
mean, which is usually bounded, into an unbounded parameter space where the
optimization problem is unfettered and therefore simpler. Another purpose is that
it often aids interpretability. In the VGLM framework described in Chap. 3, we
write (2.17) as

g1(μ(xi)) = ηi1 = βT1 xi = β(1)1 xi1 + · · ·+ β(1)p xip (2.18)

to allow for more than one linear predictor in a model. The linear predictor (2.18)
is central to this book. It takes the form of a weighted average of the covariate
values xi1, . . . , xip for object i—it is a plane in p-dimensional space.

For one observation, the probability density or mass function (PDF or PMF)
of the exponential family can be written

f(y; θ, φ) = exp

{
y θ − b(θ)

φ
+ c (y, φ)

}

, (2.19)

where θ is called the natural parameter or canonical parameter, φ is a possibly-
known dispersion parameter (or scale parameter), and b and c are known functions.
When φ is known, the distribution of Y is a one-parameter canonical exponential
family member. When φ is unknown, it is often a nuisance parameter and then it
is estimated by the method of moments. In most of GLM theory, the role of φ is
curious and unfortunate: it is often treated as an unknown constant but not as a
parameter. The VGLM framework views this as a deficiency, because of the original
framework’s inability to handle more than one parameter gracefully. The VGLM
framework tends to estimate all parameters by full maximum likelihood estimation.
This makes life easier in general, and estimation and inference is simpler.

At this stage, it is a good idea to handle known prior weights, Ai say, which may
be entered into modelling functions such as glm() and vglm() via the weights

argument. We will write φi = φ/Ai, where usually Ai = 1. In the case of the Yi
being binomial proportions, NiYi ∼ Binomial(Ni, μi) where the Ni can be assim-
ilated into the Ai by Ai = Ni. Another reason is because we want to maximize
a log-likelihood of the form

∑n
i=1Ai 
i; most of this book dwells on maximizing the

log-likelihood (3.7) so that the Ai here can be absorbed into the prior weights wi
there (this is largely a change of notation).
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Noting that 
(μ; y) = log f(y;μ), the log-likelihood is


(θ, φ; y) =
n∑

i=1

yi θi − b(θi)
φ/Ai

+ c

(

yi,
φ

Ai

)

, (2.20)

and the score function is

U(θ) =
∂


∂β
=

n∑

i=1

yi − b′(θi)
φ/Ai

. (2.21)

Then, using (A.17) and (A.18),

E(Yi) = b′(θi) and Var(Yi) =
φ

Ai
b′′(θi). (2.22)

The variance function is V (μ) = b′′(θ(μ)), i.e., the variance of Y as a function of
the mean.

It is noted at this stage that the MLE β̂ is obtained by solving the estimating
equation

Uβ =

n∑

i=1

∂μi
∂β

Var(Yi)
−1 (yi − μi) = 0. (2.23)

To see this,

0 =
∂


∂β
=

n∑

i=1

∂
i
∂θi

∂θi
∂β

=

n∑

i=1

U(θi)
∂θi
∂β

=

n∑

i=1

Yi − b′(θi)
φ/Ai

1

(∂μi/∂θi)

∂μi
∂θi

∂θi
∂β

=
n∑

i=1

(Yi − μi)
φ/Ai

1

b′′(θi)
∂μi
∂β

=

n∑

i=1

{
Yi − μi
Var(Yi)

}
∂μi
∂β

, (2.24)

which is the LHS of (2.23). This equation serves as the motivation for quasi-
likelihood models described later because it only depends on the first two moments
of Y .

Table 2.3 lists the most common members of the exponential family and how
they are fitted in VGAM. For GLMs, the canonical parameter is a link function
applied to the mean. Consequently, this particular link is known as the canonical
link. With this link and given φ, XTy are a set of sufficient statistics for β.

Iteratively reweighted least squares (IRLS) forms the core algorithm behind
GLMs and GAMs. It is described under more general conditions in Sect. 3.2.
For GLMs, it involves regressing at each iteration (the ath iteration, say) the
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adjusted dependent variable (or modified dependent variable or working dependent

variate or pseudo-response) z
(a−1)
i against xi with (working) weights w

(a−1)
i ; these

are given by

z
(a−1)
i = η

(a−1)
i +

yi − μ(a−1)
i

dμ
(a−1)
i /dηi

and w
(a−1)
i =

Ai

V
(
μ
(a−1)
i

)

(
dμ

(a−1)
i

dηi

)2

.

(2.25)

It can be achieved by WLS: X is the model matrix, and W(a−1)

is diag(w
(a−1)
1 , . . . , w

(a−1)
n ).

The above weights are actually obtained by the expected negative Hessian
(rather than the observed), so this is Fisher scoring. For some models this equates

to Newton-Raphson. With the new β(a), a new η(a) and μ(a) are computed, and
the cycle is continued till convergence. When close to the solution, the conver-
gence rate is quadratic for GLMs with a canonical link, meaning that the number
of correct decimal places doubles (asymptotically) at each iteration.

At convergence, we have

V̂ar(β̂) = φ̂
(
XTW(a)X

)−1

, (2.26)

which is returned by the function vcov().
Convergence problems with GLMs can occur in practice, although they are not

particularly common. Section 3.5.4 gives an example.

2.3.1 Inference

There is an elegant body of theory for inference pertaining to GLM models that
naturally extend that of ordinary linear theory. Under certain conditions (e.g.,
grouped binary data), the deviance D(y;μ) can be used to measure goodness-of-
fit of a model. The scaled deviance satisfies

D(y;μ)

φ
= 2 {
(y;y)− 
(μ;y)} (2.27)

which is non-negative. The term 
(y;y) corresponds to a saturated model—
one where μ maximizes 
 over μ unconstrained. For GLMs, a saturated model
has b′(θ̂i) = μ̂i = yi. The opposite extreme is a null model, which is what we call
intercept-only, i.e., the R formula is of the form y ∼ 1. If φ = 1 then D =

2

n∑

i=1

Ai

[
{yi θ(yi)− b(θ(yi))} −

{
yi θ̂i − b(θ̂i)

}]
(

=

n∑

i=1

Ai di, say

)

, (2.28)

where θ̂ is the MLE. This is called the deviance of a model even when the scale
parameter is unknown, or is known to have a value other than one. The scaled
deviance is sometimes called the residual deviance.
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Smaller values of D indicate a better fit. The deviance, which is a generaliza-
tion of the residual sum of squares for the LM, is a function of the data and of
the fitted values, and when divided by a dispersion parameter φ, it is sometimes
asymptotically χ2 (e.g., as n→∞, or as the number of binomial trials Ni →∞).
More generally, to test if a smaller model (i.e., one with fewer variables) is ap-
plicable given a larger model, it is only necessary to examine the increase in the
deviance, and to compare it to a χ2 distribution with degrees of freedom equal
to the difference in the numbers of independent parameters in the two models
(as each parameter has 1 degree of freedom). In the model-building process, this
enables a test to be carried out as to which variables can be deleted to form a
smaller model, or which variables need to be added to form a larger model.

For a Gaussian family with identity link, φ is the variance σ2, and D is the
residual sum of squares, i.e.,

D =

n∑

i=1

Ai (yi − μi)2.

Hence
D/φ ∼ χ2

n−p,

leading to the unbiased estimator

φ̂ = D/(n− p) (2.29)

because, with an abuse of notation, E(χ2
ν) = ν.

An alternative estimator is the sum of squares of the standardized residuals
divided by the residual degrees of freedom:

φ̃ =
1

n− p
n∑

i=1

(yi − μ̂i)2
V (μ̂i)/Ai

. (2.30)

This formula may be used to estimate the scale parameter φ. It has much less bias
than (2.29). For the Gaussian errors, φ̃ = φ̂.

IfM0 is a submodel within a modelM (that is, nested) with q < p parameters,
and if φ is known, then

DM0
−DM
φ

.∼ χ2
p−q.

If φ is unknown, then
DM0

−DM
φ̃ (p− q)

.∼ Fp−q,n−p.

2.3.2 GLM Residuals and Diagnostics

As with LMs, diagnostics are available for GLMs to help check the underlying
assumptions. These tend to be based on residuals, however, GLM residuals are
more difficult to utilize compared to LMs because they are harder to interpret.

There are several residual-types that may be defined for GLMs. The resid()

(or residuals()) method function returns one of five types of residuals for glm()
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objects, depending on the type argument. For simplicity we set Ai = 1 here,
but more general formulas are given in Sect. 3.7 for VGLMs. The five residual
types are:

(i) Deviance residuals are

rDi = sign(yi − μ̂i)
√
di, where D =

n∑

i=1

di (2.31)

(cf. (2.28)). This residual type is the default, and is the most useful for diag-
nostic purposes.

(ii) Pearson residuals are related to the working residuals, and are

rPi =
yi − μ̂i√
V (μ̂i)

. Note that X2 =
n∑

i=1

(
rPi
)2

=
n∑

i=1

(yi − μ̂i)2
V (μ̂i)

is the Pearson chi-squared statistic.
(iii) Working residuals are

rWi = (yi − μ̂i) ∂η̂i
∂μ̂i

. (2.32)

They arise from the final IRLS iteration (cf. (2.25)).
(iv) Response residuals are simply rRi = yi − μ̂i.
(v) Partial residuals are used for enhancing plots of the component functions of

GAMs. For ηi = β1 + β2 xi2 + · · · + βp xip, these are βk(xik − xk) + rWi . For

GAMs having ηi of the form β1+f2(xi2)+· · ·+fp(xip), these are f̃k(xik)+rWi
for k = 2, . . . , p and where the f̃k are centred fks.

The first four types of residuals coincide for the Gaussian family. For the types of
plots listed in Sect. 2.2.1.1, some people maintain that deviance residuals are the
most informative for GLMs. Figure 2.21 is an example of the first four types of
residuals.

2.3.3 Estimation of φ

In the VGLM/VGAM framework, it is usually preferable to estimate the dispersion
parameter by full maximum likelihood because it is simpler, inference is simplified
too, and the models can be more flexible. However, for some GLM families such as
the gamma, there are problems such as bias, and extreme sensitivity in very small
values (McCullagh and Nelder, 1989, Chap. 8).

The most common GLM estimation method for φ is to use (2.30) which is based
on the method of moments. It is unbiased for the LM, and is generally consistent
for GLMs.
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2.3.4 Fitting GLMs in R

GLMs are well-served by the modelling function glm(). It has arguments

> args(glm)

function (formula, family = gaussian, data, weights, subset,

na.action, start = NULL, etastart, mustart, offset, control = list(...),

model = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL,

...)

NULL

They may be also fitted by vglm() with family functions having the same name
as glm() but with an “ff” appended (they must be different because they are
incompatible), e.g., gaussianff().

2.3.5 Quasi-Likelihood Models

It is not uncommon for one to be unsure about the full distribution (2.19) of the
response, e.g., when the variance of the data is much greater than the model sug-
gests (overdispersion). Wedderburn (1974) proposed the use of the quasi-likelihood
to help alleviate this problem. Specifically, it replaces the assumptions tied in
with (2.19) by the weaker variance assumption that

Var(Y ) =
φ

A
V (μ), (2.33)

where φ is assumed constant across samples. This can be very useful in applied
work when the data are limited and information on the distribution of Y is lacking.
However, one may have enough prior knowledge to specify, or data to reliably
estimate, a relationship between the first two moments, as required by the quasi-
likelihood model. In the absence of a likelihood function, one may estimate β by
solving (2.23) because it only depends on the first two moments. What is the
justification for using this? We have already seen that it yields the MLE of β for
families belonging to the exponential family (2.19).

Now the term in braces in (2.24) is an expression for ∂
i/∂μi. Coupled
with (2.33), this suggests that

q(μ; y) =

∫ μ

y

y − t
(φ/A) V (t)

dt (2.34)

might behave like a log-likelihood function for μ. Indeed, if

Ui =
Yi − μi

(φ/Ai) V (μi)

then E(Ui) = 0 and Var(Ui) = 1/{(φ/Ai)V (μi)} = −E(∂ Ui/∂ μi). These are the
same properties that a log-likelihood derivative has (see (A.17)–(A.18)). So the
overall conclusion is to solve the estimating equation
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Table 2.1 Some quasi-likelihood functions. VGAM families are quasibinomialff()

and quasipoissonff() (adapted from McCullagh and Nelder, 1989, Table 9.1).

Distribution V (μ) φ q(μ; y) glm() family

Gaussian 1 −(y − μ)2/2

Binomial μ(1− μ) y logitμ+ log(1− μ) quasibinomial()

Poisson μ y log μ− μ quasipoisson()

Gamma μ2 −y/μ− log μ

Inverse Gaussian μ3 −y/(2μ2) + 1/μ

n∑

i=1

∂ q(μi; yi)

∂ β
= 0. (2.35)

A list of some quasi-likelihood functions is given in Table 2.1 and the glm() family
functions for estimating them. In R, the glm() family functions quasibinomial()
and quasipoisson() solve for β in (2.35) for the binary and Poisson cases,
and φ̃ in (2.30) is printed out in the summary() as the ‘Dispersion parameter’.
For vglm() in VGAM, the family functions are called quasibinomialff()

and quasipoissonff().

2.3.6 Binary Responses

We now dwell a little on one specific GLM, viz. the binomial family. In contrast, the
Gaussian family is well-served in multitudes of books, and count data is described
in Sect. 11.3 via negative binomial regression.

It is noted that two popular models for handling overdispersion with respect
to the Poisson and binomial distributions are the negative binomial (Sect. 11.3)
and beta-binomial (Sect. 11.4) distributions. Also, the variants positive-binomial,
zero-inflated binomial and zero-altered binomial (Chap. 17) are available.

