
Chapter 2
Features of Embedded System

Abstract This chapter will introduce the basic elements of embedded systems (or
dedicated systems). The integrated control systems represent one of the areas of
modern electronics which most important and developed with a variety of application
in many fields from biomedical to the automotive.

2.1 The Components of Embedded System

An embedded system (Fig. 2.1) is, basically, a computer controlled device designed to
perform specific tasks. In most cases, these tasks help revolve the real-time control of
machines or processes. Embedded systems are cheaper than general purpose system,
such as PCs [1, 2].

2.1.1 Processor

The main part of an embedded system is the processor, which could also be a generic
microprocessor or a microcontroller and programmed to perform the specific tasks
for which the integrated system has been designed.

2.1.2 Memory

Electronic memory is an important part of embedded systems and three essential
types of memory can be described: RAM, or random access memory, ROM, or read
only memory, and Cache. The RAM is one of the hardware components where data
are temporarily stored during execution of the system. The ROM contains input-
output routines that are needed for the system at boot time. The cache, instead, is
used by the processor as a temporary storage during the processing and transferring
of data.

© Springer International Publishing Switzerland 2015
M. Di Paolo Emilio, Embedded Systems Design for High-Speed Data Acquisition
and Control, DOI 10.1007/978-3-319-06865-7_2

25



26 2 Features of Embedded System

Fig. 2.1 Embedded system design

2.1.3 System Clock

The system clock is used for all processes is running on an embedded system and
requires precise timing information. This clock is generally composed of an oscillator
and some associated digital circuitry.

2.1.4 Peripherals

The peripheral devices are provided on the embedded system boards for an easy
integration. Typical devices include serial port, parallel port, network port, keyboard
and mouse ports, a memory unit port and monitor port. Some specialized embedded
systems also have other ports such as CAN-bus.

2.2 Characteristics and Example of Embedded System

Most embedded systems are designed to perform an continued action at a low cost.
Most of these systems also have constraints on the performance in terms of hardware
and software, such as require operating in real time when a system needs high sped
while executing some functions, but may tolerate lower speed for other activities.
It is difficult to characterize the speed or the cost of an generic embedded system,
especially for systems that have to process a large quantity of data. Fortunately,



2.2 Characteristics and Example of Embedded System 27

most of the embedded systems have the essential characteristics that can be designed
with a combination of hardware and high-performance software. To get an idea, just
think of a decoder for a satellite television. Although a system should process tens
of megabits of data per second, most of work performed by dedicated hardware,
separates rule and decoding of the data flow in multi-channels digital video output.
Embedded CPU calculated the locations of the data in the system, manages interrupts
and clock systems [3, 4].

Usually, the hardware of an embedded system must comply with the performance
requirements much less stringent in according to the hardware of the primary system
itself. This allows that the architecture of an embedded system, for example, must
be intentionally simplified and compared to that of a general-purpose computer with
the same tasks, using a CPU more economic that basically behaves well for these
secondary functions.

In the case of portable systems, costs reduction becomes a priority. This kind of
system, in fact, often are made by a highly integrated CPU, a chip dedicated to all
other functions and a single board of memory. In this case each component is selected
and designed to reduce as much as possible the costs. The useful software to manage
many embedded systems is called firmware. The firmware is a type of software
that, for example, can be found in ROM or Flash memory chips. The software and
firmware are designed and tested with much more attention than traditional software
for personal computers.

Many embedded systems avoid incorporating components with moving parts
(such as hard disk) that are less reliable than solid-state components such as flash
memory.

Moreover, embedded systems may not be physically accessible (e.g. space sys-
tems); therefore, the system must be capable of a self-reset in case of data loss or
corruption. This feature is very often obtained with the addition of a component
called Watchdog that resets the computer in regular time intervals by an internal
timer.

In the design of a modern and reliable embedded system is possible to note
two fundamental characteristics: reprogrammability and the dimension. In fact, it
would be helpful to think of a dedicated system can be readapted if, for example,
system upgrade is required. Embedded systems are a classical discrete elements
of ASIC design that allow the advanced optimization because the hardware occu-
pies the necessary space strictly, making the control system easily integrated. An
application-specific integrated circuit (ASIC) is an integrated circuit (IC) that has
been customized for purpose use. Today the control of vehicles is one of the main
applications of embedded systems. In a single high-end car you can find hundreds of
embedded systems called ECU (Electronic Control Unit), physically distributed in
the vehicle and connected to the different internal networks (networks intra-vehicle)
specially designed, in most cases with stringent requirements of ‘quality of service’.
A computer is the first and foremost versatile: it can be programmed to suit various
areas of application. Conversely, the embedded system is a device dedicated to the
performance of a single task, or a very narrow class of tasks. Thanks to the specificity
of the run application, the embedded system can be designed to optimize particular



