
Chapter 2

A Gallery of Discrete Volumes

Few things are harder to put up with than a good example.

Mark Twain (1835–1910)

A unifying theme of this book is the study of the number of integer points in
polytopes, where the polytopes live in a real Euclidean space Rd. The integer
points Zd form a lattice in Rd, and we often call the integer points lattice
points. This chapter carries us through concrete instances of lattice-point
enumeration in various integral and rational polytopes. There is a tremendous
amount of research taking place along these lines, even as the reader is looking
at these pages.

2.1 The Language of Polytopes

A polytope in dimension 1 is a closed interval; the number of integer points
in

[
a
b ,

c
d

]
is easily seen to be

⌊
c
d

⌋− ⌊
a−1
b

⌋
(Exercise 2.1; here we assume that

a, b, c, d ∈ Z with a
b < c

d ). A 2-dimensional convex polytope is a convex
polygon: a compact convex subset of R2 bounded by a simple closed curve
that is made up of finitely many line segments.

In general dimension d, a convex polytope is the convex hull of finitely
many points in Rd. To be precise, for a finite point set {v1,v2, . . . ,vn} ⊂ Rd,
the polytope P is the smallest convex set containing those points; that is,

P = {λ1v1 + λ2v2 + · · ·+ λnvn : all λk ≥ 0 and λ1 + λ2 + · · ·+ λn = 1} .

This definition is called the vertex description of P , and we use the notation

P = conv {v1,v2, . . . ,vn} ,
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28 2 A Gallery of Discrete Volumes

the convex hull of v1,v2, . . . ,vn. In particular, a polytope is a closed subset of
Rd. Many polytopes that we will study, however, are not defined in this way, but
rather as bounded intersections of finitely many half-spaces and hyperplanes.
One example is the polytope P defined by (1.4) in Chapter 1. (A set, bounded
or not, that can be described as the intersection of finitely many half-spaces
and hyperplanes is a polyhedron.) This hyperplane description of a
polytope is, in fact, equivalent to the vertex description. The fact that every
polytope has both a vertex and a hyperplane description is highly nontrivial,
both algorithmically and conceptually. We carefully work out a proof in
Appendix A.

The dimension of a polytope P is the dimension of the affine space

spanP := {x+ λ(y − x) : x,y ∈ P, λ ∈ R}

spanned by P . If P has dimension d, we use the notation dimP = d and call
P a d-polytope. Note that P ⊂ Rd does not necessarily have dimension d. For
example, the polytope P defined by (1.4) has dimension d− 1.

For a convex polytope P ⊂ Rd, we say that the hyperplane H ={
x ∈ Rd : a · x = b

}
is a supporting hyperplane of P if P lies entirely

on one side of H, that is,

P ⊂ {
x ∈ Rd : a · x ≤ b

}
or P ⊂ {

x ∈ Rd : a · x ≥ b
}
.

A face of P is a set of the form P ∩H, where H is a supporting hyperplane
of P. Note that P itself is a face of P, corresponding to the degenerate
hyperplane Rd,1 and the empty set ∅ is a face of P, corresponding to a
hyperplane that does not meet P. The (d− 1)-dimensional faces are called
facets, the 1-dimensional faces edges, and the 0-dimensional faces vertices
of P. Vertices are the “extreme points” of a polytope.

A convex d-polytope has at least d+ 1 vertices. A convex d-polytope with
exactly d + 1 vertices is called a d-simplex. Every 1-dimensional convex
polytope is a 1-simplex, namely, a line segment. The 2-dimensional simplices
are the triangles, the 3-dimensional simplices the tetrahedra.

A convex polytope P is called integral if all of its vertices have integer
coordinates,2 and P is called rational if all of its vertices have rational
coordinates.

1 In the remainder of the book, we will reserve the term hyperplane for nondegenerate

hyperplanes, i.e., sets of the form
{
x ∈ Rd : a · x = b

}
, where not all of the entries of a

are zero.
2 Integral polytopes are also called lattice polytopes.
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2.2 The Unit Cube

As a warmup example, we begin with the unit d-cube � := [0, 1]d, which
simultaneously offers simple geometry and an endless fountain of research
questions. The vertex description of � is given by the set of 2d vertices
{(x1, x2, . . . , xd) : all xk = 0 or 1}. The hyperplane description is

� =
{
(x1, x2, . . . , xd) ∈ Rd : 0 ≤ xk ≤ 1 for all k = 1, 2, . . . , d

}
.

Thus, there are the 2d bounding hyperplanes x1 = 0, x1 = 1, x2 = 0, x2 =
1, . . . , xd = 0, xd = 1.

We now compute the discrete volume of an integer dilate of �. That is, we
seek the number of integer points t� ∩ Zd for all t ∈ Z>0. Here tP denotes
the dilated polytope

{(tx1, tx2, . . . , txd) : (x1, x2, . . . , xd) ∈ P} ,

for a polytope P . What is the discrete volume of �? We dilate by the positive
integer t, as depicted in Figure 2.1, and count:

#
(
t� ∩ Zd

)
= #

(
[0, t]d ∩ Zd

)
= (t+ 1)d.

Fig. 2.1 The 6th dilate of
� in dimension 2.
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We generally denote the lattice-point enumerator for the tth dilate of
P ⊂ Rd by

LP(t) := #
(
tP ∩ Zd

)
,

a useful object that we also call the discrete volume of P. We may also
think of leaving P fixed and shrinking the integer lattice:

LP(t) = #

(
P ∩ 1

t
Zd

)
.
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With this convention, L�(t) = (t+ 1)d, a polynomial in the integer variable t.
Notice that the coefficients of this polynomial are the binomial coefficients(
d
k

)
, defined through(

m

n

)
:=

m(m− 1)(m− 2) · · · (m− n+ 1)

n!
(2.1)

for m ∈ C, n ∈ Z>0.
What about the interior �◦ of the cube? The number of interior integer

points in t�◦ is

L�◦(t) = #
(
t�◦ ∩ Zd

)
= #

(
(0, t)d ∩ Zd

)
= (t− 1)d.

Notice that this polynomial equals (−1)dL�(−t), the evaluation of the poly-
nomial L�(t) at negative integers, up to a sign.

We now introduce another important tool for analyzing a polytope P,
namely the generating function of LP :

EhrP(z) := 1 +
∑
t≥1

LP(t) z
t.

This generating function is also called the Ehrhart series of P.
In our case, the Ehrhart series of P = � takes on a special form. To

illustrate, we define the Eulerian number A (d, k) through3

∑
j≥0

jd zj =

∑d
k=0 A (d, k) zk

(1− z)d+1
. (2.2)

It is not hard to see that the polynomial
∑d

k=1 A (d, k) zk is the numerator of
the rational function(

z
d

dz

)d (
1

1− z

)
= z

d

dz
· · · z d

dz︸ ︷︷ ︸
d times

(
1

1− z

)
.

The Eulerian numbers have many fascinating properties, including

A (d, k) = A (d, d+ 1− k) ,

A (d, k) = (d− k + 1)A (d− 1, k − 1) + k A (d− 1, k) ,

d∑
k=0

A (d, k) = d! , (2.3)

3 There are two slightly conflicting definitions of Eulerian numbers in the literature: some-

times, they are defined through
∑

j≥0(j + 1)d zj =
∑d

k=0 A(d,k)zk

(1−z)d+1 instead of (2.2).
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A (d, k) =

k∑
j=0

(−1)j
(
d+ 1

j

)
(k − j)d.

