
2. Clifford algebras and spin

The aim of this chapter is to develop the concept of a spin group and certain related
ideas such as spin structures, spinor representations and spinor bundles. These all play
a crucial role in positive scalar curvature geometry, which we will explore in subsequent
sections. The importance of these concepts for our purposes is due to the fact that ‘spin
geometry’ provides the setting in which we can define and analyze a certain first order
linear differential operator called the Dirac operator. It is this operator which turns out
to be intimately related to the scalar curvature. As the name suggests, the Dirac operator
arose from work of the physicist Paul Dirac. Leaving the physics on one side, we can
motivate the mathematics behind this operator by posing the following question: can we
find a first order differential operator D whose square is equal to the Laplacian? In R

3 for
example, this amounts to solving the equation

D2 = (α∂/∂x + β∂/∂y + γ∂/∂z)2 = −(∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2).

Thus we are required to find coefficient functions α, β and γ satisfying the relations

α2 = β2 = γ2 = −1;

αβ = −βα; αγ = −γα; βγ = −γβ.

A moment’s thought shows that these relations cannot be satisfied by scalar functions. On
the other hand they can be solved if we allow the coefficients to be matrices, and working
within certain matrix algebras turns out to be the right setting in which to understand
this problem. These matrix algebras are called ‘Clifford algebras’, and we will begin below
by defining these. (Note that it is not obvious from the definition that Clifford algebras
are matrix algebras.) The concepts of spin groups and spin geometry will then emerge
naturally from Clifford algebras.

The material in this chapter (and the next) is presented in detail in the book [LM].
We therefore present only an outline of the key ideas and results, referring the interested
reader to sections I and II of [LM] for the technical details.

§2.1 Clifford algebras

The real Clifford algebra Cln is formed as follows. Consider the tensor algebra

Tn := R⊕ R
n ⊕ (Rn ⊗ R

n) ⊕ (Rn ⊗ R
n ⊗ R

n) ⊕ (Rn ⊗ R
n ⊗R

n ⊗R
n) ⊕ ....

Thus elements of Tn are sums of tensor products of elements in R
n.

Within this algebra is an ideal In generated by elements of the form v ⊗ v + |v|2.1
for v ∈ R

n. The Clifford algebra Cln is given by Cln := Tn/In. This means that the
elements of Cln are essentially sums of products of elements in R

n subject to the relation
that v2 = −|v|2 for all v ∈ R

n, where we have suppressed the tensor product symbol.

© Springer Basel 2015        
W. Tuschmann, D.J. Wraith, Moduli Spaces of Riemannian Metrics, 
Oberwolfach Seminars 46, DOI 10.1007/978-3-0348-0948-1_2 
 

7



Applying this relation to a vector v +w we see that vw +wv = |v|2 + |w|2 − |v +w|2.
In particular for orthonormal vectors α, β we have α2 = β2 = −1, αβ = −βα. Notice
that these are precisely the sort of relations which arise in the ‘Dirac problem’ above,
which justifies our claim that Clifford algebras are the right setting in which to view that
problem.

Clearly, like the tensor algebra, the Clifford algebra is a graded algebra, graded by
lengths of products of vectors. Moreover there is an obvious analogy with the exterior
algebra Λ∗Rn, which is defined as Tn/En where En is the ideal generated by elements of
the form v ⊗ v, i.e. so that v2 = 0 for all v ∈ R

n. Clearly the subspace ΛpR
n corresponds

to the products of length p in Cln, and we have an isomorphism Cln ∼= Λ∗Rn of graded
vector spaces - but not of algebras.

Note that we can define the complex Clifford algebra Cln in the same way, just sub-
stituting complex scalars for real and using the complex inner product 〈

∑
ziei,

∑
wjej〉 =∑

ziwi.
It is not difficult to see that Cln (respectively Cln) has the structure of a real (respec-

tively complex) vector space of dimension 2n. A basis is given by

{1, e1, ..., en} ∪ {eii · ei2 · ... · eik | i1 < i2 < ... < ik, 2 ≤ k ≤ n}

where {ei} is the standard basis for R
n (or C

n). This choice of basis determines a linear

isomorphism with R
2n

(or C
2n

), and using this we can introduce a topology onto the
Clifford algebra which makes the isomorphism into a homeomorphism. It is easy to see
that all operations in the Clifford algebra are continuous with respect to this topology, and
thus Clifford algebras are topological algebras in a natural way.

