
Chapter 2

Narayana numbers

While the sequence of Fibonacci numbers entered the public imagi-
nation a long time ago, it can be argued that the sequence introduced in this
chapter is of greater importance in combinatorics today. Here we will study
the Catalan numbers,

1, 1, 2, 5, 14, 42, 429, 1430, 4862, 16796, 58786, . . . ,

and a triangle of numbers that refine the Catalan numbers, known as the
Narayana numbers. Throughout the book, the Narayana numbers will be
shown to possess the same (or nearly the same) properties as the Eulerian
numbers.

2.1 Catalan numbers

The Catalan numbers are denoted Cn, n ≥ 0, and are given by the explicit
formula Cn = 1

n+1

(
2n
n

)
. The sequence of Catalan numbers is among the most

famous sequences in mathematics. One reason for the ubiquity of the Cata-
lan numbers may be that they satisfy the following quadratic, convolutive
recurrence for n ≥ 1:

Cn =

n−1∑

i=0

CiCn−1−i, (2.1)

and this numeric recurrence is a shadow of natural structural recurrences
possessed by many families of combinatorial objects.
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20 2 Narayana numbers

From (2.1), we can derive the generating function:

C(z) =
∑

n≥0

Cnz
n,

as follows.

C(z) =
∑

n≥0

Cnz
n

= 1 + z
∑

n≥1

n−1∑

i=0

Ciz
iCn−1−iz

n−1−i

= 1 + zC(z)2.

Therefore,

zC(z)2 − C(z) + 1 = 0,

and we get

C(z) =
1−
√

1− 4z

2z
. (2.2)

We mention the Catalan numbers because they enumerate an important
subset of permutations that we will now describe. Counting these permuta-
tions according to descents gives rise to the array of Narayana numbers, a
distribution that has many of the same properties as the Eulerian distribu-
tion.

2.2 Pattern-avoiding permutations

The permutations we will study in this chapter are 231-avoiding permu-
tations. These are permutations w such that there is no triple of indices
i < j < k such that w(k) < w(i) < w(j). That is, the letters w(i), w(j), and
w(k) are not in the same relative positions as 2, 3, and 1. If a permutation
w contains such a triple, we say w contains the pattern 231; otherwise, we
say w avoids the pattern 231. For example, the permutation 53412 contains
the pattern 231 since w(4) < w(2) < w(3) (or since w(5) < w(2) < w(3)),
whereas the permutation 32154 avoids 231. The notion of pattern avoidance
is easy to understand visually when we draw the graph of a permutation as
an array of dots on a square grid. See Figure 2.1.

Let Sn(231) denote the set of permutations in Sn avoiding the pattern
231. The 231-avoiding permutations, for n ≤ 5, are listed in Table 2.1.
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Fig. 2.1 The permutation 53412 contains the pattern 231 in several ways. Two
occurrences of the pattern are indicated with dashed line boxes.

Table 2.1 The 231-avoiding permutations of n with k descents, 0 ≤ k < n ≤ 5.

n\k 0 1 2 3 4

1 1
2 12 21
3 123 213 321

132
312

4 1234 2134 3214 4321
1324 2143
3124 1432
1243 4213
1423 4132
4123 4312

5 12345 21345 32145 43215 54321
13245 21435 32154
31245 14325 21543
12435 42135 15432
14235 41325 53214
41235 43125 52143
12354 21354 51432
12534 13254 54213
15234 31254 54132
51234 12543 54312

21534
15324
15243
15423
52134
51324
53124
51243
51423
54123
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We will now show that the 231-avoiding permutations obey a structural
recurrence compatible with the numeric recurrence in (2.1). For the moment,
let cn = |Sn(231)| and define c0 = 1 for convenience. We will show that for
n ≥ 1:

cn =

n−1∑

i=0

cicn−1−i,

and hence cn = Cn for all n.
First of all, suppose u is a permutation in Si(231) and v is a permutation

of {i + 1, . . . , n− 1} that avoids 231. Then since every letter of u is smaller
than every letter of v, the permutation

w = u(1) · · ·u(i)n v(1) · · · v(n− 1− i),

formed by inserting n between u and v, is a 231-avoiding permutation. There
are ci choices for u and cn−1−i choices for v, so summing over all i, we have

n−1∑

i=0

cicn−1−i ≤ cn.