2.3.6.1 Links

Figure 2.1a,d plots four of the most commonly used link functions. The default
is the logit link, which is not only very interpretable in terms of log-odds, it
is usually indistinguishable in practice from the probit link unless n is large.
Of these, only the complementary log–log link is asymmetric; the other three
satisfy p( 12 − c) = p( 12 + c) for 0 < c < 1

2 . The cloglog link ties in with
Poisson regression very simply because if Y ∼ Poisson(μ) with η = log μ,
then cloglogP [Y > 0] = log(− logP [Y = 0]) = log(− log e−μ) = η.

The links correspond to the CDFs of some standardized distributions
(Table 12.3): the logit link of a logistic distribution, the probit of a normal, the
cauchit of a Cauchy, and the cloglog of a extreme-value (log-Weibull) distribution
(Chap. 16).

Figure 2.1b are plots of the reciprocal first derivatives, 1/g′j(p), which are
relevant to (2.25) because of the term dμ/dη. For grouped binomial data
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Fig. 2.1 Properties of some common link functions gj suitable for a probability. (a) gj(p);
(b) g′j(p); (c) g

′′
j (p); (d) g

−1
j (p). The legend in (a) is common for all plots. The calls to (a)–(c)

are of the form link.function(p, deriv = d) for d = 0, 1 and 2 (Table 1.2).

where Yi represents the proportion of successes out of Ni trials, we have NiYi ∼
Binomial(Ni, μi), so that (2.25) with a logit link becomes

zi = βTxi +
yi − μi

μi(1− μi) , with working weights wi = Ni μi(1− μi).

2.3.6.2 The Hauck-Donner Phenomenon

This effect, which was first observed by Hauck and Donner (1977), gives one reason
why the likelihood ratio test is to be preferred over the Wald test (these tests are
described in Sect. A.1.4.2). They used the following example. Suppose that n = 200
for a logistic regression involving two groups of 100 observations each. The observed
proportion of 1s in group k is pk, and let x2 = 0 and 1, denote groups 1 and 2
respectively. Then the coefficient of x2 is the log odds ratio, and we wish to test
equality of the population proportions in the two groups via H0 : β(1)2 = 0 for the
model logitP (Y = 1) = β(1)1 + β(1)2 x2.

For two illustrative values of p1, and allowing p2 to vary as 0.01(0.01)0.99 (i.e.,
0.01 to 0.99 in steps of 0.01), plotted in Fig. 2.2 is the square of the usual Wald
statistic for x2, which is χ2

1 under H0. The LRT statistic −2 log λ has the same
asymptotic distribution. The glaring feature is the quadratic shape about p1 of
both test statistics. Another feature is that the LRT increases as |p2−p1| increases.
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Fig. 2.2 Wald (orange) and likelihood ratio test (blue) statistics plotted against p2, for: (a) p1 =
0.5, (b) p1 = 0.25 (vertical dashed lines). Actually, the Wald statistic here is the square of the
usual Wald statistic, and p2 = 0.01(0.01)0.99 is discrete. The data follows Hauck and Donner
(1977).

This monotonicity is a good thing: there is increasing evidence against the null
hypothesis the more the two sample proportions differ. However, the Wald statistic
initially increases but then decreases near the boundaries. Thus Wald tests of
binomial (and Poisson GLMs) can be highly unreliable, because a moderate p-value
indicates no effect or a very large effect. Not only does it show aberrant behaviour,
it is also less powerful than a LRT.

2.3.6.3 Problems Due to Complete Separation

It is well-known that multiple maximums of the log-likelihood function cannot
occur with logistic regression because 
 is globally concave, meaning that the
function can have at most one maximum (Amemiya, 1985). However, it is possible
for the likelihood function to have no maximum, in which case the MLE is said
to not exist. The problem occurs when there is complete separation (Albert and
Anderson, 1984). For example, the data used by Allison (2004) is

> cs.data <- data.frame(y = rep(0:1, each = 5), x2 = c((-5):(-1), 1:5))

These data are plotted in Fig. 2.3 as solid blue circles. Suppose that we
fit logitP (Y = 1|x2) = β(1)1 + β(1)2 x2. Then it may easily be shown that the
log-likelihood function increases as a function of β(1)2 and that it flattens out
as β(1)2 −→ ∞, i.e., the MLE does not exist. Complete separation occurs when

there exists some vector β such at yi = 1 whenever βTxi > 0, and yi = 0 when-
ever βTxi < 0.

There is a related problem called quasi-complete separation. This occurs if there
exists a β such that βTxi ≥ 0 whenever yi = 1 and βTxi ≤ 0 whenever yi = 0, and
when equality holds for at least one observation in each category of the response
variable. Adding (0, 0) and (0, 1) to the previous data set will result in quasi-
complete separation (Fig. 2.3). Once again, the MLE does not exist.

In practice, quasi-complete separation is far more common than complete sepa-
ration. It most often occurs when an explanatory variable xk is a dummy variable,
and for one value of xk, either every observation has y = 1 or y = 0. In general,
consider the 2 × 2 table of y versus every dichotomous explanatory variable. If
there is a zero in any cell, then the MLE will not exist. Convergence failure in
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Fig. 2.3 Completely separable data (blue
circles). Adding the two orange hollow
points results in quasi-completely separable
data. The logistic regression estimate of the
slope will tend to infinity in both cases.
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logistic regression is most commonly caused by this. It occurs more often when
the sample size is small, however it is certainly possible in large data sets too.

Allison (2004) gives practical advice about a course of action to take if there
is complete separation or quasi-complete separation. Actually, the two cases are
best considered separately. One possibility is to use bias-reduction. Heinze and
Schemper (2002) have shown that this method always yields finite estimates of
parameters under complete or quasi-complete separation. However, the result that
bias-reduction of β gives a finite answer as a by-product is not a sufficient reason
for the blind application of the technique.

Of course, the problem can occur regardless of the link function chosen. And
it can also occur for the multinomial logit and cumulative link models described
in Chap. 14. Bias-reducing techniques have been developed for GLMs, which have
the effect that each coefficient in β̂ is finite for binary responses; see Sect. 9.4 for
an appetizer.

Complete separation is the subject of Altman et al. (2004, Chap.10).

2.4 Univariate Smoothing Methods

2.4.1 The Classical Smoothing Problem

Smoothing is a powerful tool for exploratory data analysis, and it allows a data-
driven approach to the more model-driven LM modus operandi. The simplest
form of smoothing operates on scatter plot data. As a preliminary (and imperfect)
example, consider Fig. 2.5a which is a scatter plot of the proportion of rainbow
trout caught from Lake Otamangakau (lakeO) between the years 1974 to 1989 by
a certain angler. A smoother called a regression spline has been fitted (Fig. 2.5b).
The main feature of the data has been picked up, namely it is flat on the LHS,
and then is followed by a decrease over the years. However, the smooth f̂(x) is
probably too flexible here and it overfits. (Another weakness with this example is
that smoothing proportions directly is not a good idea, because the smooth can
sometimes assume negative values or values greater than 1. A logistic regression
GAM would be recommended instead.)

Four broad categories of smoothers are:

[1.] Regression or series smoothers (polynomial regression, regression splines,
P-splines, Fourier regression, filtering, wavelets),
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[2.] Smoothing splines (with roughness penalties, e.g., cubic smoothing splines,
O-splines, P-splines),

[3.] Local regression (Nadaraya-Watson estimator, kernel smoothers, Lowess,
Loess, it generalizes to local likelihood),

[4.] Nearest-neighbour smoothers (running means, running lines, running
medians).

We will only be concerned with a small selection of these for two reasons: not
all so naturally generalize to the vector-y case, and VGAM currently implements
only two methods (regression splines and smoothing O-splines). However, we also
consider two other methods, local regression and P-splines, because of their con-
tribution to our understanding of vector smoothing as a whole, and because they
have favourable properties, respectively. P-splines (“P” for “penalized”) can be
considered a hybrid method, therefore they appear twice in the list as they share
similarities with regression splines and smoothing splines. Section 4.1.1 gives an
overview of how smoothing relates to VGLMs and VGAMs.

Smoothing has many general uses, e.g., data visualization and exploratory data
analysis, prediction, derivative estimation (e.g., growth curves, acceleration), and
it is used as a building block for many modern statistical techniques, such as in
Chap. 4. Examples of each of these uses can be found throughout this book.

For our purposes, the classical smoothing problem is to estimate an arbitrary
smooth function f based on the model

yi = f(xi) + εi, εi ∼ (0, σ2
i ) independently, (2.36)

for data (xi, yi, wi = 1), i = 1, . . . , n. If there is no a priori function form for f ,
then it may be estimated by a smoother. They do not impose any particular form
on the function apart from being smooth. Since the errors have mean 0, we are
modelling the conditional mean E(Y |x) = f(x). Ordinarily, it is usually assumed
that all the σi are equal. For this, the data sets of Figs. 2.4a and 2.5 appear to
violate this assumption. This section describes conventional smoothing methods for
the univariate problem (2.36). Indeed, hundreds of journal articles have addressed
this problem and its direct extensions.

It is needful to generalize (2.36) to the weighted case so that Var(εi) = σ2
i =

σ2w−1
i , where the wi are known and positive, and σ is unknown and may be

estimated. This can be written Var(ε) = σ2 W−1 where W = diag(w1, . . . , wn) =
Σ−1. For example, in the lakeO example, one might assign wi = {yi(1−yi)/Ni}−1

where Ni = total.fishi because yi is a sample proportion (however, in this case,
some yi = 1, which is problematic).

Without loss of generality, let the data be ordered so that x1 < x2 < · · · < xn.
Consider the unweighted case of wi = 1 for all i. The fundamental idea behind
all smoothing methods is the concept of a neighbourhood. Here, only observations
whose xi values are ‘close’ (are neighbours) to a target point x0, say, are used to
estimate f at x0, and the more closer xi is to x0, the more influence or weight
that (xi, yi) has for f̂(x0). As an extreme case, observation (x1, y1) has the least

effect on f̂(xn) because x1 is the furthest away from xn. This concept is espe-
cially easy to see for local regression, e.g., in Fig. 2.13 the shaded region denotes
the effective neighbourhood, and the kernel function at the bottom provides the
relative weights given to the (xi, yi). Rather than ‘neighbourhood’, many writers
use the word window to describe the localness idea because observations lying
outside the window are effectively ignored. This hypothetical window glides along
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the x-axis to estimate the entire f . The window may or may not have distinct sides
depending on whether the weights are strictly zero past a certain distance away
from the target point. In Table 2.2, all but one kernel function vanishes beyond
a certain distance away from its centre, hence such ‘windows’ have distinct sides.
The window of Fig. 2.13 has blurry edges because the Gaussian kernel function is
strictly positive.

We shall see later that the size of the window or neighbourhood about a target
point x0 is crucial because it controls how smooth or wiggly the smooth is. It is
fundamentally related to bias and variance. For example, a very large neighbour-
hood that effectively includes all the data corresponds to little or no smoothing at
all, and this has relatively little variance but much bias.

While kernel function smoothing methods are probably the easiest to under-
stand, other smoothing methods such as splines are motivated completely differ-
ently, however its asymptotic properties can be shown to be based on the neigh-
bourhood idea, e.g., Sect. 2.4.7.3 shows that, under certain conditions, a cubic
smoothing spline operates like a kernel function smoother.

This section describes a few common methods for fitting the classical smoothing
problem (2.36). The purpose is to lay a foundation for methods that apply to the
vector y case (Sect. 4.2). Some books covering this large topic can be found in the
bibliographic notes.

The reader should be aware that this section largely adopts commonly used
notation from the smoothing literature, and consequently there is some recyling
of notation, e.g., K denotes the number of knots for splines, as well as the kernel
function for local smoothers. This however should not present any severe problems
because these topics are quite separate and their context is easily grasped.

2.4.2 Polynomial Regression

Polynomial regression is a common technique that involves fitting polynomial func-
tions of each xk in order to provide more flexibility than the usual linear βkxk term.
One reason for its widespread use is that polynomials are easy to work with in
just about every way—mathematically, computationally and they have high in-
terpretability for low degrees. For (2.36), one may use an S formula having the
term poly(x2, degree) for degree = 1, 2, . . . , else explicit terms such as I(x2^2)
(or poly(x2, degree, raw = TRUE)). The former has the advantage of using or-
thogonal polynomials which are numerically stable, but at the expense of having
coefficients that are not so interpretable.

The Weierstrass approximation theorem, which states that every continuous
function on a closed interval [a, b] can be uniformly approximated as closely as
desired by a polynomial, might lead us to believe that fitting a sufficiently high
order polynomial will be a good idea for estimating most fs in general, however
this is not the case. The reasons include the following.

• Polynomials are not very local but have a global nature. Their derivatives are
continuous functions for all orders. For example, a small perturbation on the
LHS of the curve may result in a large change on the RHS. Consequently the
concept of a local neighbourhood does not really exist. Polynomials are thus
flexible but not flexible enough. This can be seen in Fig. 2.4a; polynomials of
degree 1–4 are unable to conform to the trend (which is admittedly complex).
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Fig. 2.4 Polynomials of degree 1–4 fitted to two data sets. (a) mcycles from MASS. (b) cars
from datasets.

The cubic and quartics are almost indistinguishable. It is left to the reader to
confirm that polynomials up to the 10th degree do not offer much improvement
(Ex. 2.17).

• They usually have edge effects: they do not model the boundaries well, especially
if the degree of the polynomial is high. This results in significant bias in regions
of the x-space. Figure 2.4b illustrates this. The trend should be monotonically
increasing, and if a polynomial of degree that is too high is fitted then often the
boundaries are not modelled well. Here, while the linear and quadratic functions
appear well-behaved over the range of x, the quartic at the LHS corner curls
upwards, and therefore would be dangerous for prediction.

• They are sensitive to outliers and high-leverage points.
• The polynomial degree is discrete rather than continuous.

