Chapter 2
Linear Spaces

Abstract This chapter is a rigorous introduction to linear spaces, but with a strong
emphasis on infinite dimensional linear spaces. No prior knowledge of linear spaces
is assumed, so that all definitions and proofs are included, but some mathematical
maturity is assumed, dictating the level of detail given. In particular, all results (e.g.,
existence of dimension) are given in full generality using Zorn’s Lemma.
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space - Cauchy-Schwarz inequality

This chapter assumes a rudimentary understanding of the linear structure of R”,
a very rich structure, both algebraically and geometrically. Elements in R”, when
thought of as vectors, that is as entities representing direction and magnitude, can
be used to form parallelograms, can be scaled, the angle between two vectors can
be computed, and the length of a vector can be found. These geometric features are
given algebraically by means of, respectively, vector addition, scalar multiplication,
the inner product of two vectors, and the norm of a vector. In this chapter these notions
are abstracted to give rise to the concepts of linear space, inner product space, and
normed space.

The chapter gives a detailed presentation of all of the relevant notions of linear
spaces, provides examples, and contains rigorous proofs of all of the results therein.
Exploiting the assumption of a rudimentary understanding of the linear structure of
R”" and thus of finite dimensional linear spaces, the chapter has a clear secondary
goal, namely to explore the subtleties of infinite dimensional linear spaces. This
is an absolute necessity with Hilbert spaces in mind, since virtually all interesting
examples of Hilbert spaces are infinite dimensional.

A consequence of this infinite dimensional theme of the chapter is that some
proofs are considerably more involved than their finite dimensional counterparts.
In particular, the theorems establishing the existence of bases and the concept of
dimension are sophisticated and resort to an application of Zorn’s Lemma. Also,
cardinality considerations are important, since one needs to be able to compute, at
least a little bit, with infinite quantities. To facilitate an easier reading of this chapter,
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the Preliminaries contain an account of Zorn’s Lemma (Sect. 1.2.17) and some basic
cardinal arithmetic (Sects.1.2.12 and 1.2.13). Moreover, the text below indicates
which proofs can safely be skipped on a first reading, leaving it to the discretion of
the reader when, and whether, to tackle the technicalities involved in mastering the
more advanced techniques.

Section 2.1 introduces the axioms of linear spaces in full generality, establishes
basic properties and explores examples, most of which will be revisited throughout
the book. Section 2.2 is concerned with establishing the notion of dimension for an
arbitrary linear space. In particular, the dimension need not be finite, which, at times,
necessitates some more intricate proofs. Section 2.3 discusses linear operators, the
natural choice of structure preserving functions between linear spaces, studies their
basic properties, and discusses the notion of isomorphic linear spaces. Section 2.4
introduces standard constructions producing new spaces from given ones, and in
particular the kernel and image of a linear operator are discussed. The final section
is devoted to inner product spaces and normed spaces and presents several important
examples such as function spaces and £, spaces.

2.1 Linear Spaces—Elementary Properties and Examples

In RZ, the scalar product « - x is between a real number o € R and a vector x € R2,
and yields again a vector in R?. However, in similar situations, such as in C2, the
scalar multiplication « - x is now defined between any complex number o € C and
an arbitrary vector x. The most general situation is when « is allowed to vary over
the elements of an arbitrary (but fixed) field K. Prominent examples of fields are the
field R of real numbers and the field C of complex numbers (for a more detailed
discussion of fields the reader is referred to Sect. 1.2.19 of the Preliminaries). The
definition of linear space given below is the result of a distillation of certain key
properties of vector addition and scalar multiplication in R? or R3, and is formalized
in the most general form, namely with arbitrary fields. If the reader is not familiar
with any fields other than R or C (or Q, the field of rational numbers), then it is
perfectly safe to proceed and replace any occurrence of an arbitrary field K by either
R or C. In the context of this book these are in any case the most important fields.

Definition 2.1 (Linear Space) Let K be an arbitrary field (such as the field of real
numbers or of complex numbers, for concrete examples). A set V of elements
X,V,z,...of an arbitrary nature, together with an operation, called vector addi-
tion, or simply addition, associating with any two elements x, y € V an element
z € V, called the sum of x and y, and denoted by z = x + y, as well as an operation
associating with any x € V and o € K an element w € V, called the product or
scalar product of « and x, and denoted by w = « - x, is called a linear space if

1. Forall x, y, z € V, the operation of vector addition satisfies:

e Associativity, i.e., (x + y) + z=x + (y + 2).
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o Commutativity, i.e., x +y =y + x.
e Existence of a neutral element, i.e., there exists an element O € V, for which

x+0=x=0+=x.
e Existence of additive inverses, i.e., there exists an element x’ € V such that
x+x' =0=x"+nx.

2. Forallx € V and «, B € K, the scalar product operation satisfies:

e Associativity, i.e., o - (B - x) = (aB) - x.
e Neutralityof 1 € K,ie., 1 -x = x.

3. Forallx,y € Vanda, B € K, the scalar product and vector addition operations
are compatible in the sense that

e Scalar product distributes over vector addition
- x+y)=a-x+o-y.
e Scalar product distributes over scalar addition
(x+pB) - x=a-x+B-x.

A linear space is also called a vector space, its elements are called vectors, and the
elements of the field K are called scalars. If we wish to emphasize the relevant field,
then we say that V is a linear space over K. Otherwise, the assertion that V is a
linear space includes the implicit introduction of a field K serving as the field of
scalars for V.

Scalars will typically be denoted by lower-case Greek letters from the beginning
of the alphabet, namely «, 8, y, and so on, while vectors will be denoted by x, y, z,
etc. In either case, subscripts or superscripts may be used to enhance readability.

2.1.1 Elementary Properties of Linear Spaces

We now turn to establish several properties of linear spaces that immediately follow
from the axioms.

Proposition 2.1 In any linear space V the following statements hold.

1. The neutral element O € V is unique.

2. Forall x € V, the additive inverse x' is unique.

3. Foralla € K and x € V, the equation o - x = 0 holds if, and only if, « = 0 or
x=0.



26 2 Linear Spaces

Proof

1. Suppose that 0’ € V is a neutral element. That is
x+0 =x

for all x € V, and thus
0=04+0=0+0=0.

2. Suppose that x” € V satisfies that x + x” = 0, then
X=x4+0=x"4+@+xH)=&"+x)+x"=0+x" =x".
3. Fora =0
a-x=0-x=04+0)-x=0-x+0-x = 0-x=0.
Forx =0

da-x=a-0=a-04+0)=a-0+a-0 = a-0=0.
In the other direction, if @ - x = 0 and « # 0, then upon multiplication by ™!,
one obtains

x=l-x=@ ' o) x=a (@-x)=a"'-0=0. O

Remark 2.1 Tt similarly follows that for any vector x, the additive inverse x’ is given
by x’ = (—1) - x. It is further common to neglect the - denoting the scalar product,
write x’ = —x and resort to the familiar conventions for algebraic manipulations on
vectors and scalars commonly used for addition and multiplication, e.g., we write
x —y forx + (—y) or x + y + z for (x + y) + z, and so on. This convention, of
course, considerably shortens proofs such as those given above and will be silently
used throughout the text below.

Remark 2.2 Most of the linear spaces we shall be concerned with will be over the
field R of real numbers, in which case they are called real linear spaces, or over the
field C of complex numbers, in which case they are called complex linear spaces.
In the absence of further specification, or as implied by context, a linear space is
assumed to be either a real or a complex linear space.

Remark 2.3 We make no notational distinction between the zero vector, i.e., the
neutral element with respect to vector addition, and the element O in the field K.
This is a generally safe practice, since context typically immediately points to the
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correct interpretation. For instance, in the equation 0 - x = 0, context dictates that
the O on the left-hand-side is the scalar 0 € K while on the right-hand-side it is the
zero vector0 € V.

2.1.2 Examples of Linear Spaces

Since linear spaces are very common in mathematics, presenting an exhaustive list
of linear spaces is a daunting task. The chosen examples below are meant to present
some commonly occurring linear spaces, to explore some less common possibilities,
and to familiarize the reader with some linear spaces of great importance in the
context of this book. The latter refers to linear spaces of sequences and of functions,
linear spaces that will be revisited throughout the rest of the text.

Example 2.1 1In the familiar spaces R? and R3, which are the mathematical models
of the physical plane and space, vector addition has the geometric interpretation
known as the parallelogram law, while scalar multiplication ax has a scaling effect
on the vector x determined by the magnitude and sign of «.

Example 2.2 Given a natural number n > 1, let R" be the set of n-tuples of real
numbers. Thus if x € R”, then it is of the form x = (x1, ..., x,) where (for every
1 <k < n) xi, the k-th component of x, is a real number.

Forall x, y € R" and o € R defining

x+y=@ +y,x2+y2, ... X+ yn)

ax = (axy, axs, ..., axy,),

endows R" with the structure of a linear space over the field R, as is easy to verify.
Obviously, the cases n = 2 and n = 3 recover the familiar linear spaces R? and
IR? (respectively). Analogously, the set C" of all n-tuples of complex numbers, with
similar coordinate-wise operations, is a linear space over the field C.

Example 2.3 Let R be the set of infinite sequences of real numbers. Thus, a typical
element x € R is of the form x = (x1, x2, ..., Xk, ...) where x; € R, for each
k > 1, is a real number, the k-th component of x. For all x,y € R*® and « € R
setting

x+y=@ +yLx2+y2, .. Xk + Yk, ...)
oax = (xy, ox2, ..., QAXf, ...)

endows R*> with the structure of a linear space over the field R, as is easily seen.
Similarly, the set C* of all infinite sequences of complex numbers, with similar
coordinate-wise operations, is a linear space over the field C.
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Remark 2.4 The convention that for an element x in either R”, C", R, or C* its
k-th component is denoted by xj (as illustrated in the preceding examples) will be
used throughout this text. To refer to a sequence of such vectors we may thus use
super scripts for the different vectors, e.g., {x(’”)}mzl, and then x,im) refers to the

k-th component of the m-th vector.

Example 2.4 Consider the subset ¢ € C* consisting of all convergent sequences
(here convergence is in the usual sense of convergence of sequences of complex
numbers), let cp € ¢ be the subset consisting of all sequences that converge to 0, and
let cop C cg be the set

coo ={(x1,...,%,,0,0,0,..)|m=>1, x1,...,x, € C}

of all sequences that are eventually 0. With the same definition of addition and
multiplication as in Example 2.3, each of these sets is easily seen to be a linear space
over C. Obviously, replacing C throughout by R yields similar linear spaces over R.

Example 2.5 The constructions given above of the linear spaces R”, C", R*°, and
C®° easily generalize to any field K and to any cardinality. Indeed, consider an
arbitrary set B and an arbitrary field K. Recall from the Preliminaries (Sect. 1.2.8)
that the set KB is the set of all functions x : B — K. For all such functions

x:B—- K, y:B—- K

and
ae K

define the functions x +y : B — K andax : B — K by
(x+y)(b) =xb) + y(b), (ax)(b) =a-x(D).

With these notions of addition and scalar multiplication, the set K ? is easily seen to
be a linear space over K. In particular, we obtain the linear spaces R = R”,
Ccll2ny — ¢n RN = R and CN = C. Further, restricting attention to the
subset (K B)( consisting only of those functions x : B — K for which x(b) = 0 for
all but finitely many b € B also yields a linear space, with exactly the same definition
for addition and scalar multiplication as in K 2. In particular the linear space coo
from Example 2.4 is recovered by noticing that cop = ((CN )o. Note however that for
a general field K no analogue of the linear spaces ¢ or cg need exist since K need
not have any notion of convergence.

Example 2.6 Forn > 0,let P, be the set of all polynomial functions, that is functions
of the form p(t) = a,t™ + - - - + a1t + aop, with real coefficients and degree at most
n. With the ordinary operations

(P +q)(0) =p@) +4q@), (ap)(t) =a - p@)


http://dx.doi.org/10.1007/978-3-319-03713-4_1

2.1 Linear Spaces—Elementary Properties and Examples 29

taken as addition and scalar multiplication, it is immediate to verify that P, is a
linear space over R. Removing the restriction on the degrees of the polynomials one
obtains the set P of all polynomial functions with real coefficients which, again with
the obvious notions of addition and scalar multiplication, forms a linear space over
R. One may also consider polynomials with coefficients in the field C of complex
numbers, and obtain similar linear spaces over C.