On the other hand, suppose w ∈ Sn is 231-avoiding, with w(i+1) = n. Let
u = w(1) · · ·w(i) denote the word to the left of n, and let v = w(i+2) · · ·w(n)
denote the word to the right of n. Clearly both of these words must avoid
the pattern 231. Further, if there was a letter a in u that was greater than a
letter b in v, then there would be a 231 pattern formed by the letters a, n, b
in w. Hence, every letter of u must be smaller than every letter of v. In other
words, u ∈ Si(231) and v is a permutation of {i + 1, . . . , n − 1} that avoids
231. This shows

cn ≤
n−1∑

i=0

cicn−1−i,

and so in light of our earlier discussion, the two quantities must equal each
other:

cn =

n−1∑

i=0

cicn−1−i.

Since the cn satisfy the same recurrence as the Catalan numbers with
the same initial values, cn = Cn, and we have the following combinatorial
characterization of Catalan numbers. (The first of many, as we will discover
later in the chapter.)

Theorem 2.1. For n ≥ 1,

|Sn(231)| = Cn.

While showing that |Sn(231)| = Cn recursively is fine, one would like to
also have a direct combinatorial proof, e.g., by showing (n+1)|Sn(231)| =

(
2n
n

)
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via a bijection. This is left to Problem 2.2, though we will do something
similar in Section 2.4 for another set of objects counted by Catalan numbers.

Before moving on, we remark that there is nothing particularly interesting
about the pattern 231 for Theorem 2.1. It is possible to exhibit bijections
between the set Sn(231) and the set Sn(p), where p ∈ {123, 132, 213, 312, 321}
is any pattern of length three. See Problem 2.1.

2.3 Narayana numbers

Similarly to how we defined the Eulerian numbers, we define the Narayana
number Nn,k to be the number of permutations in Sn(231) with k descents:

Nn,k = |{w ∈ Sn(231) : des(w) = k}|.

We have the Narayana numbers shown in Table 2.2.

Table 2.2 The Narayana numbers Nn,k, 0 ≤ k < n ≤ 10.

n\k 0 1 2 3 4 5 6 7 8 9
1 1
2 1 1
3 1 3 1
4 1 6 6 1
5 1 10 20 10 1
6 1 15 50 50 15 1
7 1 21 105 175 105 21 1
8 1 28 196 490 490 196 28 1
9 1 36 336 1176 1764 1176 336 36 1

10 1 45 540 2520 5292 5292 2520 540 45 1

We will show in Section 2.4 that the Narayana numbers are given by the
formula

Nn,k =
1

k + 1

(
n

k

)(
n− 1

k

)
. (2.3)

It is easily shown that this formula is equivalent to

Nn,k = det

⎛

⎝

(
n−1
k

) (
n

k+1

)

(
n
k

) (
n+1
k+1

)

⎞

⎠ =

(
n− 1

k

)(
n+ 1

k + 1

)
−
(
n

k

)(
n

k + 1

)
,

and therefore we can extract the triangle of Narayana numbers as 2×2 minors
of Pascal’s triangle. See Figure 2.2.
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1 6 15 20 15 6 1

1 5 10 10 5 1

1 4 6 4 1

1 3 3 1

1 2 1

1 1

1

1

1 1

1 3 1

1 6 6 1

1 10 20 10 1

15 50 50 15 11

Fig. 2.2 The triangle of Narayana numbers obtained as determinants.

We will see that the generating function for Narayana numbers (with n
fixed) obeys a refined Catalan recurrence. Define

Cn(t) =
∑

w∈Sn(231)

tdes(w) =

n−1∑

k=0

Nn,kt
k,

with C0(t) := 1. We will refer to Cn(t) as the Narayana polynomial.
If we follow the recursive argument that led to Theorem 2.1 while keeping

track of descents, we will get a recurrence for the Narayana polynomials that
refines (2.1). In that proof was an implicit bijection between elements w ∈
Sn(231) and pairs (u, v) with u ∈ Si(231) (for some i) and v a permutation
of {i+ 1, . . . , n− 1} that avoids 231. Namely, we can write

w = u(1) · · ·u(i)n v(1) · · · v(n− 1− i),

as shown in Figure 2.3.
Since the number of descents of w is one more than the number of descents

in u plus the number of descents in v, we get

∑

w∈Sn(231)
w(i+1)=n

tdes(w) = tCi(t)Cn−1−i(t). (2.4)

