Preface

The world is continuous, but the mind is discrete.

David Mumford

The mathematical interplay between polytopes and lattices comes to life when
we study the relationships between the continuous volume of a polytope and
its discrete volume. Since the humbling and positive reception of the first
edition of this book, published in 2007, the field of integer-point enumeration
in polyhedra has gained considerable momentum. Many fields of mathematics
have begun to interact in even more surprising ways, and a beautifully simple
unification among a multitude of classical problems continues to emerge when
we use this combinatorial-geometric lens.

In this second edition, and with encouragement from many wonderful
readers, we have added two new chapters: Chapter 9 introduces zonotopes,
an extremely useful class of polytopes, and Chapter 10 explores some deep
yvet elegant relationships that are satisfied by the h-polynomials and h*-
polynomials. We have also added many new exercises, new and updated open
problems, and graphics.

Examples of polytopes in three dimensions include crystals, boxes, tetra-
hedra, and any convex object whose faces are all flat. It is amusing to see
how many problems in combinatorics, number theory, and many other mathe-
matical areas can be recast in the language of polytopes that exist in some
Euclidean space. Conversely, the versatile structure of polytopes gives us
number-theoretic and combinatorial information that flows naturally from
their geometry.

The discrete volume of a body P can be described intuitively as the number
of grid points that lie inside P, given a fixed grid in Euclidean space. The
continuous volume of P has the usual intuitive meaning of volume that we
attach to everyday objects we see in the real world.
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Fig. 0.1 Continuous and discrete volume.

Indeed, the difference between the two realizations of volume can be
thought of in physical terms as follows. On the one hand, the quantum-level
grid imposed by the molecular structure of reality gives us a discrete notion of
space and hence discrete volume. On the other hand, the Newtonian notion of
continuous space gives us the continuous volume. We see things continuously at
the Newtonian level, but in practice, we often compute things discretely at the
quantum level. Mathematically, the grid we impose in space—corresponding
to the grid formed by the atoms that make up an object—helps us compute
the usual continuous volume in very surprising and charming ways, as we
shall discover.

In order to see the continuous/discrete interplay come to life among the
three fields of combinatorics, number theory, and geometry, we begin our focus
with the simple-to-state coin-exchange problem of Frobenius. The beauty
of this concrete problem is that it is easy to grasp, it provides a useful
computational tool, and yet it has most of the ingredients of the deeper
theories that are developed here.

In the first chapter, we give detailed formulas that arise naturally from the
Frobenius coin-exchange problem in order to demonstrate the interconnections
between the three fields mentioned above. The coin-exchange problem provides
a scaffold for identifying the connections between these fields. In the ensuing
chapters, we shed this scaffolding and focus on the interconnections themselves:

(1) Enumeration of integer points in polyhedra—combinatorics,
(2) Dedekind sums and finite Fourier series—number theory,
(3) Polygons and polytopes—geometry.

We place a strong emphasis on computational techniques and on computing
volumes by counting integer points using various old and new ideas. Thus,
the formulas we get should not only be pretty (which they are!) but also allow
us to compute volumes efficiently using some nice functions. In the very rare
instances of mathematical exposition when we have a formulation that is both
“easy to write” and “quickly computable,” we have found a mathematical
nugget. We have endeavored to fill this book with such mathematical nuggets.

Much of the material in this book is developed by the reader in the more
than three hundred exercises. Most chapters contain warmup exercises that
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do not depend on the material in the chapter and can be assigned before the
chapter is read. Some exercises are central, in the sense that current or later
material depends on them. Those exercises are marked with &, and we give
detailed hints for them at the end of the book. Most chapters also contain
lists of open research problems.

It turns out that even a fifth grader can write an interesting paper on integer-
point enumeration [192], while the subject lends itself to deep investigations
that attract the current efforts of leading researchers. Thus, it is an area of
mathematics that attracts our innocent childhood questions as well as our
refined insight and deeper curiosity. The level of study is highly appropriate
for a junior/senior undergraduate course in mathematics. In fact, this book
is ideally suited to be used for a capstone course. Because the three topics
outlined above lend themselves to more sophisticated exploration, our book
has also been used effectively for an introductory graduate course.

To help the reader fully appreciate the scope of the connections between
continuous volume and discrete volume, we begin the discourse in two dimen-
sions, where we can easily draw pictures and quickly experiment. We gently
introduce the functions we need in higher dimensions (Dedekind sums) by
looking at the coin-exchange problem geometrically as the discrete volume of
a generalized triangle, called a simplex.

The initial techniques are quite simple, essentially nothing more than
expanding rational functions into partial fractions. Thus, the book is easily
accessible to a student who has completed a standard college calculus and
linear algebra curriculum. It would be useful to have a basic understanding of
partial fraction expansions, infinite series, open and closed sets in R?, complex
numbers (in particular, roots of unity), and modular arithmetic.