It is probably a safe general recommendation that one should avoid fitting quartics
or higher, and even fitting a cubic should be done cautiously and with trepidation.

2.4.3 Regression Splines

Usually a better alternative to polynomial regression is the use of regression splines.
These are piecewise polynomials, hence the neighbourhood concept is built in di-
rectly. Each piece, usually of low degree, is defined on an x-region that is delimited
by knots (or breakpoints). The (x, y) positions where each pair of segments join
are called joints. The more knots, the more flexible the family of curves become.
It is customary to force the piecewise-polynomials to join smoothly at the knots,
e.g., a popular choice called cubic splines are piecewise-cubic polynomials with
continuous zeroth, first and second derivatives. By forcing the first few derivatives
to be continuous at the knots, the entire curve has the appearance of one nice
smooth curve. Using splines of degree > 3 seldom confers any additional bene-
fit. Figures 2.5b and 2.6 are examples of cubic regression splines. The coloured
segments of Fig. 2.6 join up at the joints, and the vertical lines mark the knots.

The word ‘spline’ comes from a thin flexible strip used by engineers and archi-
tects in the pre-computer days to construct ship hulls and the aerofoils of wings.
Splines were attached to important positions on a 2-dimensional plan (e.g., floor
of a design loft or on enlarged graph paper) using lead weights called “ducks”
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Fig. 2.5 (a) Proportion of fish caught that are rainbow trout from Lake Otamangakau (lakeO)
caught by an angler who frequented the spot. The variable Year is year-1900. (b) Smoothing
the same data with a cubic regression spline (truncated power basis) with one knot located at
the year 1980. A boundary effect on the RHS is evident.

and then released. The resting shapes assumed by the splines would minimize the
strain energy according to some calculus of variations criterion. Splines were used
by ancient Greek mathematicians (including Diocles) for drawing curves in dia-
grams (e.g., conic sections). In more modern times, I. J. Schoenberg is attributed
to be the first to use ‘splines’ in the mathematical literature, and is known as
the father of splines. The physical meaning of splines is especially relevant to the
smoothing spline (Sect. 2.4.4), where it is related to curvature and Hooke’s Law
for elastic bodies such as springs.

Regression splines are one example of multiple regression on a family of ba-
sis vectors. A simpler example is polynomial regression where the set S ={
1, x, x2, . . . , xr

}
form the usual basis of polynomials of degree r. We say S spans

this function space. There are two common bases for cubic splines:

1. Truncated power series These are easy to understand, but are not recom-
mended in practice because they may be ill-conditioned. Some details are in
Sect. 2.4.3.1.

2. B-splines These are more complex but are used in practice because they
are numerically more stable. The functions bs() and ns() are two implemen-
tations of B-splines. Some details are in Sect. 2.4.3.2. Called “B-splines” by
Schoenberg, “B” is usually taken to stand for “basic” or “basis”, and for some
others, “beautiful”.

From the glossary, a function f ∈ Ck[a, b] if derivatives f ′, f ′′, . . . , f (k) all ex-
ist and are continuous in an interval [a, b]. For example, ordinary polynomials
∈ Ck[a, b] for all k, a and b, but |x| /∈ C1[a, b] if 0 ∈ [a, b]. Then a spline of degree r
(some given positive integer) with knots ξ1, . . . , ξK (such that a < ξ1 < ξ2 < · · · <
ξK < b) is a function f(x) defined over an interval (a, b) if it satisfies the following
properties:

(i) for any subinterval (ξj , ξj+1), f(x) is a polynomial of degree r (order r + 1);
(ii) f ∈ Cr−1(a, b), i.e., f(x), f ′(x), . . . , f (r−1)(x) are continuous;
(iii) the rth derivative of f(x) is a step function with jumps at ξ1, . . . , ξK .
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Fig. 2.6 Smoothing some
data with a regression spline
(B-spline). Each segment of the
spline is coloured differently.
The term is effectively bs(x,

knots = c(1, 3.08, 6.03)).
The true function is the sine
function (dashed) and n = 50.
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The name cubic spline is used for the curve arising from the special case of r = 3.
An example of a plot of the first few derivatives of a cubic spline fit is Fig. 2.11—a
step function can be seen in the latter plot.

Regression splines have at least two advantages: they are computationally and
statistically simple, and standard parametric inferences are available. The first
advantage is partly because they are an LM representation of a smooth function.
An example of the second advantage is testing whether a particular knot can be
removed and the same polynomial equation used to explain two adjacent segments
(by using H0 : βj = 0 in (2.40)). In R, this corresponds to one of the t-test statistics
printed by summary(). However, they do have drawbacks such as the difficulty
choosing the number of knots and their locations, and their smoothness cannot be
controlled continuously as a function of a single smoothing parameter.

Regarding the first drawback, in a paper reflecting a lot of experience fitting
regression splines, Wold (1974) made the following recommendations for cubic
splines:

(i) They should have as few knots as possible, ensuring that a minimum of 4 or 5
observations lie between knot points.

(ii) No more than one stationary point and one inflexion point should fall between
two knots (because a cubic is not flexible enough to allow for too many of
such points).

(iii) Stationary points should be centred in intervals, and inflexion points should
be located near knot points.

These recommendations might be actioned using the knots argument of bs()

and ns(). As an illustration, consider Fig. 2.6. Overall, the fit is alright except at
the left-hand side boundary. This example illustrates how regression splines may
be poor at the boundaries, especially if the knot placement is careless. How bs()

and ns() choose their knots by default is described on p.58.

2.4.3.1 Truncated Power Series

Following the notation of Green and Silverman (1994), a cubic spline may be
written as

f(x) = ds (x− ξs)3 + cs (x− ξs)2 + bs (x− ξs) + as, ξs ≤ x ≤ ξs+1, (2.37)
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for s = 0, . . . ,K. For given constants as, bs, cs and ds, we define ξ0 = a and
ξK+1 = b. The coefficients are interrelated because of the various continuity
conditions, e.g., f is continuous at ξs+1 implies

ds (ξs+1 − ξs)3 + cs (ξs+1 − ξs)2 + bs (ξs+1 − ξs) + as = as+1 (2.38)

for s = 0, . . . ,K − 1. Thus there are 4(K + 1) − 3K = K + 4 parameters. The
truncated power series basis for a cubic spline with K knots is

{
1, x, x2, x3, (x− ξ1)3+, . . . , (x− ξK)3+

}
(2.39)

where u+ = max(0, u) is the positive part of u. Figure 2.7 gives an example of
these functions with ξk = k for k = 1, . . . , 5. When x is large the curves (x− ξk)3+
become almost vertical and parallel, therefore ill-conditioning occurs.

With (2.39) we can express the spline as

f(x) = β1 + β2 x+ β3 x
2 + β4 x

3 +

K∑

s=1

β4+s (x− ξs)3+ . (2.40)

As an example, here is the essential code behind the lakeO example of Fig. 2.5:

> Pos <- function(x) pmax(x, 0) # Same as ifelse(x > 0, x, 0)

> lakeO <- transform(lakeO, Year = year - 1900) # Because of ill-conditioning

> knot <- 80 # For the year 1980; a prespecified knot

> fit.trout <- lm(rainbow / total.fish ~ Year + I(Year^2) + I(Year^3) +

I(Pos(Year-knot)^3), data = lakeO)

> model.matrix(fit.trout)

(Intercept) Year I(Year^2) I(Year^3) I(Pos(Year - knot)^3)

1 1 74 5476 405224 0

2 1 75 5625 421875 0

3 1 76 5776 438976 0

4 1 77 5929 456533 0

5 1 78 6084 474552 0

6 1 79 6241 493039 0

7 1 80 6400 512000 0

8 1 81 6561 531441 1

9 1 82 6724 551368 8

10 1 83 6889 571787 27

11 1 84 7056 592704 64

12 1 85 7225 614125 125

13 1 86 7396 636056 216

14 1 87 7569 658503 343

15 1 88 7744 681472 512

attr(,"assign")

[1] 0 1 2 3 4

The variable Year = year-1900 has been used to ameliorate the ill-conditioning,
e.g., 19743 and 19883 are both large numbers, and are treated almost as having
the same value since the computations are performed using finite arithmetic. The
example reflects the recommendation that the truncated power series is unsuitable
for general use because the model matrices may be ill-conditioned (the columns
almost linearly dependent). In general, a B-spline basis is superior.
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Fig. 2.7 Truncated power series ba-
sis for cubic splines (2.39). The
black dashed lines are 1, x, x2, x3. The
coloured solid lines are (x − ξk)
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2.4.3.2 B-Splines

The reason why B-splines are used is mainly computational: their very good nu-
merical properties arise from the fact that B-splines have minimal support. That
is, Bs,q(x) > 0 for x belonging to the smallest overall region defined by the knots.
With minimal support, the concept of a neighbourhood is made computationally
more stable because the coefficient of one B-spline is related to the fewest num-
ber of coefficients associated with the other B-splines, i.e., the amount of overlap
is minimal. This can be seen in Fig. 2.8: a B-spline of order q consists of q seg-
ments only. Hence a B-spline on the LHS of a scatter plot is only concerned with
data around the neighbourhood there. In contrast, the value x = 6 in Fig. 2.7 is
associated with all the truncated power series basis functions.

It is convenient to consider splines of a general order, Q say. Some special cases
are as follows.

Q = 1: These are similar to a shifted unit rectangle function or boxcar function.
Q = 2: Linear spline which has continuous derivatives up to order Q − 2 = 0

at the knots—i.e., the function is continuous and is piecewise-linear. In
fact, it is a scaled density of a triangle distribution (Table 12.10).

Q = 3: Quadratic spline (parabolic spline) which has continuous derivatives up
to order Q− 2 = 1 at the knots.

Q = 4: Cubic spline, these are very popular, and have been described as the
lowest-order spline for which the discontinuities in the f (Q−1)(ξs) are
imperceptible (Hastie et al., 2009).

Let ξs for s = 1, . . . ,K, be K interior knots, and let ξ0 and ξK+1 be the two
boundary knots. Then we can augment these knots with 2Q others to obtain a
vector τ = (τ1, . . . , τK+2Q)

T satisfying the following inequality:

τ1 ≤ τ2 ≤ · · · ≤ τQ ≤ ξ0 (2.41)

< ξ1 ≤ · · · ≤ ξK (2.42)

< ξK+1 ≤ τK+Q+1 ≤ · · · ≤ τK+2Q, (2.43)

where τQ+s = ξs for s = 1, . . . ,K. Usually τ1 = · · · = τQ = ξ0 and τK+Q+1 =
· · · = τK+2Q = ξK+1 is chosen.

Denote by Bs,q(x) the sth B-spline basis function of order q (degree q − 1)
for the knot sequence τ for q = 1, . . . , Q. They are defined recursively as follows
(de Boor, 2001):
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(1) For s = 1, . . . ,K + 2Q− 1,

Bs,1(x) =

{
1, τs ≤ x < τs+1,
0, otherwise.

(2.44)

(2) Then for s = 1, . . . ,K + 2Q− q and q > 1,

Bs,q(x) = ωs,q Bs,q−1(x) + (1− ωs+1,q) Bs+1,q−1(x) (2.45)

=
x− τs

τs+q−1 − τs Bs,q−1(x) +
τs+q − x

τs+q − τs+1
Bs+1,q−1(x), (2.46)

where ωs,q ≡ (x − τs)/(τs+q−1 − τs) for τs+q−1 > τs, while ωs,q ≡ 0
if τs+q−1 = τs. These may be computed using stable and efficient recursive al-
gorithms. Note that Bs,q only depends on the q+1 knots τs, . . . , τs+q, and van-
ishes outside the interval [τs, τs+q) and is positive in its interior. If τs = τs+q,
then Bs,q = 0.

Thus with Q = 4, Bs,4 (for s = 1, . . . ,K + 4) are the K + 4 cubic B-spline basis
functions for τ .

Some B-splines of orders 1 to 4 are plotted in Fig. 2.8. Essentially, the code is

knots <- c(1:3, 5, 7, 8, 10) # Interior knots

x.vector <- seq(0, 11, by = 0.01)

for (ord in 1:4) {
B.matrix <- bs(x = x.vector, degree = ord-1, knots = knots, intercept = TRUE)

matplot(x.vector, B.matrix, type = "l")

}

The significance of the argument intercept is due to the Bs,Q in (2.46) includ-

ing the intercept because
K+Q∑

s=1
Bs,Q(x) = 1 for x ∈ [ξ0, ξK+1]. Function bs()

has intercept = FALSE as the default, because usually it is called within an S
formula that has an intercept by default. Figure 2.10 shows B-spline basis func-
tions corresponding to a regression spline LM fitted without an intercept term
and with a bs(x, intercept = TRUE)-type term. Also, note however that bs()
presently does not accept a value of degree = 0, hence the first case ord = 1

might be computed as follows (it is assumed that intercept = TRUE).

allknots <- sort(c(Boundary.knots, knots))

B1.matrix <- matrix(0, length(x), length(knots) + intercept)

for (s in 1:(length(allknots)-1))

B1.matrix[, s] <- as.numeric(allknots[s] <= x & x < allknots[s+1]) # 0 or 1

Here are some additional notes.

1. > args(bs)

function (x, df = NULL, knots = NULL, degree = 3, intercept = FALSE,

Boundary.knots = range(x))

NULL

If argument knots is supplied, then the function returns a matrix of dimen-
sion c(length(x), df = length(knots) + degree + intercept). Alterna-
tively, the second dimension may be inputted directly by the df argument.
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Fig. 2.8 B-splines of order 1–4 ((a)–(d)), where the interior knots are denoted by vertical lines.
The boundary knots are at 0 and 11. The basis functions have been plotted from left to right.