Of course if i = n− 1 then v is the empty word and the number of descents
of w equals only the number of descents of u. This contributes a Cn−1(t)
term to the distribution, and then summing (2.4) over all i < n− 1 gives the
following result, which is similar to Theorem 1.5 for Eulerian polynomials.
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7Permute the elements

{1, . . . , i}
while avoiding 231

with distribution

Ci(t)

Permute the elements

{i + 1, . . . , n − 1}
while avoiding 231

with distribution

Cn−1−i(t)

Fig. 2.3 The idea behind Equation (2.5).

Theorem 2.2. For n ≥ 1,

Cn(t) = Cn−1(t) + t

n−2∑

i=0

Ci(t)Cn−1−i(t). (2.5)

Now that we have the recurrence from Theorem 2.2 it is a straightforward
matter to construct the generating function for the Narayana polynomials,

C(t, z) :=
∑

n≥0

Cn(t)zn.

We have:

C(t, z) =
∑

n≥0

Cn(t)zn,

= 1 +
∑

n≥1

[

Cn−1(t) + t

n−2∑

i=0

Ci(t)Cn−1−i(t)

]

zn,

= 1 + z
∑

n≥1

Cn−1z
n−1 + tz

∑

n≥1

n−2∑

i=0

Ci(t)z
iCn−1−i(t)z

n−1−i,

= 1 + zC(t, z) + tzC(t, z)(C(t, z)− 1).

From this we can conclude that C(t, z) satisfies:

tzC(t, z)2 − (1 + z(t− 1))C(t, z) + 1 = 0.

Solving for C(t, z) gives:

C(t, z) =
1 + z(t− 1)−

√
1− 2z(t+ 1) + z2(t− 1)2

2tz
. (2.6)
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The 231-avoiding permutations are one combinatorial interpretation for
the Catalan numbers, but there are many, many others. (See the notes at
the end of the chapter.) There are three others that we will introduce and
discuss now, with more deferred to the problems at the end of the chapter.

2.4 Dyck paths

A Dyck path of length 2n is a lattice path from (0, 0) to (n, n) consisting
of n horizontal steps “East” from (i, j) to (i + 1, j) and n vertical steps
“North” from (i, j) to (i, j + 1), such that all points on the path satisfy
i ≤ j, i.e., the path, when drawn in the cartesian plane, lies on or above the
line y = x. We can either draw the picture of the path or write the list of
steps the path follows as a word on the set {N,E}. For example, the path
p = NNENNEEENENNNEEE would be drawn as in Figure 2.4.

•

•

• •

•

• • • •

• •

•

•

• • • •

y = x

Fig. 2.4 One of the 4862 paths in Dyck(8).

Let Dyck(n) denote the set of Dyck paths of length 2n. A peak of a Dyck
path p is a point (i, j) such that (i, j − 1) and (i + 1, j) are on p as well.
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Similarly, a valley of p is a point (i, j) such that (i− 1, j) and (i, j+ 1) are on
p. In other words, a peak corresponds to a North step followed immediately by
an East step, while a valley corresponds to an East step followed immediately
by a North step. The number of peaks of p is denoted pk(p) and the number of
valleys is val(p). For example, the path of Figure 2.4 has four peaks, pk(p) =
4, and three valleys, val(p) = 3. It is easy to see that for p ∈ Dyck(n),
1 ≤ pk(p) ≤ n, while 0 ≤ val(p) = pk(p) − 1 ≤ n − 1. The Dyck paths for
n ≤ 4 are shown in Table 2.3, grouped according to the number of peaks in
the path.

At the end of this section we will provide a bijection between Dyck paths
and 231-avoiding permutations, but first we will give bijective proofs that
there are Catalan-many Dyck paths and that counting Dyck paths according
to the number of peaks gives rise to the Narayana numbers.

2.4.1 Counting all Dyck paths

The Catalan number Cn can be written as a difference of two binomial coef-
ficients:

Cn =
1

n+ 1

(
2n

n

)
=

(
2n

n

)
−
(

2n

n− 1

)
.