It turns out that Clifford algebras - up to algebra isomorphism - are actually all
familiar matrix algebras. Let F (n) denote the algebra of (n× n)-matrices over F , where
F can be R, C or H. For small values of n we have the following identifications:

1 2 3 4 5 6 7 8
Cln C H H ⊕ H H(2) C(4) R(8) R(8) ⊕ R(8) R(16)
Cln C⊕ C C(2) C(2) ⊕ C(2) C(4) C(4) ⊕ C(4) C(8) C(8) ⊕C(8) C(16)

These isomorphisms are not obvious but give useful insights into the Clifford algebras,
and in particular to Clifford modules. Note that the first few of these isomorphisms can
be figured out by hand, and the rest inductively using certain periodicity relations: 8-
periodic in the real case Cln+8

∼= Cln⊗RCl2, and 2-periodic in the complex case Cln+2
∼=

Cln ⊗C Cl2. Using some basic isomorphisms of matrix groups in conjunction with the
periodicity isomorphisms, it is not difficult to see that in all cases the complex Clifford
algebras are just complexifications of the real, i.e. Cln ∼= Cln ⊗ C. Therefore for many
purposes it suffices to consider the real algebras, and just complexify where necessary.
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A Clifford module is a vector space which admits a (left, say) linear action from some
Clifford algebra: Cln × V → V. For an element σ ∈ Cln and v ∈ V, forming a ‘product’
σ · v is called Clifford multiplication.

Every Clifford module is either irreducible or splits into a direct sum of irreducible
submodules. Using the identification of Clifford algebras with matrix algebras above gives
an easy way to describe the irreducible Clifford modules.

Theorem 2.1.1. (1) If a Clifford algebra is isomorphic to a matrix algebra F (n), then
(up to equivalence) there is a unique irreducible Clifford module, namely Fn, with the
canonical action of F (n) on Fn given by left matrix multiplication. (2) If a Clifford
algebra is isomorphic to a matrix algebra F (n)⊕F (n), then (up to equivalence) there are
two irreducible Clifford modules, both Fn, but with the Clifford algebra action given by
the canonical action of F (n) on Fn by one of the factors in F (n) ⊕ F (n) with the other
factor acting trivially.

Notice in the table above that there are two irreducible Clifford modules in dimensions
3 mod 4 in the real case, and in every odd dimension in the complex case. In all other
dimensions there is a unique irreducible Clifford module. This is a general phenomenon
which holds in all dimensions. It will be of great significance later.

We next consider splittings of the Clifford algebra. There are two ways of doing this:
a way which works for all Clifford algebras, and a more important phenomenon which only
works in dimensions 0 mod 4 in the real case and in all even dimensions in the complex
case.

Every Clifford algebra has a splitting into even and odd parts: Cln = Cl0n ⊕ Cl1n
(and similarly in the complex case). As a vector space Cl0n is spanned by the even length
products of vectors, and Cl1n is spanned by the odd length products. It is easy to see that
Cl0n is a subalgebra, but Cl1n is not; moreover Clin ·Cljn ⊂ Cli+j mod 2. An alternative way
of viewing this splitting is to consider the algebra isomorphism α : Cln → Cln induced
by the map −id : Rn → R

n. It is easy to see that α2 = id, and that Cl0n and Cl1n are
respectively just the +1 and −1 eigenspaces of α.

