Chapter 2
Solution, Stability and Realization
of Fractional Order Differential Equation

2.1 Introduction

Classical calculus has provided an efficient tool for modeling and exploring the
properties of the dynamical system problems concerning of physics, biology, engi-
neering and applied sciences. However, experiments with a realistic approach teach
us that there are a large class of complex systems where microscopic and macro-
scopic behaviors are not captured or properly explained using classical calculus.
Some examples can be stated: relaxation in viscoelastic materials like polymers,
the spread of contaminants in underground water, network traffic, charge transport
in amorphous semiconductors, cell diffusion process, the transmission of signals
through strong magnetic fields such as those found within confined plasma etc. After
several years of research and discussion, it has been found that these major classes
of complex systems which contains non-local dynamics involving long-memory are
captured using a more general class of operators known as fractional operators.
The differential equations involving these operators are known as fractional order
differential equation.

Stability is the one of the most frequent terms used in literature whenever we
deal with the dynamical systems and their behaviors. In mathematical terminology,
stability theory addresses the convergence of solutions of differential or difference
equations and of trajectories of dynamical systems under small perturbations of initial
conditions. Same as classical differential or difference equations a lot of stress has
been given to the stability and stabilization of the systems represented by fractional
order differential equations.

Up to this point it is quit obvious that the fractional order calculus is more
appropriate to capture the real dynamical behavior rather than integer order calcu-
lus. However, fractional order systems have an infinite dimension, while the integer
order systems is only finite dimensional. Therefore, to realize the fractional order
controllers perfectly, all past inputs should be memorized, which is not possible
without proper approximation. This issue is also discussed in this chapter.
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The brief outline of this chapter is as follows. Section2.2 describes the solution
of fractional differential equations and Mittag-Leffler function. Section 2.3 discusses
the brief summary of the notation of stability and stabilization. A brief review on
linear matrix inequality (LMI) stability conditions for LTT fractional order systems
are analyzed in Sect. 2.4. A deep discussion on the realization issue of fractional-order
controller is presented in Sect.2.5. A brief review of fractional order PID control is
surveyed in Sect. 2.6 followed by the concluding Sect.2.7.

2.2 Solution of Fractional Differential Equations
and Mittag-Leffler Function

As already discussed in Chap. 1 the most popular fractional order derivative has been
given by Riemann-Liouville and Caputo. Therefore, in this book we concentrate on
fractional order differential equations formed by these two derivatives only. Riemann-
Liouville’s fractional-order derivative has been most widely used for capturing the
physical problems because it places less constraints on the concerned function. How-
ever, fractional order differential equations involving Riemann-Liouville’s fractional-
order derivative has some practical issues, related to initial value problem. This is
because the initial problems contain the fractional operator which does not have
a straightforward physical meaning. Initial value problem for a non-homogeneous
fractional differential equation under non-zero initial conditions, is expressed as
(1, 2]

oD%x(1) — ax(t) = £(1, x(1)), [on‘_kx(t)] —c (k=1.2.....n,

where n — 1 < a < n. However, in the case of Caputo’s fractional differential
equation, the initial value problem can be represented as

oD%x(1) — Ax(t) = f(t, (). [onx(t)] J=d (=0.1,2..n—1).
=
When we are solving fractional order differential equations and fractional order
integral equations, the Mittag-Leffler function comes into picture. Therefore, before
presenting the solution of fractional differential equations, we begin with the discus-
sions on definition and various properties of Mittag-Leffler functions.

2.2.1 Mittag-Leffler Function

The function E,(¢) was defined by Mittag-Leffler in the year 1903. It is a direct
generalization of the exponential series [1, 2]. For « = 1 we have the exponential
series.
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Definition 2.1 The Mittag-Leffler function function E,(¢#) and the generalized
Mittag-Leffler function Ey g(¢) are defined as:

ZO Tk +1)

Ey(t) = a > 0. 2.1

For o = 1, we have the exponential series. Similarly,

ee]

Eq p(t) = Z (k+ﬂ) a, B >0. (2.2)

k=0

The other well known function is Miller-Ross function which is defined as:

Definition 2.2
00 a tk+a
t “E t 2.3
Ey a(l) = ;I’(a—l—k—l—l) Lat1(at). (2.3)

Some special cases of Mittag-leffler functions are summarized as,

00 ok

g0.1(t) = E1(t) = E11 (1) = ZF(HD Z, : (2.4)

k=l
£, a(1) = Ei(at) = Ey 1(at) = €. (2.5)
The following Laplace transform is involved frequently while solving fractional
differential equation:

paktp—1 4 Eap(Far®)