It can be seen from the argument Boundary.knots that ξ0 = min(xi) and
ξK+1 = max(xi). By default, the internal knots selected by bs() and ns()

are of the form quantile(x.inside, probs) with equally spaced probs

values. In fact, if nIknots is the number of internal knots, then probs =

(1:nIknots)/(nIknots + 1), and x.inside are the x values inside the interval
described by the 2-vector Boundary.knots.

Note that predicting bs() outside the boundary knots is not recommended,
because Bs,Q(x) is not well defined outside of [ξ0, ξK+1]. In fact a warning is
issued if this is attempted.

2. A well-known type of cubic spline on [ξ0, ξK+1] called a natural cubic
spline (NCS) has second and third derivatives, which are zero at ξ0 and ξK+1:

f ′′(ξ0) = f ′′′(ξ0) = f ′′(ξK+1) = f ′′′(ξK+1) = 0. (2.47)

These are called the natural boundary conditions. NCSs are implemented
by ns(), which has defaults

> args(ns)

function (x, df = NULL, knots = NULL, intercept = FALSE,

Boundary.knots = range(x))

NULL

The lack of a degree argument is due to only cubic NCSs being implemented.
Given knots ξ1, . . . , ξK , an NCS is linear on (−∞, ξ0] and [ξK+1,∞). Func-
tion ns() has K + 2 parameters including the intercept because K + 2 =
(K + 4)− 2× 2 + 2: each boundary constraint in (2.47) deducts one parameter
from the total number, and there are two extra knots at ξ0 and ξK+1.

In practice, often there is not a huge difference between bs() and ns() terms,
when they are calibrated to be as similar to each other as possible. However,
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Fig. 2.9 Smoothing some data with cubic regression splines with knots of varying multiplicities.
The knots are at x = 2 and 4.

usually the natural boundary constraints means ns() behaves better at the
edges than bs(). The ns() function is also a double-edged sword compared
to bs(), because it is defined for all x, but as with all smoothers, prediction
beyond the range of the data poses more potential danger.

3. It is possible to move adjacent knots closer and closer together until they coin-
cide. We then say the set of distinct knots has varying multiplicities. Then we
need to define Bs,1 ≡ 0 if τs = τs+1, and use the maxim anything times zero
is zero in (2.46) to avoid division by 0. It transpires that if a knot is dupli-
cated then it loses one continuous derivative for each new knot there. It can be
shown that the number of continuity conditions at a knot ξs, plus the multiplic-
ity of knots at ξs, equals Q. The effect of this important formula can be seen
in Fig. 2.9: the cubic spline (Q = 4) with a knot of multiplicity m means that
only f (0), f (1), . . . , f (Q−m−1) exist there.

4. Although safe prediction in R will be sufficient for most users, it will not han-
dle nested expressions involving data-dependent functions such as I(bs(x))

and poly(scale(x), 2). In such cases, smart prediction will work; see
Sect. 18.6 for details.

2.4.4 Smoothing Splines

For regression splines, the user typically controls the flexibility of the smoother by
selecting a small number of basis functions, e.g., by assigning the df argument an
appropriate value that is less than 10, say. In contrast, the regularization approach
to smoothing is to start off with many basis functions (e.g., n of them) and penalize
some characteristic of these basis functions in order to control the flexibility of the
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fit. A popular example of this approach is the cubic smoothing spline. These are
defined as minimizers of the objective function

S(f) =
n∑

i=1

(yi − f(xi))2 + λ

∫ b

a

{f ′′(x)}2 dx, (2.48)

over a space of “smooth” functions. In fact, it is an infinite-dimensional space
of functions known as W2

2[a, b] (a Sobolev space of order 2 on [a, b] described in
Table A.3). Here, a < x1 < · · · < xn < b for some a and b is again assumed, and
the smoothing parameter satisfies λ ≥ 0.

The first term of S(f) penalizes lack-of-fit since it is a residual sum of squares.
The second term penalizes the wiggliness or lack of smoothness, e.g., the integral
equals zero for constant and linear functions. These two opposing quantities are
balanced with each other by λ. Larger values of λ produce more smooth curves,
indeed, as λ→∞, f ′′(x)→ 0 and the solution becomes the least squares line. The
other extreme is as λ→ 0+, and the solution tends to a twice-differentiable func-
tion that interpolates the data (xi, yi). These two extremes are often unacceptable
as a solution, so it is surmised that there is some λ value which balances the two
adequately. The quantity (2.48) fits into the “penalty function” approach described
in Sect. 1.5.1, and is expounded by Green and Silverman (1994) specifically for
splines.

Let Σ = W−1 = diag(w−1
1 , . . . , w−1

n )T to handle known prior weights as in
the weighted classical smoothing problem (2.36). Then the penalized least squares
criterion can be written

S(f) = (y − f)
T
Σ−1 (y − f) + λfTKf (2.49)

where K is a roughness penalty matrix described below. Setting its derivative with
respect to f to 0 yields the solution

f̂ = S(λ)y (2.50)

where S(λ) = (In + λΣK)−1 is known as the influence or smoother matrix. We
shall see that it has properties similar to the LM hat matrix H (2.10).

Here are some notes.

1. One can select λ by trial-and-error such as by eye, however, more objective
methods such as cross-validation are described below.

2. Following on from the description of a spline as a thin wooden strip in
Sect. 2.4.3, one justification for the penalty term of S(f) is that the energy

to bend it is proportional to
∫ b
a
curvature2 with1 respect to arc length, which

is approximately proportional to
∫ b
a
f ′′(t)2 dt. From Hooke’s Law, springs exert

an energy that is proportional to
∑n
i=1 (yi − f(xi))2. Hence (2.48) does have a

real physical meaning.

1 The curvature of a curve y = f(x) is |f ′′(x)| {1 + [f ′(x)]2
}−3/2

. If the { } term is dropped (be-
cause the assumption |f ′(x)| � 1 is almost always made in physics and engineering), then |f ′′(x)|
is left as an approximation to the curvature. In natural cubic spline interpolation, we are finding
a curve with minimal (approximate) curvature over an interval, for the quantity

∫
[f ′′(x)]2 dx is

being minimized.
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Fig. 2.10 (a)–(d) Linear combinations of B-splines of degrees 0–3 fitted to some scatter plot
data; the formula is similar to (2.55). The knots are equally spaced on the unit interval.

3. Importantly, Reinsch (1967) used the calculus of variations to show that the
solution of (2.48) is a cubic spline with knots at the distinct values of the xi
(provided that n ≥ 3 and λ > 0). Another important result is that if NCSs
interpolate the data (xi, yi) then they uniquely minimize

∫ {f ′′}2 over all func-
tions in W2

2[a, b] (for a < x1 < · · · < xn < b). Both these results are stated in,
e.g., Green and Silverman (1994, Thms 2.3, 2.4).

4. Actually, the optimization problem (2.48) derives from minimizing

∫ b

a

{f ′′(x)}2 dx subject to the constraint

n∑

i=1

{yi − f(xi)}2 ≤ A

for some A. Then (2.48) arises from applying the Lagrange multipliers technique
to this (Reinsch, 1967).

5. As n → ∞, λ should become smaller, consequently some authors replace λ
in (2.48) by λ/n.

6. There are alternative regularizations to the penalty of (2.48), e.g.,

∫ b

a

f ′(x)2 dx, (2.51)

whose solution is a linear spline. In general, using
∫ b
a
[f (ν)(x)]2 dx produces a

spline solution of degree 2ν − 1.
7. More generally, a Sobolev space of order m on [a, b] is written Wm

2 [a, b]. The
case of m = 2 corresponds to cubic splines. Absolutely continuity is a stronger
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condition than uniform continuity, given the definition of Ck[a, b] on p.53, it can
be shown that

C2[a, b] ⊂ W2
2[a, b]. (2.52)

As an example, Fig. 2.11a is a plot of a cubic smoothing spline fitted to the lakeO
data. Only a little nonlinearity is afforded to it. It suggests a gradual decline in
the proportion of rainbow trout caught there over time. The first 3 derivatives
are also shown in Fig. 2.11b–d, and these become increasingly more jagged. The
third derivative is a step function, and the second derivative is a piecewise-linear
function.

2.4.4.1 Computation by the Reinsch Algorithm

Cubic smoothing splines may be computed in several ways. All of the following
methods except for the first can be efficiently computed in O(n) operations.

1. Direct method (2.50). Not recommended because it involves O(n3) operations
due to an order-n matrix inversion.

2. B-splines—this numerically stable method is probably the most commonly used
algorithm nowadays, and is implemented in R by splines.

3. Reinsch algorithm—using clever linear algebra, one can transform the problem
into a banded system that can be efficiently solved. Green and Silverman (1994,
Sect.2.3.3) gives a succinct description and this is summarized even more below.
It forms the basis of the Fessler (1991) algorithm for vector splines (Sect. 4.2.1).

4. State-space approach—this is based on Kalman filter computations in time
series analysis (Wecker and Ansley, 1983; Kohn and Ansley, 1987).

Elements of the Reinsch (1967) algorithm are as follows. Firstly, it may be shown
that the roughness penalty matrix can be expressed2 as K = λQT−1QT , where Q
is a banded n× (n−2) matrix and T is symmetric tridiagonal of order n−2. Also,
it may be shown that QTf = Tγ for some vector γ. Secondly, starting at (2.50),

f =
(
In + λW−1 K

)−1
y = (W+ λK)

−1
Wy. (2.53)

Then f = y−λW−1QT−1QTf and hence f = y−λW−1Qγ. Premultiply both
sides by QT and substitute QTf = Tγ to give

(
T+ λQT W−1 Q

)
γ = QT y. (2.54)

This is the key equation. The LHS is a symmetric positive-definite band matrix
with bandwidth 5 (half-bandwidth 3). One can decompose this into the rational
Cholesky decomposition LDLT , where L is a unit lower diagonal band matrix
and D is a diagonal matrix with positive diagonal elements. The matrices Q and T
can be found in O(n) operations, and hence L and D require only linear time for
their computation.

2 Explicitly, letting hi = xi+1−xi for i = 1, . . . , n−1, their nonzero elements are: (T)ii = (hi+

hi+1)/3, (T)i,i−1 = (T)i,i+1 = hi/6, (Q)ii = h−1
i , (Q)i+1,i = −(h−1

i + h−1
i+1) and (Q)i+2,i =

h−1
i+1.
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Fig. 2.11 (a) Cubic smoothing spline fitted to the proportion of fish caught that are rainbow
trout from lakeO. The x-axis is year. The smoother has 1 nonlinear degrees of freedom.
(b)–(d) Derivatives of the smooth of orders 1–3. In contrast, Fig. 2.15 fits a local linear regression
to these data.

So the steps are:

(i) compute QT y,

(ii) find the non-zero bands of
(
T+ λQT W−1 Q

)
and hence its rational

Cholesky decomposition factors L and D,
(iii) solve LDLTγ = QT y,

(iv) compute f̂ = y − λW−1Qγ.

Unfortunately the Reinsch algorithm becomes numerically unstable as n gets
very large and/or if the xi are very unequally spaced. Like regression splines, a
more numerically stable algorithm can be devised, based on B-splines.

2.4.4.2 B-Splines

Here, we express f̂ as a linear combination of B-splines like Sect. 2.4.3.2 and
Fig. 2.10:

f̂(x) =

K+Q∑

s=1

βsBs,Q(x) (2.55)

so that the elements of the roughness penalty matrix from (2.49) are (K)st =
∫ b
a
B′′
s,Q(x)B

′′
t,Q(x) dx. These integrals are not difficult to compute because the

integrands are merely quadratics.
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2.4.4.3 O-Splines

As stated above, an important property of cubic smoothing splines is that the
knots are the (distinct) xi. However, for large n, having so many knots is overkill.
Consequently, O-splines are used to reduced the computational cost by choosing
an ‘effective’ number of knots (K � n, say) that hopefully results in a fitted
curve that does not differ appreciably from the full-knot solution. The result has
been called a low-rank spline smoother (e.g., Ruppert et al., 2003) or reduced-knot
smoother.

How might the K knots be chosen? Ideally, they should ‘mimic’ the xis, hence
one technique is to take a simple random sample of them. Another suggestion is
to place relatively more knots in regions where f is wiggly as opposed to simple.
A good strategy would be to choose quantile-based knots, and another to use
equally spaced knots. For these two, it is possible to construct f and distributions
of the xi that cause the other strategy to perform poorly. O-splines use quantile-
based knots, whereas P-splines (Sect. 2.4.5) choose equally spaced knots. The
former is implemented in the R function smooth.spline() and also in VGAM as
a whole.

As for the value of K itself, the upper function of Fig. 2.12 is a plot of K
versus n used by smooth.spline(). As n → ∞, K = 200 + (n − 3200)1/5 grows
very slowly. To ‘fill the space’ of the xis, the software selects the sth knot to be
approximately the s/(K + 1)th sample quantiles of the unique xis. (In contrast,
P-splines choose equally spaced knots). But K = n for n ≤ 50 because of the light
computational cost. It should be noted that O-splines use the natural boundary
constraints (2.47) so that the solution is linear beyond the range of the data. Some
more details are given in Wand and Ormerod (2008).

The function vsmooth.spline() described in Sect. 4.4.2 also follows a similar
idea. However, it reduces K with greater severity because M > 1 increases the
computational cost quickly as M grows. Currently,

K =

{
n, n ≤ 40,
�40 + (n− 400)1/4�, n > 40,

(2.56)

which is the lower function of Fig. 2.12.
Incidentally, the “O” in “O-splines” is due to F. O’Sullivan, the author of a

software implementation of the above, named BART, which was written in the
mid-1980s. It forms the innards of smooth.spline(). By default, this function
will implement O-splines, but if argument all.knots = TRUE then the full-knot
solution to (2.48) will be returned. The early S-PLUS gam() function was built on
BART, as is gam() in gam presently. More details about the O-spline algorithm
are given in Sect. 4.2.1.3 for the general M case.