Example 2.7 Let I be a subset of R which is either an open interval (a, b), a closed
interval [a, b], or the entire real line R. Consider the set C (I, R) of all continuous
real-valued functions x : I — IR. The familiar definitions

x+@O =x0) +y@), (ax)() =a-x(1),

when applied to continuous functions x,y : I — R, are well-known to give con-
tinuous functions again, and it is easy to see that when these operations are taken as
addition and scalar multiplication, the set C(/, R) is a linear space over R. One may
also consider the set C (I, C) of all continuous complex-valued functions x : I — C
to similarly obtain a linear space over C. One may also consider, for each k > 1, the
set C¥(I, R) of all functions x : I — R with a continuous k-th derivative, which is
similarly a linear space over R. Itis then customary to equate C 0(1, R) with C(I, R).
We may also allow k = 00 so as to obtain C*° (I, R), the linear space of all infinitely
differentiable functions.

Example 2.8 Let K be any field and F a proper subfield of K, namely F is a proper
subset of K, and with the induced operations from K it is itself a field. For instance,
Q is a subfield of R which in turn is a subfield of C. In such a situation any linear
space V over the larger field K is also a different linear space over the smaller field F.
The reason is that, of course, the additive structure of V is unaffected by the choice
of field of scalars, whereas the axioms relating to the scalar product, if they hold for
scalars ranging over K, then they certainly hold for scalars ranging over F (since all
scalar axioms are universal equational quantifications). The process of considering
a linear space over K as a linear space over F is named restriction of scalars.

In particular, each of the examples above of a linear space over C is also a linear
space over R, and also a linear space over Q. Any linear space obtained by restriction
of scalars FF C K is (except for trivial cases) very different than the original space.
Another particular instance of restriction of scalars is the observation that since R is
a linear space over itself (if this is confusing pause for a minute to realize that this is
essentially the assertion that R! is a linear space), restriction of scalars implies that
R is also a linear space over Q.

Exercises

Exercise 2.1 Let V be a linear space over K and f : V — X a bijection where X
is a set with no a-priori extra structure. Let f~! : X — V be the inverse function of
f. Prove that the operations
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xty=f(w+ o)

and

wx = f (af '),
defined for all x, y € X and o € K, turn X into a linear space over K.

Exercise 2.2 For any o € C let ¢, be the set of all sequences (x1, x3,...) € C*
which converge to «. Prove that the linear structure of C* restricts to a linear structure
on cq if, and only, if o = 0.

Exercise 2.3 Let K be a field (such as R or C for familiarity) and let M, ,,(K) be
the set of n x m matrices with entries in the field K. Prove that with ordinary matrix
addition and scalar product, the set M,, ,, (K) is a linear space over K.

Exercise 2.4 With the usual operations of addition and multiplication, is the set
(R — Q) U {0} a linear space over Q?

Exercise 2.5 Let V be a linear space over K and fix some vector wg € V. Define on
the set V an addition operation by x @ y = x +y —wy and a scalar product operation
by o ©® x = a(x — wp). Prove that with these operations V is a linear space over K
whose zero vector is wy.

Exercise 2.6 Prove that the set R of real numbers with addition givenby x @y = xy
and scalar multiplication given by  © y = y® is a linear space over the field R.

Exercise 2.7 Let X be a set with one element. Prove that for any field K there is a
unique choice of operations that turns X into a linear space over K.

Exercise 2.8 Prove that any linear space over R has either just a single vector or
infinitely many.

Exercise 2.9 Let V be a linear space. Prove that —x = (—1) - x holds for all vectors
xevV.

Exercise 2.10 Let K be a field and Z an arbitrary set. Consider the set (%) g of all
formal expressions of the form

Zab-b

beR

where o, € K for each b € A and at most finitely many of the «;, are non-zero.
Verify that the obvious way to define addition and scalar multiplication on the set
(PB) K turns it into a linear space over K (known as the free linear space generated
by A).
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2.2 The Dimension of a Linear Space

The familiar linear spaces R” are all infinite sets (in fact, they all have the same
cardinality, the cardinality ¢ of the continuum). However, it is intuitively clear that
R3 is considerably ‘larger’ than, say, R?. This fact is usually expressed in the claim
that R3 has dimension 3, while R? has dimension 2. The notion of dimension in
general linear spaces is rather subtle, especially for the infinite dimensional ones.
‘We now attend to investigate this situation in full generality, starting with the related
concepts of linear independence and spanning sets.

2.2.1 Linear Independence, Spanning Sets, and Bases

By forming linear combinations of vectors from any given set of vectors in a linear
space, one obtains a (potentially) large collection of vectors. The original set is said
to be linearly independent if, intuitively, it does not allow for any redundancies when
forming linear combinations while it is a spanning set if it is sufficiently large to
generate any vector as a linear combination. The precise definitions follow.

Definition 2.2 Given any set S € V of vectors in a linear space V (S may be finite
or infinite), a linear combination of elements of § is any vector of the form

m
X = Z O Xk
k=1
with xq, ..., x,, vectors from S and «1, . .., o, € K arbitrary scalars. Equivalently,

X = E oy - S

seS

with o; = O for all but finitely many s € S. The two forms are essentially the same,
differing only notationally. The span of S is then the set of all linear combinations
of elements from §, and § is said to be a spanning set if its span is the entire linear
space V. A spanning set S is a minimal spanning set if it is itself a spanning set
but no proper subset of it is a spanning set. Further, S is said to be a set of linearly
independent vectors if the only possibility of expressing the zero vector as a linear
combination of elements from S is the trivial linear combination, i.e., where all the
coefficients are 0. That is, § is linearly independent if whenever one has

m
0= z o X,
k=1
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with x1, ..., x,, vectors in S, then necessarily oy = O for all 1 < k < m. The set §
is said to be a maximal linearly independent set if it is itself linearly independent but
any set that properly contains it is not linearly independent. A set that is not linearly
independent is also referred to as a linearly dependent set. Finally, a set that is both
a spanning set and is linearly independent is said to be a basis of the linear space.

Remark 2.5 Wespeak of vectors x1, ..., x, € V asbeing either spanning or linearly
independent, if the set {xy, ..., x,,} is spanning or linearly independent. Of course,
we may also consider countably infinitely many vectors xp, x2, ... as being spanning
or linearly independent, in a similar fashion.

Example 2.9 The situation in R” is probably very familiar to the reader. Any m
vectors x, ..., X, in R" are linearly independent if, and only if, the equation

m
Z arxe =0
k=1

admits the unique solution o1 = ap = - -+ = a,;, = 0. It is well-known that linear
independence implies m < n. Similarly, the given vectors are spanning if, and only
if, for every vector b € R" the equation

m
Z opxp =b
k=1

admits a solution. It is again a familiar fact that if the given vectors are spanning,
then m > n. It thus follows that a basis for R” must consist of precisely n vectors.
In particular, all bases have the same size, namely n, which is referred to as the
dimension of R”. Below we prove that every linear space has a dimension, if we
allow infinite cardinalities into the picture. The result in that generality subsumes the
properties of R” just mentioned.

Example 2.10 In the space C2, considered as a linear space over C, the vectors (1, 0)
and (0, 1) are immediately seen to form a basis. However, if C? is considered as a
linear space over R (by the procedure of restriction of scalars from Example 2.8),
then these two vectors are (of course) still linearly independent but they fail to span
C2. Indeed, since only real scalars may now be used to form linear combinations of
these vectors, the span will only be R2. To obtain a basis, the two vectors need to be
augmented, for instance, by the vectors (i, 0) and (0, 7). The four vectors together
do form a basis of C2.

Example 2.11 1In the linear space R" or C", the vectors x1, . .., x, where

xx=(0,...,0,1,0,...,0)
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with 1 in the k-th position, are easily seen to be spanning and linearly independent,
and thus form a basis, called the standard basis of R", respectively C". It is obvious
that R” and C" have infinitely many bases.

In the examples presented so far it was quite straightforward to obtain a basis. The
following example shows that this is not always the case. In fact, it is not even clear
that the next linear space even has a basis.

Example 2.12 Let C* be the linear space from Example 2.3. The vectors x1, x2, .. .,
given by
xr=(0,...,0,1,0,...)

with 1 in the k-th position are easily seen to be linearly independent, but they do
not form a spanning set. Indeed, since the span consists only of the finite linear
combinations of vectors from the set, the span in this case is the set of all vectors of
the form (ay, ..., at,0,...,0,0,...), namely those infinite sequences of complex
numbers that are eventually 0. In other words, the span in C* of the vectors x1, x3, . . .
is the space cqp from Example 2.4, and thus we incidentally found a basis for cqy.
It is now tempting to proceed as follows. Taking any vector y; € R* which is not
spanned by x1, x2, .. ., for instance the vector y; = (1, 1, 1, ..., 1, ...), forming the
set {y1, x1, X2, ...} must get us closer to obtaining a basis. Indeed, the new set is still
linearly independent precisely because y; was not spanned by the rest of the vectors.
But, this new set is still not a basis as there are still many vectors it fails to span, for
instance the vector y, = (1,0, 1,0, 1,0, ...). Of course, we may now consider the
larger set {yy, y2, X1, X2, . . .}, butit too fails to be a basis. One may attempt to resolve
the argument once and for all by claiming that proceeding in this way to infinity will
eventually result in a basis. However, this is a very vague statement, and even if this
process can be carried out mathematically (which it can, as will be shown below), it
is entirely unclear as to which vectors will end up in the basis and which will not. In
other words, even if this linear space has a basis, it is unlikely we can ever present
one.

Naturally, similar observations hold true for R* instead of C*, and in fact to
most of the linear spaces in this book, and in analysis in general.

Example 2.13 Recall (see Example 2.8) that one can consider the space R as a
linear space over the field QQ of rational numbers (as a particular case of restriction
of scalars). A real number « is said to be transcendental if it is not the root of a
polynomial with rational coefficients. Examples of transcendental numbers include
e and 7, though the proofs are far from trivial. For any transcendental number x
the set {1, x, x2, %3, .. .} is linearly independent (this is basically the definition of x
being transcendental), but it is not a spanning set.

Example 2.14 Recall the space P, from Example 2.6 of all polynomial functions
with real coefficients of degree at most n. For every k > 0 let p; be the vector
pr(t) = t*. Clearly, the vectors po, p1, p2, ..., pn form a basis for P,, but again
there are infinitely many other choices of bases. The space P of all polynomial
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functions with real coefficients has a countable basis given by po, p1, p2, ..., a fact
that is easily verified. Noticing that polynomials are continuous functions, no matter
on which interval they are defined, we see by the above that in the linear space C(/, R)
of all continuous functions x :  — R, where / is a non-degenerate interval (i.e., not
reducing to a point) the vectors pg, pi1, p2, ... are linearly independent. However,
they do not form a basis since any linear combination of these vectors is again
a polynomial function, but not all continuous functions are polynomial functions.
Once more, it is not at all clear that C (I, R) even has a basis (what would one look
like?).

From the discussion above we see that in some linear spaces, such as R”, P,, or
P, itis quite easy to find bases while in other linear spaces, such as R*, R over Q, or
C(1, R), it is a highly non-trivial task. In more detail, we saw that it is rather simple
to exhibit a large set of linearly independent vectors, but it is not so easy to have
these vectors also span the entire space (the spaces cgp and P, as discussed above,
are the exception to the rule). In fact, it is not at all clear that one can find bases for
V in the case of R* or C°°, as well as for R as a linear space over Q, or for C(/, R).

2.2.2 Existence of Bases

In order to establish that every linear space does have a basis, we observe some
immediate facts. It should be noted at once that the existence proof uses Zorn’s
Lemma in an essential way. That is, it can be shown that if every linear space has
a basis, then the Axiom of Choice holds. Consequently, the existence proof is not
constructive.

Proposition 2.2 Let S C V be a set of vectors in a linear space V. The following
conditions are equivalent.