The first few Eulerian numbers A (d, k) for 0 ≤ k ≤ d are

d = 0: 1
d = 1: 0 1
d = 2: 0 1 1
d = 3: 0 1 4 1
d = 4: 0 1 11 11 1
d = 5: 0 1 26 66 26 1
d = 6: 0 1 57 302 302 57 1

(see also [1, Sequence A008292]).
With this definition, we can now express the Ehrhart series of � in terms

of Eulerian numbers:

Ehr�(z) = 1 +
∑
t≥1

(t+ 1)d zt =
∑
t≥0

(t+ 1)d zt =
1

z

∑
t≥1

td zt

=

∑d
k=1 A (d, k) zk−1

(1− z)d+1
.

To summarize, we have proved the following theorem.

Theorem 2.1. Let � be the unit d-cube.

(a) The lattice-point enumerator of � is the polynomial

L�(t) = (t+ 1)d =
d∑

k=0

(
d

k

)
tk.

(b) Its evaluation at negative integers yields the relation

(−1)dL�(−t) = L�◦(t) .

(c) The Ehrhart series of � is Ehr�(z) =
∑d

k=1 A(d,k)zk−1

(1−z)d+1 . �


2.3 The Standard Simplex

The standard simplex Δ in dimension d is the convex hull of the d + 1
points e1, e2, . . . , ed and the origin; here ej is the unit vector (0, . . . , 1, . . . , 0),
with a 1 in the jth position. Figure 2.2 shows Δ for d = 3. On the other hand,
Δ can also be realized by its hyperplane description, namely
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Fig. 2.2 The standard
simplex Δ in dimension 3.
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1

1

1

Δ =
{
(x1, x2 . . . , xd) ∈ Rd : x1 + x2 + · · ·+ xd ≤ 1 and all xk ≥ 0

}
.

In the case of the standard simplex, the dilate tΔ is now given by

tΔ =
{
(x1, x2, . . . , xd) ∈ Rd : x1 + x2 + · · ·+ xd ≤ t and all xk ≥ 0

}
.

To compute the discrete volume of Δ, we would like to use the methods
developed in Chapter 1, but there is an extra twist. The counting func-
tions in Chapter 1 were defined by equalities, whereas the standard simplex
is defined by an inequality. We are trying to count all integer solutions
(m1,m2, . . . ,md) ∈ Zd

≥0 to

m1 +m2 + · · ·+md ≤ t . (2.4)

To translate this inequality in d variables into an equality in d + 1 vari-
ables, we introduce a slack variable md+1 ∈ Z≥0, which picks up the differ-
ence between the right-hand and left-hand sides of (2.4). So the number of
solutions (m1,m2, . . . ,md) ∈ Zd

≥0 to (2.4) equals the number of solutions

(m1,m2, . . . ,md+1) ∈ Zd+1
≥0 to

m1 +m2 + · · ·+md+1 = t .

Now the methods of Chapter 1 apply:
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#
(
tΔ ∩ Zd

)
= const

⎛⎝⎛⎝ ∑
m1≥0

zm1

⎞⎠⎛⎝ ∑
m2≥0

zm2

⎞⎠ · · ·
⎛⎝ ∑

md+1≥0

zmd+1

⎞⎠ z−t

⎞⎠
= const

(
1

(1− z)d+1zt

)
. (2.5)

In contrast with Chapter 1, we do not require a partial fraction expansion
but simply use the binomial series

1

(1− z)d+1
=

∑
k≥0

(
d+ k

d

)
zk (2.6)

for d ≥ 0. The constant-term identity (2.5) requires us to find the coefficient
of zt in the binomial series (2.6), which is

(
d+t
d

)
. Hence the discrete volume

of Δ is given by LΔ(t) =
(
d+t
d

)
, a polynomial in the integer variable t of

degree d. Incidentally, the coefficients of this polynomial function in t have an
alternative life in traditional combinatorics:

LΔ(t) =
1

d!

d∑
k=0

(−1)d−k stirl(d+ 1, k + 1) tk,

where stirl(n, j) is the Stirling number of the first kind (see Exercise 2.11).
We also notice that (2.6) is, by definition, the Ehrhart series of Δ.

Let’s repeat this computation for the interior Δ◦ of the standard d-simplex.
Now we introduce a slack variable md+1 > 0, so that strict inequality is forced:

LΔ◦(t) = #
{
(m1,m2, . . . ,md) ∈ Zd

>0 : m1 +m2 + · · ·+md < t
}

= #
{
(m1,m2, . . . ,md+1) ∈ Zd+1

>0 : m1 +m2 + · · ·+md+1 = t
}
.

Now

LΔ◦(t) = const

⎛⎝( ∑
m1>0

zm1

)( ∑
m2>0

zm2

)
· · ·

⎛⎝ ∑
md+1>0

zmd+1

⎞⎠ z−t

⎞⎠
= const

((
z

1− z

)d+1

z−t

)

= const

⎛⎝zd+1−t
∑
k≥0

(
d+ k

d

)
zk

⎞⎠ =

(
t− 1

d

)
.

It is a fun exercise to prove that

(−1)d
(
d− t

d

)
=

(
t− 1

d

)
(2.7)
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(see Exercise 2.10). We have arrived at our destination:

Theorem 2.2. Let Δ be the standard d-simplex.

(a) The lattice-point enumerator of Δ is the polynomial LΔ(t) =
(
d+t
d

)
.

(b) Its evaluation at negative integers yields (−1)dLΔ(−t) = LΔ◦(t).
(c) The Ehrhart series of Δ is EhrΔ(z) =

1
(1−z)d+1 . �


2.4 The Bernoulli Polynomials as Lattice-Point
Enumerators of Pyramids

There is a fascinating connection between the Bernoulli polynomials and
certain pyramids over unit cubes. The Bernoulli polynomials Bk(x) are
defined through the generating function

z exz

ez − 1
=

∑
k≥0

Bk(x)

k!
zk (2.8)

and are ubiquitous in the study of the Riemann zeta function, among other
objects; they are named after Jacob Bernoulli (1654–1705).4 The Bernoulli
polynomials will play a prominent role in Chapter 12 in the context of Euler–
Maclaurin summation. The first few Bernoulli polynomials are

B0(x) = 1 ,

B1(x) = x− 1

2
,

B2(x) = x2 − x+
1

6
,

B3(x) = x3 − 3

2
x2 +

1

2
x ,

B4(x) = x4 − 2x3 + x2 − 1

30
,

B5(x) = x5 − 5

2
x4 +

5

3
x3 − 1

6
x ,

B6(x) = x6 − 3x5 +
5

2
x4 − 1

2
x2 +

1

42
.

The Bernoulli numbers are Bk := Bk(0) (see also [1, Sequences A000367
& A002445]) and have the generating function

z

ez − 1
=

∑
k≥0

Bk

k!
zk.

4 For more information about Bernoulli, see
http://www-history.mcs.st-and.ac.uk/Mathematicians/Bernoulli Jacob.html.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Bernoulli_Jacob.html.
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Lemma 2.3. For integers d ≥ 1 and n ≥ 2,

n−1∑
k=0

kd−1 =
1

d
(Bd(n)−Bd) .

Proof. We play with the generating function of Bd(n)−Bd

d! :

∑
d≥0

Bd(n)−Bd

d!
zd = z

enz − 1

ez − 1
= z

n−1∑
k=0

ekz = z

n−1∑
k=0

∑
j≥0

(kz)j

j!

=
∑
j≥0

(
n−1∑
k=0

kj

)
zj+1

j!
=

∑
j≥1

(
n−1∑
k=0

kj−1

)
zj

(j − 1)!
.