For any n we have an algebra isomorphism Cln−1
∼= Cl0n, which is induced by the

linear map R
n−1 → Cl0n given by mapping ei �→ en · ei where {e1, ..., en} is the standard

orthonormal basis for R
n, and R

n−1 = Span{e1, ..., en−1}. In the complex case we have
the analogous isomorphism Cln−1

∼= Cl0n.
The second way of splitting the Clifford algebra involves the use of a volume element

ω := e1 · ... · en. Note that this element is independent of the choice of (oriented) basis once
an orientation for R

n has been fixed. For Cln = Cln ⊗ C we introduce a complex volume
element ωC := i�(n+1)/2�e1 · ... · en. This means that the complex volume form is real in
dimensions 0 and 3 mod 4. More specifically we have ωC = −ω in dimensions 3 and 4 mod
8, and ωC = ω in dimensions 7 and 0 mod 8.

These volume elements have the following properties:

ω2 = 1 if n ≡ 0, 3 mod 4;

e · ω = (−1)n−1ω · e for e ∈ R
n;
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ω2
C = 1 for all n;

e · ωC = (−1)n−1ωC · e for all n.

When the square of the volume element is 1, this shows that (left) multiplication
by the volume elements splits the Clifford algebra in these dimensions into a sum of the
±1-eigenspaces. We write Cln = Cl+n ⊕Cl−n in the real case, and similarly in the complex
case. This is only a vector space splitting in general.

The fact that ω commutes with elements of Rn in dimensions 3 mod 4 in the real case
shows that multiplication by ω is an algebra isomorphism (or a module isomorphism in the
case of Clifford modules) in these dimensions. Thus the splitting into Cl±n is a splitting
into subalgebras, each of which are ideals in Cln. These subalgebras are isomorphic, as can
be seen from the above table.

In dimensions 0 mod 4 notice that multiplication of Cl±n by e ∈ R
n swaps the sub-

spaces, i.e.

R
n × Cl±n → Cl∓n .

This phenomenon occurs for the splitting Cl0n ⊕ Cl1n under multiplication by elements of
Cl1n.

In the complex case we getting splittings in all dimensions. When n is odd ωC is
central, and the splitting is into isomorphic subalgebras, as illustrated in the table. When
n is even we have a vector space splitting Cl±n only, and this exhibits the same swapping
behaviour under Clifford multiplication by elements of Cn as dimensions 0 mod 4 in the
real case, namely

C
n × Cl±n → Cl∓n .

Note that if we compare the splittings Cln = Cl0n ⊕Cl1n and Cln = Cl+n ⊕Cl−n in the
dimensions where the latter splittings occur, we find that the two splittings are ‘diagonal’
with respect to one another. To see this note that the map α : Cln → Cln swaps the
Cl±n , since n is odd and therefore α(ω) = −ω. This means that for φ ∈ Cl+n we have
ωα(φ) = −α(ω)α(φ) = −α(ωφ) = −α(φ). Thus α(Cl+n ) = Cl−n , and vice versa. From this
we see that Cl0n = {φ⊕ α(φ) |φ ∈ Cl+n } ⊂ Cl+n ⊕ Cl−n . Similarly in the complex case.

The splitting of Clifford algebras has implications for Clifford modules. Firstly note
that a Cln-module W is said to be Z2-graded if W admits a vector space splitting W =
W 0 ⊕W 1 such that the Clifford multiplication satisfies Cli ·W j ⊂ W i+j , with the indices
interpreted modulo 2. Notice that this makes both W 0 and W 1 modules for the even part
Cl0n (but not for the full algebra). Not every Clifford module will admit such a splitting:
a pre-requisite is that W has a splitting into two Cln−1-modules (since Cl0n

∼= Cln−1).
However there is natural equivalence between the categories of Z2-graded modules for Cln
and ungraded modules for Cln−1. In one direction we just take W 0; in the other we form
Cln ⊗Cln−1

W for an ungraded Cln−1-module W, with the action of Cln being the usual
left action on the first factor. This Cln-module splits as (Cl0n⊗Cln−1

W )⊕(Cl1n⊗Cln−1
W ),

giving a Z2-grading. These Z2-graded modules have a useful link with K-theory, which is
outlined in Appendix A.
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Now consider a module V for the real Clifford algebra Cln. When the Clifford algebra
volume element ω satisfies ω2 = 1, i.e. when n ≡ 0, 3 mod 4, we get a splitting of V into
the ±1-eigenspaces for multiplication by ω: V ± = (1 ± ω)/2 · V.