Notice that there are a total of
(
2n
n

)
lattice paths from (0, 0) to (n, n) since we

have 2n steps and exactly n of them must be N steps. Similarly, we can think
of
(

2n
n−1

)
as counting the paths from (0, 0) to (n+1, n−1). Thus to give a direct

combinatorial proof that |Dyck(n)| = Cn, we will write
(
2n
n

)
= Cn +

(
2n
n−1

)

and describe a bijection

{
lattice paths from

(0, 0) to (n, n)

}
←→ Dyck(n)

⋃{ lattice paths from
(0, 0) to (n+ 1, n− 1)

}
.

The idea here is called the reflection principle. Let p be a path from (0, 0)
to (n, n). If p never passes below the line y = x, it is a Dyck path. If it does
go below this line, say the reflection point of p is the first time the path hits
the line y = x−1. The reflection of p, r(p), is the path obtained by swapping
E for N on every step after the reflection point. For example, if

p = NNEEE|NNENEEENNEN,

then
r(p) = NNEEE|EENENNNEENE,

is its reflection. The vertical bar here is used to mark the reflection point.
In terms of words on {N,E}, this is simply the first time, in reading from
left to right, that we have more letters E than N . This example is drawn in
Figure 2.5.
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Table 2.3 The paths in Dyck(n), n ≤ 4, grouped by number of peaks, k.

n\k 1 2 3 4

1
•
• •

2

•
•
• • •

•
• •

• •

3

•
•
•
• • • •

•
•
• •

• • •

•
• •

• •
• •

•
• •

•
• • •

•
•
• • •

• •

4

•
•
•
•
• • • • •

•
•
•
• •

• • • •

•
•
• •

• •
• • •

•
• •

• •
• •

• •

•
•
• •

•
• • • •

•
• •

•
• •

• • •

•
•
•
• • •

• • •

•
• •

• •
•
• • •

•
• •

•
•
• • • •

•
•
• •

• • •
• •

•
•
• • •

•
• • •

•
• •

•
• • •

• •

•
•
•
• • • •

• •

•
•
• • •

• •
• •
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• • • •

•

• •

•

reflection point

y = x

Fig. 2.5 The reflection of a lattice path.

The reflection map is easily reversed (the reflection point is well defined
for both sets of paths), so the paths from (0, 0) to (n, n) that go below the
line y = x are in bijection with all the paths from (0, 0) to (n+1, n−1). This
shows

|Dyck(n)| =
(

2n

n

)
−
(

2n

n− 1

)
= Cn,

as desired.

2.4.2 Counting Dyck paths by peaks

Earlier we claimed the Narayana numbers are given by

Nn,k =
1

k + 1

(
n

k

)(
n− 1

k

)
.

We will now show that

|{p ∈ Dyck(n) : pk(p) = k + 1}| = 1

k + 1

(
n

k

)(
n− 1

k

)
.

We will subsequently show that

|{p ∈ Dyck(n) : pk(p) = k + 1}| = |{w ∈ Sn(231) : des(w) = k}|,

justifying the formula for the Narayana numbers.
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Our goal will be to show

(k + 1)|{p ∈ Dyck(n) : pk(p) = k + 1}| =
(
n

k

)(
n− 1

k

)
.

To do so, we will exhibit a certain set P of
(
n
k

)(
n−1
k

)
lattice paths and show

that it can be partitioned into equivalence classes. We will then show each
equivalence class has k + 1 elements and contains exactly one path that
corresponds to a Dyck path with k + 1 peaks.

Define P to be the set of lattice paths from (0,−1) to (n, n) that begin
with a North step, end with an East step, and have exactly k + 1 peaks,
or k valleys. Each such path can be reconstructed from the coordinates of
its valleys: (x1, y1), (x2, y2), . . . , (xk, yk). There are

(
n
k

)
ways to choose the

vertical coordinates: 0 ≤ y1 < y2 < · · · < yk ≤ n−1 in such a path, and
(
n−1
k

)

ways to choose the horizontal coordinates: 1 ≤ x1 < x2 < · · · < xk ≤ n− 1.
Hence |P| =

(
n
k

)(
n−1
k

)
. See Figure 2.6.