28 2 Features of Embedded System

of cost and performance. The general purpose of the computers is designed with
standards and reference architectures; and vice versa is difficult to define standards
for embedded systems because each specific application leads to different design
choices. Typical functions of embedded systems can be the following:

• Processing: ability to process the analog/digital signals.
• Communication: ability to transfer signals (“Information”) from/to the outside

world.
• Storage: the ability to preserve the temporary information within the embedded

system.
• Each specific application made by an embedded system has different requirements

for processing, power suppy, storage and communication.
• A same functionality (e.g., the ability to acquire still images via a CCD sensor)

can be optimized radically in different way when applied, for example, a digital
camera or a cell phone or a digital camcorder.

Morever, commercial features of embedded systems can be described in the fol-
lowing points:

• Final Cost: The cost of the final product is a very important parameter for the
design choices.

• Time to market: in the design of an embedded system must always keep in mind
the timing you want the product listed on the market; taking too long to design a
device means that it’s difficult to overcome the fast changes in the market.

• Life time: Another important factor is the expected lifetime for the product; which
can varied from a few days to several years or decades.

• Volume: the quantity of stock planned for the system is one important factor in the
design phase.

Embedded systems are not always standalone devices. Many embedded systems
consist of small, computerized parts within a larger device that serves a more gen-
eral purpose. Hardware and software characteristics of embedded systems can be
described in the following points:

• Communication interfaces: typically the sale price of an embedded system is low,
the choice of communication interfaces is critical because it greatly affects the
final price of the product.

• User Interface: In many embedded systems the user interface consists of a few
buttons and/or LEDs; in others, it uses the user interface of a host system.

• Power management: is a crucial factor to be considered for all embedded systems
are powered by batteries.

• Dimensions and weight: in many cases, the physical characteristics are another
critical factor; usually the embedded system must be small, very light or with a
particular form (for example, very thin).

• Quality of service: many applications of embedded systems have stringent require-
ments in terms of QoS (Quality of Service); as a particular case, many applications
require the provision of services in real time with stringent timing constraints.



2.2 Characteristics and Example of Embedded System 29

• Code size: the storage capacity of embedded systems is limited, so the size of the
internal program (e.g. firmware) is a important factor.

• Numeracy/Communication skills/Storage: commensurate to the specific applica-
tion performed by the embedded system.

• Updating the program: it is useful to include the ability to update the programs
in embedded systems so as to correct errors discovered after the production and
introduce new features.

In addition to the parameters involved in the market, the hardware, software features
and embedded systems are used to be dependable. Actually, in the design phase is
necessary to consider the following aspects:

• Reliability: realistic assessment of the probability that the system fails.
• Maintainability: the system can be repaired or replaced within a certain time

interval.
• Availability: probability that the system is working; essentially depends on the

reliability and maintainability.
• Safety: properties related to the possibility that in the event of system failure are

caused damages to people or things.
• Security: resilience of the system against unauthorized use.

To design the embedded systems, it should take into account aspects such as
the speed of development, the economy of scale, maintainability and so on. Conse-
quently, it is not possible to develop the hardware also without consider the software
design. If the embedded system is safety-critical, the choice of the software organi-
zation plays a crucial role in the ability to certify the system for the use to which it
is intended.

The real-time system is a system designed to operate within the well-defined time
parameters. Practically, a real-time system operates correctly only if every input
configuration is produced by the right output respecting well-defined time constraints.

2.3 Hardware and Software Design

The device required to achieve by designing an embedded system is, certainly, a
system that will optimize various metrics of design; the most common are as the
following [1–4]:

• Unit cost and cost NRE (non-recurring costs).
• Size and weight.
• Performance and power consumption.
• Flexibility and maintainability.
• Time-to-market.
• Correctness.
• Security of the system.



30 2 Features of Embedded System

Usually, these metrics are in contrast between each other and become necessary
to choose a compromise, esteeming and considering in an accurate way. Crucial
importance is the metrics of cost/performance/power consumption and those of time-
to-market/NRE. The relationship between time-to-market and NRE is very crucial to
avoid entering in the market too late; If you have knowledge that the units produced
will be few, it will be preferable to have lower NRE costs because it will not be
possible to cover the next phase of the sale. It is essential to design an embedded
system based on the constraints imposed by the metric, for this we use a methodology
that uses estimators and cost modeling.

The constraints required for certain applications are more and more stringent,
response times, size, weight and low power consumption. The flow of prototyping
is often very complex and becomes important the reuse of pre-designed and tested
hardware/software components is to reduce the time-to-market and NRE costs.