1. S is a maximal linearly independent set.
2. S is a minimal spanning set.
3. Sis a basis.

Proof First we show that if S is a maximal linearly independent set, then it is a basis.
All that is needed is to show that § is a spanning set. To that end, let x € V be a
vector in the ambient linear space. If x € §, then it is certainly spanned by S. If
x ¢ S, then by virtue of S being a maximal linearly independent set, the set S U {x}
is linearly dependent. Thus, there exist vectors x, ..., X, € S U {x} and non-zero

scalars o1, ..., a;,; € K with
m
0= Zakxk.
k=1

However, in the expression above it must be that x itself appears as a summand since
otherwise we would have expressed O as a non-trivial linear combination of vectors
from the linearly independent set S. We may thus isolate x in the expression above to
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obtain it as a linear combination of elements from S. As x was arbitrary, we conclude
that § is a spanning set.

Next we show that if S is a minimal spanning set, then it is a basis. All that
is needed is to show that § is linearly independent, and indeed, if it were linearly
dependent, then we would have some expression as above, giving 0 as a non-trivial
linear combination of vectors from S. Using that expression we are able to isolate
some vector x € S and exhibit it as a linear combination of other vectors from S.
It is then easy to see that S — {x} is still a spanning set (simply since any linear
combination containing x can be replaced by one that does not). But this contradicts
S being a minimal spanning set, and thus S must be linearly independent.

So far we have shown that each of conditions 1 and 2 implies condition 3. The
proof will be completed by showing the converse of these implications. The details
are very similar in spirit to those given so far, and thus the rest of the proof is left for
the reader. (]

We are now ready to establish that every linear space has a basis. The proof
makes essential use of Zorn’s Lemma (see Sect. 1.2.17 of the Preliminaries) and the
reader may safely choose to skip the proof on a first reading. To the reader interested
in the technique of Zorn’s Lemma we remark that the proof below is actually a
straightforward application with little technical difficulties, and is thus a fortunate
first encounter with this important proof technique.

Theorem 2.1 Every linearly independent set A C V in a linear space V can be
extended to a maximal linearly independent set. In particular, by considering the
linearly independent set )  V and by Proposition 2.2, it follows that every linear
space V has a basis.

Proof Consider the set P of all linearly independent subsets S of V that contain
A, which we order by set inclusion. Evidently P is a poset, and to find a maximal
linearly independent set that extends A amounts to finding a maximal element in P,
and so we apply Zorn’s Lemma (Sect. 1.2.17 of the Preliminaries). First we note that
P is certainly not empty since clearly A € P. Now, assume that {S;};c; is a chain in
P. We will show that § = [ J;; Si is an upper bound for the chain. Clearly S; € §
for all i € I, thus the only thing to show is that S € P, namely that S contains A
(which is immediate) and that it is linearly independent. For that, assume that

m
0= Z o Xk
k=1

is a non-trivial linear combination of the vectors x1, ..., x,; € S. Since S is the union
of the S;, it follows that x,, € Sy () for a suitable f(m) € I, but since {S;}ies isa
chain it follows that there is a single index iy € I such that xy, ..., x, € §;,. But
then the equality above expresses the zero vector as a non-trivial linear combination
of vectors from Sj,, contradicting the fact that S;; is linearly independent. With that
the conditions of Zorn’s Lemma are satisfied, and so the existence of a maximal
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element in P is guaranteed. This maximal element is a set Sy € P, namely Sy
contains A and Sy is a maximal set of linearly independent vectors, as required. [J

2.2.3 Existence of Dimension

Now that we know that every linear space has at least one basis, it is tempting to
define the dimension of a linear space to be the cardinality of its basis. However,
for this to make sense we need to know that all bases have the same cardinality.
While this is a very plausible assertion (certainly for such familiar spaces as R"), it
requires a careful proof, particularly in the infinite dimensional case. The important
ingredient is the following lemma, which states that the cardinality of any linearly
independent set is not greater than the cardinality of any spanning set. This result
again uses Zorn’s Lemma and its proof may safely be skipped on a first reading. A
word of caution to the ambitious reader that this proof, compared to the proof of
Theorem 2.1, is technically more demanding.

Lemma 2.1 IfV is alinear space, I C V a linearly independent set of vectors, and
S C V a spanning set, then there exists an injective function f : [ — S.

Proof Consider a pair (J, f) where J € I and f : J — S is an injection. The
idea will be (using Zorn’s Lemma) to keep on extending the domain of f until the
entire set / is exhausted. An important ingredient for achieving that is the following.
Thinking of the injective function f : J — § as an instruction to replace the vectors
in J by their images in S, we only consider such pairs (J, f) for which (I —J)U f(J)
is still a linearly independent set. Let us now form the set P of all such pairs and
introduce an ordering on it declaring that (Ji, f1) < (J2, f2) precisely when J; C J,
and f> extends f) (the latter means that fi(x) = f>(x) holds for all x € Jj). Itis
immediate that P is a poset, and that a maximal element in it will furnish us with an
injective function f : Jyr — S for a very large subset Jyy € I. We will then show
that necessarily Jj; = I, and the result will be established.

To verify the conditions of Zorn’s Lemma, notice first that P is not empty. Indeed,
the pair (@, ) isin P. Next, let {(J;, fi)};er be achainin P, for which we must now
find an upper bound. Let

I=Jux

teT

and notice that we may define f : J — S as follows. Given x € J there is some

t € T such that x € J;, and so let f(x) = f;(x). To see that this is a well-defined
function, i.e., that it is independent of the choice of ¢ € T, note that if x € J;/, then
either J; C Jy or Jy C J; and then either fy extends f; or f; extends f;/, and in either
case f;(x) = fy(x).Itisclear that J; C J and that f extends f;, forall¢ € T, soall

we need to do in order to show that (J, f) is an upper bound for the chain is establish
that (J, f) € P.Clearly, J C I, and f : J — S is injective (since we saw that in
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fact for any two x1, xp € J the function f agrees with some f;, which is injective, so
f(x1) = f(x) = fi(x1) = fi(x2) = x1 = x2). Soitremains to observe that
(I —J)U f(J) is alinearly independent set of vectors. Indeed, if O can be obtained
as a non-trivial linear combination of the vectors x1, ..., x,, € (I —J)U f(J), then,
using the chain condition again, it follows that there exists an element 1 € T such
that x1, ..., x, € (I — J;) U f:(J;), which is a linearly independent set, yielding a
contradiction.

With the conditions of Zorn’s Lemma now verified, it follows that there exists
a maximal element (Jys, far), with Jyy € [ and fu : Jyy — S an injection. If
Jy = I, then we are done, since fy; : I — S is the required injection. Assuming
this is not the case, let x; € I — Jy. If we can find a vector yy € S — far(Jpr) such that

= UmYU{x)U(fu(Im) U}

is linearly independent, then we will have that (Jy; U {x|}, fi) € P, where fi is the
extension of fy; given by fi(x;) = y. But that would contradict the maximality of
(Jm, fm), and we will have our contradiction. So, we proceed to prove the existence
of such a vector y,. If no such y, exists, then that means that the set

(I = YU{xa)U(fuUn) Uy

is a linearly dependent set for every y € S — fy(Jayr). Now, since S is a spanning
set we may write

x;:Zas-s= z o -5 + Z s -8 = X1 + X2
seS sefu(In) seS—fmu(Im)

where the sum is a finite sum, so that oy = O for all but finitely many s, and we simply
split the sum according to whether or not s € fj(Jar). By our assumption, the set

I = Um Vi) U fu(Im)

is linearly dependent if any of the vectors s € § — fy(Juy) is added to it. Thus,
this set is linearly dependent if any linear combination of such vectors, such as x7,
is added to it. Further, since x is in the span of fjs(Jys) it follows that the set above
is linearly dependent if x = x| + x2 is added to it. But the latter is the set

I =UnU D)V fuUm) Uy =U = JIm) U fu(Im)

which is linearly independent. The proof is now complete. ]

We are now in position to establish the following important result.

Theorem 2.2 Let V be a linear space. If By and B; are any two bases for V, then
they have the same cardinality.
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Proof By definition of basis, Bj is linearly independent and B, is a spanning set.
By Lemma 2.1, there is an injective function f : By — B>. By the same argument
there is also an injective function g : B, — Bj. It now follows from the Cantor-
Schrider-Bernstein theorem (Theorem 1.1 in the Preliminaries) that the cardinalities
of By and B, are equal. O

Definition 2.3 The dimension of a linear space V, indicated by dim(V), is equal to
the cardinality of a basis for it. Notice that by Theorem 2.1, at least one basis exists,
and by Theorem 2.2 all bases have the same cardinality. Thus, the notion of dimension
is well-defined. The linear space V is said to be finite dimensional if its dimension is
finite, and infinite dimensional otherwise. A basis for an infinite dimensional linear
space is also referred to as a Hamel basis.

Example 2.15 Finite dimensional linear spaces, by Examples 2.11 and 2.14, include
the spaces R"” and C", having dimension n, and the space P, of polynomials (see
Example 2.6), which is of dimension n+ 1. Infinite dimensional linear spaces include,
due to Examples2.12 and 2.14, the space cgp of sequences that are eventually O, the
space P of all polynomials with real coefficients, and the space C (1, R) of continuous
function x : I — R, as long as I does not reduce to a point.

We have already encountered linear spaces of very large dimension. To argue
about the dimension of such spaces (and in general) the following result, interesting
on its own, is useful. Recall from Example 2.5 the linear space (K By, of all functions
x : B — K satistfying x(b) = 0 for all but finitely many b € B.

Proposition 2.3 Let V be a linear space and B a basis for it. Then every vector
x € V can be expressed uniquely as a linear combination of elements from B. In
other words, there is a bijective correspondence between the vectors x € V and the
elements of (K B)o.

Proof Since a typical element in (K )q is nothing but a function x : B — K for
which x (b) = Ofor all but finitely many » € B, we may associate with each such x the
vector ), x(D) - b (as the summation is finite). We claim that this correspondence
is the desired bijection. Indeed, it is a tautology that the surjectivity of this process
is precisely the claim that B is a spanning set, while it is almost a tautology that the
injectivity of the process is the claim that B is linearly independent. (|

We thus see that a basis B endows a linear space with a notion of coordinates.
This is certainly a useful thing to have, but for practical reasons it is only as useful as
the ability to explicitly describe the basis B. In finite dimensional linear spaces it is
very common to work with bases but, as we remarked earlier, in infinite dimensional
linear spaces being able to explicitly describe a basis is the exception rather than the
rule. Consequently, Hamel bases in infinite dimensional linear spaces are generally
used for theoretical rather than practical purposes.

Example 2.16 Recall from Example 2.8 that R may be viewed as a linear space over
Q. Suppose that 4 is a Hamel basis for R over Q. By Proposition 2.3, there is then
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a bijection between R and the set (Q’@)o of all functions % — Q which attain 0
at all but finitely many arguments. In other words, |R| = |(Q’%)0| (see Sect. 1.2.11
of the Preliminaries for the basics of cardinalities). If % is countable, then it is
easy to write (Q'@ )o as a countable union of countable sets (refer to Sect.1.2.13
from the Preliminaries for the relevant material) and thus the set (Q‘% )o itself would
be countable. But that would imply that R is a countable set while the reals are
well-known to be uncountable. We conclude that R, as a linear space over Q, is
infinite dimensional of uncountable dimension.

We close this section by illustrating a difference between finite dimensional linear
spaces and infinite dimensional ones.

Proposition 2.4 The cardinality of any linearly independent set A in a linear space
V is a lower bound for the dimension of V. Moreover, if V is finite dimensional, then
any linearly independent set A C 'V whose cardinality is equal to the dimension of
V is a basis.

Proof The dimension of V is the cardinality of any basis B, and as B is in particular
a spanning set, it follows from Lemma 2.1 that there is an injection A — B, and
so the cardinalities satisfy |A| < |B] (refer to Sect.1.2.11 of the Preliminaries, if
needed). The claim now follows since the latter is the dimension of V.

Now, if V is finite dimensional, say of dimension n, and A = {x{, ..., x,} is
a set of n linearly independent vectors, then to show A is a basis we just need to
prove that it is a spanning set. But if it were not, and y € V is any vector not in its
span, then the set {x1, ..., x,,, v} is linearly independent and contains n + 1 vectors.
But then, by the first part of the proposition, it would follow that n + 1 < n, an
absurdity.

