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Abstract This chapter presents a computational methodology for uncertainty
quantification in multi-physics systems that require iterative analysis between
models corresponding to each discipline of physics. This methodology is based
on computing the probability of satisfying the inter-disciplinary compatibility
equations, conditioned on specific values of the coupling (or feedback) variables,
and this information is used to estimate the probability distributions of the coupling
variables. The estimation of the coupling variables is analogous to likelihood-
based parameter estimation in statistics and thus leads to the likelihood approach
for multi-disciplinary analysis (LAMDA). Using the distributions of the feedback
variables, the coupling can be removed in any one direction without loss of
generality, while still preserving the mathematical relationship between the coupling
variables. The calculation of the probability distributions of the coupling variables
is theoretically exact and does not require a fully coupled system analysis. The
LAMDA methodology is first illustrated using a mathematical example and then
applied to the analysis of a fire detection satellite.

1 Introduction

Multi-physics or multi-disciplinary systems analysis and optimization is an
extensive area of research, and numerous studies have dealt with the various
aspects of coupled multi-disciplinary analysis (MDA) in several engineering
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disciplines. Researchers have focused both on the development of computational
methods (Alexandrov and Lewis 2000; Cramer et al. 1994) and on the application
of these methods to several types of multi-physics interaction, for example,
fluid—structure (Belytschko 1980), thermal-structural (Thornton 1996), fluid—
thermal—structural (Culler et al. 2009), etc. Studies have considered these methods
and applications either for MDA or for multi-disciplinary optimization (MDO). The
coupling between individual disciplinary analyses may be one-directional (feed-
forward) or bi-directional (feedback). Feed-forward coupling is straightforward
to deal with, since the output of one model simply becomes an output to
another (Sankararaman 2012). On the other hand, the topic of bi-directional
(feedback) coupling is challenging to deal with, because the output of the first
model becomes an input to the second while the output of the second model
becomes an input to the first; therefore, it is necessary to iterate until convergence
between these models in order to analyze the whole system. Such analysis needs to
account for the different sources of uncertainty in order to accurately estimate the
reliability and ensure the safety of the multi-physics system.

Computational methods for MDA can be classified into three different groups
of approaches (Felippa et al. 2001). The first approach, known as the field
elimination method (Felippa et al. 2001), eliminates one or more coupling variables
(referred to as “field” in the literature pertaining to fluid—structure interaction) using
reduction/elimination techniques such as integral transforms and model reduction.
This approach is restricted to linear problems that permit efficient and evident
coupling. The second approach, known as the monolithic method (Felippa et al.
2001; Michler et al. 2004), solves the coupled analysis simultaneously using a
single solver (e.g. Newton—Raphson). The third approach, known as the partitioned
method, solves the individual analyses separately with different solvers. The well-
known fixed point iteration (FPI) approach (repeated analysis until convergence
of coupling variables) and the staggered solution approach (Felippa et al. 2001;
Park et al. 1977) are examples of partitioned methods. While the field elimination
and monolithic methods tightly couple the multi-disciplinary analyses together, the
partitioned method does not.

Two major types of methods have been pursued for MDO—single level
approaches and multi-level approaches. Single level approaches (Cramer et al.
1994) include the multi-disciplinary feasible (MDF) approach (also called
fully integrated optimization or the all-in-one approach), the all-at-once (AAO)
approach (also called simultaneous analysis and design (SAND)), and the
individual disciplinary feasible (IDF) approach. Multi-level approaches for MDO
include collaborative optimization (Braun 1996; Braun et al. 1997), concurrent
subspace optimization (Sobieszczanski-Sobieski 1988; Wujek et al. 1997), bi-level
integrated system synthesis (Sobieszczanski-Sobieski et al. 2003), analytical target
cascading (Kokkolaras et al. 2006; Liu et al. 2006), etc.

An important factor in the analysis and design of multi-disciplinary systems is
the presence of uncertainty in the system inputs. It is necessary to account for
the various sources of uncertainty in both MDA and MDO problems. The MDA
problem focuses on uncertainty propagation to calculate the uncertainty in the
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outputs. In the MDO problem, the objective function and/or constraints may become
stochastic if the inputs are random. The focus of the present chapter is only on
uncertainty propagation in MDA and not on optimization.

While most of the aforementioned methods for deterministic MDA can easily be
extended to non-deterministic MDA using Monte Carlo sampling (MCS), this may
be computationally expensive due to repeated evaluations of disciplinary analyses.
Hence, researchers have focused on developing more efficient alternatives. Gu
et al. (2000) proposed worst case uncertainty propagation using derivative-based
sensitivities. Kokkolaras et al. (2006) used the advanced mean value method for
uncertainty propagation and reliability analysis, and this was extended by Liu et al.
(2006) by using moment-matching and considering the first two moments. Several
studies have focused on uncertainty propagation in the context of reliability analysis.
Du and Chen (2005) included the disciplinary constraints in the most probable point
(MPP) estimation for reliability analysis. Mahadevan and Smith (2006) developed
a multi-constraint first-order reliability method (FORM) for MPP estimation. While
all the aforementioned techniques are probabilistic, non-probabilistic techniques
based on fuzzy methods (Zhang and Huang 2010), evidence theory (Agarwal et al.
2004), interval analysis (Li and Azarm 2008), etc. have also been studied for MDA
under uncertainty.

Similar to MDA, methods for MDO under uncertainty have also been investigated
by several researchers. Kokkolaras et al. (2006) extended the analytical target
cascading approach to include uncertainty. A sequential optimization and reliability
analysis (SORA) framework was developed by Du et al. (2008) by decoupling
the optimization and reliability analyses. Chiralaksanakul and Mahadevan (2007)
integrated solution methods for reliability-based design optimization with solution
methods for deterministic MDO problems to address MDO under uncertainty. Smith
(2007) combined the techniques in Mahadevan and Smith (2006) and Chiralak-
sanakul and Mahadevan (2007) for the design of aerospace structures. As mentioned
earlier, the focus of this chapter is only on MDA under uncertainty, and therefore,
aspects of MDO will not be discussed hereafter.

Review of the above studies reveals that the existing methods for MDA under
uncertainty are either computationally expensive or based on several approxima-
tions. Computationally expense is incurred in the following ways:

1. Using deterministic MDA methods with MCS (Haldar and Mahadevan 2000)
require several thousands of evaluations of the individual disciplinary analyses.