There are many independent techniques for estimating the costs: analogy, top-
down, BottomUp, parametric; is preferable to use more than one and combine the
results. Software parameter models (COCOMO) and Hardware (FPGA) allow to esti-
mated the metrics automatically. The applicable cost to the modeling and design the
process is called RASSP (Rapid Prototyping of Application Specific Signal Proces-
sors) and can use different methodologies.

The platform on which an embedded system can be developed varies drastically
and depends on its complexity, utilities (electrical), cost, and scope of use: going from
the PLC and microcontrollers to more complex architecture based on sophisticated
integrated circuits (System-on-a-chip, SoC). The SoC enclose, in a single ASIC inte-
grated circuit, microcontroller/CPU and/or DSP, memory, and clock oscillator, volt-
age regulator, any interfaces A/D, D/A, and external port (USB, ethernet, etc.). Some
development platforms (reference board and reference design) are widely used based
on ARM, MIPS, Coldfire/68k, H8, SH, V850, FR-V, M32R, and so on, for example
IBM-compatible architectures with X86 or PowerPC CPU. Other architectures are
based on PICmicro, Intel 8051 and Atmel AVR microcontrollers. Another common
design method involves the use of FPGAs (Field-Programmable Gate Array), with
the programming of all the internal logic, including the CPU. Typically for interfac-
ing you will use the FPGA with other integrated circuits. This situation is in contrast
with desktop computer market, which currently consists of only a few competing
architectures, mainly the Intel/AMD X86 and PowerPC Apple/Motorola/IBM.

It’s also useful to disclose the standard PC/104, dealing only with the form factor
(the size of the motherboard) and the communication bus. It is typically employed
in the industrial desktop systems (X86 CPU) with adaptations for specific uses. The
user interfaces for embedded systems are also various between systems and therefore
deserve some additional comment.

The designers of interfaces such as Apple Computer and HP tend to minimize
the number of different user interactions. For example, their systems using only two
buttons (the absolute minimum) to control a menu system. A touch screen or buttons
to the edges of the screen can be also used to minimize the interaction with the user.
As with other software, embedded system designers use compilers, assembler and
debugger for developing the software supplied in the system.



2.3 Hardware and Software Design 31

An in-circuit emulator (ICE) is a hardware device that replaces or interfaces with the
microprocessor, and provides functionality to load and debug test within the system.
To speed up, make diagnostics and debugging, especially on large scale systems
manufactured, is integrated at the level of SoC, microcontroller, or CPU, a JTAG
interface (IEEE 1149.1): a standard simple interface and inexpensive that suspends
the normal mode of the process and interrogate the phases by connection to a personal
computer.
Some utilities add a redundancy check (checksum) or a Cyclic Redundancy Check
(CRC) to the program, in order to allow the embedded system to check the validity
of the program.
For systems using Digital Signal Processor (DSP), designers can use a tool such as
MathCad or Mathematica to simulate the mathematics.
Compilers and specific linker can be used to improve the optimization of hardware.
An embedded system may have its own specific language or development program
or offer improvements to an existing language.
The programs for the generation of the software may have different origins: com-
panies specialized in embedded system market, GNU project, development tool
for personal computer if the embedded processor is very similar to a common PC
processor.
The presence or absence of a complete operating system on an embedded system
depends on its architectural complexity and the range of use. In the simplest case the
embedded devices might be without an operating system itself. On simple micro-
controllers typically operate cyclically few bytes of a single program, sometimes
referred as a program of “monitor”, dedicated mainly to monitor the status of the
ports I/O. Complex environments can be applied to the same operating systems com-
monly used for the general purposes (Linux, Windows CE etc.), possibly custom
(to operate in an environment with minimal resources), or more specialized to han-
dle events of real-time operating systems (such as VxWorks and QNX), or highly
specialized and not available on the market.

References

1. Heath, S. (1997). Embedded systems design. Oxford: Newnes.
2. Vahid, F., & Givargis, T. (2002). Embedded system design: A unified hardware/software intro-

duction. Hoboken: Wiley.
3. Wilmshurst, T. (2008). Designing embedded systems with PIC microcontrollers. Oxford:

Newnes.
4. (2008). The art of designing embedded systems. Oxford: Newnes.



http://www.springer.com/978-3-319-06864-0


	2 Features of Embedded System
	2.1 The Components of Embedded System
	2.1.1 Processor
	2.1.2 Memory
	2.1.3 System Clock
	2.1.4 Peripherals

	2.2 Characteristics and Example of Embedded System 
	2.3 Hardware and Software Design
	References