O

Remark 2.6 The finite dimensionality assumption is crucial. For instance, in the
linear space cgg of sequences which are eventually O (Example 2.4), consider the
vectors {x}x>1 where xy = (0,...,0,1,0,...), with 1 in the k-th position. These
vectors are easily seen to be linearly independent and spanning, thus they form a
basis of countably many vectors. The dimension of cqg is thus infinitely countable.
The set {x3, x3, ...} is clearly also linearly independent, has the same cardinality as
the dimension of cqg, but it is not spanning, and thus not a basis.

Exercises

Exercise 2.11 Let V be a linear space and S, S’ C V two arbitrary sets of vectors
with § € §’. Prove that if S’ is linearly independent, then so is S, and prove that if
S is a spanning set, then so is S’

Exercise 2.12 Let V be a finite dimensional linear space and S a spanning set. Prove
that S can be sifted to give a basis, that is, show that there exists a subset S C S
such that S’ is a basis for V.
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Exercise 2.13 Let V be a linear space (not necessarily finite dimensional) and S a
spanning set. Prove that S can be sifted to give a basis, that is, show that there exists
a subset S’ C S such that S’ is a basis for V.

Exercise 2.14 Consider R as a linear space over Q and let « be a transcendental
number. Prove that the set {1, «, a?, a3, .. .} is linearly independent. Prove that it is
not a spanning set by showing that its span is a countable set.

Exercise 2.15 Consider R as a linear space over Q. Prove that the dimension of R
over Q is |R|, the cardinality of the real numbers.

Exercise 2.16 Let V be a linear space and S € V a set of vectors. For a scalar
o € K, let us write

oS ={ax | x € S}.

Assuming that o # 0 is fixed, prove that S is linearly independent (respectively
spanning, a basis) if, and only if, @S is linearly independent (respectively spanning,
a basis).

Exercise 2.17 Let V be a linear space and {x; };cn countably many vectors in V.
For all m € N, let

m
Ym = Zxk-
k=1

Prove that {x;};cn is linearly independent (respectively spanning, a basis) if, and
only if, {yr}xen is linearly independent (respectively spanning, a basis).

Exercise 2.18 Let B be an arbitrary set and K a field. Consider the linear spaces
KB and (K B)g. For every by € B let xp, : B — K be the function

1 if b = by,
Xp, (D) =
bo (6) [O otherwise.
Prove that the set {xp,}5,ep is linearly independent in K B Ts it a basis for K87 Is it
a basis for (K 2)o?

Exercise 2.19 In the linear space C (R, R), find three vectors x, y, z : R — R such
that {x, y, z} is a linearly independent set while {x?, y?, z?} is linearly dependent.
(Here x2 refers to the function given by xz(t) =(x (t))z, and similarly for the other
functions.)

Exercise 2.20 Consider the space cq of sequences of complex (or real, if you like)
numbers that converge to 0. How many linearly independent vectors can you find in
co?
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2.3 Linear Operators

The definition and properties of the structure preserving functions between linear
spaces form the topic of this section. The definitions (including that of a linear
isomorphism) and the results are discussed and exemplified in the context of the
linear spaces introduced above.

Definition 2.4 Let V and W be linear spaces over the same field K. A function
T : V — W is said to be additive if

Tx+y)=Tx)+T()
for all vectors x, y € V, and it is said to be homogenous if
T(ax) =aT(x)

for all vectors x € V and all scalars &« € K. If T is both additive and homogeneous,
then it is called a linear operator, a condition equivalent to the equality

T(apxy +aoxz) = a1 T(x1) + a2T (x2)

forall xi,x, € Vanda;,a; € K.

Remark 2.7 Synonymous terms for linear operator are linear transformation and
linear homomorphism. Throughout the book we will adopt the convention that any
reference to a linear operator 7 : V — W immediately implies, implicitly at times,
that V and W are linear spaces over the same field K.

It is a straightforward proof by induction that a linear operator T preserves any
linear combination, that is

T o) = D T (%)
k=1 k=1

for all scalars «q, ..., a, € K and vectors xi, ..., x,, € V. In fact, this property
can equivalently be taken as the definition of linear operator. The next result shows
that the linearity requirement of a linear operator forces any linear operator to also
respect the zero vector, additive inverses, and subtraction.

Proposition 2.5 For a linear operator T : V — W:

1. T(0)=0.
2. T(—x)=—-Tx) forallx € V.
3. Tx—y)=Tx)—T(y) forallx,y eV.
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Proof

1. Notice that T(0) + T(0) = T (0 + 0) = T(0), and now subtract 7 (0) from both
sides of the equation.

2. TxX)+T(—x)=T(x + (—x)) =T(0) =0.

3 Tx=—) =T+ () =Tx)+T(=y)=Tx)—=T(y). U

2.3.1 Examples of Linear Operators

Trivial, but important, examples of linear operators are the following. For any linear
space V, the identity function id : V — V is always a linear operator. On the other
extreme, given linear spaces V and W over the same field, the function 7o : V. — W
given by Tp(x) = 0 is also immediately seen to be a linear operator.

In the presence of a basis for the domain V, linear operators 7 : V. — W are
easily characterized by the following result, readily yielding an endless supply of
examples.

Lemma 2.2 Let V and W be linear spaces over the same field K, and let B be a
basis for V. It then holds that any function F : B — W extends uniquely to a linear
operator Tp : V. — W.

Proof For a given function F : B — W, suppose that Tr : V — W is a linear
operator extending F. Then, given any vector x € V, write

x:Zab~b

beB

as a (finite) linear combination of basis elements, and then it follows that

Tr(x) =Tr(Q ap-b) =D ap Tr(b) = > ay- F(b).

beB beB beB

Noticing that the computation above expresses 7 (x) in terms of vectors of the form
F (b) we conclude that an extension T, if it exists, is unique. If we now take the
equality above as a definition, then we obtain a function 7r : V — W (relying on
the uniqueness of the linear combination expressing x in order to assure that T is
well-defined). Verifying that this 7 is indeed a linear operator and that it extends F
follow immediately. (]

Remark 2.8 The linear operator Tr : V — W constructed from the given function
F : B — W above is said to be obtained by linearly extending F to all of V.

Often enough the technique of the last result is inadequate, either because a basis
is not readily available or because a more direct formula for the linear operator is
obtainable. The following examples illustrate these possibilities.

Example 2.17 The derivation operation d/dt, taking a function f to its derivative
df/dt, satisfies the well-known properties



2.3 Linear Operators 43

d d d
E(f‘f‘g) = E(f) + E(g)

and i J
E(Olf) = Ola(f),

namely, it is additive and homogenous, and thus, if we choose the domain and
codomain correctly, we expect it to be a linear operator. To turn this observation
into a precise statement, recall the linear spaces Ck([a, b], R) from Example 2.7
of all functions x : [a, b] — R with a continuous k-th derivative. Then, for every
k > 1, the observation above can be stated by saying that d/dt : C¥([a, b], R) —
Ck_l([a,b],R) is a linear operator. Similarly, d/dt : C*°([a,b],R) — C*
([a, b], R) is alinear operator on the linear space of infinitely differentiable functions.

Example 2.18 The integral operator fab dt f(t) is also well known to be additive and
homogenous, and, since every continuous function on a closed interval is integrable,
we obtain that for every interval I = [a, b] the function

b
fH/mﬂﬂ

is a linear operator from the linear space C (I, R) of Example 2.7 to R as a linear
space over itself.

Example 2.19 Spaces of infinite sequences, such as R* from Example 2.3 or the
space ¢ from Example 2.4 admit the following operators (we use R just to fix one

possibility). The shift operator S : R® — R, given, for x = (x1,x2, ..., Xk ...),
by S(x) = (x2, x3,..., Xk, ...), is easily seen to be a linear operator. It is equally
easy to see that the function 7' : R*® — R, given for x = (x1,x2, ..., Xk...)
as above by T (x) = (0, xq, x2, ..., Xk, . ..) is a linear operator. Note that S o T is

the identity while 7 o S is not, a phenomenon that is known to be impossible in
finite dimensional linear spaces. These operators are the creation and annihilation
operators a' and a, widely used in Quantum Mechanics.

We see thus that even when a basis can be given explicitly (and certainly when it
cannot) it may be much simpler to define a linear operator directly rather than by
linear extension on a basis.

2.3.2 Algebra of Operators

With suitable domain and codomain, linear operators can be composed or added. We
now investigate the resulting algebraic laws related to these operations.
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Proposition 2.6 The composition S o T : U — W of any two linear operators

U I, Vv LI W (where in particular all linear spaces are over the same field)

is a linear operator.

Proof The additivity of S o T follows from the definition of the composition and the
computation

STx+y)=STxX)+Ty)=STkx)+STW),

valid for all vectors x, y € U, utilizing the additivity of 7" and S. The homogeneity
of the composition follows similarly and the reader is invited to fill in the details. [

Next, any two functions 7', S : V — W between linear spaces over the field K can
be added to give rise to the function 7 4+ S : V. — W given by

(T + 9)x) =T(x) + S(x)
for all x € V. Further, given a scalar « € K, the function «7 : V — W is given by
@T)(x) = a(T(x)).

Proposition 2.7 For all linear operators T, S : V. — W and scalars a € K, both
T + S and T are linear operators.

Proof For all vectors x, y € V and scalars 8, y € K:

T+8Bx+yy)=TPBx+yy)+SPBx+yy)
=T(Bx)+T(yy)+ S(Bx)+ S(yy)
=BTX)+yT(y)+BSKx)+ySQ»)
=B(T(x)+ Sx) +y(T () +S»)
= B(T + $)(x) + y(T + $)(y).

The proof for «T is similar and left for the reader. (]

The result above shows that the set of all linear operators 7 : V. — W has naturally
defined notions of addition and scalar multiplication. It is a pleasant fact that with
these operations one obtains a linear space.

Definition 2.5 Given linear spaces V and W over the same field K, we denote by
Hom(V, W) the set of all linear operators 7 : V. — W.

Theorem 2.3 For linear spaces V and W over the same field K, the set Hom(V, W),
when endowed with the operations of addition and scalar multiplication as above,
is a linear space over K.
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Proof The proof is a straightforward verification of the linear space axioms, so we
only give the details for a few of the axioms. For instance, given linear operators
T\, T, : V — W, to show that

h+LHh=T+T
we note that
(T + 1) (x) =Ti(x) + Ta(x) = Ta(x) + T (x) = (T2 + T1)(x)

where the commutativity of vector addition in W was used.

To show the existence of an additively neutral element, recall that Tp : V — W
given by Tp(x) = 0, is always a linear operator, and thus 7y € Hom(V, W). Seeing
that Ty is additively neutral is simply the computation

(T +To)(x) =T(x) +To(x) =T(x) +0=T(x).

We leave the verification of the other axioms to the reader. O

2.3.3 Isomorphism

The linear spaces R+ and P,, while consisting of very different elements, are, in
a strong sense, essentially identical. It is obvious that one may think of a sequence
of n + 1 real numbers as the coefficients of a polynomial, and, vice versa, one may
identify a polynomial function with its list of coefficients and thus obtain n + 1 real
numbers. Thus, one may rename the elements in one space to obtain the elements of
the other, and, moreover, the linear structure under this renaming is respected. This
situation is made precise, and generalized, by the concept of isomorphism.

Definition 2.6 A linear operator 7 : V — W which, as a function, is a bijection
is called a linear isomorphism or (simply an isomorphism if the linear context is
clear). When T : V. — W is an isomorphism, the spaces V and W are said to be
isomorphic, denoted by V = W.

The following result establishes some expected behaviour of isomorphisms.

Proposition 2.8 Suppose that U, V, and W are linear spaces over the same field K
and consider the linear operators T : U — V and S : V — W. The following then
hold.

1. The identity function id : V — V is an isomorphism.
2. If T and S are isomorphisms, then sois So T.
3. If T is an isomorphism, then so is the inverse function T .
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Proof

1. We already noted that the identity function is always a linear operator. It is clearly
bijective and thus an isomorphism.

2. We already noted that the composition of linear operators is a linear operator, and
thus S o T is a linear operator. In general, the composition of bijective functions
is again bijective, and so if 7 and S are isomorphisms, then sois S o 7.