2. Non-probabilistic techniques (Agarwal et al. 2004; Li and Azarm 2008; Zhang
and Huang 2010) use interval-analysis-based approaches and also require sub-
stantial computational effort. Further they are also difficult to interpret in the
context of reliability analysis; this is an important consideration for MDO which
may involve reliability constraints.

Approximations are introduced in the following manner:

1. Probability distributions are approximated with the first two moments (Du and
Chen 2005; Kokkolaras et al. 2006; Liu et al. 2006; Mahadevan and Smith 2006).
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2. Approximations of individual disciplinary analyses may be considered using
derivative-based sensitivities (Gu et al. 2000) or linearization at MPP for
reliability calculation (Du and Chen 2005; Mahadevan and Smith 2006).

Fig. 1 A multi-disciplinary system

Some of these problems can be overcome by the use of a decoupled approach that
has been advocated by Du and Chen (2005) and Mahadevan and Smith (2006). In
this decoupled approach, Taylor’s series approximation and the first-order second
moment (FOSM) method have been proposed to calculate the probability density
function (PDF) of the coupling variables.

For example, consider the multi-disciplinary system shown in Fig. 1. Here x =
{x1, X2, Xy} are the inputs, and u(x) = {ui,, up;} are the coupling variables. Note
that this is a not only a multi-disciplinary system, but also a multi-level system
where the outputs of the coupled analysis (g and g,) are used to compute a higher
level system output ( f).

Once the PDFs of the coupling variables u;, and up; are estimated using
the decoupled approach, the coupling between “Analysis 17 and “Analysis 2”
is removed. In other words, the variable u,; becomes an input to “Analysis 17
and the variable u;, becomes an input to “Analysis 2,” and the dependence
between the quantities uj,, up;, and x is not considered any further. This “fully
decoupled” approach reduces the computational effort considerably by avoiding
repeated evaluations of the fully coupled system; however, this is still based on
approximations and more importantly, suitable only when the aim is to estimate the
statistics of g; or g».

In the case of a multi-level system, where the multi-disciplinary outputs (g; and
g» in this case) could be inputs to another model (Analysis 3 in Fig. 1), the fully
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decoupled approach will not be applicable for the following reason. In Fig. 1, for
a given Xx, there is a unique g, and a unique g»; in addition, for a given u,, there
is a unique u,;, and hence for a given gi, there is a unique g,. This functional
dependence between u;, and u,;, and hence between g; and g,, cannot be ignored
when estimating the probability distribution of f. In the fully decoupled approach,
the functional dependence between u;, and uy; is not preserved in subsequent
analysis; once the PDFs of u, and u, are estimated, independent samples of u,
and uy; are used to generate samples of g; (using only Analysis 1) and g, (using
only Analysis 2) which in turn are used to compute the statistics of f. This will
lead to an erroneous estimate of f, since g; and g, values are not related to each
other as they should be in the original system. This “subsequent analysis” need not
necessarily refer to a higher level output; this could even refer to an optimization
objective which is computed based on the values of g, and g, (or even u;, and uy;).
Thus, if the objective is only to get the statistics of g; and g; as considered in Du and
Chen (2005) and Mahadevan and Smith (2006), then the fully decoupled approach
is adequate. But if g; and g, are to be used in further analysis, then the one-to-
one correspondence between uj, and u; (and hence between g and g,) cannot be
maintained in the fully decoupled approach. Hence, one would have to revert to the
expensive Monte Carlo simulation (MCS) outside a deterministic MDA procedure
to compute the statistics of the output f. Thus, it becomes essential to look for
alternatives to the fully decoupled approach, especially when the complexity of the
system increases.

In order to address the above challenges, Sankararaman and Mahadevan (2012)
proposed a new likelihood-based approach for uncertainty propagation analysis in
multi-level, multi-disciplinary systems. In this method, the probability of satisfying
the inter-disciplinary compatibility is calculated using the principle of likelihood,
which is then used to quantify the PDF of the coupling variables. This approach for
MDA offers several advantages:

1. This method for the calculation of the PDF of the coupling variable is theoret-
ically exact; the uncertainty in the inputs is accurately propagated through the
disciplinary analyses in order to calculate the PDF of the coupling variable. No
approximations of the individual disciplinary analyses or the moments of the
coupling variable are necessary.

2. This approach requires no coupled system analysis, i.e. repeated iteration
between individual disciplinary analyses until convergence (FPI), thereby
improving the computational cost.

3. For multi-level systems, the difficulty in propagating the uncertainty in the
feedback variables to the system output is overcome by replacing the feedback
coupling with unidirectional coupling, thereby preserving the functional depen-
dence between the individual disciplinary models. The direction of coupling can
be chosen either way, without loss of generality. This semi-coupled approach is
also useful in an optimization problem where the objective function is a function
of the disciplinary outputs.
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The goal of this chapter is to explain this likelihood-based methodology for
uncertainty quantification in multi-physics systems in detail and illustrate its
application through numerical examples. The rest of this chapter is organized
as follows. Section 2 discusses a “sampling with optimization-based determin-
istic MDA” (SOMDA) approach, which is an example of using the partitioned
method along with MCS. Certain ideas explained in this section are used to
motivate the likelihood-based method. Then, the likelihood-based approach for
multi-disciplinary analysis (LAMDA) is explained in Sect.3 and its numerical
implementation is discussed in Sect. 4. Section 5 illustrates the LAMDA method-
ology using a mathematical example and Sect. 6 uses the LAMDA methodology for
a three-discipline analysis of a fire detection satellite (Zaman 2010).

2 Sampling with Optimization-Based Deterministic MDA

Consider the multi-disciplinary system shown earlier in Fig. 1. The overall goal
is to estimate the probability distribution of the outputs g, g2, and f, given the
probability distributions of the inputs x. As explained in Sect. 1, an intermediate
step is to calculate the PDFs of the coupling variables u), and u,; and then use these
PDFs for uncertainty propagation.

First consider the deterministic problem of estimating the converged u;, and uy;
values corresponding to given values of x. The conventional FPI approach starts
with an arbitrary value of |, as input to “Analysis 2 and the resultant value of uy;
serves as input to “Analysis 1.” If the next output from “Analysis 17 is the same
as the original u),, then the analysis is said to have reached convergence and the
inter-disciplinary compatibility is satisfied. However, if it is not, the conventional
FPI approach treats the output of “Analysis 1” as input to “Analysis 2” and the
procedure is repeated until convergence.

This search for the convergent values of u;, and uy; can be performed in an
intelligent manner by formulating it as an optimization problem. For this purpose,
define a new function G whose input is the coupling variable u,, in addition to x.
The output of “G” is denoted by Uj,, which is obtained by propagating the input
through “Analysis 2” followed by “Analysis 1,” as shown in Fig. 2.

