The Orthogonal Complement of Faces for Cones
Associated with the Cone of Positive
Semidefinite Matrices

Qinghong Zhang

Abstract It is known that the minimal cone for the constraint system of a conic
linear optimization problem is a key component in obtaining strong duality without
any constraint qualification. In the particular case of semidefinite optimization, an
explicit expression for the dual cone of the minimal cone allows for a dual program
of polynomial size that satisfies strong duality. This is achieved due to the fact
that we can express the orthogonal complement of a face of the cone of positive
semidefinite matrices completely in terms of a system of semidefinite inequalities.
In this paper, we extend this result to cones that are either faces of the cone of
positive semidefinite matrices or the dual cones of faces of the cone of positive
semidefinite matrices. The newly proved result was used in Zhang (4OR 9:403-416,
2011). However, a proof was not given in Zhang (4OR 9:403-416, 2011).
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1 Introduction

It is well known that if the standard primal and dual semidefinite programs
satisfy the Slater conditions, then both the primal and dual programs have optimal
solutions and there is a zero duality gap between them. However, such Slater-
type conditions are not always true for semidefinite primal-dual pairs. There has
been interest in a unified duality theory without any Slater-type conditions in conic
linear optimization and semidefinite optimization, see [1-8]. The idea behind the
construction of a primal-dual pair, which guarantees strong duality (that is zero
duality gap and dual attainment), is to use the so-called minimal cone to replace the
cone which appears in the original problem so that the generalized Slater condition
holds for the consistent primal program. The process of eliminating the possibility
of a “duality gap” for consistent programs is called a regularization in the literature.
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In [2], a regularization for an abstract convex program was studied and a theoretical
algorithm for computing the minimal cone was also developed. In [4], an exact
duality model called the Extended Lagrange-Slater dual (ELSD) was derived, and
the zero duality gap was proved for a consistent program pair (D)—(E LS D) without
any Slater-type conditions, where (D) is the standard dual semidefinite program.
Unlike the dual in [2], where the minimal cone is used explicitly, (ELSD) can
be written explicitly in terms of equality and inequality constraints. In [3, 5], the
relation between these two approaches was discussed. The equivalence between
the dual formulated using the minimal cone and (ELSD) was obtained under
the assumption that (D) is consistent. Though (ELSD) was originally obtained
by working directly with semidefinite programming primal-dual pair in [4], it is
the expression of the orthogonal complement of a face of the cone of positive
semidefinite matrices completely in terms of a system of semidefinite inequalities
that gives the possibility to write the strong dual problem in polynomial times, which
plays an critical role in formulating an embedding problem that can be used to solve
a semidefinite optimization problem without the Slater-type condition [9].

In [10], a recursive algorithm is discussed to obtain the minimal cone for the
constraint system of conic linear optimization. As an example of this process,
semidefinite optimization problems are studied and (ELSD) are obtained using
this recursive algorithm. In the formulation of the strong dual of a semidefinite
optimization problem, an expression of the orthogonal complement of a face of a
cone, that is the dual cone of a face of the cone of positive semidefinite matrices, in
terms of a system of semidefinite inequalities is used in [10]. However, a proof was
not given there. In this paper, we give a complete proof of this result together with
a conclusion that gives an expression of the orthogonal complement of a face of a
cone that is a face of the cone of positive semidefinite matrices.

In the rest of this section, we introduce some basic concepts in convex analysis.
For other concepts and notation used in this paper, the reader is referred to [11].
Let R denote the set of all real numbers, R4 the set of all nonnegative numbers,
and R™*" the set of all m x n matrices. Let V be an inner product vector space
with an inner product denoted by (x, y) for x, y € V. For any set D in V), we use
ri D to denote the relative interior of D. Let IC be a convex cone in V. K can be
used to define a partial order in V: x >x y (x > y if K is apparent from the
context) if and only if x — y € K. A subcone K; of K is called a face of K if
x € Ky, x > y > 0implies y € Ky, where 0 represents the zero vector in V. For
a given face K of I, the complementary (or conjugate) face of K; is defined to be
K¢ ={zeK*|(z,x) =0forall x € K;} = K* N Ki, where K* is the dual cone
of K, thatis, C* = {y € V| (x,y) > 0forall x € £}, and K+ = K*N(—K*). The
complementary face of a face in K£* is defined similarly. We write IC{l for (ICi)l.
If C is a convex set of K, then the minimal face of C, denoted by F(C, K), is the
smallest face of K containing C. Let n be a positive integer. We let S denote
the real linear vector space of n x n symmetric matrices. An inner product in this
space is defined by (U, W) = U e W = Tr (UW), where UW denotes ordinary,
dimension-compatible matrix multiplication for U and W € 8", and Tr (U)
represents the trace of U. U > W means that U — W is positive semidefinite. We
use S’ to denote the cone of all n x n positive semidefinite matrices.
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2 Description of Orthogonal Complement of a Face

In general, a description of the orthogonal complement of a face of a cone in a finite
dimensional space cannot be obtained. However, if the cone of positive semidefinite
matrices is considered, a description of the orthogonal complement of a face in terms
of matrix inequalities is available due to the following theorem proved by Ramana
et al. [5, Lemma 2.1]. This theorem makes a strong dual of a semidefinite problem
explicit in terms of inequality and equality constraints.