3. Since T : U — V is an isomorphism, the inverse function T-' v U exists,
and is clearly a bijection. To conclude the proof it remains to be shown that 7!
is a linear operator. Indeed, T~ is additive since

T7'a+y) =771 T T ') + T ()
=7 TT '@+ T )
=T ) +T7' ()

for all vectors x, y € V. Further, T lis homogenous since
T Nax) =T '@l (T7 @) =T (Tl () =T (x)

for all vectors x € V and scalars @ € K. O

Corollary 2.1 For all linear spaces U, V, and W over the same field K :

1. Vv=V.
2. IfU=V, thenV = U.
3. fUZEVandV =W, thenU = W.

Isomorphic linear spaces are essentially identical, except (possibly) for the names
of the elements in them and they thus possess exactly the same linear properties.
This is a somewhat vague statement but it is almost always immediate how to turn
it into a precise statement. For instance, the dimension of a linear space is a linear
property and thus any two isomorphic linear spaces have the same dimension, as we
now show.

Proposition 2.9 If V = W, then both linear spaces have the same dimension.

Proof By assumption there exists a linear isomorphism 7 : V. — W. The dimension
of a linear space is the cardinality of any of its bases, and thus the result will be
established by exhibiting a bijection between a basis for V and a basis of W. Let
B C V be a basis and consider its image 7 (B) € W. Clearly, T | g, the restriction of
T to B, is a bijection between B and f(B), so all that remains to be done is to show
that f (B) is abasis for W, namely that f(B) is a spanning set of linearly independent
vectors. Let y € W be an arbitrary vector. Since 7 is onto, we may write y = T (x)
for some x € V. As B is a basis, we express x as a (finite!) linear combination of
basis elements:
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x:Zab~b.

beB

But then

y=T@) =Y ay T(b)

beB

and thus y is in the span of T (B). As y was arbitrary we conclude that 7' (B) spans
all of W. The proof that 7'(B) is also linearly independent follows a similar pattern
and is left for the reader. (]

The converse to this result is also true, as the following result implies.

Theorem 2.4 IfV is a linear space and B is a basis for it, then V = (K B).

Proof Tn Proposition 2.3 we established that the function 7 : (K %)y — V given by

T(f)=D f®)-b

beB

is a bijection. We show now that it is in fact an isomorphism, thus completing the
proof. We need to verify that T (o1 f + a2g) = a1 T(f) + a2T (g), which amounts
to showing that

Drf+arg)b)-b=ar > f(b) b+ary Y gb)-b,

beB beB beB

which follows by an immediate computation. (I

Remark 2.9 Every linear space V over K is thus isomorphic to a linear space of the
form (K B)g. The latter space is clearly only dependent on the cardinality of the set
B,i.e.,if X is any set with the same cardinality as B, then (K 2)g = (K X)¢. In other
words, the dimension of a linear space determines it up to an isomorphism. It should
be noted however that generally there is no canonical choice for an isomorphism
between V and (K X)j.

In the finite dimensional case we obtain the following corollary.

Corollary 2.2 Let V be a finite dimensional linear space over the field K. Any
choice of a basis x1, ..., x, for V gives rise to an isomorphism V. — K". In this
way we may identify every vector in 'V, by means of coordinates, with an n-tuple of
scalars.

In a more general context, and in particular in the infinite dimensional case, where
bases are typically not explicitly available, we have the following results.

Corollary 2.3 If V and W are linear spaces over the same field K and they have
the same dimension, then they are isomorphic.
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Proof By Remark 2.9, if we let X be a set of cardinality equal to the common
dimensions of V and W, then we obtain an isomorphisms 77 : (K Xy — V and
an isomorphism 75 : (KX)o — W. It follows that 75 o Tl_1 'V — Wis an
isomorphism, showing that V = W, as claimed. O

Combining Proposition 2.9 and Corollary 2.3, the discussion above is summarized
as follows.

Theorem 2.5 Two linear spaces over the same field are isomorphic if, and only if,
they have the same dimension.

Remark 2.10 This result is an example of what is known as a rigidity phenomenon.
Rigidity refers to a situation where two structures are essentially the same given
that they have essentially the same substructure of some kind, typically of a much
coarser nature than the original structures. In this case, the rigidity of linear spaces
over a fixed field K is that the dimension, i.e., the cardinality of a basis, suffices to
determine the linear space, up to an isomorphism.

Example 2.20 Recall the linear space P, of polynomial functions from Example
2.6. We can easily show that P, = R"*! by constructing an isomorphism between

the two spaces. Indeed, referring here to a typical element in R"*! by (aq, . .., a,),
let

T:R"*! - p,
be given by

T (ao, ..., ay) = ayt" +---+ait + ap.

It is a trivial matter to verify that 7T is a linear operator, clearly bijective, and thus an
isomorphism. Similarly, the reader is invited to show that co9p = P. By the discussion
above, the existence of an isomorphism (but not any explicit isomorphism) could
have been deduced by noting that both R**! and P,, as linear spaces over R, have
dimension n + 1. Similarly, both coo and P have countably infinite dimension and
are thus isomorphic.

Remark 2.11 Theorem 2.5 tells us that the dimension of a linear space essentially
is all that one needs to know about a linear space in order to study it (since after
all, isomorphic linear spaces are essentially the same). It is thus tempting to, once
and for all, choose a single representative from each isomorphism class of linear
spaces. This certainly suffices for the study of all linear spaces, and seems more
economical than having all of this redundancy in the form of multiple isomorphic
specimens of linear spaces. However, the example above clearly shows the danger
in this approach. While R"*! and P, are isomorphic, they have different qualities
(at least to us humans). For instance, it is very natural to consider the integral as
an operator on polynomials, but not so much on elements in R”*!. The richness of
having many different linear spaces, even if they are isomorphic, is a blessing that
should not be given up for the sake of a more economical treatment.
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Exercises

Exercise 2.21 Consider the linear space ¢ of all convergent sequences of complex
numbers (or real numbers, with the obvious adjustments). Prove that the assignment

{Xmim=1— lim X
m—0o0

is a linear operator from c to C.

Exercise 2.22 Finish the proof of Theorem 2.3 showing that Hom(V, W) is a linear
space.

Exercise 2.23 Let V and W be finite-dimensional linear spaces over a field K, of
dimensions n and m respectively, and let By = {v{,...,v,}and By = {wy, ..., wy}
be fixed bases for V and W respectively. For any vector x € V, we write

[x1g, = (a1, ...,a,) € K"

where ay, ..., a, are the unique scalars such that

n
X = Z aivi.
k=1

The tuple [x]p, is called the vector of coordinates of x in the basis B;. Similarly, one
defines [y]p, forally € W.

1. Given a linear operator T : V — W, prove that there exists a unique matrix
[T1B,.B, € My, ;n(K) such that

[T(X)]32 = [T]Bl,Bz . [x]31

where on the right-hand-side the - * stands for the ordinary product of a matrix
by a vector. The matrix [T ], B, is called the representative matrix of the linear
operator T in the given bases.

2. Prove thatthe assignment T+ [T '], g,, mapping a linear operator to the matrix
representing it in the two given bases, is a linear isomorphism

Y¥B,,B, : Hom(V, W) — M, ,,(K).

3. Suppose now that U is a third linear space with its chosen basis B3 and that
S : W — U is a linear operator. Prove that [S o T']g,,B; = [S1B,.8; - [T15,.B,>
where the product on the right-hand-side is the ordinary product of matrices.

We remark that this exercise gives one justification for the definition of the algebraic
operations on matrices the way they are defined.



50 2 Linear Spaces

Exercise 2.24 Prove that R” and C", n > 1, when considered as linear spaces over
R, are not isomorphic.

Exercise 2.25 Prove that R® = C°°, when considered as linear spaces over R.

Exercise 2.26 A linear operator 7' : V — V is nilpotent if there exists an m > 1
such that 7", the m-fold composition of T with itself, is the zero operator 0 : V — V.
Prove thatif T : V — V is nilpotent, then idy — T is an isomorphism.

Exercise 2.27 Let T : V — V be an operator with the property that for all x € V
there exists an m > 1 such that 7" (x) = 0. Prove that if V is finite-dimensional,
then T is nilpotent, but if V is infinite-dimensional, then 7 need not be nilpotent.

Exercise 2.28 Prove that for every set Z there exists a linear space with % as a basis
(and consequently for any cardinality « there exists a linear space whose dimension
is k).

Exercise 2.29 Let f : R — R be a continuous function with f(x +y) = f(x) +
f(y) for all x, y € R. Prove that there exists some a € R such that f(x) = ax for
all x e R.

Exercise 2.30 Use a Hamel basis for R as a linear space over Q to construct a
function f : R — R satisfying f(x +y) = f(x) + f(y) for all x, y € R, which is
not of the form f(x) = ax forany a € R.

2.4 Subspaces, Products, and Quotients

Subspaces arise naturally as portions of a given linear space that inherit a linear space
structure from the ambient linear space. We show that any linear operator gives rise
to certain subspaces, its kernel and its image, and we show how to combine two
linear spaces to form their product space. We also show how to eliminate a subspace
so as to obtain a quotient space. The quotient construction is related to the concept
of complementary subspaces, which is also introduced and the connection made
explicit.

2.4.1 Subspaces

Given a subset A C V of a linear space V the operations of addition and scalar
multiplication, when restricted to vectors in A always yield elements in the ambient
space V. We are interested in the case where the results of these operations always
yield elements in A.

Definition 2.7 A subset A C V is said to be closed under addition if

x+yeA
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forall vectors x, y € A. Similarly, A is said to be closed under scalar multiplication if
ax € A

for all vectors x € A and scalars @ € K. The set A is called a linear subspace (or
simply subspace if the linear context is evident) of V if A # ¢J and A is closed under
addition and scalar multiplication. A subspace A is called a proper subspace if it is
properly contained in the ambient space V.

Remark 2.12 1f A is a linear subspace of V, then A, with vector addition and scalar
multiplication induced from V, is a linear space. Indeed, the verification of each of
the axioms follows the same pattern. For instance,

Xx+y=y+x

holds for all x, y € A since the same equality holds for all vectors x and y in the
ambient space V. Moreover, notice that the zero vector O is always an element in A
and is the zero vector of A. Indeed, 0 = O - x holds for all x € A, and since A is
required to be non-empty, at least one x € A exists.

Notice that the subset {0} consisting of just the zero vector is always a subspace,
called the trivial subspace of V. Another immediate example of a subspace of V is
V itself, i.e., a non-proper subspace. An immediate property of subspaces is their
transitive property, thatis if A € B C V, then if B is a subspace of V and A is a
subspace of B, then A is a subspace of V.

Example 2.21 Consider the linear space R? and its subset A consisting only of the
vectors of the form (x, 0) € R2. Clearly, A is non-empty, closed under addition, and
closed under scalar multiplication, and hence is a subspace of R?. More generally,
aline! = {rx | t € R}, with x € R? a non-zero vector, is a linear subspace of
R?. These linear subspaces, together with the subspaces {0} and R?, exhaust all of
the linear subspaces of R?. Similarly, linear subspaces of R”, for larger values of 7,
correspond to the origin, to lines through the origin, to planes through the origin, and
to hyper-planes through the origin. Notice the following subtle point. The field R,
when viewed as a linear space over itself, is obviously isomorphic to R!, that is to
R" where n = 1. However, even though the linear space R = R! may naturally be
identified with either the X-axis or the Y-axis in R?, formally speaking, R itself (or
RR1) is not a subspace of R2. In fact, it is not even a subset of R%. More generally, R”
is a subspace of R if, and only if, » = m, in which case the two spaces coincide.
When n < m the space R" may be identified in finitely many ways with various
subspaces of R, but that is a different story. An analogous discussion can be given
for linear spaces over C.

Example 2.22 Consider the linear space C* from Example 2.3 and the linear spaces
c of convergent sequences, co of sequences that converge to 0, and cqo of sequences
that are eventually O (see Example 2.4). One clearly has that



52 2 Linear Spaces
coo Cco Cc CC®

and in fact cqp is a linear subspace of cp, which in turn is a linear subspace of c,
which is a linear subspace of C°. The verification is immediate.

Other subspaces of C* include, for each n > 1, the set of all vectors of the form
(x1,...,%x,,0,0,...). This space is clearly isomorphic to C", as are infinitely many
other subspaces of C*°, as the reader is asked to verify. In any event, C" is not itself
a subspace of C*.