/G
U12 | Analysis 2 Uz1 | Analysis 1 Ulf
Ag(u(z), x) T Ai(u(@), ) "

Fig. 2 Definition of G



Likelihood-Based Approach for Uncertainty Quantification in Multi-Physics Systems 93

Ls

Estimated w19

Analysis 1 E—— Analysis 2
Aqi(u(z), x) < As(u(z), z)
u21
91 92
\4 \ 4
Analysis 3
As(g1, 92)
f

Fig. 3 A multi-disciplinary system: unidirectional coupling

The multi-disciplinary constraint is said to be satisfied if and only if u;, = Uys.
For a given x, the convergent value of the coupling variable u;, can be obtained by
minimizing the squared error £ = (11, — G(up2, x))2 for a given set of inputs x,
where G is given by:

Uiy = G(ui2, x) = A (uz1, x) where uy; = As(u1, x) 9]

Note that this is an unconstrained optimization problem. If the multi-disciplinary
compatibility is satisfied, then u;, = Uj,, and the optimum value of E will be equal
to zero. In the rest of the chapter, it is assumed that it is possible to satisfy inter-
disciplinary compatibility for each realization of the input x; in other words, the
MDA has a feasible solution for each input realization. Once the converged value of
uy; is estimated, then the bi-directional coupling can be removed and replaced with
a uni-directional coupling from “Analysis 2” to “Analysis 1” as shown in Fig. 3.

If there are multiple coupling variables in one direction, i.e. if u;, is a vector
instead of a scalar, then E is also a vector, i.e. E = [Ey, Ey, E3, ... E,]. If the
MDA has a solution, then the optimal value of the vector u;, will lead to E; = 0 for
all i’s. Since each E; = 0 by definition, the optimal value of u;, can be estimated
by minimizing the sum of all E;’s (instead of minimizing each E; separately), and
the minimum value of this sum will also be equal to zero.

This is a minor modification to the FPI approach; here the convergent value of
the coupling variable is calculated based on an optimization which may choose
iterations judiciously in comparison with the FPI approach. Hence, in terms of
uncertainty propagation, the computational cost is still very high. The input values
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need to be sampled and for each realization, this optimization needs to be repeated
and the entire distribution of the coupling variable needs to be calculated using many
such samples.

Hereon, this approach is referred to as SOMDA. Since this approach is still
computationally expensive, a likelihood-based approach for MDA (LAMDA) was
developed by Sankararaman and Mahadevan (2012). This LAMDA approach does
not require sampling and provides an efficient and theoretically accurate method for
uncertainty propagation in MDA.

3 Likelihood Approach for Multi-Disciplinary Analysis

The optimization discussed in the previous section is much similar to a least-
squares-based optimization; the difference being that a typical least squares opti-
mization is posed as a summation problem with multiple observed data whereas this
is not the case in the current optimization problem. The quantity to be estimated is
the convergent value of i, for a given set of inputs x. When the inputs are random,
then the coupling variable u; is also random and its probability distribution needs
to be calculated. This can be viewed similar to a statistical parameter estimation
problem.

Consider a typical parameter estimation problem where a generic parameter 6
needs to be estimated based on some available data. According to Fisher (1912), one
can “solve the real problem directly” by computing the “probability of observing
the given data” conditioned on the parameter 6 (Aldrich 1997; Fisher 1912). This
quantity is referred to as the likelihood function of 6 (Edwards 1984; Pawitan 2001).
Singpurwalla (2006, 2007) explains that the likelihood function can be viewed
as a collection of weights or masses and is meaningful up to a proportionality
constant (Edwards 1984). In other words, if L(#") = 10, and L(6®) = 100,
then it is 10 ten times more likely for ) than 8() to correspond to the observed
data. While this likelihood function is commonly maximized to obtain the maximum
likelihood estimate (MLE) of the parameter 6, the entire likelihood function can also
be used to obtain the entire PDF of 6.

Now, consider the problem of estimating the PDF of the coupling variable u,,
in MDA. This is purely an uncertainty propagation problem and there is no “data”
to calculate the likelihood function of u;, which is defined as the “probability of
observing the data.” Hence, the definition of the likelihood function cannot be used
directly.

However, the focus of the MDA problem is to satisfy the inter-disciplinary com-
patibility condition. Consider “the probability of satisfying the inter-disciplinary
compatibility” conditioned on u;, which can be written as P(U;, = uyz|u;z). This
definition is similar to the original definition of the likelihood function. It is a weight
that is associated with a particular value of u;, to satisfy the multi-disciplinary

constraint. In other words, if the ratio of P(U;, = u(112)|u(112)) to P(Ujp = u§22)|u§22))
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is equal to 0.1, then it is 10 ten times more likely for ugzz) than uglz) to satisfy the
inter-disciplinary compatibility condition. Thus, the properties of this expression are
similar to the properties of the original likelihood function. Hence, this expression
is defined to be the likelihood of u; in this chapter, as shown in Eq. (2). Since the
likelihood function is meaningful only up to a proportionality constant, Eq. (2) also
uses only a proportionality sign.

L(uz) o« P(Uz = ui2lur2) 2

Note that this definition is in terms of probability and hence the tool of likelihood
gives a systematic procedure for including the uncertainty in the inputs during the
construction of likelihood and estimating the probability distribution of the coupling
variables, as explained below.

Note that there is a convergent value of u;, for every realization of x. If x is
represented using a probability distribution, then one sample of x has a relative
likelihood of occurrence with respect to another sample of x. Correspondingly,
a given sample of u;, has a relative likelihood of being a convergent solution
with respect to another sample of u;,, and hence u;, can be represented using
a probability distribution. It is this likelihood function and the corresponding
probability distribution that will be calculated using the LAMDA method.

For a given value of u,, consider the operation U, = G(ujz, x) defined earlier
in Eq. (1). When x is random, an uncertainty propagation method can be used to
calculate the distribution of Uj,. Let the PDF of U, be denoted by fi,, (Ui2|u12).