Theorem 2.3 The Laplace transform of ddarF

(2.6)

o | ks LAY Eq p(£at®) kls@—P
d(:l:at“)k (S“ :Fa)k'H

Proof Consider the following integral

o0
3 B _ :i:r])kl‘ak
YP=VE, s(Ent*)dt = / tp-l (
[ e Eapttyar = [ o Zf(akJrﬂ)
0

0

00 k i
=> = (&) e Plg2)
STkt )
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Using the following relation
o0
/e_tt“k+’3_1dt = I'(ak + B).
0

(2.7) can be written as,

/e"tﬁ_lEa g(Ent®)dr = i ﬂf(ak + B)
) ’ = I (ak + B)

_ 1

E)

kth differentiation of (2.8) is given as

a7 kI(E£DX
—k/ P Ey g (™) dt = —
0

o0

.8 d* kN(EDK
/e 1P 1(it“)kmEa,ﬁ(im“)dt=

0

Now changing the variable ¢ with st

(0.¢]
k
k'(:l:l) _/e—stsﬁ—ltﬁ—l(il)ksak C{kd Eaﬁ(ins ta)s dt

(1 gkt d(£nsot)k

Also by replacing ns* by a

00

/e—rt ak+ﬂ ld E‘Y ﬁ(iata)
d(xar®)yk

0

P k+1
shye ( 5
This completes the proof.

Some special cases of the Laplace transform (2.6) :

e Substituting k = 0 in (2.6)

4B

pi _
7 [z Ea,ﬂ(iat“)] =

(1 F k!

(1 F pktl”

2.8)

(2.9)

(2.10)

@2.11)

(2.12)
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e Substituting o = B in (2.12)

Y [z“—lEa,a(im“)] = (2.13)

sYFa
e Example Inverse Laplace transform of ﬂ% using (2.13)

4512 1 1 3
—1 _ —1
< |:s+s1/2—21|_‘$ |:s1/2—1 +s1/2+2i|

=t 2E () + 37 V2 E 1 p (=211, (2.14)

2.2.2 Solution the Fractional Differential Using
Laplace Transform

Consider the following fractional differential equation,

0Dfx() = hx() = f(txO), [oDFFx0)]
—c (k=1,2,....n). (2.15)

Laplace transform of Riemann-Liouville’s derivative is given as,

o0 n—1
/e_”on‘x(t)dt =s“X(s) — ZSk [tha_k_lx(t)] »
0 k=0 =
Taking Laplace transform of (2.15), one can write
n
S*X(s) = AX(s) = F(s) + D cxs*™!
k=1
F(s) " sk=1
X)) = —— _— 2.16
(®) (sa_k)+;ck(sa_m (2.16)

Using (2.6) the inverse Laplace transformation of (2.16) can be found as,

n t
x(t) =t *Eqa a1 (M%) + / (t = ) Eq e Ot — D)) f(1)d.
k=1 0

2.17)
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Example Consider an example of fractional differential equation as,
1
oDZx(t) +ax(t) =0, (t > 0); [th_l/zx(t)] ,=C (2.18)
t=

Applying Laplace transform, one can write

C

X(s) = —5—.
(s) Py

(2.19)

Taking inverse Laplace transform, one can write solution of (2.19), as discussed in
(2.17) as

x(t) = Ct™'2Ey 1 0(—av/1). (2.20)
2.2.3 More Proper Way to Impose Initial Condition
to Fractional Order Differential Equation

Initialized fractional order Riemann-Liouville derivative is expressed in the follow-
ing way

o f(f)
10 D; f(f)_ a)dt” (t—r)H‘“ - dt, t>a
f=e@), feC" ‘, th<t<a 2.21)

where n is a positive integer satisfyingn — 1 < o < n, and f = ¢(t) represents the
initial history over (fy, a], and f = 0, for ¢t < .

For visualizing the effect of initial history Du and Wang [3] considered the example
of axially loaded viscoelastic bar, of which elongation x (¢) and longitudinal force F
satisfy the following equation

F =oD*x(1). (2.22)

Suppose that the elongation x(¢) is initialized as x(¢) = ¢(t) = ¢ fort € (0, 1] and
it is kept constant (x(¢) = 1) when ¢ > 1; then the force can be calculated as

F =oDYx(t) + 1 D> x(r)

T 1
= || ——=d 4
rosar | ) =t / st
0 1

)

05 (2.23)
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Using (2.23) it can be concluded that viscoelastic force is still dependent on ¢,
although the elongation x(¢) is constant after + > 1. It can be also seen that the
force is sensitive to the initial history. If the initial history is given as ¢(t) = /1,
then the force is given as

1 f 1
= sinm | — ). 2.24
r.s) ( Vit ) (2:24)
In both the cases one can see that the net viscoelastic force depends on the initial

history.