•

•

•

• • • •
(x1, y1)

•

• •
(x2, y2)

• • •
(x3, y3)

•

• •
(x4, y4)

• •
y = x

last minimum valley

Fig. 2.6 A path from (0,−1) to (n, n) with initial North step, final East step, and
k valleys. Here n = 8, k = 4.
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On the other hand, we can also characterize a path in P by a sequence of
k+ 1 valley-less paths. In Figure 2.6, these valley-less paths are NNNEEE,
NNE, NEE, NNE, and NE and we can write

p = (NNNEEE)(NEE)(NNE) • (NNE)(NE).

An important marker in our path (indicated in the word with a •) will be
the rightmost valley (xi, yi) for which yi − xi < 0 is minimized. In terms of
the {N,E}-word for the path, this is the rightmost position where the letters
E most outnumber the letters N . If there are always more letters N than E,
we put the marker on the far left.

We will now lump together these lattice paths into equivalence classes
given by cyclically permuting the valley-less paths. Let [p] denote the class
of p. To continue our example,

[p] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(NNNEEE)(NEE)(NNE) • (NNE)(NE)
(NE)(NNNEEE)(NEE)(NNE) • (NNE)
•(NNE)(NE)(NNNEEE)(NEE)(NNE)
(NNE) • (NNE)(NE)(NNNEEE)(NEE)
(NEE)(NNE) • (NNE)(NE)(NNNEEE)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Notice that the marker gets cyclically permuted along with the valley-
less paths. (This is because the path from the marker onward always has
more letters N than E when reading from left to right.) Hence, the marker
uniquely identifies the cyclic permutation of p and the class [p] must contain
k+ 1 distinct paths. Moreover, there is always one path that has the marker
on the far left. This path has all its valleys satisfying yi − xi ≥ 0, and hence
(if we ignore the initial North step) it is a Dyck path. The cyclic action is
shown in pictures in Figure 2.7.

Hence, we can conclude

(k + 1)|{p ∈ Dyck(n) : pk(p) = k + 1}| = |P|,

=

(
n

k

)(
n− 1

k

)
,

as desired.

2.4.3 A bijection with 231-avoiding permutations

We can construct a playful bijection between Dyck paths and 231-avoiding
permutations as follows. First draw a permutation as an array of nonattacking
rooks on a chessboard, i.e., if w(i) = j, put a rook in column i (from left to
right), row j (from bottom to top). Then shade in all squares on the board
that either contain a rook, or are weakly to the left and weakly above a
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Dyck path p equivalence class [Np]

•
•
• • •

• •
• •

•
•
•
• • •

• •
• •

•
• •

•
•
• • •

• •

•
• •

• •
•
•
• • •

•
• •

•
• • •

• •

•
•
• •

•
• • •

• •

•
• •

•
• •

•
• • •

•
•
• • •

• •
•
• •

•
• •

• •
•
• • •

•
•
• •

• •
•
• • •

•
•
• • •

•
• •

• •

•
• •

•
• • •

•
• •

•
•
• •

• • •
• •

•
•
•
• •

• • •
• •

•
• •

•
•
• •

• • •

•
• • •

• •
•
•
• •

•
• •

•
• •

• • •

•
•
• •

•
• •

• • •

•
• • •

•
• •

•
• •

•
•
• •

• • •
•
• •

•
•
• •

• •
• • •

•
•
•
• •

• •
• • •

•
• • •

•
•
• •

• •

•
• •

• • •
•
•
• •

Fig. 2.7 An equivalence relation on lattice paths for n = 4, k + 1 = 3 peaks.

square with a rook. The boundary of the shaded region is a path that stays
below or on the line y = x, so it is the mirror image of a Dyck path. Let
ψ : Sn(231)→ Dyck(n) denote this bijection. See Figure 2.8.

The pre-image of a path p is constructed as follows. First, draw the mirror-
image of path p, and place rooks, from right to left, in the lowest unoccupied
row that is above the path, as shown in Figure 2.9.

From this construction, we can see that each peak of the path p (where
we placed the corner rooks in ψ−1) corresponds to a maximal decreasing
run w(i) > w(i + 1) > · · · > w(j) of ψ−1(p) = w. The number of maximal
decreasing runs is necessarily n− des(w), and so we have the following.
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Fig. 2.8 Constructing a Dyck path from a 231-avoiding permutation.

Proposition 2.1. For any w ∈ Sn(231), the bijection ψ satisfies

des(w) = n− 1− val(p) = n− pk(p).

Hence,

|{w ∈ Sn(231) : des(w) = k}| = |{p ∈ Dyck(n) : pk(p) = val(p)+1 = k+1.}|.