The aim is to calculate the likelihood of uy,, i.e. L(uj) as the probability of
satisfying the multi-disciplinary constraint, i.e. Ujp = ujz. Since fy,,(Ui2|ui2) is a
continuous PDF, the probability that U, is equal to any particular value, u; in this
case, is equal to zero. Pawitan (2001) explained that this problem can be overcome
by considering an infinitesimally small window [u1> — £, ui2 + §] around uy, by
acknowledging that there is only limited precision in the real world.

unt+5
L(uz) o< P(Uyz = uppluyn) = [ Ju,(Unzlui2)d Ui o< fy, (Uia = uiz|uz)
up—%
3)

Note that this equation is very similar to the common practice of estimating the
parameters of a probability distribution given observed data for the random variable.
In other words, if X is a random variable whose PDF is given by fx (x|P) where
P refers to the parameters to be estimated, and if the data available is denoted
by x; (i = 1 to n), then the likelihood of the parameters can be calculated as
L(P) o fx(x;|P) where i varies from 1 to n. The maximizer of this expression
is referred to as the MLE of P. Details can be found in statistics textbooks (Haldar
and Mahadevan 2000; Pawitan 2001).

Note that the likelihood function L (i) is conditioned on u;, and hence the PDF
of Ui, is always conditioned on u;,. Once the likelihood function of u;,, i.e the
probability of satisfying the multi-disciplinary compatibility for a given value of u,.
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is calculated, the PDF of the converged value of the coupling variable u;, can be
calculated as:

L(up2)

S ) = fL(Mlz)dulz

“)

In the above equation, the domain of integration for the variable u;, is such
that L(u;;) # 0. Note that Eq.(4) is a form of Bayes theorem with a non-
informative uniform prior density for u;;. Once the PDF of u,; is calculated, the
MDA with uni-directional coupling in Fig. 3 can be used in lieu of the MDA with
bi-directional coupling in Fig. 1. The system output f can then be calculated using
well-known methods of uncertainty propagation such as MCS, FORM, and second-
order reliability method (SORM).

During the aforementioned uncertainty propagation, the converged u;, and x are
considered as independent inputs in order to compute the uncertainty in uy;, g1, g2,
and f. However, for every given value of x, there is only one value of uy,; this is
not a statistical dependence but a functional dependence. The functional dependence
between the converged u), and x is not known and not considered in the decoupled
approach. If the functional dependence needs to be explicitly considered, one would
have to revert to the computationally expensive FPI approach for every sample of x.
(An alternative would be to choose a few samples of x, run FPI analysis on each of
them and construct a surrogate/approximation of the functional dependence between
x and uj,, and explicitly use this surrogate in uncertainty propagation. Obviously,
the surrogate could also be directly constructed for any of the responses—g1, g2, or
f—instead of considering the coupling variable u;,. However, replacing the entire
MDA by a surrogate model is a different approach and does not fall within the scope
of the decoupled approach, which is the focus of this chapter.)

The above discussion calculated the PDF of uj, and cut the coupling from
“Analysis 1” to “Analysis 2.” Without loss of generality, the same approach can be
used to calculate the PDF of u,; and cut the coupling from “Analysis 2” to “Analysis
1.” This method has several advantages:

1. This method is free from first-order or second-order approximations of the
coupling variables.

2. The equations of the individual disciplinary analyses are not approximated
during the derivation of Eq. (3) and the calculation of the PDF of the coupling
variables in Eq. (4) is exact from a theoretical perspective.

3. The method does not require any coupled system analysis, i.e. repeated iteration
between “Analysis 1” and “Analysis 2” until convergence.

Though the computation of the PDF of u;, is theoretically exact, two issues
need to be addressed in computational implementation. (1) The calculation of
L(u12) requires the estimation of fy,,(Ui2|u12) which needs to be calculated by
propagating the inputs x through G for a given value of u),. (2) This likelihood
function needs to be calculated for several values of u, to perform the integration in
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Eq. (4). These two steps, i.e. uncertainty propagation and integration, could make the
methodology computationally expensive if a Monte Carlo-type approach is pursued
for uncertainty propagation.

Therefore, the following section presents a methodology that makes the numer-
ical implementation inexpensive for the above two steps. From here on, there are
approximations made; note that these approximations are only for the purpose of
numerical implementation and not a part of the mathematical theory. Here, “theory”
refers to the derivation and use of Eqgs. (3) and (4) for uncertainty quantification in
MDA, and “implementation” refers to the numerical computation of fy,,(Uiz =
ur2|ur2) in Eq. (3).

4 Numerical Implementation

This section addresses the two issues mentioned above in the numerical implemen-
tation of the LAMDA method.

4.1 Evaluation of the Likelihood Function L (u3)

The first task is to calculate the likelihood function L (u;,) for a given value of u;;.
This requires the calculation of the PDF fy;,, (U2|u12). However it is not necessary
to calculate the entire PDF. Based on Eq. (3), the calculation of likelihood L (u;7)
only requires the evaluation of the PDF at ujy, i.e. fy,,(Ui2 = wui2|u12). Hence,
instead of entirely evaluating the PDF fy,, (U)2|u12), only local analysis at U, = uj»
needs to be performed. One method is to make use of FORM to evaluate this PDF
value. This is the first approximation.

The FORM estimates the probability that a performance function H = h(x)
is less than or equal to zero, given uncertain input variables x. This probability
is equal to the cumulative probability density (CDF) of the variable H evaluated
at zero (Haldar and Mahadevan 2000). In this approach, the so-called MPP is
calculated by transforming the variables x into uncorrelated standard normal space
u and by determining the point in the transformed space that is closest to the origin.
An optimization problem can be formulated as shown in Fig. 4.

Given PDFs of

Ty

Minimize 8 = u
such that H = h(x) =0
where standard normal w = T ()

Fig. 4 Use of FORM to P(H < 0) = ®(—p)

estimate the CDF value
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The details of the transformation # = T'(x) in Fig.4 can be found in Haldar
and Mahadevan (2000). This optimization can be solved by using the well-known
Rackwitz—Fiessler algorithm (Rackwitz and Flessler 1978), which is based on a
repeated linear approximation of the constraint H = 0. Once the shortest distance
to the origin is estimated to be equal to 8, then the CDF value is calculated in
FORM as:

P(H <0) = ®(-p) ®)

FORM can also be used to calculate the CDF value at any generic value A,
ie. P(h(x) < h.) and the probability that h(x) is less than or equal to A,
can be evaluated by executing the FORM analysis for the performance function
H = h(x) — h,. For the problem at hand, it is necessary to calculate the PDF value
at uy, and not the CDF value. This can be accomplished by finite differencing, i.e.
by performing two FORM analyses at h. = u; and h, = ujp + 8§, where § is a
small difference that can be chosen, for example, 0.001 x u;,. The resultant CDF
values from the two FORM analyses are differenced and divided by § to provide an
approximate value of the PDF value at u;,. This is the second approximation.