Very often the initial value problem of a fractional differential equation is con-
verted to an equivalent integral equation. Consider the following fractional order
differential equation

0D x(0) = ft, x(1), (t>a)
x(t) = ¢(to, al, xo € C". (2.25)

Theorem 2.4 The initial value problem (2.25) is equivalent to the following integral
equation

) = [F(go(t); 1, x(1)) z:ft > a 226)
(1) ifto<t<a
where
P04 X(0) = D7 0, x(0) =D} [0 D70
— (1 —a) (@—))
+ ; Fa D (WD o] . 2

Proof Following Lemma is important before proving the main result which is given
by Du and Wang [3].

Lemma 2.5 For a given o > 0, one has
D [,,D¥x ()] =x(t) + oD} [IOD;("_"‘)x(t)]

_ t—a)/ (@)
Z Fa Tl [ D! x(t)]tza . (2.28)
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Proof Let
t
L(t) = ! / LGN D" x (1) (2.29)
I'(n—a)) (t—1)lten fo™ ’ :

then

L™ (1) =, Dx (1), (2.30)

L(n*j)(a) — I:L(n*j)(t)]t:a — [To D;x_j(p(t):lt:a . 2.31)
Now

d
oD% Dfx(t) = - a D7y Dfx()

_d
_ ()
|:F(a+1)/([ %L (r)dr:|

t n
= 4 |: ! L(r) dr — Z LL(" ])(a):|

I'a+1—n) (t —o)t—« I'a—j+2)
_d @+ B o (t—a)*) (n—J)
=—-aD; L(t) ; Te—77D 1)L (@). (2.32)

As L(t) = (ZOD;“*‘*) 4 L,D;(”*“)) x (1), by substituting L(¢) in (2.32) one can
write

_ d 1
oD% DX () = 4 [a Tl + oDy @Y Dy 0 ”)(a)]

) S L
o fe—-Jj+D

d —(a— —(n—
:X(Z)-‘r* |:aDt (a—n+1) l()Da (n a)(p(l‘)]

(t —a)*~/ (@—))
a Z Fa—j+1) |:TOD' (p(t)]t:a

—aq)e—i .
. T B S
j=1

t=a

(2.33)

This proves the Lemma.
If x(¢) is the solution of (2.25), then
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D7y DEx (1) = o D7 f (1, x(1)). (2.34)

It can be verified that x (¢) satisfies (2.26), due to above Lemma.
Conversely, if x(#) is a solution of (2.26), then

JDEx(0) = [t x1) = D (D)~ [, D700

n

o[ =" T e
+ oD ; Ta—j+0 [tth (P(f)]t:a . (2.35)

Adding 4, D§ x(t) to both sides and, since , Dy (t — a)?* =l =0 forj=1,2,...,n.
Equation (2.35) is simplified as,

WDER) = [t xO) + 1, DEx(0) = oD (D~ [, D70 (0)] )

n

(t—a)*™/ (@)
+ oDy Z Ta—j+1) [ttha / (/’(f)]t
j=1

=a

= £, 50) + 0 D50 = o DF (D17 [, D70 ]) . 236)

Also, one can write

o .
WDEx(0) = 21, D (1) = uDf (aD;’ "‘[,ODa (n ‘”(p(t)]). (2.37)

Thus, ,, Dfx(t) = f(t,x(t)),t > a. It implies that x(¢) is a solution of (2.25). This
completes the proof.

Remark 2.6 The initial value problem of fractional differential equation can be
converted to an equivalent integral equation and it is easy for both theoretical and
numerical analysis.

2.3 Stability and Stabilization

Control system problems generally cater to two categories, first is the stabilization or
regulation and second is the tracking or servo. Stabilization problems, aim to design a
control system, known as stabilizer or a regulator, so that the state of the closed-loop
system will be stabilized around the desired point also known as an equilibrium point.
In tracking problems, the design objective is to construct a suitable controller, called
a tracker, so that the system output tracks a given time-varying reference trajectory.
When we see the tracking problem in the frame of difference between reference
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trajectory and trajectories generated by system, which is called error; then tracking
problem is converted into a stabilization problem of the error variable. Therefore, in
this book we restrict our analysis on stabilization problem.

2.3.1 Concept of Equilibrium Point

Equilibrium point of fractional order system is defined same as in integer order [4].
Consider the Riemann-Liouville fractional order autonomous system

RLpex(t) = f(t, %), (2.38)

with initial condition x (tp), where ¢ € (0 1), f : [t,, 0] X £ — R”" is piecewise
continuous in ¢ and locally Lipschitz in x on [#,, 00] x £, 2 € R" is a domain that
contains the equilibrium point x = 0.