Now compare coefficients on both sides. �

Consider a (d− 1)-dimensional unit cube embedded into Rd and form a

d-dimensional pyramid by adjoining one more vertex at (0, 0, . . . , 0, 1), as
depicted in Figure 2.3. More precisely, this geometric object has the following
hyperplane description:

P =
{
(x1, x2, . . . , xd) ∈ Rd : 0 ≤ x1, x2, . . . , xd−1 ≤ 1− xd ≤ 1

}
. (2.9)

By definition, P is contained in the unit d-cube; in fact, its vertices are a
subset of the vertices of the d-cube.

Fig. 2.3 The pyramid P
in dimension 3.

x1

x3

x2

1

1

1

We now count lattice points in integer dilates of P. This number equals

#
{
(m1,m2, . . . ,md) ∈ Zd : 0 ≤ mk ≤ t−md ≤ t for k = 1, 2, . . . , d− 1

}
.
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In this case, we just count the solutions to 0 ≤ mk ≤ t−md ≤ t directly: once
we choose the integer md (between 0 and t), we have t−md + 1 independent
choices for each of the integers m1,m2, . . . ,md−1. Hence

LP(t) =
t∑

md=0

(t−md + 1)
d−1

=

t+1∑
k=1

kd−1 =
1

d
(Bd(t+ 2)−Bd) , (2.10)

by Lemma 2.3. (Here we need to require d ≥ 2.) This is, naturally, a polynomial
in t.

We now turn our attention to the number of interior lattice points in P:

LP◦(t) = #

{
(m1,m2, . . . ,md) ∈ Zd :

0 < mk < t−md < t
for all k = 1, 2, . . . , d− 1

}
.

By a similar counting argument,

LP◦(t) =

t−1∑
md=1

(t−md − 1)
d−1

=

t−2∑
k=0

kd−1 =
1

d
(Bd(t− 1)−Bd) .

Incidentally, the Bernoulli polynomials are known (Exercise 2.15) to have the
symmetry

Bd(1− x) = (−1)dBd(x) . (2.11)

This identity coupled with the fact (Exercise 2.16) that

Bd = 0 for all odd d ≥ 3 (2.12)

gives the relation

LP(−t) =
1

d
(Bd(−t+ 2)−Bd) =

1

d
(Bd (1− (t− 1))−Bd)

= (−1)d
1

d
(Bd(t− 1)−Bd) = (−1)d LP◦(t) .

Next we compute the Ehrhart series of P. We can actually do this in
somewhat greater generality. Namely, for a polytope Q ⊂ Rd−1 with vertices
v1,v2, . . . ,vm, define Pyr(Q), the pyramid over Q, as the convex hull of
(v1, 0) , (v2, 0) , . . . , (vm, 0) , (0, . . . , 0, 1) in Rd. In our example above, the d-
polytope P is equal to Pyr(�) for the unit (d − 1)-cube �. The number of
integer points in tPyr(Q) is, by construction,

LPyr(Q)(t) = 1 + LQ(1) + LQ(2) + · · ·+ LQ(t) = 1 +

t∑
j=1

LQ(j) ,

because in tPyr(Q), there is one lattice point with xd-coordinate t, we have
LQ(1) lattice points with xd-coordinate t− 1, there are LQ(2) lattice points
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with xd-coordinate t−2, etc., up to LQ(t) lattice points with xd = 0. Figure 2.4
shows an instance for a pyramid over a square.

Fig. 2.4 Counting the
lattice points in tPyr(Q).

x1

x3

x2

t

t

t

tQ

This identity for LPyr(Q)(t) allows us to compute the Ehrhart series of
Pyr(Q) from the Ehrhart series of Q:

Theorem 2.4. EhrPyr(Q)(z) =
EhrQ(z)

1− z
.

Proof.

EhrPyr(Q)(z) = 1 +
∑
t≥1

LPyr(Q)(t) z
t = 1 +

∑
t≥1

⎛⎝1 +

t∑
j=1

LQ(j)

⎞⎠ zt

=
∑
t≥0

zt +
∑
t≥1

t∑
j=1

LQ(j) z
t =

1

1− z
+

∑
j≥1

LQ(j)
∑
t≥j

zt

=
1

1− z
+

∑
j≥1

LQ(j)
zj

1− z
=

1 +
∑

j≥1 LQ(j) z
j

1− z
. �


Our pyramid P that began this section is a pyramid over the unit (d− 1)-
cube, and so

EhrP(z) =
1

1− z

∑d−1
k=1 A (d− 1, k) zk−1

(1− z)d
=

∑d−1
k=1 A (d− 1, k) zk−1

(1− z)d+1
. (2.13)

Let’s summarize what we have proved for the pyramid over the unit cube.
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Theorem 2.5. Given d ≥ 2, let P be the d-pyramid

P =
{
(x1, x2, . . . , xd) ∈ Rd : 0 ≤ x1, x2, . . . , xd−1 ≤ 1− xd ≤ 1

}
.

(a) The lattice-point enumerator of P is the polynomial

LP(t) =
1

d
(Bd(t+ 2)−Bd) .

(b) Its evaluation at negative integers yields (−1)dLP(−t) = LP◦(t).

(c) The Ehrhart series of P is EhrP(z) =
∑d−1

k=1 A(d−1,k)zk−1

(1−z)d+1 . �


Patterns are emerging. . .

2.5 The Lattice-Point Enumerators of the
Cross-Polytopes

Consider the cross-polytope � in Rd given by the hyperplane description

� :=
{
(x1, x2, . . . , xd) ∈ Rd : |x1|+ |x2|+ · · ·+ |xd| ≤ 1

}
. (2.14)

Figure 2.5 shows the 3-dimensional instance of �, an octahedron. The vertices
of � are (±1, 0, . . . , 0) , (0,±1, 0, . . . , 0) , . . . , (0, . . . , 0,±1).

Fig. 2.5 The cross-
polytope � in dimension 3.
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x3

1

1

1

To compute the discrete volume of �, we use a process similar to that of
Section 2.4. Namely, for a (d − 1)-polytope Q with vertices v1,v2, . . . ,vm
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such that the origin is in Q, we define BiPyr(Q), the bipyramid over Q, as
the convex hull of

(v1, 0) , (v2, 0) , . . . , (vm, 0) , (0, . . . , 0, 1) , and (0, . . . , 0,−1) .

In our example above, the d-dimensional cross-polytope is the bipyramid
over the (d− 1)-dimensional cross-polytope. The number of integer points in
tBiPyr(Q) is, by construction,

LBiPyr(Q)(t) = 2 + 2LQ(1) + 2LQ(2) + · · ·+ 2LQ(t− 1) + LQ(t)

= 2 + 2

t−1∑
j=1

LQ(j) + LQ(t) .

This identity allows us to compute the Ehrhart series of BiPyr(Q) from the
Ehrhart series of Q, in a manner similar to the proof of Theorem 2.4. We
leave the proof of the following result as Exercise 2.23.

Theorem 2.6. If Q contains the origin, then EhrBiPyr(Q)(z) =
1+z
1−z EhrQ(z).

�

This theorem allows us to compute the Ehrhart series of � effortlessly:

The cross-polytope � in dimension 0 is the origin, with Ehrhart series 1
1−z .

The higher-dimensional cross-polytopes can be computed recursively through
Theorem 2.6 as

Ehr�(z) =
(1 + z)d

(1− z)d+1
.