Hence, the evaluation of the likelihood function L (i) is based on two approx-
imations: (1) the PDF value is calculated based on finite differencing two CDF
values; and (2) each CDF value is in turn calculated using FORM which is a first-
order approximation (Eq. (5)).

4.2 Construction of PDF of uy;

Recall that Eq.(4) is used to calculate the PDF of u;, based on the likelihood
function L (u;,). In theory, for any chosen value of u,,, the corresponding likelihood
L(uy;) can be evaluated, and hence the integral in Eq. (4) can be computed. For the
purpose of numerical implementation, the limits of integration need to be chosen.
The first-order estimates of the mean and variance of u;, can be estimated by
calculating the converged value of u;, at the mean of the uncertain input values
using FPI. The derivatives of the coupling variables with respect to the inputs can
be calculated using Sobieski’s system sensitivity equations (Hajela et al. 1990), as
demonstrated later in Sect. 4.1. These first order estimates can be then used to select
the limits (for example, six sigma limits) for integration.

For the purpose of implementation, the likelihood function is evaluated only at a
few points; a recursive adaptive version of Simpson’s quadrature (McKeeman 1962)
is used to evaluate this integral and the points at which the likelihood function needs
to be evaluated are adaptively chosen until the quadrature algorithm converges.

This quadrature algorithm is usually applicable only in the case of one-
dimensional integrals whereas in a typical multi-disciplinary problem, u;, may
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be a vector, where there are several coupling variables in each direction. Hence,
the multi-dimensional integral can be decomposed into multiple one-dimensional
integrals so that the quadrature algorithm may be applied.

/L(a,ﬂ)dad,B = / (/L(oe,ﬂ)da)dﬂ 6)

Each one-dimensional integral is evaluated using recursive adaptive Simpson’s
quadrature algorithm (McKeeman 1962). Consider any general one-dimensional
integral and its approximation using Simpson’s rule as:

[ =220 1@+ 45 (CF0) + ) = s @

The adaptive recursive quadrature algorithm calls for subdividing the interval of
integration (a, b) into two sub-intervals ((a,¢) and (c,b), a < ¢ < b) and then,
Simpson’s rule is applied to each sub-interval. The error in the estimate of the
integral is calculated by comparing the integral values before and after splitting.
The criterion for determining when to stop dividing a particular interval depends on
the tolerance level €. The tolerance level for stopping may be chosen, for example
as (McKeeman, 1962):

|S(a,c) + S(c.b) — S(a,b)| < 15¢ (8)

Once the integral is evaluated, the entire PDF is approximated by interpolating the
points at which the likelihood has already been evaluated.

This technique ensures that the number of evaluations of the individual disci-
plinary analyses is minimal. Would it be possible to approximately estimate the
number of disciplinary analyses needed for uncertainty propagation? Suppose that
the likelihood function is evaluated at ten points to solve the integration in Eq. (4).
Each likelihood evaluation requires a PDF calculation, and hence two FORM
analyses. Assume that the optimization for FORM converges in five iterations on
average; each iteration would require n 4+ 1 (where n is the number of input
variables) evaluations of the individual disciplinary analysis (one evaluation for the
function value and n evaluations for derivatives). Thus, the number of individual
disciplinary analyses required will approximately be equal to 100(n + 1). This
is computationally efficient when compared to existing approaches. For example,
Mahadevan and Smith (2006) report that for a MDA with 5 input variables, the
multi-constraint FORM approach required 69 evaluations for the evaluation of a
single CDF value, which on average may lead to 690 evaluations for 10 CDF
values. While the LAMDA method directly calculates the entire PDF, it also retains
the functional dependence between the disciplinary analyses, thereby enabling
uncertainty propagation to the next analysis level.

As the number of coupling variables increases, the integration procedure causes
the computational cost to increase exponentially. For example, if there are ten
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coupling variables, each with five discretization points (for the sake of integration),
then the number of individual disciplinary analyses required will approximately
be equal to 105 x 10 x (n + 1). Alternatively, a sampling technique such as
Markov Chain Monte Carlo (MCMC) sampling can be used to draw samples of
the coupling variables; this method can draw samples of the coupling variable
without evaluating the integration constant in Eq. (4). Further, since this is sampling
approach, the computational cost does not increase exponentially with the number
of coupling variables. In each iteration of the MCMC chain, two FORM analyses
need to be conducted to evaluate the likelihood for a given value of u;; (which
is now vector), and several thousands (say, Q) of evaluations of this likelihood
function may be necessary for generating the entire PDFs of the coupling variables.
Thus, the number of individual disciplinary analyses will be approximately equal to
10 x (n + 1) x Q. Currently, the LAMDA method is demonstrated only for a small
number of coupling variables. Future work needs to extend the methodology to field-
type quantities (temperatures, pressures, etc. in finite element analysis) where the
number of coupling variables is large.

S Numerical Example: Mathematical MDA Problem

5.1 Description of the Problem

This problem consists of three analyses, two of which are coupled with one another.
This is an extension of the problem discussed by Du and Chen (2005), and later
by Mahadevan and Smith (2006) where only two analyses were considered. The
functional relationships are shown in Fig. 5. In addition to the two analyses given
in Mahadevan and Smith (2006), the current example considers a third analysis
where a system output is calculated based on g; and g, as f = g, — g;. All the
five input quantities x = (x1, X, X3, X4, X5) are assumed to be normally distributed
(only for the sake of illustration) with unit mean and standard deviation equal
to 0.1; there is no correlation between them. The goal in Du and Chen (2005)
and Mahadevan and Smith (2006) was to calculate the probability P(g; < 0),
and now, the goal is to calculate the entire probability distributions of the coupling
variables u, and uy, the outputs of the individual analyses g; and g», and the
overall system output f.

A coarse approximation of the uncertainty in the output variables and coupling
variables can be obtained in terms of first-order mean and variance using Taylor’s
series expansion (Haldar and Mahadevan 2000). For example, consider the coupling
variable u;,; the procedure described for can be extended to uy;, g1, g2, and f.