In the case n ≡ 3 mod 4 we have V = V + ⊕ V −, and any non-zero element e ∈ R
n

has the effect (via Clifford multiplication) e : V ± → V ±, as a consequence of the centrality
of ω. Moreover both V ± are still modules for Cln. In particular this means that if V is
irreducible, then either V = V + or V = V −, i.e. V must be just a single eigenspace. Thus
there are precisely two inequivalent (consider the action of ω!) irreducible modules for Cln
when n ≡ 3 mod 4, as indicated in the theorem above.

When n ≡ 0 mod 4 we get e : V + → V − and e : V − → V +. (We see this phenomenon
when studying Dirac operators.) For this reason the V ± are not modules for Cln, however
since ω commutes with Cl0n we see that they are in fact modules for Cl0n

∼= Cln−1. In the
case that V is an irreducible Cln-module, the resulting Cln−1 modules V ± are precisely
the two inequivalent irreducible modules discussed in the n ≡ 3 mod 4 case above. Notice
also that for n ≡ 0 mod 4 the splitting V ± gives V a Z2-graded structure. In fact there
are two such structures, depending on whether we label V + as V 0 or V 1.

In the case of a module W for a complex Clifford algebra Cln, analogous observations
apply: we obtain a splitting W = W+⊕W− for all n, and when n is odd this is a splitting
into submodules. For n even Clifford multiplication gives a map C

n ×W± → W∓, where
W± can be viewed as modules for the subalgebra Cl0n

∼= Cln−1. Similar comments about
irreducibilty apply: for n odd and W irreducible, we have two possibilities for W depending
on whether the complex volume element acts as +1 or −1. For n even we obtain a splitting
of an irreducible module W into the two irreducible modules for Cln−1

∼= Cln.

§2.2 The Spin groups

It is well-known that any element of SO(n) can be expressed as a product of an even
number of reflections across hyperplanes. This is not difficult to see: by a change of basis
any rotation matrix can be put into block diagonal form where the non-trivial diagonal
blocks are all (2×2)-rotation matrices. The claim will then follow if we can show that any
two-dimensional rotation can be expressed as a product of two reflections. An elementary
calculation in plane geometry shows that a reflection through a line making an angle of
θ with the positive x-axis followed by a reflection through a line making an angle φ is
equivalent to an anticlockwise rotation through an angle 2(θ−φ). This also demonstrates
the extent to which the representation of rotations by reflections - even in two dimensions
- is non-unique.

Given a rotation in R
n, express this as a product of reflections r1....rm. For each ri

we can find a unit vector vi ∈ R
n orthogonal to the hyperplane of reflection (and therefore

determining both the hyperplane and the reflection). Thus we could express the rotation
by the string v1....vm. Notice that we could replace any of the vi by −vi without changing
the corresponding rotation.

Let us interpret the string v1....vm as a product inside the Clifford algebra Cln. By
the above observation, the element −v1...vm also represents the same rotation (any minus
signs can be carried to the front since we are now working in an algebra). Thus there are
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two expressions giving the same rotation. As noted above, the initial choice of reflections
r1....rm is not unique, however the remarkable thing is that the corresponding Clifford
algebra representations will be equal (in the algebra) to either v1....vm or −v1....vm. (This
can be seen, for example, from the short exact sequence below.) Thus the Clifford algebra
is an appropriate setting in which to consider rotations.

Consider the multiplicative subgroup of Cln generated by the collection of unit vectors
in R

n. (We need to keep things real here as we are investigating SO(n).) Within this
subgroup we can consider the even length products of unit vectors. It is not difficult to
see that this has the structure of a multiplicative group.

Definition 2.2.1. For each n ∈ N, the spin group Spin(n) is given by

Spin(n) := {v1 · ... · vr | vi ∈ R
n is a unit vector and r is even}.