Since Ehr�(z) = 1 +
∑

t≥1 L�(t) z
t, we can retrieve L�(t) by expanding

Ehr�(z) into its power series at z = 0:

Ehr�(z) =
(1 + z)d

(1− z)d+1
=

∑d
k=0

(
d
k

)
zk

(1− z)d+1

=

d∑
k=0

(
d

k

)
zk

∑
t≥0

(
t+ d

d

)
zt =

d∑
k=0

(
d

k

)∑
t≥k

(
t− k + d

d

)
zt

=

d∑
k=0

(
d

k

)∑
t≥0

(
t− k + d

d

)
zt.

In the last step, we used the fact that
(
t−k+d

d

)
= 0 for 0 ≤ t < k. But then

1 +
∑
t≥1

L�(t) z
t =

∑
t≥0

d∑
k=0

(
d

k

)(
t− k + d

d

)
zt,

and hence L�(t) =
∑d

k=0

(
d
k

)(
t−k+d

d

)
for all t ≥ 1.
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We finish this section by counting the interior lattice points in t�. We
begin by noticing, since t is an integer, that

L�◦(t) = #
{
(m1,m2, . . . ,md) ∈ Zd : |m1|+ |m2|+ · · ·+ |md| < t

}
= #

{
(m1,m2, . . . ,md) ∈ Zd : |m1|+ |m2|+ · · ·+ |md| ≤ t− 1

}
= L�(t− 1) .

On the other hand, we can use (2.7):

L�(−t) =

d∑
k=0

(
d

k

)(−t− k + d

d

)

=

d∑
k=0

(
d

k

)
(−1)d

(
t− 1 + k

d

)

= (−1)d
d∑

k=0

(
d

d− k

)(
t− 1 + d− k

d

)
= (−1)dL�(t− 1) .

Comparing the last two computations, we see that (−1)dL�(−t) = L�◦(t).
Let’s summarize:

Theorem 2.7. Let � be the cross-polytope in Rd.

(a) The lattice-point enumerator of � is the polynomial

L�(t) =

d∑
k=0

(
d

k

)(
t− k + d

d

)
.

(b) Its evaluation at negative integers yields (−1)dL�(−t) = L�◦(t).

(c) The Ehrhart series of P is Ehr�(z) =
(1+z)d

(1−z)d+1 . �


2.6 Pick’s Theorem

Returning to basic concepts, we now give a complete account of LP for all
integral convex polygons P in R2. Denote the number of integer points inside
the polygon P by I, and the number of integer points on the boundary of P
by B. The following result, called Pick’s theorem in honor of its discoverer
Georg Alexander Pick (1859–1942), presents the astonishing fact that the
area A of P can be computed simply by counting lattice points:
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Theorem 2.8 (Pick’s theorem). For an integral convex polygon,

A = I +
1

2
B − 1 .

Proof. We begin by proving that Pick’s identity has an additive character:
we can decompose P into the union of two integral polygons P1 and P2 by
joining two vertices of P with a line segment, as shown in Figure 2.6.

Fig. 2.6 Decomposition of
a polygon into two.

P1

P2

We claim that the validity of Pick’s identity for P follows from the validity
of Pick’s identity for P1 and P2. Denote the area, number of interior lattice
points, and number of boundary lattice points of Pk by Ak, Ik, and Bk,
respectively, for k = 1, 2. Clearly,

A = A1 +A2 .

Furthermore, if we denote the number of lattice points on the edge common
to P1 and P2 by L, then

I = I1 + I2 + L− 2 and B = B1 +B2 − 2L+ 2 .

Thus

I +
1

2
B − 1 = I1 + I2 + L− 2 +

1

2
B1 +

1

2
B2 − L+ 1− 1

= I1 +
1

2
B1 − 1 + I2 +

1

2
B2 − 1 .

This proves the claim. Note that our proof also shows that the validity of
Pick’s identity for P1 follows from the validity of Pick’s identity for P and P2.

Now, every convex polygon can be decomposed into triangles that share a
common vertex, as illustrated in Figure 2.7. Hence it suffices to prove Pick’s
theorem for triangles. Further simplifying the picture, we can embed every
integral triangle into an integral rectangle, as suggested by Figure 2.8.

This reduces the proof of Pick’s theorem to proving the theorem for integral
rectangles whose edges are parallel to the coordinate axes, and for rectangular



42 2 A Gallery of Discrete Volumes

Fig. 2.7 Triangulation of
a polygon.

triangles two of whose edges are parallel to the coordinate axes. These two
cases are left to the reader as Exercise 2.25. �


Fig. 2.8 Embedding a
triangle in a rectangle.

Pick’s theorem allows us to count not only the lattice points strictly inside
the polygon P, but also the total number of lattice points contained in P,
because this number is

I +B = A− 1

2
B + 1 +B = A+

1

2
B + 1 . (2.15)

From this identity, it is now easy to describe the lattice-point enumerator LP :

Theorem 2.9. Suppose P is an integral convex polygon with area A and B
lattice points on its boundary.

(a) The lattice-point enumerator of P is the polynomial

LP(t) = A t2 +
1

2
B t+ 1 .

(b) Its evaluation at negative integers yields the relation

LP(−t) = LP◦(t) .

(c) The Ehrhart series of P is

EhrP(z) =

(
A− B

2 + 1
)
z2 +

(
A+ B

2 − 2
)
z + 1

(1− z)3
.
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Note that in the numerator of the Ehrhart series, the coefficient of z2 is
LP◦(1), and the coefficient of z is LP(1)− 3.

Proof. Statement (a) will follow from (2.15) if we can prove that the area of
tP is At2 and that the number of boundary points on tP is Bt, which is the
content of Exercise 2.26. Statement (b) follows with LP◦(t) = LP(t) − Bt.
Finally, the Ehrhart series is

EhrP(z) = 1 +
∑
t≥1

LP(t) z
t

=
∑
t≥0

(
A t2 +

B

2
t+ 1

)
zt

= A
z2 + z

(1− z)3
+

B

2

z

(1− z)2
+

1

1− z

=

(
A− B

2 + 1
)
z2 +

(
A+ B

2 − 2
)
z + 1

(1− z)3
. �


2.7 Polygons with Rational Vertices

In this section we will establish formulas for the number of integer points in a
rational convex polygon and its integral dilates.

A natural first step is to fix a triangulation of the polygon P , which reduces
our problem to that of counting integer points in rational triangles. However,
this procedure merits some remarks. After counting lattice points in the
triangles, we need to reassemble the triangles to form the polygon. But then
we need to take care of the overcounting on line segments (where the triangles
meet). Computing the number of lattice points on rational line segments is
considerably easier than enumerating lattice points in 2-dimensional regions;
however, it is still nontrivial (see Theorem 1.5).

After triangulating P , we can further simplify the picture by embedding an
arbitrary rational triangle in a rational rectangle, as in Figure 2.8. To compute
lattice points in a triangle, we can first count the points in a rectangle with
edges parallel to the coordinate axes, and then subtract the number of points
in three right triangles, each with two edges are parallel to the axes, and
possibly another rectangle, as shown in Figure 2.8. Since rectangles are easy
to deal with (see Exercise 2.2), the problem reduces to finding a formula for a
right triangle two of whose edges are parallel to the coordinate axes.

We now adjust and expand our generating-function machinery to these
right triangles. Such a triangle T is a subset of R2 consisting of all points
(x, y) satisfying

x ≥ a

d
, y ≥ b

d
, ex+ fy ≤ r
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for some integers a, b, d, e, f, r (with ea + fb ≤ rd; otherwise, the triangle
would be empty). Because the lattice-point count is invariant under horizontal
and vertical integer translations and under flipping about the x- or y-axis,
we may assume that a, b, d, e, f, r ≥ 0 and a, b < d. (One should meditate
about this fact for a minute.) Thus we arrive at the triangle T depicted in
Figure 2.9.

x

y

(
a

d
,
b

d

) (
r − fb/d

e
,
b

d

)

(
a

d
,
r − ea/d

f

)

Fig. 2.9 A right rational triangle.