The first-order mean of u;, can be estimated by calculating the converged value
of uy, at the mean of the input values, i.e. x = (1,1, 1, 1, 1). The first-order mean
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Fig. 5 Functional relationships

values of uj,, us1, g1, €2, and f are calculated to be equal to 8.9, 11.9, 0.5, 2.4, and
1.9, respectively. The first-order variance of u, can be estimated as:

n

vartu) = 3 (92 Var(a) ©)

i=1

where the first-order derivatives are calculated using Sobieski’s system (or global)
sensitivity equations (Hajela et al. 1990), by satisfying the multi-disciplinary
compatibility as:

duy _ durz Ouyy duy)

= — 4 —— 10
dx; 0x; + dupy 0x; (10)

All the derivatives are calculated at the mean of the input values, i.e. x = (1,1,
1,1,1). The values of %Lx‘f are 2, 2, —1, 0, and 0 (i = 1 to 5), respectively. The

values of %”—)fl‘ are 1,0,0,3,and 1 (i =1 to 5), respectively. The value of gZ—g is JZE’
evaluated at the mean and therefore, is equal to 0.29. Hence, using Eqs. (9) and (10),
the standard deviation of u;, is calculated to be 0.333.

The system sensitivity equation-based approach only provides approximations of
the mean and variance, and it cannot calculate the entire PDF of u,. The remainder
of this section illustrates the LAMDA approach, which can accurately calculate
the entire PDF of u;,. Though the system of equations in Fig.5 may be solved
algebraically by eliminating one variable, the forthcoming solution does not take
advantage of this closed form solution and assumes each analysis to be a black-box.
This is done to simulate the behavior of realistic multi-disciplinary analyses that
may not have closed form solutions. For the same reason, finite differencing is used
to approximate the gradients even though analytical derivatives can be calculated
easily for this problem.
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Fig. 6 PDF of u, 1
_ - = =SOMDA
Q
£ —— SOFPI
Z o6t
g
()
> 0.4+
h=1
£ 0.2}
[al}
0 !
7 8 9 10 11

Coupling Variable uq9

5.2 Calculation of the PDF of the Coupling Variable

In this numerical example, the coupling variable u, is estimated for the sake of
illustration, and the arrow from “Analysis 1” to “Analysis 2” is severed. The PDF
of uj, is estimated using (1) SOMDA; and (2) LAMDA. In Fig. 6, the PDF using
the LAMDA method uses ten integration points for the evaluation of Eq. (4). The
resulting PDFs from the SOMDA method and the LAMDA method are compared
with the benchmark solution which is estimated using 10,000 Monte Carlo samples
of x and FPI (until convergence of Analysis 1 and Analysis 2) for each sample
of x. The probability bounds on MCS results for the benchmark solution are also
calculated using the formula CoV(F) = % where F is the CDF value (Haldar
and Mahadevan 2000), and found to be narrow and almost indistinguishable from
the solution reported in Fig. 6. Since the benchmark solution uses FPI for each input
sample, it is indicated as SOFPI (sampling outside fixed point iteration) in Fig. 6.

In addition to the PDF in Fig. 6, the CDF of u, is shown in Fig.7. The CDF
is plotted in linear and log-scale. Further, the tail probabilities are important in the
context of reliability analysis; hence, the two tails of the CDF curves are also shown
separately.

It is seen that the solutions (PDF values and CDF values) from the LAMDA
method match very well with the benchmark (SOFPI) solution and the SOMDA
approach. Note that the mean and standard deviation of the PDF in Fig.6 agree
well with the first-order approximations previously calculated (8.9 and 0.333).
Obviously, the above PDF provides more information than the first-order mean
and standard deviation and is more suitable for calculation of tail probabilities in
reliability analysis.

The differences (maximum error is less than 1 %) seen in the PDFs and the CDFs
from the three methods, though small, are accountable. The PDF obtained using
SOMDA differs from the benchmark solution because it uses only 1,000 Latin
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Fig. 7 Cumulative distribution function of ;. (a) Linear; (b) log-scale; (c) left tail; (d) right tail

hypercube samples (realizations of inputs) whereas the benchmark solution used
10,000 samples. The PDF obtained using LAMDA differs from the benchmark
solution because of two approximations—(1) finite differencing two CDF values
to calculate the PDF value, and (2) calculating each CDF value using FORM.

The benchmark solution is based on FPI and required about 105 evaluations
each of Analysis 1 and Analysis 2. The SOMDA method required 8,000-9,000
executions of each individual disciplinary analysis. (This number depends on the
random samples of the input, since for each sample, the number of optimization
iterations required for convergence is different.) Note that theoretically, the SOMDA
method would produce a PDF that is identical to the benchmark solution if the
same set of input samples were used in both the cases. This is because the SOMDA
approach simply solves the deterministic MDA problem and then considers sam-
pling in an outside loop. The solution approach in SOMDA is different from that
in the benchmark solution approach; however, the treatment of uncertainty is the
same. As discussed in Sect. 2, the SOMDA method is still expensive; replacing the
brute force FPI in the benchmark solution by an optimization did not significantly
improve the computational efficiency in this problem.

The LAMDA method treats the uncertainty directly in the definition of likelihood,
and was found to be the least expensive, as it required only about 450-500
evaluations of each disciplinary analysis for the estimation of the entire PDF of
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Fig. 8 PDF of f
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u1> in Fig.6. The number of evaluations is given as a range because of three
sources of variation: (1) different initial guesses for FORM analyses may require
different numbers of function evaluations for convergence to MPP; (2) the number
of integration points used for evaluation of Eq. (4); and (3) the actual values of the
integration points used for evaluation of Eq.(4). In contrast, the multi-constraint
FORM approach developed by Mahadevan and Smith (2006) required about 69
evaluations for the calculation of the CDF at one particular value. If the entire PDF
as in Fig. 6 is desired, the multi-constraint FORM would take approximately 69 x2n
function evaluations, where 7 is the number of points on the PDF and each PDF
evaluation would require two CDF evaluations.

5.3 Calculation of PDF of the System QOutput

Once the PDF of u;, is calculated, the scheme in Fig. 3 can be used for uncertainty
propagation and the PDF of the system output f is calculated. Note that this does
not require any MDA (iterative analysis between the two subsystems) and it is now
a simple uncertainty propagation problem. Well-known methods for uncertainty
propagation such as MCS, FORM, and SORM (Haldar and Mahadevan 2000) can
be used for this purpose. For the sake of illustration, MCS is used. The PDF of the
system output f is shown in Fig. 8.

As the coupling variable u;, has been estimated here, the “arrow” from Analysis
1 to Analysis 2 alone is severed, whereas the arrow from Analysis 2 to Analysis 1
is retained. Hence, to solve for the system output f, the probability distributions
of the inputs x and the probability distribution of the coupling variable u;, are
used first in Analysis 2 (to calculate u;), and then in Analysis 1 to calculate the
individual disciplinary system outputs g; and g, followed by the overall system
output f. As seen from Fig.8, the solutions from the three different methods—
SOMDA, LAMDA, and the benchmark solution (SOFPI)—compare well against
each other.
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6 Three-Discipline Fire Detection Satellite Model

This section illustrates the LAMDA methodology for system analysis of a satellite
that is used to detect forest fires. First, the various components of the satellite system
model are described, and then, numerical results are presented.