2.4.5 P-Splines

Rather than using smoothing splines, it is more convenient to smooth using the
“penalized B-splines” of Eilers and Marx (1996), also known as “P-splines”. They
are another example of a low-rank smoother and have several compelling advan-
tages. Their solution can be conveniently computed because it involves straight-
forward linear algebra computations, therefore estimation can proceed in a similar
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Fig. 2.12 O-splines: number of knots K
selected from n unique xi, for smooth.

spline() is the top function. The lower

function is (2.56) for vsmooth.spline().
Both axes are on a logarithmic scale. The
top function intersects with the dashed
lines at (50, 50), (200, 100), (800, 140) and
(3200, 200); logarithmic interpolation is
used for other n values.
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manner to GLMs. There is no need for backfitting (Sect. 4.3) and all functions
are estimated simultaneously. Furthermore, inference is straightforward, and au-
tomatic smoothing parameter selection is a less daunting problem. The R pack-
age mgcv conveys P-splines to the common GAM class plus about a dozen more
distributions.

P-splines extend regression splines by penalizing the coefficients of adjacent
B-splines. Suppose that xi ∈ [a, b] for some simple scatter plot data. Let the
regression spline be

f(x) =

K+Q−1∑

s=1

βsBs,q(x), (2.57)

where there are K + 1 equidistant knots ξs = a+ s(b− a)/K (for s = 0, 1, . . . ,K)
in [a, b] (i.e., K−1 internal knots). We can write (2.57) as f = Xβ where (X)ij =
Bj,Q(xi). Then β can be estimated by minimizing

S(β) = (y −Xβ)TW(y −Xβ) + λβT DT
[d] D[d] β (2.58)

where λ > 0 is the smoothing parameter, and D[d] ((K +Q− 1− d)× (K+Q−1))

is the matrix representation of the dth-order differencing operatorΔd, e.g.,Δ1βs =
βs − βs−1 and Δ2βs = Δ(Δβs) = Δβs − Δβs−1 = βs − βs−1 − (βs−1 − βs−2) =
βs−2βs−1+βs−2. In practice, the values d = 2 and 3 are common. In general, the

roughness penalty term in (2.58) is λ
∑K+Q−1
s=d+1

(
Δdβs

)2
, and this penalty may not

make sense with non-equidistant knots. The form the DT
[d] takes on is similar to:

> (D_1 <- diff(diag(4)))

[,1] [,2] [,3] [,4]

[1,] -1 1 0 0

[2,] 0 -1 1 0

[3,] 0 0 -1 1

> (D_2 <- diff(diff(diag(4)))) # Same as diff(diag(4), diff = 2)

[,1] [,2] [,3] [,4]

[1,] 1 -2 1 0

[2,] 0 1 -2 1
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Fig. 2.13 Local linear regression with n = 40 points. The kernel weights have been divided by 10
for scaling purposes. The vertical line is at the target point x0 = 0.7 so that three curves/lines

intersect at (x0, f̂(x0)). The shaded region is effectively the window for computing f̂(x0).

It may be seen in (2.58) that β appears in both terms. This means that the
coefficients controls both the amount of goodness-of-fit and the wiggliness. The
solution obtained by setting ∂S/∂β = 0 is

β̂ =
(
XTWX+ λDT

[d]D[d]

)−1

XTWy. (2.59)

Then the variance-covariance matrix of β̂ is easy: Var(β̂) =

σ2
(
XTWX+ λDT

[d]D[d]

)−1

XTWX
(
XTWX+ λDT

[d]D[d]

)−1

, (2.60)

and so

Var(ŷ) = Var(Xβ̂) =

σ2 X
(
XTWX+ λDT

[d]D[d]

)−1

XTWX
(
XTWX+ λDT

[d]D[d]

)−1

XT . (2.61)

2.4.6 Local Regression

Local regression refers to a major class of smoothers that includes the Nadaraya-
Watson smoother (2.63), local polynomial kernel estimators (2.65), and variants
such as Loess and Lowess. No local regression smoother is currently implemented in
VGAM, so we describe it here mainly for completeness and for preparation of some
theoretical properties in the vector case (Sect. 4.2.2.1). We give scant attention to
any practical aspects, and only briefly mention that a popular smoother is loess()
(Cleveland et al., 1991) and its older variant lowess()—see Sect. 2.4.6.5.

Consider the classical smoothing problem (2.36) with σ2
i = σ2 and wi = 1 as

related to Fig. 2.13. To estimate f(x0), one computes a WLS fit to the (xi, yi)
with weights determined by the distance x0 is from the xi. In fact, these weights
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are Kh(x0 − xi) where K is some kernel function, h is the positive smoothing
parameter known as the bandwidth, and

Kh(u) = h−1 ·K
(u

h

)
(2.62)

is a scaled version of K that integrates to unity for all h. The bandwidth scales the
distance by adjusting the window size in a similar manner that the standard de-
viation does to a normal distribution. Small/large values of h mean a small/large
effective window size about x0. An h that is too low results in too few observa-
tions, therefore is prone to overfit. As h→∞, the solution becomes an essentially
unweighted LS fit (because all weights are equal) to all the data, e.g., f̂(x) = y for
all x if a polynomial of degree r = 0 is fitted.

Some popular kernel functions are given in Table 2.2 and are plotted in Fig. 2.14.
For convenience they possess the following properties:

(i) symmetric,
(ii) have unit area,
(iii) centred at the origin,
(iv) nonincreasing going away from the origin.

Regarding the latter property, apart from the uniform kernel which assigns an
equal weight to observations within the window, other kernel functions strictly
decrease as the distance from the origin increases. This is called the unimodal
property. The significance of the Epanechnikov kernel is that it minimizes the
asymptotic mean integrated squared error (2.84).

Given the kernel weights, the WLS fit is a polynomial of degree r (Fig. 2.13),
hence the name local polynomial kernel estimator is sometimes used. The case r = 1
is known as a local linear regression or local linear kernel smoother. The case r = 0
gives the local constant or simple Nadaraya-Watson estimator

f̂nw(x0) =

n∑

i=1

K

(
x0 − xi
h

)

yi

n∑

i=1

K

(
x0 − xi
h

) =

n∑

i=1

⎧
⎪⎪⎨

⎪⎪⎩

Kh(x0 − xi)
n∑

t=1
Kh(x0 − xt)

⎫
⎪⎪⎬

⎪⎪⎭

yi. (2.63)

Clearly, it takes a weighted average of the yi, and more weight is assigned to
those xi that are closer to x0. The quantities in braces are normalized kernel
weights.

More generally, an explicit expression for the rth-degree local polynomial kernel
estimator can be obtained as follows. At a target point x, the estimator f̂(x; r, h)
is obtained by fitting the polynomial β1+β2(·−x)+· · ·+βr+1(·−x)r to the (xi, yi)

using weighted least squares with kernel weights Kh(xi−x). The value of f̂(x; r, h)
is the intercept β̂1 because of the centring, where β̂ = (β̂1, . . . , β̂r+1)

T minimizes
the WLS criterion

n∑

i=1

{yi − β1 − β2(xi − x)− · · · − βr+1(xi − x)r}2 Kh(xi − x). (2.64)
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Fig. 2.14 Kernel functions from Table 2.2. All but one has compact support.

Table 2.2 Some popular kernel functions for local regression. All but one is defined on [−1, 1],
and the quartic is also known as the biweight. They are graphed in Fig. 2.14.

Kernel K(u) Kernel K(u)

Cosinus π
4
cos(πu/2) · I(|u| ≤ 1) Triangle (1− |u|) · I(|u| ≤ 1)

Epanechnikov 3
4
(1− u2) · I(|u| ≤ 1) Tricube 70

81
(1− |u|3)3 · I(|u| ≤ 1)

Gaussian φ(u) = exp(− 1
2
u2)/

√
2π Triweight 35

32
(1− u2)3 · I(|u| ≤ 1)

Quartic 15
16

(1− u2)2 · I(|u| ≤ 1) Uniform 1
2
· I(|u| ≤ 1)

The centring about x is for mathematical convenience. The solution is

β̂x =
(
XT
xWxXx

)−1

XT
xWx y (2.65)

where y = (y1, . . . , yn)
T , Wx = diag(Kh(x1 − x), . . . ,Kh(xn − x)) and the model

matrix specific to x is

Xx =

⎛

⎜
⎝

1 (x1 − x) . . . (x1 − x)r
...

...
...

1 (xn − x) . . . (xn − x)r

⎞

⎟
⎠ , (2.66)

which is n× (r + 1). Since the estimator of f(x) is the intercept, we have

f̂(x; r, h) = eT1 β̂x = eT1

(
XT
xWxXx

)−1

XT
xWx y. (2.67)

Substituting r = 0 into this yields the Nadaraya-Watson estimator (2.63).
Similarly, the local linear estimator (r = 1) can be written as

f̂(x; 1, h) = n−1
n∑

i=1

{ŝ2(x;h)− ŝ1(x;h) · (xi − x)} Kh(xi − x) yi
ŝ2(x;h) ŝ0(x;h)− ŝ1(x;h)2 (2.68)

where

ŝr(x;h) = n−1
n∑

i=1

(xi − x)r Kh(xi − x). (2.69)
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Fig. 2.15 (a) Local linear regression fitted to the proportion of fish caught that are rainbow
trout from lakeO. The smoother has a bandwidth of h = 2.5 and uses the Gaussian kernel
function. (b) f̂ ′(x). In contrast, Fig. 2.11 fits a cubic smoothing spline to these data.

2.4.6.1 Derivative Estimation

Sometimes the first or second derivative of f is of more interest than f itself. For
example, in the study of human growth curves of height as a function of age, the
“speed” and “acceleration” of growth have important biological significance.

The νth derivative of f is easily estimated from above. As

dν

duν
βp+1 · (u− x)p

∣
∣
∣
∣
u=x

=

{
p!βp+1, ν = p,
0, otherwise,

we simply extract the (ν + 1)th coefficient of βx to give the estimate

f̂ (ν)(x; r, h) = ν! eTν+1

(
XT
xWxXx

)−1

XT
x Wx y (2.70)

for all ν = 0, . . . , r. Of course, (2.67) is a special case of this. Note that f̂ (ν)(x; r, h)

is not in general equal to the νth derivative of f̂(x; r, h).
As an example, Fig. 2.15 fits a local linear regression to the lakeO data. In

contrast, Fig. 2.11 fits a cubic smoothing spline to these data. Both estimates
of f(x) and f ′(x) are similar for the two smoothers, which is not surprising for this

small simple scatter plot. As r = 1, f̂ ′′(x) is not available through (2.70), however
it might be estimated using a local quadratic polynomial kernel estimator.

2.4.6.2 Bias and Variance †

Compared to some other smoothers, the large-sample properties of local polyno-
mial kernel estimators are readily derived. This section demonstrates some of this
ability. From (2.65), write

β̂x = Δ−1
x θx (2.71)
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where Δx = n−1 XT
xWxXx and θx = n−1 XT

xWx y, so that their means are
finite. If Var(yi) = σ2 then it follows from (2.65) that

E
[
β̂x

]
=

(
XT
xWxXx

)−1

XT
xWx f , (2.72)

Var
[
β̂x

]
= σ2

(
XT
xWxXx

)−1

XT
xW

2
xXx

(
XT
xWxXx

)−1

, (2.73)

where β̂x = (f̂(x), . . . , f̂ (r)(x)/r!)T and f = (f(x1), . . . , f(xn))
T .

Suppose the design points xi are a random sample from some distribution with
density function g (this is called a random design). Define

μq =

∫ ∞

−∞
uqK(u) du and νq =

∫ ∞

−∞
uqK2(u) du, (2.74)

so that μ0 = 1, and μq = νq = 0 for odd q ≥ 1. We assume that ν2 < ∞
and μ4 <∞. For the purposes of Sect. 4.2.2.1, we shall mainly consider the r = 1
case. Then it can be shown, subject to regularity conditions (e.g., Sect. 4.2.2.1),
that when the xi are uniformly distributed and x0 is away from the boundaries,
then asymptotically

Bias[f̂(x0)] ∼ h2

2
μ2 f

′′(x0), (2.75)

Bias[f̂ ′(x0)] ∼ h2

3!μ2
μ4 f

′′′(x0), (2.76)

Var
[
f̂(x0)

]
∼ ν0 σ

2

nh g(x0)
, (2.77)

Var
[
f̂ ′(x0)

]
∼ ν2 σ

2

nh3 μ2
2 g(x0)

. (2.78)

In these formulas, the bias-variance trade-off can be seen immediately, e.g., as h
decreases, the biases decrease and the variances increase. Another observation is
that in order for the estimator of f(x0) to be consistent, it is necessary for h→ 0
and nh→∞ as n→∞. In fact, it can be shown that to minimize the asymptotic
mean integrated squared error (2.84), the optimum rate is h = O(n−1/5). Addi-

tionally, it can be shown that the asymptotic bias of f̂(x0) from a local polynomial
regression of degree r is O(hr+1) for odd r, and O(hr+2) for even r. This suggests
that a higher degree r should be chosen for large samples if f is very wiggly.