Since for any unit vector v we have v · v = −1 and (−v) · v = +1, we see that every
spin group contains the scalars ±1. (It is not difficult to see that these are the only pure
scalars in Spin(n): the pure scalars must form a multiplicative subgroup of Spin(n), and
so must be a multiplicative subgroup of the non-zero real numbers. Working with respect
to an orthonormal basis for R

n we see that the scalar term of any Clifford product of
unit vectors must lie in [−1, 1], and the only multiplicative group within this interval is
{±1}.) Identifying {±1} with Z2, the correspondence between Spin(n) and SO(n) can be
expressed via the following short exact sequence of groups

0 → Z2 → Spin(n) → SO(n) → 0.

Recall from §2.1 that the Clifford algebra is a topological space in a natural way. The
induced topology then makes Spin(n) into a topological group, and with respect to this
topology the map π : Spin(n) → SO(n) in the above exact sequence is a continuous homo-
morphism. Thus Spin(n) is a topological double cover of SO(n), and since π1(SO(n)) ∼= Z2

for n ≥ 3, we see that Spin(n) is simply-connected for n ≥ 3. Moreover, as the universal
cover of a manifold, we see that Spin(n) is also a manifold, and moreover a Lie group with

respect to the smooth structure it inherits from Cln ∼= R
2n

(or equivalently by pulling
back the smooth structure from SO(n) via π).

In low dimensions note that there are certain group isomorphisms which express
Spin(n) in terms of other Lie groups. We have:

Spin(1) = Z2;

Spin(2) = S1;

Spin(3) ∼= SU(2) ∼= Sp1
∼= S3;

Spin(4) ∼= Spin(3) × Spin(3);

Spin(5) ∼= Sp(2);

Spin(6) ∼= SU(4).
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§2.3 Spin structures

Consider a fibre bundle E with fibre F and base B. If {Uα} is a covering of B by open
balls, we can view E as constructed from products Uα×F by gluing the fibres over overlap
regions Uα ∩Uβ using maps θαβ : Uα ∩Uβ → G, where G ⊂ DiffF is a fixed Lie group (the
‘structure’ group) and where the maps θαβ must satisfy the relation θαβθβγθγα = 1. Thus

E =
(∐

α

Uα × F
)
/ ∼

where (uα, f) ∼ (uβ , f
′) if and only if uα = uβ and θαβ(uα)(f) = f ′.

Given bundle gluing data as above, we can form a new bundle from the same data by
replacing the fibre F by the group G, and taking the action of the structural group G on the
fibre G to be the usual left multiplication. This creates the associated ‘principal G-bundle’
PG. Notice that since we can multiply G by itself from both left and right, the bundle PG

admits a global right G-action. (The left action was ‘used up’ by the construction process.)
Given the principal G-bundle G → PG → B we can recover the original bundle (up

to bundle equivalence) via the associated bundle construction. This involves quotienting
the product PG × F by the equivalence relation ∼ defined by (p, f) ∼ (pg−1, g · f) for
any g ∈ G. Thus the original bundle is associated to the principal bundle PG by the
construction (PG × F )/ ∼.

More generally, given a manifold X on which G acts, we can form an X-bundle
associated to PG in the same way, as (PG × X)/ ∼, where (p, x) ∼ (pg−1, g · x). In this
way we can create many new bundles sharing the ‘same’ gluing information.

Consider a manifold Mn. To say that M is orientable is equivalent to saying that
the tangent bundle has structure group SO(n), or equivalently that TM has an associated
principal SO(n)-bundle PSO(n).

The manifold M is said to have a spin structure if it is orientable and the principal
SO(n)-bundle associated to the tangent bundle PSO(n) → M can be lifted to a principal
Spin(n)-bundle PSpin(n) → M via a map ξ : PSpin(n) → PSO(n), such that ξ restricts to
a double covering map on each fibre, and which is equivariant in the sense that ξ(pg) =
ξ(p)π(g), where p ∈ PSpin(n), g ∈ Spin(n) and π : Spin(n) → SO(n) is the standard double
covering homomorphism.

We might therefore think of the existence of a spin structure for M in terms of M
satisfying an enhanced orientability condition.