To make our life a little easier, let’s assume for the moment that e and f
are relatively prime; we will deal with the general case in the exercises. So let

T =

{
(x, y) ∈ R2 : x ≥ a

d
, y ≥ b

d
, ex+ fy ≤ r

}
. (2.16)

To derive a formula for

LT (t) = #

{
(m,n) ∈ Z2 : m ≥ ta

d
, n ≥ tb

d
, em+ fn ≤ tr

}
,

we want to use methods similar to those in Chapter 1. As in Section 2.3, we
introduce a slack variable s:

LT (t) = #

{
(m,n) ∈ Z2 : m ≥ ta

d
, n ≥ tb

d
, em+ fn ≤ tr

}
= #

{
(m,n, s) ∈ Z3 : m ≥ ta

d
, n ≥ tb

d
, s ≥ 0, em+ fn+ s = tr

}
.

This counting function can now, as earlier, be interpreted as the coefficient of
ztr in the function
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m≥ ta

d

zem

⎞⎠⎛⎝ ∑
n≥ tb

d

zfn

⎞⎠⎛⎝∑
s≥0

zs

⎞⎠ .

Here the subscript (e.g., m ≥ ta
d ) under a summation sign means sum over

all integers satisfying this condition. For example, in the first sum, we begin
with the least integer greater than or equal to ta

d , which is denoted by
⌈
ta
d

⌉
(and is equal to

⌊
ta−1
d

⌋
+ 1 by Exercise 1.4(j)). Hence the above generating

function can be rewritten as⎛⎜⎝ ∑
m≥� ta

d �
zem

⎞⎟⎠
⎛⎜⎝ ∑

n≥� tb
d �

zfn

⎞⎟⎠
⎛⎝∑

s≥0

zs

⎞⎠ =
z� ta

d �e
1− ze

z� tb
d �f

1− zf
1

1− z

=
zu+v

(1− ze) (1− zf ) (1− z)
,

(2.17)

where we have introduced, for ease of notation,

u :=

⌈
ta

d

⌉
e and v :=

⌈
tb

d

⌉
f . (2.18)

To extract the coefficient of ztr of our generating function (2.17), we use
familiar methods. As usual, we shift this coefficient to a constant term:

LT (t) = const

(
zu+v−tr

(1− ze) (1− zf ) (1− z)

)
= const

(
1

(1− ze) (1− zf ) (1− z)ztr−u−v

)
.

Before we apply the partial fraction machinery to this function, we should
make sure that it is indeed a proper rational function, that is, that the total
degree satisfies

u+ v − tr − e− f − 1 < 0 (2.19)

(see Exercise 2.33). Then we expand into partial fractions (here we are using
our assumption that e and f do not have any common factors):

1

(1− ze) (1− zf ) (1− z)ztr−u−v

=

e−1∑
j=1

Aj

z − ξje
+

f−1∑
j=1

Bj

z − ξjf
+

3∑
k=1

Ck

(z − 1)k
+

tr−u−v∑
k=1

Dk

zk
. (2.20)

As we have seen numerous times before, the coefficients Dk do not contribute
to the constant term, so that we obtain
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LT (t) = −
e−1∑
j=1

Aj

ξje
−

f−1∑
l=1

Bl

ξlf
− C1 + C2 − C3 . (2.21)

We invite the reader to compute the coefficients appearing in this formula
(Exercise 2.34):

Aj = − ξ
j(v−tr+1)
e

e
(
1− ξjfe

)
(1− ξje)

,

Bl = − ξ
l(u−tr+1)
f

f
(
1− ξlef

)
(1− ξlf )

,

C1 = − (u+ v − tr)2

2ef
+

u+ v − tr

2

(
− 1

ef
+

1

e
+

1

f

)
+

1

4

(
1

e
+

1

f
− 1

)
− 1

12

(
e

f
+

1

ef
+

f

e

)
, (2.22)

C2 = −u+ v − tr + 1

ef
+

1

2e
+

1

2f
,

C3 = − 1

ef
.

Putting these ingredients into (2.21) yields the following formula for our
lattice-point count.

Theorem 2.10. For the rectangular rational triangle T given by (2.16), where
e and f are relatively prime,

LT (t) =
1

2ef
(tr − u− v)

2
+

1

2
(tr − u− v)

(
1

e
+

1

f
+

1

ef

)
+

1

4

(
1 +

1

e
+

1

f

)
+

1

12

(
e

f
+

f

e
+

1

ef

)

+
1

e

e−1∑
j=1

ξ
j(v−tr)
e(

1− ξjfe
)(

1− ξje
) +

1

f

f−1∑
l=1

ξ
l(u−tr)
f(

1− ξlef

)(
1− ξlf

) . �


This identity can be rephrased in terms of the Fourier–Dedekind sum that
we introduced in (1.13):

LT (t) =
1

2ef
(tr − u− v)

2
+

1

2
(tr − u− v)

(
1

e
+

1

f
+

1

ef

)
+

1

4

(
1 +

1

e
+

1

f

)
+

1

12

(
e

f
+

f

e
+

1

ef

)
+ sv−tr(f, 1; e) + su−tr(e, 1; f) .
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The general formula for LT —not assuming that e and f are relatively
prime—is the content of Exercise 2.36.

Let’s pause for a moment and study the nature of LT as a function of t.
Aside from the last two finite sums (which will be put in the spotlight in
Chapter 8) and the appearance of u and v, the function LT is a quadratic
polynomial in t. And in those two sums, t appears only in the exponent of
roots of unity, namely as the exponent of ξe and ξf . As a function of t, ξte is
periodic with period e, and similarly, ξtf is periodic with period f . We should
also remember that u and v are functions of t; but they can be easily written
in terms of the fractional-part function, which again gives rise to periodic
functions in t. So LT (t) is a (quadratic) “polynomial” in t, whose coefficients
are periodic functions in t. This is reminiscent of the counting functions of
Chapter 1, which showed a similar periodic-polynomial behavior. Inspired by
both examples, we define a quasipolynomial Q as an expression of the form

Q(t) = cn(t) t
n + · · ·+ c1(t) t+ c0(t) ,

where c0, . . . , cn are periodic functions in t. The degree of Q is n,5 and
the least common period of c0, . . . , cn is the period of Q. Alternatively,
for a quasipolynomial Q, there exist a positive integer k and polynomials
p0, p1, . . . , pk−1 such that

Q(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p0(t) if t ≡ 0 mod k,

p1(t) if t ≡ 1 mod k,
...

pk−1(t) if t ≡ k − 1 mod k.

The minimal such k is the period of Q, and for this minimal k, the polynomials
p0, p1, . . . , pk−1 are the constituents of Q.

By the triangulation and embedding-in-a-box arguments that began this
section, we can now state a general structural result for rational polygons.

Theorem 2.11. Let P be any rational polygon. Then LP(t) is a quasipolyno-
mial of degree 2. Its leading coefficient is the area of P (in particular, it is a
constant).

We have the technology at this point to study the period of LP ; we let the
reader enjoy the ensuing details (see Exercise 2.37).