Example 2.23 Consider the linear space P, (Example 2.6) consisting of polynomial
functions with real coefficients of degree not exceeding n, and P, the linear space
of all polynomials with real coefficients. For all n < m, it holds that P, C P,, C P,
and it follows easily that P, is a subspace of P,,, which in turn is a subspace of P.
We thus obtain the tower of proper subspace inclusions

PhcCcPCPhC---CP,C---CP.

Example 2.24 With reference to Example 2.7, the subset of C([a, b], R) consisting
of the continuous functions x : [a, b] — R which vanish at a and b, that is such that
x(a) = x(b) = 0, constitutes a linear subspace. On the contrary, the subset of those
continuous functions with x(a) = x(b) = 1 does not constitute a linear subspace
(for instance since it fails to contain the zero vector).

The following family of linear spaces, which are subspaces of C, is of significant
importance.

Example 2.25 (The £, Spaces). Consider the linear space C*° from Example 2.3
and recall that a sequence x = (xq, ..., Xk, ...) € C® is said to be bounded if there
exists some M € R such that

lxk| < M

for all £ > 1. Let oo S C™ be the set of all bounded sequences. Clearly, the
zero vector, namely the constantly zero sequence, is in £, the sum of two bounded
sequences is again bounded, and thus in £, and if x is bounded by M, then ax =
(axy, ..., 0xg, ...) is bounded by |«|M, and thus is in €. It thus follows that £
is a linear subspace of C*.

Now, let p > 1 and consider the set £, of all sequences of complex numbers that
are absolutely p-power summable, that is, all sequences x € C* such that

o0
Z |xk|? < o0.
k=1

Clearly, the constantly zero sequence belongs to £,, and £, is evidently closed under
scalar multiplication. To show that ¢, is a subspace of C* it thus remains to be
shown that £, is closed under addition, a task we leave to the reader.
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We thus obtain a one-parameter family {£,}1<,<cc Of linear subspaces of C*.
In fact, it is easily seen that if 1 < p < g < oo, then £, C £, (consider a suitable
variation of the harmonic series), and so £, is a proper linear subspace of £, .

Example 2.26 Recall from Example 2.8 that R may be viewed as a linear space over
R, and that C can be viewed as a linear space over C or as a linear space over R.
The set inclusion R € C is of course always valid, but R is a linear subspace of C
only when both are considered to be linear spaces over R (or over Q). A subspace
relation between two linear spaces can only hold if both linear spaces are over the
same field, and so, for instance, C" as a linear space over R is not a linear subspace
of C" as a linear space over C.

We now address the relationship between subspaces and dimension which, in the
finite case, is as one would expect. But the infinite case, as usual, is more subtle.

Theorem 2.6 For a linear space V of dimension n and a subspace U C 'V with
dimension m, the following hold.

1. m <n.
2. If V is finite dimensional and m = n,then U = V.

Proof

1. The proof is given in full generality, thus n and m may be infinite cardinals. Let
By be a basis for V and let By be a basis for U. By assumption, the cardinality
of By is n while the cardinality of By is m. Now, by definition of basis, By is a
linearly independent set of vectors in U, and hence is also linearly independent
in V, while By is a spanning set in V. Applying Lemma 2.1, it follows that there
exists an injection By — By, and thus n < m.

2. Assume now that m = n and that V is finite dimensional, namely that n = m is
a natural number. We may thus find a basis {x1, ..., x,} of U. In particular these
vectors are linearly independent in U, and thus also in V. By Proposition 2.4, it
follows that the set {x1, ..., x,} is a basis of V, so its span is V. But the span is
also U, and the claim follows.

O

Remark 2.13 Much as in Remark 2.6, the finite dimensionality assumption cannot
be avoided. Indeed, the linear space cqg from Example 2.4 is, as we saw, of countably
infinite dimension but it does contain proper subspaces of the same dimension. For
instance, it is easy to verify that the set cogp of all sequences in cog whose first term
is 0, is a proper subspace of c(p even though it is isomorphic to cgg, and thus has the
same dimension as the ambient space.
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2.4.2 Kernels and Images

With any linear operator 7 : V — W one can associate a subspace of the domain,
called the kernel of T', and a subspace of the codomain, called the image of T. As
we show below, the kernel suffices to detect whether or not 7 is injective.

Definition 2.8 Let 7 : V — W be a linear operator. The set
Ker(T)={x eV |T(x) =0}
is called the kernel of T.

Theorem 2.7 The kernel of a linear operator T : V. — W is a linear subspace
of V.

Proof In Proposition 2.5 we already noted that 7 (0) = 0 and thus 0 € Ker(T"). All

we need to do now is show that the kernel is closed under vector addition and scalar
product. Indeed, if x, y € Ker(T'), then

Tx+y)=Tx)+T(y)=04+0=0
and thus x 4+ y € Ker(7). Similarly, for all « € K, if x € Ker(T), then
Tax)=alT(x)=a-0=0

and thus ax € Ker(7") and the proof is complete. (]

Theorem 2.8 A linear operator T : V. — W is injective if, and only if, its kernel is
trivial, i.e., Ker(T) = {0}.

Proof If T is injective, then since we already know that 7'(0) = 0, it follows that

T (x) = 0 implies x = 0, and thus Ker(7") = {0}, and is thus trivial. Conversely,
suppose that the kernel of 7 is trivial and suppose that

T(x)=T()
for some x, y € V. Then
Tx=y)=Tkx)-T(y)=0
and thus
x —y € Ker(T).

But then x — y = 0, and so x = y, showing that T is injective. O
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Another subspace naturally obtained from a linear operator is its image.

Definition 2.9 Let 7 : V — W be a linear operator. The set Im(7) = {T'(x) | x €
V'}, namely the set-theoretic image of T, is called the image of T'.

Proposition 2.10 The image of a linear operator T : V — W is a linear subspace
of W.

Proof Obviously, T (V) is not empty. Further, if x, y € Im(T), then x = T'(x”) and
y = T(y') for some vectors x’, y’ € V. It then follows that

x+y=T&)+TG)=TK +y) eIm(T).

Similarly, one shows that ox € Im(7T) for all x € Im(7T') and all scalarse € K. [

The following result, which the reader may recognize as the rank-nullity theorem,
has important consequences for finite dimensional linear spaces.

Lemma 2.3 The equality
dim(V) = dim(Ker(T)) + dim(Im(T))

holds for all linear operators T : V. — W between finite dimensional linear spaces.

Proof We present the general strategy, inviting the reader to fill-in the details. Choose

a basis {x1, ..., xx} for Ker(7). Then augment this basis by (if needed) adding
vectors to it, so as to obtain a basis {x{,..., Xk, Y1, ..., ¥m} of V and show that
{T(y1),...,T(ym)}is abasis for Im(T). O

Remark 2.14 The proof above can be adapted to obtain a similar result for infinite
dimensional linear spaces, provided one handles cardinal arithmetic with care, of
course. However, such a result is not of great importance and we thus avoid its details.

Corollary 2.4 For a linear operator T : V. — W between finite dimensional linear
spaces of equal dimension, the conditions

e T is injective
o T is surjective
e T is bijective

are equivalent.

Proof We have seen that T is injective if, and only if, its kernel is trivial, namely
precisely when dim(Ker(7)) = 0. It follows then that T is injective if, and only
if, dim(V) = dim(Im(7)). But since dim(V) = dim(W), it follows by Theorem
2.6, that dim(V) = dim(Im(7')) holds if, and only if, Im(7) = W, in other words,
precisely when T is surjective. This completes the verification of the non-trivial
arguments in the proof. O
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2.4.3 Products and Quotients

We now present the product construction for two linear spaces V and W over the
same field K. We endow the set V x W with an addition operation and a scalar
product that turn it into a linear space, as follows. Given (x1, x2), (y1, »2) € V X W,
and o € K, the addition operation is given by

(x1,x2) + (y1, y2) = (x1 + y1, %2+ ¥2)
and the scalar product operation is given by
o (xy, x2) = (orxq, ox2).

Theorem 2.9 For linear spaces V and W over the same field K, the set V x W,

when endowed with addition and scalar multiplication as above, is a linear space
over the field K.

Proof The verification of the linear space axioms is straightforward. For instance,
the additively neutral element is (0, 0) since

(x1,x2) +(0,0) = (x; + 0, x2 + 0) = (x1, x2)

for all (x1, xp) € V x W. We leave the rest of the verification to the reader. O

Obviously, one can similarly define the product V| x - -- x V,, of any finite number
of linear spaces, and even the product of any collection of linear spaces. It is also
evident, upon inspection of the linear structure of the linear space R”, that R" is
the n-fold product of R with itself, where R is viewed as a linear space over itself.
Similarly, C" is the n-fold product of C with itself.

We now turn to consider the quotient construction of a linear space by a linear
subspace. This construction is, in some sense, the reversal of taking the product of
linear spaces. We refer the reader to Sect. 1.2.15 of the Preliminaries for basic facts
about equivalence relations.

Definition 2.10 Let V be a linear space and U a subspace of it. Two elements
X1, X € V are said to be equivalent modulo U if

x1—xp€eU
that is, if
X1 =x24+u

for some u € U. This relation is denoted by x; = x2(mod U), by x =y y, or simply
by x = y if U is evident.


http://dx.doi.org/10.1007/978-3-319-03713-4_1

2.4 Subspaces, Products, and Quotients 57
We now show that = is an equivalence relation on V. Indeed, for all x, y,z € V
x—x=0eU,

and thus

so that = is reflexive. Further,
x=y = x—yelU = y—x=(-1)-x—y)eU = y=ux,
and thus = is symmetric. Finally,
x—y,y—zelU = x—z=x—-y)+(y—2elU = x =gz,

and so = is transitive.
Recall that the equivalence class of any vector x € V is the set

[x]={yeV]x=y}

In other words, it is the set of all vectors of the form x + u, where u € U. For that
reason the equivalence class [x] is also denoted by

x+U.

It follows from the general theory of equivalence relations that {x + U | x € V}isa
partition of V.

Example 2.27 As a simple example, consider the usual 2-dimensional plane R? and
its subspace Y consisting of the ordinates. Let the element r € R? be the vector O — P
from the origin to the point P in the plane. The equivalence class [r]y, formed by the
vectors of R? equivalent mod Y to r, is clearly given by all vectors O — P; with P
lying on the parallel line to the Y-axis passing through the point P; all these vectors
are equivalent mod Y to each other.

The fact that the entire 2-dimensional space is partitioned by all such equivalence
classes is simply the fact that R? is the disjoint union of all the lines parallel to the
Y axis, which are precisely the translates x + Y of Y.
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‘We now turn to investigate the quotientset V/U = {x+U | x € V}of equivalence
classes modulo U. It is natural to introduce an addition and a scalar product on V/U
by the formulas

OG+U)+Gz+U)=G+20+U and «a(y+U)=(ay)+U,

but we must first verify that these operations are well-defined, namely that they do
not depend on the chosen representatives. Indeed, for all x, y, x’, y’ € V, we need
to show that if

x+U=x"4+U and y+ U=y +U,

then

x+y+U=x"+y)+U.
But the former implies that

xX'—xeU and y —yeU

while the latter will be implied by showing that (x’ +y") — (x +y) € U. And indeed,
since U is closed under addition,

HY)—(x+y =" -0+ -y eU.

A similar argument shows that the scalar product above is well-defined and thus we
see that the quotient set V/U of equivalence classes is naturally endowed with an
addition operation and a scalar product operation.

Theorem 2.10 Let V be a linear space and U C V a subspace. The quotient set
V/U of equivalence classes modulo U, with the operations of addition and scalar
multiplication as given above, is a linear space whose zero vector is U. Moreover,
the canonical projection : V — V/U given by w(x) = x + U is a surjective linear
operator.
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Proof To see that U = 0 4+ U behaves neutrally with respect to addition, note that
forallx + U € V/U

x+N+U=x+U0)+0+U0)=x+0)+U=x+U.

The rest of the verification of the linear space axioms, as well as the claims about
the canonical projection, follow similarly and are left for the reader. O

Definition 2.11 The linear space V/U constructed in Theorem 2.10 is called the
quotient space of 'V with respect to U, or simply as V modulo U.

Continuing the example above, R? /Y, which geometrically can be thought of as
the space of all vertical lines in R2, is a linear space. Another, more complicated,
example is cq/coo, the quotient of the space cg of all converging sequences of (say)
real numbers, by the subspace of all eventually O sequences. The quotient may be
thought of as the space of all sequences modulo finite changes. In analysis it is well
known that the limit of a sequence is insensitive to finite changes in the sequence,
and so it is precisely this quotient that is of interest already in elementary analysis.