This justifies the formula for the Narayana numbers Nn,k = 1
k+1

(
n
k

)(
n−1
k

)
.

We finish the chapter with brief discussion of two other popular combina-
torial models counted by the Narayana numbers.
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Fig. 2.9 Constructing a 231-avoiding permutation from a Dyck path.

2.5 Planar binary trees

A planar binary tree is a rooted tree such that every interior node has pre-
cisely two successors. If there are n internal nodes, this means there are n+1
leaves. Let PB(n) denote the number of planar binary trees with n internal
nodes. Table 2.4 shows the planar binary trees with at most n = 4 internal
nodes, grouped according to the number of left-pointing leaves.

The planar binary trees are combinatorial representations for ways to eval-
uate an associative product of n+ 1 elements. For example, if n = 2, we have
((xy)z) and (x(yz)) as the two possible ways to evaluate the product xyz,
and these would correspond to the following trees:

x y z

and

x y z

;
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Table 2.4 Planar binary trees grouped according to the number of left-pointing
leaves.

n\k 1 2 3 4

1

2

3

4
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where we labeled the leaves by x, y, z to indicate the natural bijection. As a
larger example,

v w x y z

←→ (v((w(xy))z)):

Planar binary trees can be shown to satisfy the Catalan recurrence (see
Problem 2.3), but one can also give a direct bijection with 231-avoiding per-
mutations that takes left-pointing leaves to descents, as suggested by the
example in Figure 2.10.

Proof of the following proposition is deferred to Problem 2.4.

Proposition 2.2. There is a bijection between PB(n) and Sn(231) such that
planar binary trees with k+ 1 left-pointing leaves are mapped to 231-avoiding
permutations with k descents.

In other words, the Narayana numbers count planar binary trees according
to left-pointing leaves:

Nn,k = |{τ ∈ PB(n) : τ has k + 1 left-pointing leaves}|.

2.6 Noncrossing partitions

A noncrossing partition π = {R1, R2, . . . , Rk}, is a set partition of [n], such
that if {a, c} ⊆ Ri and {b, d} ⊆ Rj , with 1 ≤ a < b < c < d ≤ n, then i = j.
That is, two pairs of numbers from distinct blocks cannot be interleaved. Let
NC(n) denote the set of all noncrossing partitions of [n]. We will often draw
partitions as graphs with vertex set [n], e.g.,

1 2 3 4 5

= {{1, 5}, {2}, {3, 4}} ∈ NC(5),

1 2 3 4 5

= {{1, 3}, {2, 5}, {4}} ∈ NC(5).

Notice how the notion of a “crossing” manifests itself visually in these di-
agrams. So that our pictures are canonical, we will only have arcs between
consecutive elements in the blocks of the partition. For example, if i < j < k
are in the same block, we would draw
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Fig. 2.10 A correspondence between planar binary trees and 231-avoiding permu-
tations.

· · · i · · · j · · · k · · ·
;

but not

· · · i · · · j · · · k · · · .

Table 2.5 shows all the noncrossing partitions on at most 4 elements,
grouped according to the number of blocks.



38 2 Narayana numbers

Table 2.5 Noncrossing partitions on up to four elements, grouped according to num-
ber of blocks.

n\k 1 2 3 4

1 1

2

1 2
1 2

3

1 2 3 1 2 3 1 2 3

1 2 3

1 2 3

4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4
1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4
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We can define a bijection φ : Sn(231)→ NC(n) by mapping the decreasing
runs of a permutation to blocks in a partition. See Figure 2.11.
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Fig. 2.11 The decreasing runs of a 231-avoiding permutation form a noncrossing
partition.

Moreover, we can see that the number of decreasing runs of w, i.e., the
number of blocks in π, is n− des(w).

Proposition 2.3. For any w ∈ Sn(231), the bijection φ satisfies

des(w) = n− |φ(w)|.

Hence,

|{w ∈ Sn(231) : des(w) = k}| = |{π ∈ NC(n) : |π| = n− k}|.

In other words, the Narayana numbers count noncrossing partitions by the
number of blocks:

Nn,k = |{π ∈ NC(n) : |π| = n− k}|.

Verification of this claim is left to Problem 2.5.