Proof. By Exercises 2.2 and 2.36 (the general form of Theorem 2.10), the
theorem holds for rational rectangles and right triangles whose edges are
parallel to the axes. Now use the additivity of both degree-2 quasipolynomials
and areas along with Theorem 1.5. �


5 Here we tacitly assume that cn is not the zero function.
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2.8 Euler’s Generating Function for General Rational
Polytopes

By now, we have computed several instances of counting functions by setting
up a generating function that fits the particular problem in which we are
interested. In this section, we set up such a generating function for the lattice-
point enumerator of an arbitrary rational polytope. Such a polytope is given
by its hyperplane description as an intersection of half-spaces and hyperplanes.
The half-spaces are algebraically given by linear inequalities, the hyperplanes
by linear equations. If the polytope is rational, we can choose the coefficients
of these inequalities and equations to be integers (Exercise 2.7). To unify
both descriptions, we can introduce slack variables to turn the half-space
inequalities into equalities. Furthermore, by translating our polytope into the
nonnegative orthant (we can always shift a polytope by an integer vector
without changing the lattice-point count), we may assume that all points in
the polytope have nonnegative coordinates. In summary, after a harmless
integer translation, we can describe every rational polytope P as

P =
{
x ∈ Rd

≥0 : Ax = b
}

(2.23)

for some integral matrix A ∈ Zm×d and some integer vector b ∈ Zm. (Note
that d is not necessarily the dimension of P .) To describe the tth dilate of P ,
we simply scale a point x ∈ P by 1

t , or alternatively, multiply b by t:

tP =
{
x ∈ Rd

≥0 : A
x

t
= b

}
=

{
x ∈ Rd

≥0 : Ax = tb
}
.

Hence the lattice-point enumerator of P is the counting function

LP(t) = #
{
x ∈ Zd

≥0 : Ax = tb
}
. (2.24)

Example 2.12. Suppose P is the quadrilateral with vertices (0, 0), (2, 0),
(1, 1), and

(
0, 3

2

)
pictured in Figure 2.10. The half-space-inequality description

of P is

P =

{
(x1, x2) ∈ R2 : x1, x2 ≥ 0,

x1 + 2x2 ≤ 3,
x1 + x2 ≤ 2

}
.

Thus,

LP(t) = #

{
(x1, x2) ∈ Z2 : x1, x2 ≥ 0,

x1 + 2x2 ≤ 3t,
x1 + x2 ≤ 2t

}
= #

{
(x1, x2, x3, x4) ∈ Z4 : x1, x2, x3, x4 ≥ 0,

x1 + 2x2 + x3 = 3t,
x1 + x2 + x4 = 2t

}
= #

{
x ∈ Z4

≥0 :

(
1 2 1 0
1 1 0 1

)
x =

(
3t
2t

)}
.
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Fig. 2.10 The quadrilat-
eral P from Example 2.12.

(0, 0) (2, 0)

(1, 1)
(0, 32 )

x1

x2

Using the ideas from Sections 1.3, 1.5, 2.3, and 2.7, we now construct a
generating function for this counting function. In those previous sections, the
lattice-point enumerator could be described with only one nontrivial linear
equation, whereas now we have a system of such linear constraints. However,
we can use the same approach of encoding the linear equation into geometric
series; we just need more than one variable. When we expand the function

f (z1, z2) :=
1

(1− z1z2) (1− z21z2) (1− z1) (1− z2) z3t1 z2t2

into geometric series,

f (z1, z2) =

=

( ∑
n1≥0

(z1z2)
n1

)( ∑
n2≥0

(
z21z2

)n2

)( ∑
n3≥0

zn3
1

)( ∑
n4≥0

zn4
2

)
1

z3t1 z2t2

=
∑

n1,...,n4≥0

zn1+2n2+n3−3t
1 zn1+n2+n4−2t

2 .

When we compute the constant term (in both z1 and z2), we are counting
solutions (n1, n2, n3, n4) ∈ Z4

≥0 to

(
1 2 1 0
1 1 0 1

)⎛⎜⎜⎝
n1

n2

n3

n4

⎞⎟⎟⎠ =

(
3t
2t

)
,

that is, the constant term of f (z1, z2) counts the integer points in P:

LP(t) = const
1

(1− z1z2) (1− z21z2) (1− z1) (1− z2) z3t1 z2t2
.
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We invite the reader to actually compute this constant term (Exercise 2.38).
It turns out to be

7

4
t2 +

5

2
t+

7 + (−1)t

8
. �


Returning to the general case of a polytope P given by (2.23), we denote
the columns of A by c1, c2, . . . , cd. Let z = (z1, z2, . . . , zm) and expand the
function

1

(1− zc1) (1− zc2) · · · (1− zcd) ztb
(2.25)

in terms of geometric series:⎛⎝ ∑
n1≥0

zn1c1

⎞⎠⎛⎝ ∑
n2≥0

zn2c2

⎞⎠ · · ·
⎛⎝ ∑

nd≥0

zndcd

⎞⎠ 1

ztb
.

Here we use the abbreviating notation za := za1
1 za2

2 · · · zam
m for the vectors

z = (z1, z2, . . . , zm) ∈ Cm and a = (a1, a2, . . . , am) ∈ Zm. In multiplying out
everything, a typical exponent will look like

n1c1 + n2c2 + · · ·+ ndcd − tb = An− tb ,

where n = (n1, n2, . . . , nd) ∈ Zd
≥0. That is, if we take the constant term of our

generating function (2.25), we are counting integer vectors n ∈ Zd
≥0 satisfying

An− tb = 0 , that is, An = tb .

So this constant term will pick up exactly the number of lattice points n ∈ Zd
≥0

in tP:

Theorem 2.13 (Euler’s generating function). Suppose the rational poly-
tope P is given by (2.23). Then the lattice-point enumerator of P can be
computed as follows:

LP(t) = const

(
1

(1− zc1) (1− zc2) · · · (1− zcd) ztb

)
. �


We finish this section with rephrasing this constant-term identity in terms
of Ehrhart series.

Corollary 2.14. Suppose the rational polytope P is given by (2.23). Then
the Ehrhart series of P can be computed as

EhrP(x) = const

(
1

(1− zc1) (1− zc2) · · · (1− zcd)
(
1− x

zb

)) .

Proof. By Theorem 2.13,
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EhrP(x) =
∑
t≥0

const

(
1

(1− zc1) (1− zc2) · · · (1− zcd) ztb

)
xt

= const

⎛⎝ 1

(1− zc1) (1− zc2) · · · (1− zcd)

∑
t≥0

xt

ztb

⎞⎠
= const

(
1

(1− zc1) (1− zc2) · · · (1− zcd)

1

1− x
zb

)
. �


Notes

1. Convex polytopes are beautiful objects with a rich history and interesting
theory, which we have only glimpsed here. For good introductions to poly-
topes, we recommend [68,126,258]. Polytopes appear in a vast range of current
research areas, including Gröbner bases and commutative algebra [236], com-
binatorial optimization [95,213], integral geometry [149], K-theory [73], and
geometry of numbers [220].

2. The distinction between the vertex and hyperplane description of a convex
polytope leads to an interesting algorithmic question; namely, how quickly can
we retrieve the first piece of data from the second and vice versa [213,258]?

3. Ehrhart series are named after Eugène Ehrhart (1906–2000),6 who proved
the main structure theorems which we will see in Chapter 3. The Ehrhart
series of a polytope is an example of a Hilbert–Poincaré series. These series
appear in the study of graded algebras (see, for example, [134, 229]); in the
Ehrhart case, this algebra lives in C[z±1

1 , z±1
2 , . . . , z±1

d , zd+1] and is generated
by the monomials zm, where m ranges over all integer points in cone(P), the
cone over P , which we will define in Chapter 3. Ehrhart series also appear in
the context of toric varieties, a vast and fruitful subject [91, 116].