An important computational tool that is harnessed throughout the text
is the generating function f(z) = °_,a(m)z™, where the a(m)’s form a
sequence of numbers that we are interested in analyzing. When the infinite
sequence of numbers a(m), m =0,1,2,..., is embedded into a single generat-
ing function f(z), it is often true that for hitherto unforeseen reasons, we can
rewrite the whole sum f(z) in a surprisingly compact form. It is the rewriting
of these generating functions that allows us to understand the combinatorics
of the relevant sequence a(m). For us, the sequence of numbers might be the
number of ways to partition an integer into given coin denominations, or the
number of points in an increasingly large body, and so on. Here we find yet
another example of the interplay between the discrete and the continuous: we
are given a discrete set of numbers a(m), and we then carry out analysis on
the generating function f(x) in the continuous variable x.

What Is the Discrete Volume?

The physically intuitive description of the discrete volume given above rests
on a sound mathematical footing as soon as we introduce the notion of a
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lattice. The grid is captured mathematically as the collection of all integer
points in Euclidean space, namely Z¢ = {(x1,...,24) : all 2, € Z}. This
discrete collection of equally spaced points is called a lattice. If we are given a
geometric body P € R?, its discrete volume is simply defined as the number
of lattice points inside P, that is, the number of elements in the set Z¢ N P.

Intuitively, if we shrink the lattice by a factor k and count the number
of newly shrunken lattice points inside P, we obtain a better approximation
for the volume of P, relative to the volume of a single cell of the shrunken
lattice. It turns out that after the lattice is shrunk by an integer factor k, the
number # (”P N %Zd) of shrunken lattice points inside an integral polytope P
is magically a polynomial in k. This counting function # (P N %Zd) is known
as the Fhrhart polynomial of P. If we kept shrinking the lattice by taking a
limit, we would of course end up with the continuous volume that is given by
the usual Riemannian integral definition of calculus:
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However, pausing at fixed dilations of the lattice gives surprising flexibility
for the computation of the volume of P and for the number of lattice points
that are contained in P.

Thus, when the body P is an integral polytope, the error terms that measure
the discrepancy between the discrete volume and the usual continuous volume
are quite nice; they are given by Ehrhart polynomials, and these enumeration
polynomials are the content of Chapter 3.

The Fourier—-Dedekind Sums Are the Building Blocks: Number
Theory

Every polytope has a discrete volume that is expressible in terms of certain
finite sums that are known as Dedekind sums. Before giving their definition,
we first motivate these sums with some examples that illustrate their building-
block behavior for lattice-point enumeration. To be concrete, consider, for
example, a 1-dimensional polytope given by an interval P = [0, a], where a is
any positive real number. It is clear that we need the greatest integer function
|2] to help us enumerate the lattice points in P, and indeed, the answer is
la] + 1.

Next, consider a 1-dimensional line segment that is sitting in the 2-
dimensional plane. Let’s choose our segment P so that it begins at the origin
and ends at the lattice point (¢, d). As becomes apparent after a moment’s
thought, the number of lattice points on this finite line segment involves an
old friend, namely the greatest common divisor of ¢ and d. The exact number
of lattice points on the line segment is ged(c,d) + 1.
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To unify both of these examples, consider a triangle P in the plane whose
vertices have rational coordinates. It turns out that a certain finite sum is
completely natural because it simultaneously extends both the greatest integer
function and the greatest common divisor, although the latter is less obvious.
An example of a Dedekind sum in two dimensions that arises naturally in the
formula for the discrete volume of the rational triangle P is the following:

=5 (5-3) (- 15]-3)

The definition makes use of the greatest integer function. Why do these
sums also resemble the greatest common divisor? Luckily, the Dedekind sums
satisfy a remarkable reciprocity law, quite similar to the Euclidean algorithm
that computes the greatest common divisor. This reciprocity law allows the
Dedekind sums to be computed in roughly log(b) steps rather than the b steps
that are implied by the definition above. The reciprocity law for s(a,b) lies
at the heart of some amazing number theory that we treat in an elementary
fashion, but that also comes from the deeper subject of modular forms and
other modern tools.

We find ourselves in the fortunate position of viewing an important summit
of an enormous mountain of ideas, submerged by the waters of geometry. As
we delve more deeply into these waters, more and more hidden beauty unfolds
for us, and the Dedekind sums are an indispensable tool that allow us to see
farther as the waters get deeper.

The Relevant Solids Are Polytopes: Geometry

The examples we have used, namely line segments and polygons in the plane,
are special cases of polytopes in all dimensions. One way to define a polytope
is to consider the convex hull of a finite collection of points in Euclidean
space R?. That is, suppose someone gives us a set of points vq,...,v, in
R, The polytope determined by the given points v, is defined by all linear
combinations ¢; vy +cava+- - - +¢, vy, where the coefficients c; are nonnegative
real numbers that satisfy the relation ¢; +c2 + - - - 4+ ¢, = 1. This construction
is called the vertex description of the polytope.

There is another equivalent definition, called the hyperplane description
of the polytope. Namely, if someone hands us the linear inequalities that
define a finite collection of half-spaces in R?, we can define the associated
polytope as the simultaneous intersection of the half-spaces defined by the
given inequalities.