Notes

Despite the name, it seems that it was Euler who first studied the Cata-
lan numbers, which he defined as the number of ways to triangulate a con-
vex polygon. (See Problem 2.6.) There is correspondence between Euler and
Christian Goldbach from the middle of the 18th century that shows Euler
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knew the formula for the Catalan number generating function given in (2.2).
Johann Segner was the first to publish a paper about these numbers, in which
he proves the recurrence relation from (2.1). The Catalan numbers are named
for Eugène Charles Catalan, a 19th century mathematician who wrote several
papers about what he knew as the “Segner numbers.” It was Catalan who
proved that Cn =

(
2n
n

)
−
(

2n
n−1

)
.

Many famous mathematicians have studied the Catalan numbers, in many
different guises. One can find more than two hundred different combinato-
rial interpretations for Catalan numbers in a book of Richard Stanley, with
historical notes by Igor Pak [155]. See also [153, Problem 6.19].

The Narayana numbers are named for Tadepalli Narayana, who wrote
several papers on them in the mid-twentieth century, including [110]. In this
paper he essentially counts Dyck paths according to the number of peaks.
Our method of counting Dyck paths can be found in the work of Robert
Sulanke from 1993 [160].

Problems

2.1. Suppose p is any pattern of length three, i.e., p ∈ {123, 132, 213, 231,
312, 321}. Show that the Catalan numbers count the permutations of length
n that avoid p.

2.2. Find a bijective proof of the fact that

(n+ 1)Cn =

(
2n

n

)
.

2.3. Let bn = |PB(n)| denote the number of planar binary trees with n
internal nodes. Show that bn = Cn by describing a structural recurrence on
the trees that yields the numeric recurrence

bn =

n−1∑

i=0

bibn−1−i,

with b0 := 1.

2.4. Prove Proposition 2.2. That is, construct a bijection between PB(n)
and Sn(231) such that trees with k + 1 left-pointing leaves are mapped to
231-avoiding permutations with k descents.

2.5. Prove Proposition 2.3. That is, show that the map φ suggested in Fig-
ure 2.11 is indeed a bijection from Sn(231) to NC(n) that takes decreasing
runs to blocks of a noncrossing partition.
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2.6 (Triangulations). Show that Cn counts the number of dissections of a
convex (n+ 2)-gon into n triangles, using only lines from vertices to vertices.
For example, when n = 3 there are five such triangulations of a pentagon:

.

2.7 (Nonnesting partitions). Show that Cn counts the number of nonnest-
ing partitions of [n]. A nonnesting partition is a set partition π = {R1, . . . , Rk}
such that if {a, d} ⊆ Ri and {b, c} ⊆ Rj with a < b < c < d, then Ri = Rj .
Here are the fourteen nonnesting partitions of {1, 2, 3, 4}:

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
;

1 2 3 4
:

Hint: Create a bijection between noncrossing and nonnesting partitions. Con-
clude that counting nonnesting partitions by number of blocks gives the
Narayana numbers.

2.8 (Noncrossing matchings, balanced parenthesizations). Show that
Cn counts the number of noncrossing matchings on [2n]. A noncrossing
matching is a noncrossing partition with all the blocks having size two. For
example, here are the five noncrossing matchings on {1, 2, 3, 4, 5, 6}:

1 2 3 4 5 6
;

1 2 3 4 5 6
;

1 2 3 4 5 6
;

1 2 3 4 5 6
;

1 2 3 4 5 6
:
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The noncrossing matchings can also be thought of as n pairs of parentheses,
by mapping the beginning of an arc to a left parenthesis, “(”, and mapping
the end of an arc to a right parenthesis, “)”. The five matchings above would
then be:

()()(), ()(()), (())(), (()()), ((())).

A string of n pairs of parentheses that never has more right parentheses than
left when reading from left to right is called a balanced parenthesization.

Refined counting: Describe a statistic for noncrossing matchings so that
the distribution of this statistic gives the Narayana numbers.