2.4.4 Complementary Subspaces

Contemplating the quotient space associated to Example 2.27, one realizes that R? /Y
is isomorphic to X, and that under this isomorphism, the canonical projection 7 :
R?> — R?/Y is nothing but the projection of R? onto the X axis. This observation
generalizes to any quotient space construction, as we now show.

Definition 2.12 Two subspaces U and W of a given linear space V are said to be
complementary

o if'the only vector they have in common is the zero vector, in other words if UNW =
{0}; and
o if U+ W = V;thatis, givenx € V, thereexistu € U andw € W withx = u+w.

Remark 2.15 The decomposition above of an element x € V asthe sumx = u +w
is in fact unique. Indeed, if x = u + w and also x = v’ + w/, with u, u’ € U and
w,w € W, then

O=x—x=W+w)— W +w) = u—u'=w —w.

Butu —u’ € U and w — w € W, and since the only element in U N W is the zero
vector, it follows that u — u’ = 0 = w’ — w, and therefore, u = u’ and w = w'. This
unique decomposition is said to express V as a direct sum of its subspaces U and W,
afactdenotedby V. =U @ W.

The following example shows that a given subspace U C V may admit more than
one complementary subspace.
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Example 2.28 (Continuing Example 2.27) In R? any straight line N passing through
the origin and not coincident with Y is a complementary subspace, as can easily be
verified by elementary means.

\/

We may now present the main theorem relating complementary subspaces and
the quotient construction.

Theorem 2.11 Given a linear space V and two complementary subspaces U and
W, the quotient space V/U is naturally isomorphic to W (the meaning of ‘naturally’
is discussed below).

Proof Recall from Theorem 2.10 that the canonical projectionw : V — V/U, given
by w(x) = x + U, is a linear operator. The result will be established by showing that
the restriction of 7 to W C V is an isomorphism between W and V/U. All we have
to do is show that the restriction is a bijection. For injectivity we use Theorem 2.8
and show the kernel of the restriction is trivial. For that, suppose that = (w) = 0 for
some w € W, that is (recall that the zero vector in V/U is U)

w+U=U

and sow € U. But since
Unw ={0},

it follows that w = 0, as needed. For surjectivity, let y + U be an arbitrary element
in V/U. Writing y = u +w, withu € U and w € W, we get that

yHU=u+w+U=u+U)+w+U)=w+U =nm(W). O

Remark 2.16 The meaning of the isomorphism above being natural (or canonical)
is that its construction does not depend on any choice of basis. This is an important
observation since, as we saw, in infinite dimensional spaces it may be impossible to
actually describe any basis.

Corollary 2.5 Given a linear space V and a subspace U C V, any two subspaces
W1 and W, that are complementary to U are naturally isomorphic.
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Proof Each of Wi and W5 is naturally isomorphic to V/U. (I

In the case of complementary spaces, the stated isomorphism is independent of
a basis but it is dependent on the ability to express the ambient space as the direct
sum of the given subspace and each of its complements. If the latter can be done
explicitly, then an explicit formula for the isomorphism will emerge.

Exercises

Exercise 2.31 Let V be a linear space and S C V a subset. Prove that S is a linear
subspace of V if, and only if, S is closed under linear combinations, i.e., if

m
Z osy € S
k=1

foralleey, ..., 0, € Kandsy, ..., s, € S,andm > 0. Here we adopt the convention
that the empty sum, i.e., the case m = 0, is equal to O.

Exercise 2.32 Prove Lemma 2.3: If T : V — W is a linear operator between finite
dimensional linear spaces, then

dim(V) = dim(Ker(T)) + dim(Im(T)).

Exercise 2.33 Let V be a linear space and let {S;};<; be a family of subspaces of
V. Prove that the intersection

s=(si
iel

is a linear subspace of V. On the other hand show that if Sy, S € V are two linear
subspaces of V, then S1 U S, is a linear subspace of V if, and only if, either S| € $>
or §; C 9.

Exercise 2.34 (Refer to Example 2.25) Prove that £,, for 1 < p < oo, is a linear
space and thatif 1 < p < g < oo, then{, C {,.

Exercise 2.35 Let V and W be two linear spaces over the same field K. Prove that
V x W =W x V. Can equality ever hold?

Exercise 2.36 Let V be a linear space and U C V a linear subspace. Prove that the
operation

a(x+U)=ax+ U,

for all vectors x € V and scalars « € K, is well-defined. That is, show that it is
independent of the choice of representative for the equivalence class x + U.
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Exercise 2.37 Let V be a linear space. Prove that V/V = 0, where 0 denotes any
linear space with a single element, necessarily its zero vector. Show also that V /{0} =
V, where {0} is the trivial subspace of V. Is it possible that any of these isomorphisms
is an actual equality?

Exercise 2.38 Let V be a linear space and U C V a linear subspace. Prove that the
canonical projection 7 : V — V/U given by

T(x)=x+4+U

is a surjective linear operator.

Exercise 2.39 Let V be a linear space over K and U C V a subspace. Consider the
diagram
0

T

U——V—=V

i VT
T

vV/U

where i : U — V is the inclusion function, # : V — V/U is the canonical
projection to the quotient space, and V' is an arbitrary linear space over K. The rest
of the diagram deciphers as follows: Prove that for all linear operators 7 : V — V'
with the property that 7' (x) = 0O for all x € U, there exists a unique linear operator
T':VIU — V' suchthat T’ o m = T. (This exercise is establishing what is known
as the universal property of the quotient construction)

Exercise 2.40 Let V and W be two linear spaces over the same field K, and consider
the product V x W. Show that

1. U ={(x,0) | x € V}isalinear subspace of V x W which is isomorphic to V.
We denote U more suggestively by V x {0}.
2. Prove that (V x W)/(V x {0}) = W.

2.5 Inner Product Spaces and Normed Spaces

So far in our treatment of linear spaces two geometric aspects are missing, namely
angles between vectors and the length of a vector. This situation is unavoidable since
in general linear spaces it need not be possible to coherently define any of these
notions. In the presence of extra structure, these notions become available, as we
discuss below.
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2.5.1 Inner Product Spaces

The reader is most likely familiar with the standard inner product on R", i.e.,

n
(x,y) = wak.
k=1

The definition of a general inner product space is then a generalization of certain
properties the standard inner product has. We will not pause here to motivate this
definition any further, except for two comments. The first comment is that the results
below will show that an inner product allows one (at least in the real case) to speak of
angles between vectors, thus obtaining retrospective justification for the axioms. The
second comment pertains to the non-arbitrary nature of the standard inner product;
the reader is invited to discover it from elementary geometry, i.e., the law of cosines.

Definition 2.13 (Inner Product Space) Let V be a linear space over K, where K is
either R or C. Assume that a function (—, —) : V x V — K is given. The function
(—, —) issaid to be an inner product ifforall x, y, z € Vand o, B € K, the following
conditions hold.

1. Conjugate symmetry or Hermitian symmetry, i.e., (y,x) = (x,y), where w
denotes the complex conjugate of w.

2. Linearity in the second argument, i.e., (x, oy + Bz) = a(x, y) + B(x, z).

3. Theinner product s positive definite,i.e., (x, x) > Oforallx € V,and (x,x) =0
implies that x = 0, the zero vector. In particular, we then introduce the norm of

x tobe x| = +/{x, x).

The linear space V together with the function (—, —) is then called an inner
product space. To emphasize that K = R we use the term real inner product space,
while the case K = C is given the term complex inner product space. The scalar
(x, y) is the inner product of the given vectors (in that order!).

Remark 2.17 Notice that when K = R, conjugate symmetry reduces to symmetry,
that is

(v, x) = (x, ),
and the inner product is also linear in its first argument, namely,
(ax + By, z) = alx, z) + B(y. 2).

In the complex case one generally has that

(ax + By, z) = a(x, z) + B(y, 2),

as follows easily from conjugate symmetry and linearity in the second argument. In
both real and complex inner product spaces, the inner product is additive in each
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argument. We mention as well that in mathematical circles it is common to write
(x,y) instead of (y, x), that is to define an inner product as being linear in the first
argument rather than the second one. Obviously, the difference is only cosmetic.

Example 2.29 Consider the linear space R" and the definition
n
Xy =X Xn) s e Yn) = D XkVke
k=1

With this definition it is easily seen that R” becomes a real inner product space.
Similarly, considering C", defining

n
x-y=(xl,-..,xn)~(y1,~-vyn)Zzﬁyk
k=1

endows C" with the structure of a complex inner product space. Notice that for
x,y € R the ‘obvious definition’

oo
x-y=(X1,-~~)-(y1,..-)=ZXkyk
k=1

fails to endow R°° with the structure of an inner product space, simply because the
sum may fail to converge, and thus this is not even a function.

Example 2.30 Consider the space C(/, R) of continuous real valued functions on
the interval I = [a, b]. The familiar properties of the integral show at once that
defining, for all x, y € C(/, R),

b

{(x.y) Z/dIX(t)y(t)

a

endows C(/, R) with the structure of a real inner product space. With the proper
conjugation in the integral above, the space C (I, C) of continuous complex valued
functions becomes a complex inner product space.

Before we present any further examples let us explore some elementary, and not so
elementary, general results.

Proposition 2.11 For all vectors x, y in an inner product space V (either real or
complex)

lx + yI* < llx )+ 210, v) + Iyl
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Proof Expanding ||x + y|?> = (x + y, x + y) we see that

(x+yx+y)=@x+y)+y.x+y) =&x)+x )+ x)+ 0y
and thus the claim will follow by showing that

(x»)’>+<y’x) §2|<x,)’>|,

which is immediate if V is a real inner product space. In the complex case suppose
that (x, y) = u + iv. Then

<x,y>+<yax>=<x’)’>+<x»)’>=2'u

and since

|u|:\/ﬁgmz lu +iv] = [{x, )|,

the result follows. |

The geometric interpretation of the norm ||x|| is that it is the length of the vector x.
As for the geometric meaning of the inner product, notice that any non-zero vector
x € V can be normalized by defining X = x/||x||, a vector of unit length. For any
vector x of unit length and an arbitrary vector y, the scalar (x, y) is interpreted as the
component of the vector y in the direction x. Consequently, we make the following
definition.

Definition 2.14 Let V be an inner product space. Two vectors x, y € V are said to
be orthogonal or perpendicular if (x, y) = 0.

Theorem 2.12 (Pythagoras’ Theorem) The equality
b+ Y11 = llxl® + Ny 112
holds for all orthogonal vectors x and y in an inner product space.

Proof |lx+ylI> = (x+y,x+y) = x>+ (x, y) + {y, ) + Iy I° = 111> + 1y 11
|

2.5.2 The Cauchy-Schwarz Inequality

The following inequality is among the most important inequalities in mathematics.
It has numerous uses, some of which we will see immediately and some later on.
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Theorem 2.13 (Cauchy-Schwarz Inequality) The inequality

[Ce, )1 < Ml Iyl

holds for all vectors x, y in an inner product space V.

Proof For simplicity let us assume V is a real inner product space (only a small
adaptation is needed for the complex case). The inequality is trivial when x = 0 and
so we proceed assuming that x # 0. Let * = x/||x|| be the normalization of x, so in
particular ||x|| = 1. Dividing the desired inequality by ||x|| we see that we need to
establish the inequality

|2, ) =< Iyl

(and so the Cauchy-Schwarz Inequality acquires the interpretation that the absolute
value of a component of y in a given unit direction sets a lower bound on the length
of y). Rewriting y to identify its component in the x direction we obtain

y=y: + —yz)

where y; = (X, y)X. Since

A

it follows that y; and y — y; are orthogonal. Pythagoras’ Theorem (Theorem 2.12)
now yields

V12 = 1yl + Iy = vz 17 = Iyel® = (&, )%
Extracting square roots completes the proof. (]

Corollary 2.6 Since we now know that

(x, ) <1

-1 = =<
I (Hipl

for all non-zero vectors x and y in an arbitrary real inner product space, it follows

that
(x,y)

iyl

6 = arccos

is defined. Noting that
(x,y) = cos O x|yl

we define 6 to be the angle between the vectors x and y.