6.1 Description of the Problem

This problem was originally described by Wertz and Larson (1999). This is a
hypothetical but realistic spacecraft consisting of a large number of subsystems with
both feedback and feed-forward couplings. The primary objective of this satellite is
to detect, identify, and monitor forest fires in near real time. This satellite is intended
to carry a large and accurate optical sensor of length 3.2 m, weight 720 kg and has
an angular resolution of 8.8 x 1077 rad. This example considers a modified version
of this problem considered earlier by Ferson et al. (2009) and Zaman (2010).

Zaman (2010) considered a subset of three subsystems of the fire detection
satellite, consisting of (1) Orbit Analysis, (2) Attitude Control, and (3) Power, based
on Ferson et al. (2009). This three-subsystem problem is shown in Fig. 9. There are
nine random variables in this problem, as indicated in Fig. 9.

As seen in Fig.9, the Orbit subsystem has feed-forward coupling with both
Attitude Control and Power subsystems, whereas the Attitude Control and Power
subsystems have feedback or bi-directional coupling through three variables Pacs,
Iin, and I« A satellite configuration is assumed in which two solar panels extend
out from the spacecraft body. Each solar panel has dimensions L by W and the inner
edge of the solar panel is at a distance D from the centerline of the satellite’s body
as shown in Fig. 10.

The functional relationships between the three subsystems are developed in
detail by Wertz and Larson (1999) and summarized by Ferson et al. (2009) and
Sankararaman and Mahadevan (2012). These functional relationships are briefly
described in this section.

6.1.1 The Orbit Subsystem

The inputs to this subsystem are: radius of the earth (Rg); orbit altitude (H ); earth’s
standard gravitational parameter (u); and target diameter (Parget)-

The outputs of this subsystem are: satellite velocity (v); orbit period (Atomwit);
eclipse period (Afecipse); and maximum slewing angle (6ey). The relationships
between these variables are summarized in the following equations:

_ K
he Rg+ H (b
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Fig. 9 A three-subsystem fire detection satellite

Fig. 10 Schematic diagram
for the satellite solar array
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6.1.2 The Attitude Control Subsystem

The 23 inputs to this subsystem are: earth’s standard gravitational parameter (u);
radius of the earth (Rg); Altitude (H ); maximum and minimum moment of inertia
of the spacecraft (/;ax and Inin); deviation of major moment axis from local vertical
(0); moment arm for the solar radiation torque (Lj,); average solar flux (Fj);
speed of light (c); reflectance factor (g); surface area off which solar radiation is
reflected (A;); Slewing time period (At ey); magnetic moment of the Earth (M);
residual dipole of the spacecraft (Rp); moment arm for aerodynamic torque (L,);
atmospheric density (p); maximum slewing angle (fyey); sun incidence angle (i);
drag coefficient (C,); cross-sectional surface area in the direction of flight (A);
satellite velocity (v); rotation velocity of reaction wheel (wnax); number of reaction
wheels (n); and holding power (Ppoq), i.€. the power required to maintain the
constant velocity (@Wmax)-

The overall output of this subsystem is the total torque (ty¢). The value of the
total torque is computed based on slewing torque (7gew), disturbance torque (zgist),
gravity gradient torque (), solar radiation torque (t,,), magnetic field interaction
torque (t,,), and aerodynamic torque (), as shown in the following equations.

Tiot = MAX(Tglew, Tdist) (15)

4eslew I (16)
Tslew — 71, 5 {max
(Atslew)2

tm:¢¢+@+¢+g (17

3u

y = ———————|Inax — Imin| Sin(26 18
Tg 2(RE+H)3|ma mnlSln( ) (18)
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Note that this subsystem takes two coupling variables (Ii,.x and Ipni,) as input and
produces another coupling variable (Attitude control power: Pacs) as output, as
given in the following equation.

Pacs = Tiot®max + 1 Phold (22)

This coupling variable is an input to the power subsystem, as described in the
following subsection.

6.1.3 The Power Subsystem

The 16 inputs to the power subsystem are: attitude control power (Pacs); other
sources of power (Poper); orbit period (Afowi); eclipse period (Afeclipse); sun
incidence angle (i); inherent degradation of the array (/;); average solar flux
(Fy); power efficiency (n); lifetime of the spacecraft (Lr); degradation in power
production capability in % per year (egeg); length to width ratio of solar array (7;,);
number of solar arrays (ng,); average mass density of solar arrays (ps,); thickness
of solar panels (7); distance between the panels (D); and moments of inertia of the
main body of the spacecraft (Jpodyx > Tvodyy s Ibodyz)-

The overall outputs of this subsystem are the total power ( Pyy), and the total size
of the solar array (As,), as calculated below.

Piot = Pacs + Potner (23)

Let P, and P; denote the spacecraft’s power requirements during eclipse and
daylight, respectively. For the sake of illustration, it is assumed that P, = P; =
P Let T, and T, denote the time per orbit spent in eclipse and in sunlight,
respectively. It is assumed that 7, = Afecipse and Ty = Atopic — 1. Then the
required power output (Pg,) is calculated as:

(% + %)

P, =
a Td

(24)
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The power production capabilities at the beginning of life (Ppor) and at the end of
the life (PgoL) are calculated as:

Ppor, =nF;1, cos(i)

i 25)
Pror =Ppor(1 — €deg)

The total solar array size, i.e. the second output of this subsystem, is calculated as:

P,
Asa = = (26)
ProL

Note that this subsystem takes a coupling variable (Pacs) as input and produces the
other two coupling variables (I,x and Iy,,) as output, to be fed into the attitude
control subsystem described earlier.

The length (L), width (W), mass (ms,), moments of inertia (Is,x, Isay, Isaz) of
the solar array are calculated as follows:

I = Agalin
Msa
W Ag 27
Tiwhlsy

Mgy =2pa LWt

B o, L\2
Loy = msa[E(L +) + (D n 3) } (28)
Lay = 222 + W?) (29)
12
1 L\2
Loy = msa[E(Lz + W)+ (D + E) } (30)

The total moment of inertia (/) can be computed in all three directions (X, Y, and
Z), from which the maximum and the minimum moments of inertia (/,x and I.,;,)
can be computed.