2.9 (Standard Young tableaux). Show that Cn counts the number of 2
by n standard Young tableaux. A Young tableau is a two dimensional array
of numbers that increases across rows and down columns. A standard Young
tableau contains all distinct integers, from 1 to the number of entries. The
fourteen 2 by 4 tableaux are:

1 2 3 4
5 6 7 8

; 1 2 3 5
4 6 7 8

; 1 2 4 5
3 6 7 8

; 1 2 3 6
4 5 7 8

;

1 3 4 5
2 6 7 8

; 1 2 5 6
3 4 7 8

; 1 2 3 7
4 5 6 8

; 1 2 4 6
3 5 7 8

;

1 3 4 6
2 5 7 8

; 1 3 5 6
2 4 7 8

; 1 2 4 7
3 5 6 8

; 1 3 4 7
2 5 6 8

;

1 2 5 7
3 4 6 8

; 1 3 5 7
2 4 6 8

:

Refined counting: Describe a statistic for Young tableaux so that the dis-
tribution of this statistic gives the Narayana numbers.

2.10 (Motzkin paths). A Motzkin path of length n is a lattice path from
(0, 0) to (n, n) that never passes below the line y = 0 and uses only “up”
steps from (i, j) to (i + 1, j + 1), “down” steps from (i, j) to (i + 1, j − 1),
and “horizontal” steps from (i, j) to (i+ 1, j). For example, here are the nine
Motzkin paths of length four:
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H H H H

U D H H H U D H H H U D

U H D H U H H D H U H D

U D U D U U D D

(Note that Motzkin paths that contain no horizontal steps are in bijection
with Dyck paths.) Let Mn denote the number of Motzkin paths of length n,
with M0 = 1. Here are the first few values of Mn, sometimes called Motzkin
numbers :

1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, . . . .

Let M(z) =
∑

n≥0Mnz
n. Show that

M(z) =
1− z −

√
1− 2z − 3z2

2z2
.

Hint: each Motzkin path is built from a Dyck path by inserting horizontal
steps between the steps of the Dyck path. Use this fact to show

M(z) =
1

1− zC
(

z2

(1− z)2

)
,

where C(z) is the Catalan generating function. The formula for M(z) now
follows from Equation (2.2).

2.11. Show that the Motzkin number Mn also counts the number of noncross-
ing partial matchings of [n]. In other words, Mn is the number of noncrossing
partitions of [n] for which the blocks have size one or two.

2.12 (Schröder paths). A Schröder path of size n is a lattice path from
(0, 0) to (n, n) that never passes below the line y = x and uses only steps
“North” from (i, j) to (i, j+1), “East” from (i, j) to (i+1, j) and “Northeast”
from (i, j) to (i + 1, j + 1). For example, here are the six Schröder paths of
size 2:
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(Note that Schröder paths with no northeast steps are Dyck paths.) Let Rn

denote the number of Schröder paths of size n, with R0 = 1. We call the
number Rn a Schröder number. Here are the first few values for Rn:

1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, . . . .

Let R(z) =
∑

n≥0Rnz
n. Show that

R(z) =
1− z −

√
1− 6z + z2

2z
.

Hint: Just as with Motzkin paths, each Schröder path can be built from a
Dyck path by inserting northeast steps between the steps of the Dyck path.
Use this fact to show

R(z) =
1

1− zC
(

z

(1 − z)2

)
,

where C(z) is the Catalan generating function. The formula then follows from
Equation (2.2).

2.13 (Small Schröder numbers). Show the Schröder numbers (apart from
R0 = 1) are always even. You can do this by manipulating the generating
function in Problem 2.12, but try to explain it combinatorially. Hint: find
a bijection between the Schröder paths with a peak on the line y = x + 1
and those without. The number of Schröder paths with no peak on the line
y = x + 1 are called small Schröder numbers, denoted rn. Here are the first
few values of the small Schröder numbers:

1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, . . . .

Given that r0 = 1 and rn = Rn/2 for n ≥ 1, use the generating function
found in Problem 2.12 to conclude that

∑

n≥0

rnz
n =

1 + z −
√

1− 6z + z2

4z
.
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2.14. Show that the small Schröder numbers rn count the number of valid
parenthesizations of n+ 1 symbols with at most n− 1 pairs of parentheses.
Parentheses around the entire expression are not allowed, and each pair of
parentheses must enclose at least two sub-expressions. For example, here are
the eleven parenthesizations of four symbols:

((wx)y)z (w(xy))z (wx)(yz) w((xy)z) w(x(yz))

(wx)yz (wxy)z w(xy)z w(xyz) wx(yz)

wxyz

Can you interpret these parenthesizations in terms of planar rooted trees of
some kind?
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