4. The Eulerian numbers A (d, k) are named after Leonhard Euler (1707–
1783)7 and arise naturally in the statistics of permutations: A (d, k) counts
permutations of {1, 2, . . . , d} with k− 1 ascents. For more on A (d, k), see [87,
Section 6.5] and [139]; for more connections between A (d, k) and Ehrhart
theory, see [32].

5. The pyramids of Section 2.4 have an interpretation as order polytopes [230].
A curious fact about the lattice-point enumerators of these pyramids is that
they have arbitrarily large real roots as the dimension grows [36].

6 For more information about Ehrhart, see http://icps.u-strasbg.fr/∼clauss/Ehrhart.html.
7 For more information about Euler, see
http://www-history.mcs.st-andrews.ac.uk/Biographies/Euler.html.

http://icps.u-strasbg.fr/%E2%88%BCclauss/Ehrhart.html
http://icps.u-strasbg.fr/%E2%88%BCclauss/Ehrhart.html
http://icps.u-strasbg.fr/%E2%88%BCclauss/Ehrhart.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Euler.html
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6. The counting function L� for the cross-polytope can, incidentally, also be
written as

min(d,t)∑
k=0

2k
(
d

k

)(
t

k

)
.

In particular, L� is symmetric in d and t. The cross-polytope counting
functions bear a connection to Laguerre polynomials, the d-dimensional
harmonic oscillator, and the Riemann hypothesis. This connection appeared
in [75], where Daniel Bump, Kwok–Kwong Choi, Pär Kurlberg, and Jeffrey
Vaaler also found a curious fact about the roots of the polynomials L�: they
all have real part − 1

2 (an instance of a local Riemann hypothesis). This fact
was proved independently by Peter Kirschenhofer, Attila Pethő, and Robert
Tichy [148]; see also the notes in Chapter 4.

7. Theorem 2.8 marks the beginning of the general study of lattice-point
enumeration in polytopes. Its amazingly simple statement was discovered
by Georg Alexander Pick (1859–1942)8 in 1899 [190]. Pick’s theorem holds
also for a nonconvex polygon, provided its boundary forms a simple curve.
In Chapter 14, we prove a generalization of Pick’s theorem that includes
nonconvex curves.

8. The results of Section 2.7 appeared in [43]. We will see in Chapter 8 that
the finite sums over roots of unity can be rephrased in terms of Dedekind–
Rademacher sums, which—as we will also see in Chapter 8—can be computed
very quickly. The theorems of Section 2.7 will then imply that the discrete
volume of every rational polygon can be computed efficiently.

9. If we replace tb in (2.24) by a variable integer vector v, the counting
function

f(v) = #
{
x ∈ Zd

≥0 : Ax = v
}

is called a vector partition function: it counts partitions of the vector v in
terms of the columns of A. Vector partition functions are the multivariate
analogues of our lattice-point enumerators LP(t). They have many interesting
properties and give rise to intriguing open questions [30,58,90,235,240].

10. While Leonhard Euler most likely did not think of lattice-point enumer-
ation in the sense of Ehrhart, we attribute Theorem 2.13 to him, since he
certainly worked with generating functions of this type, probably thinking of
them as vector partition functions. Percy MacMahon (1854–1929)9 developed
powerful machinery for manipulating multivariate generating functions [167];
his viewpoint and motivation came from integer partitions, but his work

8 For more information about Pick, see
http://www-history.mcs.st-andrews.ac.uk/Biographies/Pick.html.
9 For more information about MacMahon, see
http://www-history.mcs.st-andrews.ac.uk/Biographies/MacMahon.html.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Pick.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/MacMahon.html
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can be applied to more general linear-constraint settings, such as vector
partition functions. The potential of Euler’s generating function for Ehrhart
polynomials was already realized by Ehrhart [109,111]. Several modern ap-
proaches to computing Ehrhart polynomials are based on Theorem 2.13 (see,
for example, [29, 67, 159]).

Exercises

2.1. ♣ Fix positive integers a, b, c, d such that gcd(a, b) = gcd(c, d) = 1 and
a
b < c

d , and let P be the interval
[
a
b ,

c
d

]
(so P is a 1-dimensional rational

convex polytope). Compute LP(t) = # (tP ∩ Z) and LP◦(t) and show directly
that LP(t) and LP◦(t) are quasipolynomials with period lcm(b, d) that satisfy

LP◦(−t) = −LP(t) .

(Hint: Exercise 1.4(i).)

2.2. ♣ Fix positive rational numbers a1, b1, a2, b2 and let R be the rectan-
gle with vertices (a1, b1), (a2, b1), (a2, b2), and (a1, b2). Compute LR(t) and
EhrR(z).

2.3. Fix positive integers a and b, and let T be a triangle with vertices (0, 0),
(a, 0), and (0, b).

(a) Compute LT (t) and EhrT (z).
(b) Use (a) to derive the following formula for the greatest common divisor of

a and b:

gcd(a, b) = 2
b−1∑
k=1

⌊
ka

b

⌋
+ a+ b− ab .

(Hint: Exercise 1.12.)

2.4. Prove that for two polytopes P ⊂ Rm and Q ⊂ Rn,

#
(
(P ×Q) ∩ Zm+n

)
= #(P ∩ Zm) ·#(Q ∩ Zn) .

Hence, LP×Q(t) = LP(t)LQ(t).

2.5. Prove that if F is a face of P and G is a face of F , then G is also a face
of P. (That is, the face relation is transitive.)

2.6. ♣ Suppose Δ is a d-simplex with vertices V = {v1,v2, . . . ,vd+1}. Prove
that for every nonempty subset W ⊆ V , convW is a face of Δ, and conversely,
that every face of Δ is of the form convW for some W ⊆ V . Conclude the
following corollaries from this characterization of the faces of a simplex:

(a) A face of a simplex is again a simplex.
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(b) The intersection of two faces of a simplex Δ is again a face of Δ.

2.7. ♣ Prove that a rational convex polytope can be described by a system
of linear inequalities and equations with integral coefficients.

2.8. ♣ Prove the properties (2.3) of the Eulerian numbers for all integers
1 ≤ k ≤ d, namely:

(a) A (d, k) = A (d, d+ 1− k)
(b) A (d, k) = (d− k + 1)A (d− 1, k − 1) + k A (d− 1, k)

(c)

d∑
k=0

A (d, k) = d!

(d) A (d, k) =
k∑

j=0

(−1)j
(
d+ 1

j

)
(k − j)d.

2.9. ♣ Prove (2.6); namely, for d ≥ 0, 1
(1−z)d+1 =

∑
k≥0

(
d+k
d

)
zk.

2.10. ♣ Prove (2.7): For t, k ∈ Z and d ∈ Z>0,

(−1)d
(−t+ k

d

)
=

(
t+ d− 1− k

d

)
.

2.11. The Stirling numbers of the first kind, stirl(n,m), are defined
through the finite generating function

x(x− 1) · · · (x− n+ 1) =
n∑

m=0

stirl(n,m)xm.

(See also [1, Sequence A008275].) Prove that

1

d!

d∑
k=0

(−1)d−k stirl(d+ 1, k + 1) tk =

(
d+ t

d

)
,

the lattice-point enumerator for the standard d-simplex.

2.12. Give a direct proof that the number of solutions (m1,m2, . . . ,md+1) ∈
Zd+1
≥0 to m1+m2+ · · ·+md+1 = t equals

(
d+t
d

)
. (Hint: think of t objects lined

up and separated by d walls.)