Lemma 1. [5, Lemma 2.1] Suppose that C is a convex cone and C C
S Let K={W + WT | WeR™™ and U > WWT forsomeU € C}.
Then F(C,S"")*L = K.

We would like to see if this description can be extended to cones, which are either
a face of S or the dual cone of a face of S"*". We start with the description of a
face and the dual cone of a face for the cone of positive semidefinite matrices.

Lemma 2. Suppose that P is a face of S'*". Then there is r € N (the set of all
natural numbers) and Q € R™" with QT Q = I, such that

P:{Q(BO)QT|B€S:_X"§~

00
d 0---0
. . i 0dy--- 0
Proof. Let U € ri(P). Then there isa Q € R"™" and D =
00---d

. ) D Orx(n—r) T
withd; > Ofori = 1,2,...,r,suchthat U = Q on=r)xr O(”_’)X("—’)) o,

where 0"" represents 0 matrix with m rows and n columns. We sometimes use 0
to represent the 0 matrix if the dimension of the matrix is clear in the context. Of
course,

P;{Q(gg)QT\Besgﬂ} (1)

due to the assumption that U € ri(P) and that P is a face of S*". Next we prove
that

ol i)
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We choose any M € P.Then M = Q(QT MQ)QT. We need to prove that 07 M Q
has the form (lg g) with B € S'". We achieve this by using the assumption that

U € ri(P). In other words, there exists a A < 0, such that (1 — AU + AM € P.
Therefore,

DO T M11 M12 T nxn
a-no(fo)er+ae () orePes @

T (M My,
where Q' MQ (M1T2 My
that My, € SY™"™" and hence, My, = 0 by (3), which further implies that
M, = 0. My, € S_’ﬁ’ follows from the assumption that M € ‘P. Therefore, (2)
holds. By combining (1) and (2), we know the conclusion of the theorem is true.

) with M|, € 8. Because M € P, we know

Lemma 3. Suppose that P is a face of S'". Then there isr € N and Q € §""
with Q QT = I, such that

P — {Q (ngl ?12) QT | By €Sy By e RrX (=),
12 P22

and By, € S(n—r)x(n—r)} .

Proof. By Lemma 2, we know that there is Q € R"*" and r € N/, such that
BO\ . r .
= BeS>t.

It is easy to see that

B B . _
P* ) {Q (BITI Blz) QT iB” c Sq_xr,BlZ c Rrx(n r)’
12 D22

and By, € S(”_’)X("—’)} .

We now prove the converse inclusion. We choose any N € P*. Let N =
0(0TNQ)QT and QTNQ = (NIT1 le) with Nyy € 8™, Njp € R™¥0=7),
Ny, Ny

and N,y € SO=X0=") Then Ny, € S!X". Otherwise, there is B € S such that
B e N < 0 contradicting the assumption that N € P*. Therefore, N takes the form
defined in the lemma.

Of course, P* is a cone which contains S’"". As a cone, P* has its own faces.
The next lemma gives the form of a face of P*.
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Lemmad4. Let P, Q,r be as in Lemma 3. Then a subset Q of P* is a face of P* if
and only if there is a face F of S\" such that

Q _ {Q (B]T] Bl2) QT iBll c ]:’BIZ e Rrx(n—r)’
By, Bxn

and By, € S"TX0T0L (4

Proof. By Lemma 3 and in a straightforward manner, we can prove that Q defined
in (4) is a face of P*.
* 2Dy Ppp
Let D be a face of P*. Assume that Q T
p 12 Py
P, € R7X070) and Py € S“=*(=7) By Lemma 3, we know that Dy, € 87
Now let Dy, € R™"=" and D,, € S®~X#=") be any matrices. If we can prove

that Q DIT] Dz 0T e D, then we know that
D12 Do,

) 0T e D with Dy, € ™,

{Q (glrl ?2) 0" |Bie R0~ and By, € S(n_r)x(n_r)} cDh. &
12 D22

If we can further prove that

0 (311 B12) 0" €D

F=1B
{ 11 BITZ Bzz

for some By, € R™*"~") and B,, € S("—V)X(n—r)} (6)

is a face of S_’FX’, then we know that D is of the form of (4).
Dy Dy

Now let’s prove (5). By Lemma 3, we know that Q (D1T2 Dy,

)QT € P* and

Dy Pp—Dp
Q PL— DT Pyy—D
12 12 £22 22

Dy D12) T ( Dy Ppp— D12) T (2D11 Plz) T
+ = eD
Q(DITZ D> 9 Q PL— DI, Py —Dn Q Q PL Py Q