To verify (2.75)–(2.76), one needs to show that, for example,

n−1
n∑

i=1

α(xi) (xi − x) Kh(xi − x) ∼ h2 {α′(x) g(x) + α(x) g′(x)}μ2

for h > 0 and some smooth function α(x). The following standard argument
is used to obtain the asymptotic mean of the LHS. Call the LHS I1, say, and
let z = (xi − x)/h. Then apply two Taylor series about x:
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I1 ∼
∫ ∞

−∞

[

α(x) + α′(x) (xi − x) + α′′(x)
(xi − x)2

2
+ · · ·

]

(xi − x) ·

1

h
K

(
xi − x
h

)[

g(x) + g′(x) (xi − x) + g′′(x)
(xi − x)2

2
+ · · ·

]

dxi

=
1

h

∫ ∞

−∞
(zh)K(z)

[

α(x) + α′(x) zh+
1

2
α′′(x) (zh)2 + · · ·

]

·
[

g(x) + g′(x) zh+
1

2
g′′(x) (zh)2 + · · ·

]

h dz

∼ h

∫ ∞

−∞
z K(z) {α′(x) g(x) zh+ α(x) g′(x) zh} dz

= h2 {α′(x) g(x) + α(x) g′(x)}
∫ ∞

−∞
z2K(z) dz.

A similar argument to the above can be used to show the following:

n−1
n∑

i=1

α(xi)Kh(xi − x) (xi − x)t ∼

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α(x) g(x) +
h2 μ2

{
1
2 α(x) g

′′(x) + α′(x) g′(x) + 1
2 α

′′(x) g(x)
}
, t = 0,

h2 μ2 {α(x) g′(x) + α′(x) g(x)}+
h4 μ4

{
1
6 α g

′′′ + 1
2 α

′ g′′ + 1
2 α

′′ g′ + 1
6 α

′′′ g
}
, t = 1,

h2 μ2 α(x) g(x) +
h4 μ4

{
1
2 α(x) g

′′(x) + α′(x) g′(x) + 1
2 α

′′(x) g(x)
}
, t = 2.

(2.79)

One makes good use of the above when working out the elements of Δx and E[θx]
(the latter uses α = f). For the local linear case,

Δ−1
x ∼ 1

g(x)

(
1 −g′(x)/g(x)

−g′(x)/g(x) 1/{h2 μ2}
)

, (2.80)

which can be used to premultiply the 2-vector E[θx]. This gives the first element

f(x) +
h2 μ2

g2(x)

{
1

2
f(x) g(x) g′′(x) +

1

2
f ′′(x) g2(x)− f(x) [g′(x)]2

}

.

Subtracting f(x) from this gives the asymptotic bias. If the xi are uniformly dis-
tributed (a fixed design), then g(x) is a constant, leading to the bias term (2.75).

Similarly, deriving the second element gives Bias[f̂ ′(x0)] ∼

h2

g(x0)

[
μ4

μ2

{
1

6
f(x0) g

′′′(x0) +
1

2
f ′(x0) g

′′(x0) +
1

2
f ′′(x0) g

′(x0) +
1

6
f ′′′(x0) g(x0)

}

−

μ2
g′(x0)

g(x0)

{
1

2
f(x0) g

′′(x0) + f ′(x0) g
′(x0) +

1

2
f ′′(x0) g(x0)

}]

.

Then uniformly distributed xi implies (2.76).
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The variance terms (2.77)–(2.78) follow from a similar standard argument that
shows n−1

∑n
i=1 α(xi)K

2
h(xi − x) (xi − x)t ∼

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h−1 ν0 α(x) g(x) +
h ν2

{
1
2 α(x) g

′′(x) + α′(x) g′(x) + 1
2 α

′′(x) g(x)
}
, t = 0,

h ν2 {α(x) g′(x) + α′(x) g(x)}+
h3 ν4

{
1
6 α g

′′′ + 1
2 α

′ g′′ + 1
2 α

′′ g′ + 1
6 α

′′′ g
}
, t = 1,

h ν2 α(x) g(x) +
h3 ν4

{
1
2 α(x) g

′′(x) + α′(x) g′(x) + 1
2 α

′′(x) g(x)
}
, t = 2.

(2.81)

These are used in the n−1
(
XT
xW

2
xXx

)
part of the formula of (2.73). Multiplying

Δ−1
x XT

xW
2
xXxΔ

−1
x together and setting g′ = 0 gives the required results.

Of further interest, the equivalent kernel (Sect. 2.4.7.3) of a smoother are the

weights assigned to yi in order to obtain f̂(x). That is, f̂(x) =
∑n
i=1 ω

∗
i yi where

the ω∗
i are known as the equivalent kernel of f̂(x). For local linear regression, the

equivalent kernels are easily found by

(
f̂(x)

f̂ ′(x)

)

= Δ−1
x θx = n−1

n∑

i=1

Kh(xi − x) Δ−1
x

(
1

xi − x
)

yi,

therefore the ith vector of this sum which multiplies yi is

n−1 Kh(xi − x)

⎛

⎜
⎜
⎜
⎜
⎝

1

g(x)
− g′(x)
g2(x)

(xi − x)

− g
′(x)
g2(x)

+
xi − x

h2 g(x)μ2

⎞

⎟
⎟
⎟
⎟
⎠
. (2.82)

The first element is the asymptotic equivalent kernel for f̂(x) [cf. (4.44)]. For uni-
formly distributed xi, this is proportional to Kh(xi − x), which makes intuitive
sense.

The second element of (2.82) is the asymptotic equivalent kernel for f̂ ′(x).
For a simple example of n = 101 equally spaced points on [0, 1] with h = 0.2
and a Gaussian kernel, Fig. 2.16 is a plot of these for three values of x0. The
weights for the yi are positive to the immediate RHS of x0, and negative on the
LHS; this makes sense given the central finite-difference formula in Sect. 9.2.5:
f ′(x) ≈ [f(x+ h/2)− f(x− h/2)]/h, whose error is O(h2).

The above argument may be simplified for the r = 0 case to show that the
Nadaraya-Watson estimator also has O(h2) bias in the interior. But it can also
be shown that the bias at the boundaries is O(h), which may be quite severe.
This can be seen quite simply by smoothing data of the form yi = α+ β xi where
the xi are not equally spaced: the Nadaraya-Watson estimate will be nonlinear!
If f(x) is quite flat, then the Nadaraya-Watson estimator can perform better than
local linear regression, but if f(x) is steep and curved, then local linear regression
should be the better choice.
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Fig. 2.16 Asymptotic equivalent kernel for f̂ ′(x) from (2.82). The 101 xi are equally spaced
on [0, 1] (as shown by the rugplot). The x0 values are 0.05, 0.25, 0.5 (vertical dashed lines), and
the bandwidth is 0.2. The kernel function K = φ(·).

2.4.6.3 On Choosing r, h and K

In the early 1990s, Fan and co-workers showed that, for the νth derivative of f , the
case of even r− ν had the same amount of variability as the next odd r− ν value.
It was therefore recommended that the lowest odd degree r = ν + 1 be chosen,
and occasionally, r = ν + 3. Thus, for most applications where f is of primary
interest, a local linear regression was suggested. Ruppert et al. (2003, pp.85–6)
suggest r = 1 when f is monotonically increasing, otherwise r = 2 is a good choice
(partly supported by simulations). In conclusion, probably r = 1 and/or r = 2 are
a good choice for many data sets, and occasionally r = 3.

However, in practice, the choice of the bandwidth h is the most crucial. Much
research has been directed towards this very difficult problem, and ideas such as
variable bandwidths have been investigated. Some packages reflecting bandwidth
selection are bbefkr, KernSmooth, lokern, and np. The choice of the kernel function
has long been known to be less important than bandwidth selection.

2.4.6.4 Further Comments

Practically, a major drawback of local regression as described above is the sparse
data problem: if some of the (sorted) xi have big gaps between them and the
bandwidth is too small, then there may not be any observations at all within the
window. For r = 0, this results in the denominator of (2.63) being 0 or nearly
so, hence the estimate is unstable or undefined. This problem does not occur so
much with splines. Hence the standard local regression formulation needs modi-
fication for coal-face general practice. One such modification is to use a nearest
neighbourhood such as (2.86).

Since f̂(x0) is essentially some WLS fit, many properties of local regression
estimators are consequently naturally defined for vector responses. For example,
the equivalent kernel, influential measures, bias and variance, degrees of freedom,
etc. Some of these are considered for the vector case in Sect. 4.2.2.
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2.4.6.5 Lowess and Loess

In passing, it mentioned that two popular methods based on local regression
are Lowess (Cleveland, 1979) and Loess (Cleveland and Devlin, 1988). Lowess
stands for locally weighted scatterplot smoother, and it robustifies the locally
WLS method described above. Loess is the more modern of the two (Cleveland
et al., 1991) and it can perform multivariate smoothing for x.

The basic idea of Loess is to fit a polynomial of degree r locally (the win-
dow sizes of which are determined by a nearest-neighbours scheme) and obtain
the fitted values. Then the residuals are assigned weights: larger/smaller residu-
als receive small/large weights respectively. Another local polynomial of degree r
(with weights given by the product of the initial weight and new weight) is fit-
ted. Thus observations showing large residuals at the initial fit are downweighted
in the second fit. The above process is repeated a few times. Cleveland (1979)
recommended 3 iterations and r = 1, which are the software defaults.

Loess can be invoked simply, e.g.,

fit.lo <- loess(y ~ x, data = ldata)

plot(y ~ x, data = ldata)

lines(predict(fit.lo) ~ x, data = ldata) # The variable x is assumed sorted here

and for additive models, it is implemented in gam, e.g.,

gam(y ~ lo(x2) + lo(x3), binomial, data = bdata)

Both Lowess and Loess measure the size of a neighbourhood using the ‘span’; the
larger the value, the larger the neighbourhood.

2.4.7 Some General Theory

In this subsection, a sprinkling of general theory relating to scatter plot smoothing
is provided. Here, there is a fundamental trade-off between the bias and variance of
the estimator, and this phenomenon is governed by the smoothing parameter. One
criterion that compares the two quantities directly at a value x is the (pointwise)
mean squared error (MSE; Sect. A.1.3.1)

MSE(f̂(x)) = E

[(
f̂(x)− f(x)

)2
]

= Var
(
f̂(x)

)
+
(
E f̂(x)− f(x)

)2
. (2.83)

A similar quantity to the above, known as the mean integrated squared error
(MISE), is

MISE(f̂(·)) =

∫ ∞

−∞
MSE(f̂(x)) g(x)W (x) dx, (2.84)

which is a global measure of precision. Here, W (x) is a weighting function that
might be needed for the integral to exist; it is assumed that W (x) = 1 unless

otherwise stated. This MISE weighs the MSE of f̂ by the density of the design
points g. For some smoothers, this criterion can be minimized with respect to the
smoothing parameter.
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2.4.7.1 Linear Smoothers

A smoother is said to be linear if

ŷ = Sy, (2.85)

where the influence matrix S can depend on x but not on y. The rank of S might
be n or much less than n—called full-rank and low-rank smoothers, respectively.

All four smoothers described in this section (regression splines, cubic smoothing
splines, P-splines and local polynomial kernel smoothers) are linear smoothers,
provided that the smoothing parameters are fixed. Strictly speaking, the use of
automatic smoothing parameter selection procedures makes a smoother nonlinear
because then S does depend on y. However, as Ruppert et al. (2003) confess, we
commonly pretend the smoothing parameter is fixed and, as an approximation,
treat the smoother as linear. Other linear smoothers not discussed here include
bin smoothers, running-mean smoothers and running-line smoothers.

One can define a symmetric nearest neighbourhood of xi as the set of indices
around about i as:

N i =

{

min

(

i− �sn� − 1

2
, 1

)

, . . . , i− 1, i, i+ 1, . . . ,

max

(

i+
�sn� − 1

2
, n

)}

, (2.86)

(Buja et al., 1989) where 0 < s < 1 is known as the span. For j ∈ Ni, one computes

the mean of observations (xj , yj) to get f̂(xi) for the running mean smoother.
An example of a nonlinear smoother is the running median smoother. To see

this, suppose that n is large and the size of the symmetric nearest neighbourhood
in the interior is 3 observations (these are xi−1, xi and xi+1). In the absence of
ties, the tridiagonal part of the smoother matrix will have two 0s and one 1 in
order to pick off the median of three yi observations. The position of the 1 can
only be determined by looking at the yi, therefore the influence matrix does not
depend on x alone.

The theory for linear smoothers is much simpler than for nonlinear smoothers,
and this is probably the reason why they are used much more commonly—their
properties are well-understood. In probably all respects, linear smoothers general-
ize all the properties of simple linear regression.

2.4.7.2 Eigenvalues

Many properties of smoothers can be seen by examining the eigenvalues and eigen-
vectors of S. For example, a cubic smoothing spline has all eigenvalues of S(λ)
in (0, 1], with exactly two unit eigenvalues with corresponding eigenvectors 1
and x, i.e.,

S1 = 11 and Sx = 1x. (2.87)

These correspond to constant and linear functions: smoothing yi that are constant
or lie on a line with respect to xi results in fitted values equal to yi because such
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Fig. 2.17 (a) Eigenvalues of the smoother matrix of a cubic smoothing spline. Here, n =
20 and the xi are equidistant on [0, 1]. (b) The same on a logarithmic scale. The two unit
eigenvalues correspond to constant and linear functions. The corresponding eigenvectors are
plotted in Fig. 2.18.

functions are not penalized by the roughness penalty criterion (2.48). Later, we
shall see that such functions which are not penalized belong to the null space H0

in the RKHS framework of Sect. 4.2.1.7.
If S is symmetric, then we can write

Svi = θi vi, i = 1, . . . , n, (2.88)

where θi are real eigenvalues. Smoothers with some 0 < θi < 1 are called shrinking
smoothers. If all the θi are 0 or 1, then the smoother is called a regression smoother.
For cubic smoothing splines, the vi are approximately orthogonal polynomials of
increasing order, and

θi = 1/(1 + λ ρi)

where ρ1 ≤ ρ2 ≤ · · · ≤ ρn so that θ1 ≥ θ2 ≥ · · · ≥ θn. Figure 2.17 illustrates how
quickly these eigenvalues can decay. Now {v1, . . . ,vn} forms an orthonormal basis
for Rn, and the spectral decomposition of S is

S = VDiag(θ1, . . . , θn)V
T =

n∑

i=1

θi vi v
T
i ≈

n∗
∑

i=1

θi vi v
T
i .