We can characterise both the orientability and spin conditions topologically using the
Stiefel-Whitney classes w1 ∈ H1(M ;Z2) and w2 ∈ H2(M ;Z2). These provide a useful
criterion for checking the existence of spin structures. A manifold M is orientable if and

w1 = 0 ∈ H1(M ;Z2), and M is spin if both w1 = 0 and w2 = 0.
udying cohomology exact

§II.1].)
Note that spin structures (that is principal Spin-bundles ξ : PSpin(n) → PSO(n) for

given PSO(n)) are not in general unique. In fact the number of spin structures turns
out to be in one-to-one correspondence with the elements of H1(PSO(n);Z2) for which the
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restriction to the fibre of PSO(n) is non-zero. Assuming X is connected, the spin structures
on a bundle E over X (not necessarily the tangent bundle) are indexed by H1(X ;Z2). (See
[LM; page 81] for details.)

There are other characterisations of spin structures. For example in dimensions at
least 5, a manifold is spin if and only if every compact orientable embedded surface has
trivial normal bundle. (It suffices to consider only embedded 2-spheres if the manifold is

S1 is parallelisable).
We can extend the notion of spin structure naturally to any orientable vector bundle

by lifting (if possible) the corresponding principal SO(n)-bundle to a principal Spin(n)-
bundle. Similar characterisations apply in terms of the vanishing of Stiefel-Whitney classes,
and also in terms of pull-back bundles over embeddings of orientable surfaces in the base
being trivial.

Many of the most obvious examples of manifolds admit spin structures. For example
all spheres Sn admit spin structures. This is easy to see for n ≥ 3 as then H1(Sn;Z2)
and H2(Sn;Z2) are both zero. All Lie groups are spin. This can be seen from the fact
that the tangent bundle of every Lie group is trivial, which forces the vanishing of all
Stiefel-Whitney classes. Among the projective spaces RPn is spin if and only if n ≡ 3 mod
4, CPn is spin if and only if n is odd, and HPn is spin for all n. Note that any product of
spin manifolds is again spin, but this is not in general true for bundles. For example there
is a unique non-trivial S3-bundle over S2 which is known to be non-spin, despite both S2

and S3 being spin.

§2.4 Spinor bundles

Consider the Clifford algebra Cln = Tn/In. If we transform R
n by an element of

SO(n), this induces a natural transformation of Cln since it transforms the tensor algebra
Tn whilst preserving the inner product and hence the ideal In. Thus we obtain a group
homomorphism (representation) γn : SO(n) → Aut(Cln).

Let E be the total space of an orientable n-plane vector bundle. There is an associated
principal bundle PSO(n)(E). To this principal bundle we can associate a bundle with fibre
Cln using the representation γn above:

PSO(n)(E)×γn
Cln := PSO(n)(E)× Cln/ ∼

where (p, σ) ∼ (pg−1, γn(g)(σ)) for g ∈ SO(n) and σ ∈ Cln. This is the Clifford bundle
associated to E. We will denote this bundle of Clifford algebras by Cl(E). (Remember
that if we forget its multiplicative structure, Cln is just a vector space and therefore Cl(E)
is a vector bundle - albeit a vector bundle of a special kind.) Notice that Cln has R

n as
a vector subspace, and that the action γn restricted to R

n is just the usual left action of
SO(n) on R

n. Thus we see that E itself is a sub-bundle of Cl(E). In particular this means
that we can regard sections of E as sections of Cl(E), i.e. Γ(E) ⊂ Γ( (E)).
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If E is non-trivial, we will not be able to canonically identify individual fibres of
Cl(E) with Cln. However within each fibre we have a well-defined multiplication between
elements (as γn preserves multiplication in Cln). As a consequence we see that Γ(Cl(E))
has the structure of an algebra.

Now suppose that E is the total space of an n-plane vector bundle with spin structure,
for example the tangent bundle of a spin manifold. In this case we are able to define very
special vector bundles associated to E called spinor bundles.