) QT € P*. Since

Dy Dy
DT, Dy,

Now we prove that F is a face of S’ Let E1; € 8" and Fy; € S’ such that
E\| + Fy; € F. Then for any matrices Gj, € R™"™") and Gy, € SO*0=7) we

know that Q (E“ + Fu G‘z) O € D. Since
G12 Gxn

and D is a face of P*, we obtain that Q ( ) QT e D. Therefore, (5) holds.
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Ell% T Fll% T _ En+ Fi1 Gy T ¢p
Q G_IT2 G Q + Q GIT2 G Q - Q Gsz G22 Q ’

G Fy, G
andQ(G_lr2 GZZ)QTGP* andQ(G_lrz1 é) QT € P*, we obtain that
2

G17 G12
B ) or epand o [F) 2 ) 07 € Ddue o hat D i
0 Gl G22 Q' €eDand Q Gsz G Q' e ue to the assumption that D is

2
a face of 73* Therefore, E;; € ]-' and Fi, € F, which implies that F is a face of
SVXF‘

Now, we are ready to give an expression of the orthogonal complement of a face
of a cone, which is the dual cone of a face of the cone of positive semidefinite
matrices.

Theorem 1. Let P be a face of S'*". Then P* is a cone that contains S'*". Let
C be a subcone of P*. F(C,P*) represents the minimal face of P* which contains
C. F(C,P*) = P N F(C,P*)" is the complementary face of F(C,P*). Then
FC,P*)t = {W +WT W eR™ and U >px WWT for some U € C}.

Proof. By Lemma 3, there is a Q and r € A such that

73* — Q BlTl BIZ QT |B|] E$r><r’Blz c Rrx(nfr)’
Bi, By
and By, € S(n—r)x(n—r)} .

Let

Cu = {Cu

Cll CIZ) T
eC
€ (Csz cx) €

for some Cj, € R and Cy, € S(”_’)X(”_’)} )
Then Cy; € S7". By Lemma 4, we know there is a face £ of S’ such that

B B>

* T rx(n—r
F(C’P):{Q(BITZBH)Q | Biy € £, By e R0,

and By € SO 1 (8)

Because F(C,P*) is the minimal face of P* containing C, we further obtain
that & = F(Cy1,SY"). Therefore, we obtain F(C,P*)¢ = P N F(C,P*)* =

0 (F(Cn,OS’X’)‘ ) OT. Hence
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B11 Bz
BIT2 By

By, € S"™X7) "and By € F(Cii, SP7)L) . (9)

F(C,P*)CJ' — {Q ( ) QT \ 312 c Rrx(nfr)’

Since by Lemma 1 F(Cll,SiX’)CJ‘ = {W + WIT | Wi € R and Uy; >
114 WlT for some Uy; € Cy1}, for any element in F(C, P*)L, it can be written as
W+ WlT By, T rx(n—r) (n—r)x(n—r)
0 T Q' ,where Bj; e R and By € S . Therefore,
B, Bx»

T

o (4t Bn) 0"+ 0 (1 5) O =WWT,

12 2

where W = Q (BT 322) or.

Since U;; € Cyy, so there is Uj, and Uy, such that U = Q (UIT1 U12) oT ec.
U12 U22

ww W1 By,

Because WWT = Q ( B2
BITZWT BszBlz + 2

) QT and Uy, > WIWIT, we obtain
Un Up,

that U =
‘ ¢ (Ulg Un

) QT =p« WWT.
Remark 1. Theorem 1 was used in [10]. But a proof was not given in [10]. Here we
provide a complete proof of this result.

Now we briefly discuss an expression of the orthogonal complement of a face
of a cone that is a face of the cone of positive semidefinite matrices. As in the
discussion above, we let P be a face of S’}rX”. P itself is a cone. Let C be
a subcone of P. Then F(C,P) represents the minimal face of P containing C
and F(C,S"") represents the minimal face of S’™" containing C. Since P is
a face of S, we can easily prove that F(C,P) = F(C,S"). Therefore,
F(C,P) = P*N FEC.P): 2 8 N F(C,8"* = F(C.8%")¢, which
further implies that F(C,P)** € F (C,SiX”)"L. By Lemma 1, we obtain that
FC.8"yt=K={W+WT|WeR" andU = WWT for some U € C}.
Therefore, F(C,P)*t C{W+WT|W e R"™" and U = WWT for some U € C}.
The converse inclusion may not be true. However, in a similar way we can prove
the following theorem which gives an expression of the orthogonal complement of
a face of P.

Theorem 2. F(C,P)t={W+WT |WeR"™ and U >p WWT for some UeC}.

Proof. The proof is similar to that of Theorem 1.
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3 Conclusion Remarks

An expression in terms of a system of semidefinite inequalities for the orthogonal
complement of a face of the cone of positive semidefinite matrices plays an
important role in formulating a dual of a polynomial size with a strong duality
property for a semidefinite optimization problem. In this paper, we have extended
this expression to the orthogonal complement of a face of cones, which are either a
face of the cone of positive semidefinite matrices or the dual cone of a face of the
cone of positive semidefinite matrices.
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