The approximation thereof holds for some appropriate n∗ � n because θi ≈ 0
for i > n∗. The predicted values then are

ŷ = Sy ≈
n∗
∑

i=1

θi · (vTi y) · vi.

This shows that the fitted values are largely determined by the first few eigen-
values and eigenvectors. The high-frequency eigenvectors (Fig. 2.18) are not very
important because their effect is dampened by those almost-zero eigenvalues. This
suggests a low-rank approximation (e.g., Hastie, 1996) whereby a few of the largest
eigenvalues are retained and the remainder set to zero. This idea can be used to
motivate P-splines (Sect. 2.4.5).
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Fig. 2.18 Successive eigenvectors corresponding to the eigenvalues of Fig. 2.17.

2.4.7.3 Equivalent Kernels

Some properties of a smoother may be seen by considering its so-called equivalent
kernel, e.g., these may be used to compare different types of linear smoothers (e.g.,
Buja et al., 1989). For a typical linear smoother, plotting a row of the influence
matrix S (see (2.85)) against the xi values gives the form of neighbourhood used
and the weighting function.

For some smoothers, it is possible to derive analytical expressions for their
equivalent kernel as n → ∞. We saw this was the case for local linear smoothers
in Sect. 2.4.6.2. This is also the case for the cubic smoothing spline: consider the
weighted cubic smoothing problem

S(f) =

n∑

i=1

wi {yi − f(xi)}2 + λ

∫ b

a

{f ′′(x)}2 dx, (2.89)

where wi > 0 are known and they sum to unity. Silverman (1984) showed that

f̂(t) =

n∑

i=1

F (t, xi)wi yi (2.90)
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Fig. 2.19 Equivalent kernel of a cubic

spline, κ(u) (Eq. (2.92)). −5 0 5
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asymptotically, with weighting function

F (t, x) ≈ 1

g(x)h(x)
κ

(
t− x
h(x)

)

(2.91)

with h(x) = (λ/g(x))
1
4 , and kernel

κ(u) =
1

2
e−|u|/√2 sin

( |u|√
2
+
π

4

)

. (2.92)

The latter function is plotted in Fig. 2.19. Although κ is an even function that
integrates to unity, its values are not all positive everywhere. The elements of the
smoother matrix are given by (S)ij = wj F(xi, xj).

Equation (2.90) holds for large n, small λ and xi not too close to the boundary.
That g−1/4(x) is bounded by g0(x) and g−1(x) indicates that the behaviour of the
smoothing spline is between fixed-kernel smoothing and smoothing based on an
average of a fixed number of neighbouring values.

2.4.7.4 Effective Degrees of Freedom

All smoothers allow the user to vary the amount of smoothing via the smoothing
parameter, e.g., bandwidth h, λ, etc. However, it would be useful to have some
measure of the amount of smoothing done that applies to all linear smoothers.
One such measure is the effective degrees of freedom (EDF) of a smooth. It is
useful for a number of reasons, e.g., comparing different types of smoothers while
keeping the amount of smoothing roughly equal.

Using some basic results pertaining to the hat matrix of the linear model
(Sect. 2.2.1) by replacing H by S, these results suggest the following three defini-
tions for the effective degrees of freedom of a smooth:

df = trace(S), (2.93)

df var = trace(SST ), and (2.94)

df err = n− trace(2S− STS). (2.95)

More generally, with weights W, these are

df = trace(S), (2.96)

df var = trace(WSW−1ST ), and (2.97)

df err = n− trace(2S− STWSW−1). (2.98)
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It can be shown that if S is a (symmetric) projection matrix then trace(S),
trace(2S− SST ) and trace(SST ) coincide. For cubic smoothing splines, it can be
shown that

trace(SST ) ≤ trace(S) ≤ trace(2S− SST ), (2.99)

and that all three of these functions are decreasing in λ.
Computationally, df is the most popular and the cheapest because only the

diagonal elements of the smoother matrix are needed. Its cost is O(n) for most
smoothers.

Practically, the EDF lies in the interval [2, n], where a linear fit corresponds to
the smallest value and an interpolating function to the largest value. As the EDF
increases, the fit becomes more wiggly. Very crudely, a smooth with an EDF of
about 3 or 3.5 might have about the same flexibility as a quadratic, say. A value
of 4 or 5 degrees of freedom is often used as the default value in software, as this can
accommodate a reasonable amount of nonlinearity but without being excessive—it
should handle f having one or two stationary points.

Unfortunately, there is scope for confusion when citing the EDF because some
authors do not include the constant function because the function has already
been centred. For example, smooth.spline() and vsmooth.spline() have a df

argument that corresponds to the EDF above: the value 2 means a linear LS fit,
etc. However, the df argument of s() in gam’s gam(), and vgam(), is such that
the value 1 corresponds to a linear function. Its default is

> args(s)

function (x, df = 4, spar = 0, ...)

NULL

There may be less opportunity for confusion if the effective nonlinear degrees of
freedom (ENDF) is cited, e.g., it has value 0 for a linear function.

Zhang (2003) examines calibration issues with regard to their EDF relating to
local regression and spline smoothers.

2.4.7.5 Standard Errors

Plots of smooths are commonly supplemented with ±2 pointwise standard error
bands in order to prevent the over-interpretation of the estimated function. For
example, Fig. 17.3 shows that the weight smooth has its widest pointwise standard
errors at the boundaries. Such plots give the viewer some idea about how much to
trust f̂ , and which parts of the smooth have greater certainty.

From (2.85) it immediately follows that

Var(f̂) = σ2 SST , (2.100)

and so its diagonal elements may be extracted. However, this becomes impractical
with large n because the entire S is needed. For cubic splines, the approxima-
tion σ2 S has been used instead (and justified by a Bayesian argument, e.g., Wahba
(1990); Silverman (1985)). Its cost is O(n), and the approximation has been found
to work well in practice.
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2.4.7.6 Automatic Smoothing Parameter Selection

Choosing the smoothing parameter is arguably the most important decision for a
specified method. Ideally, we want an automated way of choosing the ‘right’ value.
In this section, we restrict ourselves to linear smoothers.

Occasionally it is possible to estimate λ by maximum likelihood, e.g., Wecker
and Ansley (1983) for smoothing splines. However, a more general and pop-
ular method is the cross-validation (CV) technique. The idea is to leave out
point (xi, yi) one at a time, and estimate the smooth at xi based on the remain-
ing n− 1 points. Then λCV can be chosen to minimize the cross-validation sum of
squares

CV(λ) =
1

n

n∑

i=1

{
yi − f̂ [−i]λ (xi)

}2

, (2.101)

where f̂
[−i]
λ (xi) is the fitted value at xi, computed by leaving out (xi, yi).

While one could compute (2.101) näıvely, a more efficient way is to set the
weight of the ith observation to zero and increasing the remaining weights so that
they sum to unity. Then

f̂
(−i)
λ (xi) =

n∑

j=1
j �=i

sij
1− sii yj . (2.102)

From this,

f̂
(−i)
λ (xi) =

n∑

j=1,j �=i
sij yj + sii f̂

(−i)
λ (xi)

and

yi − f̂ (−i)λ (xi) =
yi − f̂λ(xi)
1− sii .

Thus, CV(λ) can be written

CV(λ) =
1

n

n∑

i=1

{
yi − f̂λ (xi)
1− sii(λ)

}2

. (2.103)

This only requires the addition of the diagonal elements of the smoother matrix.
In practice, CV sometimes gives questionable performance. A popular alterna-

tive is the generalized cross validation (GCV) technique, where

GCV(λ) =
n−1‖(I− S(λ)y)‖2

[n−1 trace(I− S(λ))]
2 (2.104)

is minimized. The rationale for this expression is to replace sii by its average value,
trace(S)/n, which is easier to compute:



2.5 Generalized Additive Models 81

GCV(λ) =
1

n

n∑

i=1

{
yi − f̂λ (xi)

1− trace(S)/n

}2

.

GCV enjoys several asymptotic optimality properties. However, neither method
can be trusted always, especially with small n, e.g., an interpolating spline (λ = 0)
has some positive probability of arising for a given data set.

Both CV and GCV are used when σ2 is unknown. They are related to other cri-
terion, such as Mallow’s Cp (unbiased risk estimator; UBRE). When σ2 is known,
minimizing the UBRE is a popular choice. Another popular criterion is AIC.

2.4.7.7 Testing for Nonlinearity

Suppose we wish to compare two smooths f̂1 = S1y and f̂2 = S2y, e.g., f̂2 might

be less smooth than f̂1, and we wish to test if it picks up any significant bias.

A standard case that often arises is when f̂1 is linear, in which case we want to

test if the linearity is real. We must assume that f̂2 is unbiased, and that f̂1 is
unbiased under H0. Letting ResSSj be the residual sum of squares for the jth

smooth, and γj be trace(2S− STS), then

(ResSS1 − ResSS2)/(γ2 − γ1)
ResSS2/(n− γ1)

.∼ Fγ2−γ1,n−γ1 (2.105)

approximately, which follows from a standard F test applied to a LM (2.9).
An approximate score test for VGAMs, given in Sect. 4.3.4, tests for the linearity

of component functions.

2.5 Generalized Additive Models

GAMs are a nonparametric extension of GLMs, and they provide a powerful data-
driven class of models for exploratory data analysis. GAMs extend (2.17) to

g(μ(xi)) = ηi = β1 + f2(xi2) + · · ·+ fp(xip), (2.106)

a sum of smooth functions of the individual covariates. As usual with these types
of models, an intercept is included because the fk are centred for identifiability.
GAMs loosen the linearity assumption of GLMs; this is very useful as it allows the
data to ‘speak for themselves’. Smoothers are used to estimate the fk. They still
assume additivity of the effects of the covariates, although interaction terms may
be accommodated.

We will see later that the VGAM framework writes (2.106) as

g1(μ(xi)) = η1(xi) = β(1)1 + f(1)2(xi2) + · · ·+ f(1)d(xid), (2.107)

to have provision for handling multiple additive predictors ηj . For VGAM’s vgam()
function, the s() function represents the smooths f(j)k(xk), and it has argu-
ments df and spar to regulate the amount of smoothness. However, df ≥ 1 only
is allowed, with a value of unity corresponding to a linear fit.



82 2 LMs, GLMs and GAMs

2.5.1 Why Additive Models?

One of the reasons additive models are popular is that they do not suffer from the
curse of dimensionality (Bellman, 1961) because all the smoothing is done univari-

ately: ηj(x) =
∑d
k=1 f(j)k(xk). In one dimension, the concept of a neigbourhood

poses the least problems because the xi are spread out in only one dimension.
However, as the dimension of x increases, the volume of the space increases so
fast that the data rapidly becomes more and more isolated in d-space. Smoothers
then require a larger neighbourhood to find enough data points, hence the esti-
mate becomes less localized and can be severely biased. Theoretically, the sparsity
problem might be overcome by a sample size that grows exponentially with the
dimensionality, however, this is impractical in most applications.

Modelling the ηj(x) additively has another advantage: they have simple in-
terpretation. Each covariate has an additive effect, therefore each effect can be
determined by keeping the other xk fixed (although this may be unrealistic in the
presence of multicollinearity). The fitted functions are easily plotted separately
and examined. However, this simplicity comes at a cost, e.g., interactions are not
so readily handled.

One family of models which hold additive models as a special case is
based on classical analysis of variance (ANOVA) and called smoothing spline
ANOVA (SS-ANOVA). Here, functions replace the usual parameters, e.g., one-way
SS-ANOVA corresponds to an additive model. A simple example of a two-way
SS-ANOVA with covariates x2 and x3 is

μ = β(1)1 + f2(x2) + f3(x3) + f23(x2, x3),

where fk represents the main effects for xk, and f23 is a second-order interaction
between x2 and x3. More generally, the unique SS-ANOVA decomposition of a
multivariable function f is

f(x2, . . . , xd) = β(1)1 +

d∑

k=1

fk(xk) +
∑

s<t

fst(xs, xt) + · · · (2.108)

with the constraints Ek(fk) = 0, EsEt(fst) = 0, etc. where the Ek are averaging
operators. In practice, it is necessary to drop high-order interactions from the
model space in order to avoid the curse of dimensionality. Additive models and
models with second-order interactions are the most commonly used.

It should be noted that even bivariate smoothing of the form f(xs, xt) raises
difficulties: although possibly suffering from a mild case of the curse of dimen-
sionality, plotting the functions meaningfully can require some effort, and their
interpretation may be difficult.

SS-ANOVA has been extended to generalized SS-ANOVA (GSS-ANOVA), i.e.,
to η in the classical exponential family. It would be natural then to define the
Vector SS-ANOVA class as those VGLM/VGAM families having an ANOVA de-
composition (2.108) applied to each ηj .

Now just to show the simplest of GAMs, we now fit a nonparametric logistic
regression with one covariate, albeit with a grain of salt.
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Fig. 2.20 Fitted values from some logistic regression models applied to chinese.nz. The re-
sponse is the proportion of New Zealand Chinese who are female. The terms are year, poly(year,
2), bs(year, 4). Area sizes of the points are proportional to the number of people.

2.5.2 Binomial ‘example’

In the following, we (controversially) illustrate how ordinary logistic regression can
potentially misfit data. To do this, we do something that is not strictly correct, in
order to make a point.

The simple linear logistic regression model logitP (Y = 1) = β(1)1 + β(1)2 x2 for
a single covariate x2 results in a sigmoid curve that slopes upward or downward
depending on the sign of β(1)2. The limitation of sigmoid curves seems largely
unappreciated by many practitioners. To illustrate the potential inadequacies of
this model, consider the chinese.nz data frame, which gives the proportion of
females in the Chinese population of New Zealand from the mid-1800s to the start
of this century. These data are of historical interest, and the number of individuals
involved is large enough for the sample proportions to be clearly seen.