We had just seen that a consequence of the Cauchy-Schwarz inequality is that, in
a real inner product space, angles between vectors are a well-defined notion. There
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are many more consequences of the Cauchy-Schwarz inequality, among which we
mention one. The Heisenberg uncertainty principle in Quantum Mechanics is the
result of applying the Cauchy-Schwarz inequality in a certain Hilbert space, suitably
constructed. Unfortunately, this result falls slightly short of the scope of this book.

2.5.3 Normed Spaces

In an inner product space every vector can be assigned a norm. A normed space is
then an abstraction of certain key properties of this norm. This is useful since, as will
be shown below, many linear spaces fail to admit an inner product but do admit the
structure of a normed space. In such spaces one may still speak of the length of a
vector, but not (necessarily) of angles between vectors.

Definition 2.15 (Normed Space) A linear space V with a function x +— ||x||, which
associates with every vector x € V a real number ||x||, called the norm of x, is said
to be a normed space if for all vectors x, y € V and @ € K the following hold.

1. Positivity, i.e., || x|| > O provided x # 0.
2. Homogeneity, i.e., ||ax|| = |o|||x]|.
3. Triangle inequality, i.e., ||x + y|| < |lx|| + |yl

The following result is an immediate consequence of the axioms.

Proposition 2.12 Let V be a normed linear space. For all vectors x,y € V:

1. |lx|l =0 if, and only if, x = 0.

20 = xll = llxll.

3ol =yl = llxll + iyl
4 Mlx =Nyl =< flx = yll.
Proof

1. Using homogeneity, ||0]] = ||0 - 0] = 0 - ||0|| = 0, and together with positivity
the claim follows.

2. Using homogeneity, || — x|| = [|[(—=1) - x|| = 1 - ||x|| = ||x]l.

Using (2) and the triangle inequality, ||[x — y|| = [[x + (=) || < [Ix]| + Iyl

4. We need to show that —|lx — y|| < |lx|| — ll¥ll < |lx — y|. Using (3) and
the triangle inequality, ||x]| = [|(x + y) — y|| < llx + y|| + ||y]l and similarly
[yl < llxll + llx — yl, as needed. u

W

The definition of normed space was motivated by certain intuitive properties that the
lengths of vectors, as modeled by the norm in an inner product space, satisfy. The
next result shows that the inner product formalism indeed gives rise to a normed
space, as expected.

Lemma 2.4 Any inner product space, with its associated notion of norm, is a normed
space.
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Proof Recall that the norm in an inner product space is given by || x|| = +/{x, x),
and condition 1 in the definition of normed space is immediate. For condition 2, we
have that

loex > = (ex, ax) = a@(x, x) = Joof*||x]|?

and the desired equality follows. As for the triangle inequality, by Proposition 2.11
e+ y12 = (x + v, x4 y) < el® + 20 )]+ Iyl
and by applying the Cauchy-Schwarz inequality we obtain that

I+ Y12 < el 20x iyl + Iv1% = el + lyiD?,
and the result follows. O

We close the section, and the chapter, by introducing two very important families
of normed spaces. The £, spaces, introduced already in Example 2.25, are spaces of
sequences and each carries its own norm, the £, norm. The second family of spaces,
the pre-L, spaces, allude to the family of L, spaces and the L, norm. The pre-L
spaces are, in a sense, the continuous version of the £, spaces and the L, spaces are
the completion of the pre-L, spaces (completions are discussed in Chap. 4).

2.5.4 The Family of £, Spaces

For the reader’s convenience, we repeat here the definition of the ¢ p spaces, and
augment it with the definition of the £, norm.

Definition 2.16 Let 1 < p < oo be a real number. The set £, consists of all
sequences x = (xq, ..., Xk, . ..) of complex numbers for which

o0
Z |xk|P < oo.
k=1

00 1/p
lxll, = (Z |xk|f’) :
k=1

The £~ space is the space of all bounded sequences x of complex numbers and the
£ o norm 1is

The £,-norm of x is

X[loo = sup [xg|.
k
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Note that it is immediate that ||x||, = 01if, and only if, x = 0. These spaces are over
the field C. By considering sequences of real numbers one obtains similar spaces
over the field R which, ambiguously, are also referred to as £, spaces.

To further investigate the structure of £,,, we need the following elementary result.

Proposition 2.13 (Young’s Inequality) The inequality

P
abSa——i-—
q

holds for all positive real numbers p and q satisfying 1/p + 1/q = 1, and non-
negative real numbers a and b, with equality if, and only if, a”? = b4.

Proof Recall the weighted arithmetic-geometric means inequality

) wix1 + wax
W.XWI.XWZS 1X1 2X2
1 2 w

which holds for all non-negative real numbers x1, x», and all positive weights wy, wa,
with w = wy + wy. Applying this inequality to the numbers x| = a” and x, = b9,
with weights w; = 1/p and wy = 1/q, yields the desired inequality. (]

The next inequality is used often when manipulating elements of the spaces £ .
It is used below to establish the triangle inequality when proving that each £, space,
with its £, norm, is a normed space. It is convenient to first introduce the following
notation. For any two sequences x = (x1, ..., Xk, ...)andy = (y1, ..., Yk, -..), let

xy:(xlyla"'a-xkyka"')a

namely, the vector of component-wise products of the given vectors.

Theorem 2.14 (Holder’s Inequality) Given positive real numbers p and q for which
1/p + 1/q = 1, the inequality

leylie < llxllp - lyllg

holds for all x € £, and y € {.

Proof The case where either || x|, = Oor || y|l; = Ois trivial and so we may assume
this is not so. By component-wise division of x and y, respectively, by [|x]|, and
lvllg, we may assume that ||x||, = ||y|l; = 1, namely that

o0

o
DolalP =1=>"Iul,
k=1

k=1

and we need to show that ||xy||; < I, or in other words that
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o0
Dl < 1
k=1

By Young’s Inequality (Proposition 2.13) we have that

lxil? vl
[xkyiel = [xkllyk] < +
q

and therefore

ad 1 1

Dlanl < —+-=1,

=1 p q
as required. (]

Theorem 2.15 (Minkowski’s Inequality) Let 1 < p < oo. The inequality

x4+ yllp = lixllp, + Iy,
holds for all x, y € €.

Proof Notice that

o0 o0 o
e+ yl5 =D bk 4+ el = D lalbee + el P70+ D el + yel?
k=1 k=1 k=1

Applying Holder’s inequality (Theorem 2.14) with the given p and the associated
g = p/(p — 1), we obtain

S S LS 1 Il + 1y
>l + 3l = QD 1) PO I+ w7 = lixll P ”"
k=1 k=1 k=1 L

and a similar inequality for the second summand. It follows that
Ix +ylp
Ix + ylIp < Alxllp + 1yllp) E ”p
P
and, by simplifying, the claimed inequality is established. O

Theorem 2.16 Forall 1 < p < oo the space £, is a normed linear space.

Proof The case p = oo is left for the reader, so assume that p < oo. The non-
negativity of ||x||, is clear from the definition of the norm and it was already noted
that it is immediate that ||x|| = 0 implies x = 0. Homogeneity, is also immediate,
since
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o0

P P
lox 1) =D loxi” = || 11
k=1

and finally the triangle inequality

x4+ yllp < lixll, +lIyllp

is precisely Minkowski’s Inequality (Theorem 2.15). (]

2.5.5 The Family of Pre-L , Spaces

With the large family {£)}1<p<co Of normed spaces at hand one can put the general
theory to use for many sequences. Noticing that £, C £, foralll < p < g < oo, and
with sequences in £, converging faster to O than sequences in £,, given a bounded
sequence one would typically try to identify a suitable p such that the sequence is
found in £,, and proceed to apply the general theory to the problem at hand.

As long as sequences are concerned, the £, spaces are adequate but, quite often,
when modeling a physical problem mathematically one obtains a function rather
than a sequence. It is thus desirable to consider suitable normed spaces of functions.
As explained above, obtaining the correct analogue of the £, spaces, namely the L,
spaces, requires some more sophisticated machinery than what we had presented so
far, and so at this point we present what we call the pre-L ,, spaces.

For the sake of simplicity, let us consider the ambient linear space C ([0, co), R)
of all continuous function x : [0, c0) — R (we note that with the necessary mod-
ifications in the coming definitions and proofs, one may alter the domain, as well
as consider complex-valued functions). The pre-L, space, for 1 < p < o0, is the
subset K, of C([0, 00), R) whose elements are those functions x with

e o]

/dt lx(®)|? < o0

0

where the integral is the usual Riemann integral (since we only consider continuous
functions, the theory of Riemann integration is sufficient). The L, norm of x € K,
is given by

00 1/p
Ixll, = /dt lx(#)[”
0
and we immediately note that ||x|| = 0 implies x = 0 (due to the continuity of x).

Lastly, K is the space of all bounded continuous functions x : [0, c0) — R and
the Lo, norm is given by
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[*lloo = sup {lx(®)[}.

0<t<oo

The rest of the section is devoted to showing that K, with the L, norm is a normed
space, for each 1 < p < o0. In fact, the proof is formally identical to the case of the
£, spaces. Indeed, the only ingredient one needs is the following version of Holder’s
Inequality.

Theorem 2.17 (Holder’s Inequality) Given positive real numbers p and q such that
1/p+ 1/q = 1, the inequality

lxylie < llxlip - yllg

holds for all x € K, and y € K, where xy is the function (xy)(t) = x(1)y(?).

Proof An inspection of the proof of Holder’s Inequality for sequences reveals that it
was obtained by a point-wise application of Young’s Inequality as well as properties
of summation which are well-known to hold for integration as well, and so the same
argument can be used to establish Holder’s Inequality for functions. (]

The details of the proof of the following result are now formally identical to the proof
of Theorem 2.16

Theorem 2.18 Forall 1 < p < oo the pre-L, space K, is a normed linear space.

Remark 2.18 Note again that the domain of the functions x in a pre-L , space can be
altered (sometimes with necessary extra care) and that the codomain can be replaced
by C (with obvious adaptations to the definition of the L, norm). All such spaces
are still called pre-L, spaces and denoted, ambiguously, by K. In particular, the
space C([a, b], R) of continuous real-valued functions on a closed interval can be
endowed with an L, norm and thus is a K, space.

Exercises

Exercise 2.41 Prove the generalized Pythagoras’ Theorem: In an inner product
space, given m pairwise orthogonal vectors x, . .., x,,, the equality

It + - A xm 2 = I P+ [

holds.

Exercise 2.42 Prove that £, when endowed with the operation

o
(x,y) =D T
k=1

is an inner product space.
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Exercise 2.43 Prove that £, with the £+, norm is a normed space and that K, with
the L, norm is a normed space.

Exercise 2.44 Let V be an inner product space. Prove the parallelogram identity
b+ ¥1% + Ilx = v = 20%17 + 1y1)
forallx,y e V.

Exercise 2.45 Prove that for p # 2 the space £, is not an inner product space.

Exercise 2.46 Does the equality

to= ()¢

p>0
hold?

Exercise 2.47 For x € £, with 1 < p < oo, does the equality
lim lx|lg = [lxleo
q—00

hold?
Exercise 2.48 Prove that K7 is an inner product space.

Exercise 2.49 Let 1 < p < oo and consider, for any x € K, the sequence of
samples s(x) = (x(1),x(2),...,x(k),...). Prove that s is a linear operator s :
K, — £,. How do the norms || x|/, and ||s(x)|| , compare?

Exercise 2.50 Prove Holder’s Inequality for functions and prove that K, with the
L, norm is a normed space.

Further Reading

Introductory level texts on linear algebra typically treat linear spaces with a strong
emphasis on techniques of matrices. When bases are not explicitly available, as in
the infinite dimensional case, this approach must be replaced by a coordinate-free
approach, as was done in this chapter. For an introductory level text treating linear
algebra in a coordinate-free fashion see Chaps. 10—12 of Dummit and Foote [2]. A
more advanced text with a coordinate-free approach, as well as an algebraically much
deeper approach to linear algebra, making the connection between linear spaces and
modules, is Roman [3]. Another text that bridges the gap between matrix-centric
linear algebra and Hilbert space theory is Brown [1]. The reader seeking to enhance
her intuition and ability with the Cauchy-Schwarz inequality is advised to consider
Steele [4].
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