2.13. Compute LP(t), where P is the regular tetrahedron with vertices
(0, 0, 0) , (1, 1, 0) , (1, 0, 1) , (0, 1, 1).

2.14. ♣ Prove that the power series∑
k≥0

Bk

k!
zk

that defines the Bernoulli numbers has radius of convergence 2π.
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2.15. ♣ Prove (2.11); namely, Bd(1− x) = (−1)dBd(x).

2.16. ♣ Prove (2.12); namely, Bd = 0 for all odd d ≥ 3.

2.17. Show that for each positive integer n,

nxn−1 =
n∑

k=1

(
n

k

)
Bn−k(x) .

This gives us a change of basis for the polynomials of degree ≤ n, allowing us
to represent every polynomial as a sum of Bernoulli polynomials.

2.18. As a complement to the previous exercise, show that we also have a
change of basis in the other direction. Namely, we can represent a single
Bernoulli polynomial in terms of the monomials as follows:

Bn(x) =

n∑
k=0

(
n

k

)
Bk x

n−k.

2.19. Show that for all positive integers m,n and for all x ∈ R,

1

m

m−1∑
k=0

Bn

(
x+

k

m

)
= m−nBn(mx) .

(This is a Hecke-operator -type identity, originally found by Joseph Ludwig
Raabe in 1851.)

2.20. Show that Bn(x+ 1)−Bn(x) = nxn−1.

2.21. An alternative way to define the Bernoulli polynomials is to give ele-
mentary properties that uniquely characterize them. Show that the following
three properties uniquely determine the Bernoulli polynomials, as defined in
the text by (2.8):

(a) B0(x) = 1.

(b) dBn(x)
dx = nBn−1(x), for all n ≥ 1.

(c)
∫ 1

0
Bn(x) dx = 0, for all n ≥ 1.

2.22. Use (2.13) to derive the following identity, which expresses a Bernoulli
polynomial in terms of Eulerian numbers and binomial coefficients:

1

d
(Bd(t+ 2)−Bd) = A (d− 1, d− 1)

(
t+ d− 2

d

)
+A (d− 1, d− 2)

(
t+ d− 3

d

)
+ · · ·+A (d− 1, 1)

(
t

d

)
.

2.23. ♣ Prove Theorem 2.6: EhrBiPyr(Q)(z) =
1+z
1−z EhrQ(z).
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2.24. A Delannoy path is a path through lattice points in the plane with
steps (1, 0), (0, 1), and (1, 1) (i.e., “east,” “north,” and “northeast”). Find a
recurrence for the number D(m,n) of Delannoy paths from the origin to the
point (m,n), and use it to compute the two-variable generating function∑

m≥0

∑
n≥0

D(m,n) zmwn =
1

1− z − w − zw
.

Conclude from this generating function that the Ehrhart polynomial L�(t)
of the d-dimensional cross-polytope equals D(t, d). (Hint: start with the dth

derivative of the generating function of D(t, d) with respect to w.)

2.25. ♣ Let R be an integral rectangle whose edges are parallel to the
coordinate axes, and let T be a rectangular triangle two of whose edges are
parallel to the coordinate axes. Show that Pick’s theorem holds for R and T .

2.26. ♣ Suppose P is an integral polygon with area A and with B lattice
points on its boundary. Show that the area of tP is At2, and the number of
boundary points on tP is Bt. (Hint: Exercise 1.12.)

2.27. Let P be the self-intersecting polygon defined by the line segments
[(0, 0), (4, 2)], [(4, 2), (4, 0)], [(4, 0), (0, 2)], and [(0, 2), (0, 0)]. Show that Pick’s
theorem does not hold for P.

2.28. Suppose that P and Q are integral polygons, and that Q lies entirely
inside P. Then the area bounded by the boundaries of P and Q, denoted
by P − Q, is a “doubly connected polygon.” Find and prove the analogue
of Pick’s theorem for P − Q. Generalize your formula to a polygon with n
“holes” (instead of one).

2.29. Show that every convex integral polygon with more than four vertices
must have an interior lattice point.

2.30. Consider the rhombus

R = {(x, y) : a|x|+ b|y| ≤ ab} ,

where a and b are fixed positive integers. Find a formula for LR(t).

2.31. We define the nth Farey sequence to be the sequence, in order from
smallest to largest, of all the rational numbers a

b in the interval [0, 1] such
that a and b are coprime and b ≤ n. For instance, the sixth Farey sequence is
0
1 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

5
6 ,

1
1 .

(a) For two consecutive fractions a
b and c

d in a Farey sequence, prove that
bc− ad = 1.

(b) For three consecutive fractions a
b ,

c
d , and

e
f in a Farey sequence, show

that c
d = a+e

b+f .
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2.32. Let �x� denote the smallest integer greater than or equal to x. Prove
that for all positive integers a and b,

a+ (−1)b
a∑

m=0

(−1)� bm
a � ≡ b+ (−1)a

b∑
n=0

(−1)� an
b � mod 4 .

(Hint: This is a variation of Exercise 1.6. One way to obtain this identity is by
counting lattice points in a certain triangle, keeping track only of the parity.)

2.33. ♣ Verify (2.19).

2.34. ♣ Compute the partial fraction coefficients (2.22).

2.35. ♣ Let a, b be positive integers. Show that

1

1− zab
= −ξka

ab

(
z − ξka

)−1
+
ab− 1

2ab
+terms with positive powers of

(
z − ξka

)
.

2.36. ♣ Let T be given by (2.16), and let c = gcd(e, f). Prove that

LT (t) =
1

2ef
(tr − u− v)

2
+

1

2
(tr − u− v)

(
1

e
+

1

f
+

1

ef

)
+

1

4

(
1 +

1

e
+

1

f

)
+

1

12

(
e

f
+

f

e
+

1

ef

)
+

(
1

2e
+

1

2f
− u+ v − tr

ef

) c−1∑
k=1

ξ−ktr
c

1− ξkc
− 1

ef

c−1∑
k=1

ξ
k(−tr+1)
c

(1− ξkc )
2

+
1

e

e−1∑
j=1
e
c
� | j

ξ
j(v−tr)
e(

1− ξjfe
)(

1− ξje
) +

1

f

f−1∑
l=1
f
c
� | l

ξ
l(u−tr)
f(

1− ξlef

)(
1− ξlf

) .

2.37. Let P be a rational polygon, and let d be the least common multiple of
the denominators of the vertices of P. Prove directly (using Exercise 2.36)
that the period of LP divides d.

2.38. ♣ Finish the calculation in Example 2.12, that is, compute

const
1

(1− z1z2) (1− z21z2) (1− z1) (1− z2) z3t1 z2t2
.

2.39. Compute the vector partition function of the quadrilateral given in
Example 2.12, that is, compute the counting function

f (v1, v2) := #

{
x ∈ Z4

≥0 :

(
1 2 1 0
1 1 0 1

)
x =

(
v1
v2

)}
for v1, v2 ∈ Z. (This function depends on the relationship between v1 and v2.)
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2.40. Search on the Internet for the program polymake [118]. You can down-
load it for free. Experiment.

Open Problems

2.41. Choose d+ 1 of the 2d vertices of the unit d-cube �, and let Δ be the
simplex defined by their convex hull.

(a) Which choice of vertices maximizes volΔ?
(b) What is the maximum volume of such a Δ?

2.42. Find classes of integral d-polytopes (Pd)d≥1 for which LPd
(t) is sym-

metric in d and t. (The standard simplices Δ and the cross-polytopes � form
two such classes.)

2.43. We mentioned already in the notes that all the roots of the polynomials
L� have real part − 1

2 ; see [75, 148]. Find other classes of polytopes whose
lattice-point enumerator exhibits such special behavior.



http://www.springer.com/978-1-4939-2968-9
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