There are some “obvious” facts about polytopes that are intuitively clear
to most students but are, in fact, subtle and often nontrivial to prove from
first principles. One of these facts, namely that every polytope has both a
vertex and a hyperplane description, forms a crucial basis to the material we



xii Preface

will develop in this book. We carefully prove this fact in the appendix. The
statement is intuitively clear, so that novices can skip over its proof without
any detriment to their ability to compute continuous and discrete volumes
of polytopes. All theorems in the text (including those in the appendix) are
proved from first principles, with the exception of Chapter 14, where we
assume basic notions from complex analysis.

Chapter 1
The Coin-Exchange
Problem of Frobenius

Chapter 3

Counting Lattice Points in
Polytopes: The Ehrhart Theory

Chapter 2
A Gallery of Discrete Volumes

—
Chapter 7 Chapter 9
Finite Fourier Analysis Zonotopes

Chapter 4
/ Reciprocity
Chapter 8 Chapter 6
Dedekind Sums Magic Squares
Chapter 5
Face Numbers and the
Dehn—Sommerville Relations

Chapter 14 Chapter 10

A Discrete Version h- and h*-polynomials

of Green’s Theorem Chapter 11

The Decomposition of a
Polytope into Its Cones
Chapter 12

Chapter 13

Euler-MacLaurin Solid Angles

Summation in R4

Fig. 0.2 The partially ordered set of chapter dependencies

The text naturally flows into two parts, which we now explicate.
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Part I

We have taken great care in making the content of the chapters flow seamlessly
from one to the next, over the span of the first six chapters.

Chapters 1 and 2 introduce some basic notions of generating functions, in
the visually compelling context of discrete geometry, with an abundance of
detailed motivating examples.

Chapters 3, 4, and 5 develop the full Ehrhart theory of discrete volumes of
rational polytopes.

Chapter 6 is a “dessert” chapter, in that it enables us to use the theory
developed to treat the enumeration of magic squares, an ancient topic that
enjoys active current research.

Part I1

We now begin anew.

Having attained experience with numerous examples and results about
integral polytopes, we are ready to learn about the Dedekind sums of Chap-
ter 8, which form the atomic pieces of the discrete-volume polynomials. On
the other hand, to fully understand Dedekind sums, we need to understand
finite Fourier analysis, which we therefore develop from first principles in
Chapter 7, using only partial fractions.

In Chapter 9, we study a concrete class of polytopes—projections of cubes,
which go by the name zonotopes—whose discrete volume is tractable and
has neat connections to number theory and graph theory.

Chapter 10 develops inequalities among the coefficients of an Ehrhart poly-
nomial, based on a polynomial decomposition formula that arises naturally
from the arithmetic and combinatorial data of triangulations.

Chapter 11 answers a simple yet tricky question: how does a finite geometric
series in one dimension extend to higher-dimensional polytopes? Brion’s
theorem gives an elegant and decisive answer to this question.

In Chapter 12, we extend the interplay between the continuous volume and
the discrete volume of a polytope (already studied in detail in Part I) by
introducing Fuler—-Maclaurin summation formulas in all dimensions. These
formulas compare the continuous Fourier transform of a polytope to its
discrete Fourier transform, yet the material is completely self-contained.
Chapter 13 develops an exciting extension of Ehrhart theory that defines
and studies the solid angles of a polytope; these are the natural extensions
of 2-dimensional angles to higher dimensions.

Finally, we end with another “dessert” chapter that uses complex-analytic
methods to find an integral formula for the discrepancy between the discrete
and continuous areas enclosed by a closed curve in the plane.
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Because polytopes are both theoretically useful (in triangulated manifolds,
for example) and practically essential (in computer graphics, for example) we
use them to link results in number theory and combinatorics. Many research
papers have been written on these interconnections, and it is impossible to
capture them all here, especially since some are being written even as we are
writing this sentence! However, we hope that these modest beginnings will
give the reader who is unfamiliar with these fields a good sense of their beauty,
inexorable connectedness, and utility. We have written a gentle invitation to
what we consider a gorgeous world of counting and of links between the fields
of combinatorics, number theory, and geometry for the general mathematical
reader.

There are a number of excellent books that have a nontrivial intersection
with ours and contain material that complements the topics discussed here.
We heartily recommend the monographs of Barvinok [20,21] (on general
convexity topics and Ehrhart theory), Bruns—-Gubeladze [73] (on commutative
algebra and K-theory connected with polytopes), De Loera—Hemmecke-Koppe
[95] (on connections to optimization), De Loera-~Rambau—Santos [98] (on
triangulations of point configurations), Ehrhart [111] (the historic introduction
to Ehrhart theory), Ewald [112] (on connections to algebraic geometry),
Hibi [134] (on the interplay of algebraic combinatorics with polytopes), Miller—
Sturmfels [177] (on combinatorial commutative algebra), and Stanley [230]
(on general enumerative problems in combinatorics).
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