Consider the associated principal spin bundle PSpin(n), and take any Clifford module
V . Now Spin(n) ⊂ Cln, and so the action of the Clifford algebra on V , ρ : Cln × V → V ,
restricts to give an action of Spin(n) on V . We can then use this action to form new
associated bundles PSpin(n)×ρ V. Such bundles are called spinor bundles. It is not difficult
to see that the bundle PSpin(n) ×ρ V is a bundle of modules over the bundle of algebras
Cl(E), in the sense that each fibre in the spinor bundle is a module over the corresponding
algebra fibre in Cl(E). (This point is explained in detail in [LM; page 97].)

The following fact will be fundamental in the definition of Dirac operators:

Theorem 2.4.1. Let S(E) be a spinor bundle associated to E (either real or complex).
Then the space of sections Γ(S(E)) is a left module over the space of sections Γ(Cl(E)).

Note that the sections of spinor bundles are usually referred to as spinors.

Looking at the table in §2.1 we see, for example, that the real Clifford algebras in di-
mensions 1 and 5 have the structure of a complex algebra. By the periodicity phenomenon,
this is true more generally in dimensions congruent to 1 and 5 modulo 8. Consequently the
irreducible modules for these algebras are naturally complex vector spaces. Since complex
multiplication clearly commutes with the Clifford action on these modules, we see that the
corresponding irreducible (real!) spinor bundles actually have the structure of complex
vector bundles, and that Clifford multiplication is complex linear. Consequently the space
of (real!) spinors is naturally a complex vector space (of infinite dimension). We can make
similar statements about quaternionic structures for spinor bundles and spaces of spinors
in dimensions 2, 3 and 4 modulo 8.

Typically we will be interested in irreducible spinor bundles, that is, spinor bundles for
which V is an irreducible Clifford module. As we saw in §2.1, in many dimensions there is
a unique irreducible Clifford module. Thus in these cases we have a unique irreducible
spinor bundle for each principal spin bundle. In the other cases, there are two such
bundles. In our discussion of spinor bundles we have so far been implicitly assuming
that V is a real Clifford module, since the spin groups arise naturally in a real Clifford
algebra context. However we can also work with complex modules V for the complex
Clifford algebra Cln = Cln ⊗ C. Recall that there is a unique irreducible module for the
complex Clifford algebra in all even dimensions, and therefore corresponding to this we
have a unique irreducible complex spinor bundle for each principal spin bundle in these
dimensions. We will denote such bundles by S. In the next chapter we will see that these
play an important role in the theory of positive scalar curvature.

As a simple example of a reducible spinor bundle, we can consider Cln as a left module
over itself. Thus we get a spinor bundle PSpin(n) ×ρ Cln where ρ here is the left action of
Cln on itself restricted to Spin(n). Note that this is not the same as the bundle Cl(E). In

15



fact
Cl(E) = PSpin(n) ×Ad Cln,

where Ad : Spin(n) → Aut(Cln) denotes the adjoint action Ad(g)(σ) = gσg−1.

Just as for Clifford algebras and Clifford modules, Clifford and spinor bundles are
subject to splittings. As Spin(n) ⊂ Cl0n, we see that the canonical action of Spin(n)
on Cln respects the splitting Cln = Cl0n ⊕ Cl1n, as does the adjoint action. It follows
(from the observation about the adjoint action) that we obtain a corresponding bundle
splitting Cl(E) = Cl(E)0⊕Cl(E)1. In the case of splittings by the real volume element in
dimensions 0 and 3 mod 4, and by the complex volume element in all even dimensions, we
obtain corresponding bundle splittings by observing that the volume element in the Clifford
algebra gives a global volume section in Cl(E) respectively Cl(E). Consequently in these
dimensions we have Cl(E) = Cl(E)+⊕Cl(E)−, S(E) = S(E)+⊕S(E)−, and similarly in
the complex case. Sections of S+ (respectively S−) are referred to as positive (respectively
negative) spinors. In dimensions 0 mod 4 in the real case (and in all even dimensions in
the complex case), fibrewise Clifford multiplication yields the following maps:

Cl0(E) × S±(E) → S±(E);

Cl1(E) × S±(E) → S∓(E).

In particular this means that multiplying positive (respectively negative) spinors by sec-
tions of Cl1(E) produces negative (respectively positive) spinors in these dimensions.
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