Figure 2.20 plots the fitted values of the basic model, as well as some alterna-
tives. Specifically, the underlying code are the first three models of:

vglm(cbind(female, male) ~ year, binomialff, data = chinese.nz)

vglm(cbind(female, male) ~ poly(year, 2), binomialff, data = chinese.nz)

vglm(cbind(female, male) ~ bs(year, 4), binomialff, data = chinese.nz)

vgam(cbind(female, male) ~ s(year, df = 3), binomialff, data = chinese.nz)

It can be clearly seen that there is underfitting in the ‘ordinary’ logistic regres-
sion. Any predictions based on this model would have severe biases. Applying
a quadratic yields a large improvement, and the regression spline is even more
flexible.

The above is unwarranted for any formal inference because the data are longi-
tudinal: most people appearing in one year will appear in adjacent years, hence the
binomial independence assumption does not hold. Thus the plot should be used
little more than for descriptive purposes. It is left to the reader to confirm that
the last two models are very similar (Ex. 2.11, 2.23).
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Fig. 2.21 Four residual types for the regression spline fit of Fig. 2.20. The fitted values are
plotted on the x-axis.

To give some idea about what residuals can look like, Fig. 2.21 plots four types
of residuals versus fitted values for the regression spline fit of Fig. 2.20. It shows
that the response residuals are very different from the others, and there is much
similarity between the Pearson and deviance residuals here.
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Many books cover the theory of LMs, e.g., Rao (1973), Seber and Lee (2003),
Rencher and Schaalje (2008), Christensen (2011). Books for linear modelling based
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to glm(). Some R package written to overcome situations where glm() may fail
include biglm (to handle extra large data sets), and glm2 (which addressed possible
convergence problems). The brglm package implements bias-reduction, which gives
a finite solution to completely separated data (Sects. 2.3.6.3 and 9.4).

The smoothing literature is very large, due partly to it being an active research
area during the 1980s and 1990s especially. General texts with accessible material
on smoothing include Hastie and Tibshirani (1990), Ruppert et al. (2003) (espe-
cially P-splines), Hastie et al. (2009), James et al. (2013, Chap.7). Schimek (2000)
surveys many topics related to smoothing, especially computational.
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An additive model with at least one smooth term might be called a semipara-
metric regression model, and Harezlak et al. (2015) is a recent introductory book
to such. Ruppert et al. (2009) reviews semiparametric regression from 2002–7. The
class of partially linear models, as defined by Yi = xTi β+ g(ti) + εi, is the subject
of Härdle et al. (2000).

B-splines are well-covered in the mathematical literature. Of these, some starters
include de Boor (2001) and Schumaker (2007). For smoothing splines and their
extensions specifically, a good introductory book is Green and Silverman (1994).
More intermediate treatments include Eubank (1999), Ruppert et al. (2003). Ad-
vanced treatments based on RKHS theory (Sect. 4.2.1.7) include Wahba (1990),
Wang (2011), Gu (2013). The two latter references cover the subject of SS-ANOVA
models; they are implemented by ssanova() in gss. A book specifically on RKHS is
Berlinet and Thomas-Agnan (2004), however, Nosedal-Sanchez et al. (2012) is the
simplest introduction to RKHS and is specifically focused on smoothing splines.

For kernel smoothing, local regression and likelihood, see e.g., Härdle (1987),
Härdle (1990), Wand and Jones (1995), Fan and Gijbels (1996), Loader (1999).
Loess was first described within S3 by Cleveland et al. (1991).

The two most comprehensive references on GAMs are Hastie and Tibshirani
(1990) and Wood (2006). The current approach of VGAM is much more similar
to the former, with respect to the theory and its software (gam). The latter is
more focused on automatic smoothing parameter selection based on P-splines and
GCV, as implemented by mgcv. Another GAM book is Ruppert et al. (2003). An
elementary applied GAM book for novice users only is Zuur (2012). Härdle et al.
(2004) gives more examples and theory on a number of topics considered in this
chapter, as does Gentle et al. (2012). An accessible overview of some of the ideas
behindmgcv is Marra and Radice (2010). The utility of GAMs was recognized quite
quickly and introduced into many fields during the 1990s, e.g., Yee and Mitchell
(1991) into plant ecology.

Linear algebra and matrices for statisticians are presented at a moderate level
by Banerjee and Roy (2014), and at a more advanced level by Harville (1997)
and Seber (2008). Yanai et al. (2011) is an accessible introduction to projection
matrices, generalized inverses and SVD.

Exercises

Ex. 2.1. Prove all the properties of the hat matrix H listed in Sect. 2.2.1.

Ex. 2.2. Hat Matrices

(a) Prove that H projects Y orthogonally onto the column (range) space of X.
(b) Obtain an expression for hii for an LM through the origin: yi = β1xi + εi,

for i = 1, . . . , n.
(c) Repeat (b) for the simple linear regression model yi = β1 + β2xi2 + εi.

Ex. 2.3. Explain why H1 = 1 is a good idea on p.36. Why would Hx = x also
be a good property?

Ex. 2.4. The degrees of freedom for an LM can be defined as
∑n
i=1

Cov(ŷi, yi)/σ
2. Show that this equals p.
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Ex. 2.5. GLS
Prove the results (2.14)–(2.16), as well as its hat matrix being idempotent but not
symmetric in general.

Ex. 2.6. Show that the score function (2.21) leads to

Uβ =

n∑

i=1

Ai xi
(
yi − xTi β

)
= 0

for multiple linear regression, and

Uβ =
n∑

i=1

Ai xi

(

yi − exp{xTi β}
1 + exp{xTi β}

)

= 0

for logistic regression (Ai Yi ∼ Binomial(Ai, μi) with η = logitμ).

Ex. 2.7. Given the exponential family (2.19), verify all the columns of Table 2.3
from θ to b′′(θ). What are the c(y, φ) functions?

Ex. 2.8. Using (2.19) with φi = φ/wi and where the diagonal elements of W =
diag(w1, . . . , wn) are known prior weights, show that XTWy are a set of sufficient
statistics for β for a GLM having a canonical link and known φ. Hint: use (A.4).

Ex. 2.9. The moment generating function (MGF) of a random variable Y is
defined as MY (t) = E(etY ) for real t, wherever this expectation exists.

(a) Show that E(Y ) = M ′
Y (0), E(Y 2) = M ′′

Y (0), and deduce that E(Y k) =

M
(k)
Y (0) for k = 0, 1, 2, . . ..

(b) Obtain an expression for MY (t) for Y belong to the exponential family (2.19).
(c) Apply (b) to the Poisson distribution to verify that E(Y ) = Var(Y ) = μ.

Ex. 2.10. LRT, Score and Wald Tests

(a) Generate 5 observations from Poisson(μ = 3) with the random number seed
initialized to some value. Then compute the MLE.

(b) Suppose we wish to test H0 : μ = 3 versus H1 : μ �= 3. Compute the p-values
from Wald, score and likelihood ratio tests for this. Comment.

(c) Reset the random number generator and generate 5 observations from
Poisson(μ = 30). Test H0 : μ = 30 versus H1 : μ �= 30. Repeat in a simi-
lar way to (b). Comment.

Ex. 2.11. Nonparametric Logistic Regressions
Fit the four models given in Sect. 2.5.2 to the chinese.nz data frame. Obtain the
same as Fig. 2.20, and then add the fitted values of the vgam() model—hence,
show its similarity with the regression spline fit.

Ex. 2.12. Suppose somebody wrote a log10link() function so that η = log10 μ
could be fitted somewhat like a Poisson regression. How would its estimate of β
be related to the usual MLE β̂?

Ex. 2.13. IRLS Initial Values

(a) Show that one iteration of IRLS starting from any value of μ(0) will give the
LS solution for the normal case, e.g., gaussianff().
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(b) Write down expressions for zi and the working weights wi for the Poisson and
binomial models (each with canonical link functions).

Ex. 2.14. GLM Residuals

(a) Show that the first four residual types in Sect. 2.3.2 simplify to yi − μ̂i for the
Gaussian case.

(b) Obtain a formula for the deviance residuals of a standard Poisson regression.
(c) Obtain a formula for the deviance residuals of a standard logistic regression.

Ex. 2.15. Exponential Family Members
Consider models in the exponential family (2.19).

(a) Show that the two-parameter NB distribution (1.14) is not a standard member
of the exponential family. Show that it is a member if k is a known.

(b) Find the canonical parameter θ of the NB, and show that the canonical link
is log (μ/(μ+ k)).

(c) Consider a Pareto distribution (Table 12.8) where the scale parameter b is
known. Is this distribution a member of the exponential family? If so, what is
its canonical link?

Ex. 2.16. For p �= 0, 1, 2, and V (μ) = μp, show that q(μ; y) = y μ1−p/(1− p)−
μ2−p/(2− p) where μ > 0. What is the canonical parameter? [McCullagh and
Nelder (1989)]

Ex. 2.17. Polynomial Regression
Fit polynomials up to the 10th degree to mcycles in MASS, and add them to a
scatter plot. Comment.

Ex. 2.18. Running-Mean Smoother

(a) Find S such that ŷ = Sy for a running-mean smoother with n = 10, and
span = 0.5 as defined by (2.86).

(b) Compute the eigenvalues of S and show that a few are negative. How many
unit eigenvalues are there? Comment.

(c) What range of span values would allow for a maximum of 3 values in a symmet-
ric nearest neighbourhood? [Buja et al. (1989)]

Ex. 2.19.

(a) Determine the coefficients a, b and c so that f(x) is a cubic spline, where

f(x) =

{
x3, x ∈ [0, 2],
1
3 (x− 2)3 + a (x− 2)2 + b (x− 2) + c, x ∈ [2, 5].

(b) Do the same for coefficients a–d, where

f(x) =

{
1
3x

3 + x− 1, x ∈ [−3, 0],
a x3 + b x2 + c x+ d, x ∈ [0, 1],

with f(1) = 7.
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(c) Do the same for coefficients a–h so that f(x) is a natural cubic spline satisfy-
ing f(−1) = 1, f(0) = 2 and f(2) = 2, where

f(x) =

{
a x3 + b x2 + c x+ d, x ∈ [−1, 0],
e x3 + f x2 + g x+ h, x ∈ [0, 2].

(d) Use R to plot the solution of (c) on [−2, 3]. What are f(−2) and f(3)?
Ex. 2.20. Express the order-3 Bspline Bs,3 as a linear combination of order-1
B-splines. The coefficients should be in terms of ωs,3, etc. [de Boor (2001)]

Ex. 2.21. Parabolic B-Splines
Plot the 5 parabolic B-spline basis functions whose support is in [0, 6] for the knot
sequence {0, 1, 1, 3, 4, 6, 6, 6}. Comment. [de Boor (2001)]

Ex. 2.22. Regression Splines and lakeO

(a) Modify the lakeO code that produces Fig. 2.5b to ‘work’ for the raw vari-
able year (taking on values 1974,. . . ,1988). Verify that the LM fails to give
finite regression estimates due to the ill-conditioning.

(b) Figure 2.5b is fitted with a cubic regression spline. Modify the code to use a
quadratic regression spline—keep the same knot. Does the fitted curve change
appreciably?

Ex. 2.23. Derivative Estimation for GAMs
Consider the chinese.nz data set, and let x0 = 1936.

(a) Create a subset of the data frame without the year x0. Fit 3 separate logistic
regressions to the subset; the η(x) should be (i) linear, (ii) quadratic, and
(iii) a smooth function, of x = year. Use vgam() for (iii). The response is the
proportion that are female. Call the fitted curves p̂j(x) for j = 1, 2, 3.

(b) Predict the values for pj(x0).
(c) Plot the sample proportions versus year. Predict the pj(x) along a fine grid of

time, and add the fitted curves to your plot.
(d) For model (iii) compute p̂′3(x0), the first derivative of p̂3(x) evaluated at x0.

Plot the sample proportions versus year again, then add p̂3(x) and the tangent
line at p̂3(x0) to the plot.

Ex. 2.24. Nadaraya-Watson Estimator: Bias and Variance

(a) Verify each entry of (2.79).
(b) Verify each entry of (2.81).
(c) Work out the expressions for the bias and variance, as in (2.72)–(2.73), for the

Nadaraya-Watson estimator (r = 0).

Ex. 2.25. Variance Estimates in Local Linear Regression
Given (2.81), derive the results (2.77)–(2.78).

Ex. 2.26. Equivalent Degrees of Freedom—Projection Matrix
Show that the 3 definitions of the EDF of a smooth, based on the trace in (2.93)–
(2.95), coincide when S is a projection matrix.
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Ex. 2.27. Nadaraya-Watson Estimate

(a) Generate scatter plot data coming from xi = 0((n − 1)−1)1, yi =
e−2xi sin(5xi) + εi, where εi ∼ N(0, σ2 = 0.01) i.i.d., for n = 101, i.e.,
the design points are equally spaced on the unit interval. Use set.seed()

for reproducibility.
(b) By eye, determine a reasonable value for the bandwidth h so that your

Nadaraya-Watson estimate fits reasonably well.
(c) For your bandwidth, what is the ENDF value? Comment on the how the

smoother handles the boundaries.
(d) Determine the values of h so that ENDF ≈ 4, 5, and 6.

Ex. 2.28. GCV and CV
Show that GCV(λ) can be written as a weighted version of CV(λ), i.e., CV(λ) =
n−1

∑
i w

∗
i {. . .}2 starting from (2.101). Obtain an expression for the weights w∗

i .

We believe that the generalized linear models here developed could form a
useful basis for courses in statistics.
—Nelder and Wedderburn (1972)
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