Itot:Isa+Ib0dy (31)
I'max = max(Liox, lioty s Tiotz) (32)

Inin = min(lloth Loty s ItotZ) (33)



Table 1 List of deterministic quantities
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Variable Symbol  Unit Numerical value
Earth’s radius Rg m 6,378,140
Gravitational parameter m m3 572 3.986 x 1014
Target diameter Prarget m 235,000

Light speed c ms™! 2.9979 x 108
Area reflecting radiation Ay m? 13.85

Sun incidence angle i ° 0

Slewing time period Alglew S 760

Magnetic moment of earth M Am? 7.96 x 101°
Atmospheric density 0 kgm™3 5.1480 x 101
Cross-sectional in flight direction A m? 13.85

No. of reaction wheels n — 3

Maximum velocity of a Wheel Wmax rpm 6,000

Holding power Phoa ' 20

Inherent degradation of array 1 - 0.77

Power efficiency n - 0.22

Lifetime of spacecraft LT Years 15

Degradation in power production capability — €geg % per year  0.0375

Length to width ratio of solar array Tl - 3

Number of solar arrays Hga - 3

Average mass density to arrays Psa kgm? 700

Thickness of solar panels t m 0.005

Distance between panels D m 2

Moments of inertia of spacecraft body Tvody kg m? Tvoay.x = 4,700

Ibody,Y = 6,200
lvody.z = 4,700

6.2 Numerical Details

Some of the input quantities are chosen to be stochastic while others are chosen
to be deterministic. Table 1 provides the numerical details for the deterministic
quantities and Table 2 provides the numerical details for the stochastic quantities.
All the stochastic quantities are treated to be normally distributed, for the sake of
illustration.

6.3 Uncertainty Propagation Problem

As seen in Fig.9, this is a three-disciplinary analysis problem, with feedback
coupling between two disciplines “power” and “attitude control.” It is required to
compute the uncertainty in three system output variables—total power Py, required
solar array area Ag,, and total torque .
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Table 2 List of stochastic quantities

Variable Symbol  Unit Mean Standard deviation
Altitude H m 18,000,000 1,000,000

Power other than ACS Pother \%% 1,000 50

Average solar flux F W/m?2 1,400 20

Deviation of moment axis [% °© 15 1

Moment arm for radiation torque Ly, m 2 0.4

Reflectance factor q - 0.5 1

Residual dipole of spacecraft Rp Am? 5 1

Moment arm for aerodynamic torque L, m 2 0.4

Drag coefficient Cy - 1 0.3

Prior to the quantification of the outputs, the first step is the calculation of
the probability distribution of the coupling variables. The functional dependency
can be severed in either direction, either from “power” to “attitude control” or
from “attitude control” to “power,” and this choice can be made without loss of
generality. The probability distribution of Pacs, i.e. the power of the attitude control
system is chosen for calculation, and then, Pacs becomes an independent input to
the “power subsystem”; the functional dependency between “power” to “attitude
control” is retained through the two coupling variables in the opposite direction.
The following subsections present these results; Sect. 6.4 calculates the PDF of the
feedback variable Pacs and Sect. 6.5 calculates the PDFs of the system outputs.

6.4 Calculation of PDF of the Coupling Variable

Similar to the mathematical example presented in Sect. 5, this section calculates the
PDF of the coupling variable Pacs using sampling with SOMDA and the LAMDA.
These results are compared with the benchmark solution in Fig. 11. In Fig. 11, the
PDF using the LAMDA method uses ten integration points for the evaluation of
Eq. (4).

Similar to the mathematical example in Sect. 5, it is seen from Fig. 11 that the
results from SOMDA and LAMDA compare well with the benchmark solution
(SOFPI). In addition to the PDFs, the CDFs and the tail probabilities are also in
reasonable agreement. The benchmark solution is based on FPI and required about
200,000 evaluations each of the power subsystem and the attitude control subsys-
tem. The SOMDA method required about 20,000 evaluations whereas the LAMDA
method required about 900-1,000 evaluations. It is clear that the LAMDA approach
provides an efficient and accurate alternative to sampling-based approaches.
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6.5 Calculation of PDFs of the System Outputs

Once the probability distribution of the coupling variable Pacs is calculated, the
system does not contain any feedback coupling and hence, methods for simple
forward uncertainty propagation can be used to estimate the PDFs of the three
system outputs total power (Py.), required solar array area (As,), and total torque
(Tiot)- MCS is used for uncertainty propagation, and the resulting PDFs are plotted
in Figs. 12, 13, and 14.

As seen from Figs. 12, 13, and 14, the PDFs of the system outputs obtained
using both SOMDA and LAMDA compare very well with the benchmark solution
(SOFPI).
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7 Conclusion

Existing methods for uncertainty propagation in multi-disciplinary system models
are based on (1) MCS around FPI, which is computationally expensive; and/or (2),
approximating the system equations; and/or (3) approximating the probability distri-
butions of the coupling variables and then decoupling the disciplinary analyses. The
fully decoupled approach does not preserve one-to-one correspondence between the
individual disciplinary analyses and is not suitable for further downstream analysis
using the converged MDA output.
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The perspective of likelihood and the ability to include input uncertainty in
the construction of the likelihood function provided a computationally efficient
methodology for the calculation of the PDFs of the coupling variables. The MDA
was reduced to a simple forward uncertainty propagation problem by replacing the
feedback coupling with one-way coupling, the direction being chosen without loss
of generality.

The LAMDA method has several advantages. (1) It provides a framework
for the exact calculation of distribution of the coupling variables. (2) It retains
the functional dependence between the individual disciplinary analyses, thereby
utilizing the estimated PDFs of the coupling variables for uncertainty propagation,
especially for downstream analyses. (3) It does not require any coupled system
analysis (iterative analyses between the individual disciplines until convergence)
for uncertainty propagation.

The LAMDA methodology has been demonstrated for problems with a small
number of coupling variables. The methodology is straightforward to implement
when there is a vector of coupling variables as explained earlier in Sect. 4.2. (Recall
that the fire satellite example had two coupling variables in one of the directions.)
However, if the coupling variable is a field-type quantity (e.g., pressures and
displacements exchanged in a fluid—structure interaction problem at the interface of
two disciplinary meshes), further research is needed to extend the LAMDA method
for uncertainty propagation in such multi-disciplinary problems.

The likelihood-based approach can be extended to address MDO under uncer-
tainty. Further, this chapter considered only aleatory uncertainty (natural variability)
in the inputs. Future research may include different types of epistemic uncertainty
such as data and model uncertainty in MDA and optimization.
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