Definition 2.7 The constant x¢ is an equilibrium point of the Riemann-Liouville
fractional dynamic system (2.38), if and only if

REDx0 = f(t, x0). (2.39)

Just like integer order, shifting of equilibrium point is valid for fractional order.
Without loss of generality any equilibrium point can be shifted to origin via a change
of variables. Suppose the equilibrium point for (2.38) is x # 0 and consider the
change of variable y = x — x. The «th order derivative of y is given by Riemann-
Liouville fractional order autonomous system

—o

AEDfy = KDY G =D = fm) — s
= fy D) - =g ), (2.40)

'l —a

g(,0) = 0 and in terms of the new variable y, the system has equilibrium at the
origin.

Another popular definition used to represent dynamical system governed by frac-
tional order is the one by Caputo. For defining the equilibrium point consider the
following Caputo fractional order autonomous system

CDIx(t) = f(t,x). (2.41)
with initial condition x (tp), where « € (0 1), f : [t,, 0] x £ — R" is piecewise

continuous in ¢ and locally Lipschitz in x on [¢,, co] X £, £ € R”" is a domain that
contains the equilibrium point x = 0.
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Definition 2.8 The constant xg is an equilibrium point of the Caputo fractional
dynamic system (2.41), if and only if f (¢, xg) = 0.

Remark 2.9 When o € (0 1), the Caputo fractional order system (2.41) has the
same equilibrium points as the integer-order system x(¢) = f (¢, x).

After defining the equilibrium point, the most fundamental aspect about any dynam-
ical system is the stability of system with respect to the equilibrium point. So in the
next subsection we review some of the fundamental definitions of stability. It can be
seen that these concepts are similar to those of integer order.

2.3.2 Fundamental of Stability

Definition 2.10 [5] The zero solution of ¢ Dfx(¢) = f (¢, x) is said to be stable if,
for any initial conditions x(0) € R", there exists § > 0 such that any solution x(¢)
of 0Dfx(t) = f (¢, x) satisfies ||x(¢)|| < 6 for all # > ty. Further, the zero solution
of fractional differential system is said to be asymptotically stable if, in addition to
being stable, ||x(¢)|| — 0 ast — oo.

Similarly L? ($2) stability of fractional order system with Riemann-Liouville deriv-
ative is defined as follows:

Definition 2.11 Suppose that 1 < p < oo and £ C [fg, 0o], then the solution x (¢)
of the fractional order differential system oDfx(¢) = f(¢,x) (where 0 < o < 1,
x(0) € R" is the initial condition , f € C([#y, c0) is a continuous positive function)
is called L7 (82) stability if

x(0) a—1 1 t a—1
x(r) = m(t —1f0)"  + T@ (t—0)" f(z, x(7))dr,

fo

belongs to L?($2).

Other more generalized stability concept similar to asymptotic stability will be dis-
cussed in the next subsection. It is found that it is more convenient to characterize
stability according to linear and non linear fractional order systems.

2.3.3 t=* Stability

Decay rate of a simple fractional order autonomous system is not the same as of
integer order. The components of the state variables in fractional order system have
anomalous decay, due to the fact that fractional order systems have memory fea-
tures. Asymptotic stability is also called 1 ¢ stability. Following definition has been
suggested by Sabatier et al. (2010) [6] regarding this proposition.
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Definition 2.12 The trajectories x () = 0 of the system d*x(¢)/dt* = f(t, x(t))
is 1 % asymptotic stable if the system is uniformly asymptotically stable and if there
is a positive real « such that:

Vix@Il, t <o IN (x(@), t <1o), 11(x(2), 1 < 1p)
suchthatVet > to ||[x(O)|| <N (t — 1) “. (2.42)

2.3.4 Mittag-Leffler Stability

Before defining the Mittag-Leffler stability, the following concepts are primarily
required.

Lemma 2.13 [4] Fractional integral of real valued function f(t,x) satisfies the
following inequality

gDy f @ x| < 4Dy N f @ x () (2.43)

where « > 0 and ||.|| denotes the arbitrary norm.

Proof Taking the arbitrary norm on the fractional order integral, one can write

1 t f(r,x(r))d
T
/) (-1«
10
L[ f e x)] .
= T
r@/] (-0

1o

= oD NS x @) (2.44)

s Dy f (2, x (@)l

This ends the proof.

Theorem 2.14 [4] If x = O is the equilibrium point of the system gD?‘x(t) =
f(t,x), f is Lipschitz by a constant L and is piecewise continuous with respect to
t, then the solution of the system satisfies ||x(t)|| < ||x(tp)|| Eq(L(t — t9)%), where
a e (0,1).

Proof Applying 4, D% f(t, x(1)) to both side ongf‘x(t) = f(t, x), one can write

x(t) = x(to) + 4Dy f (2, x(1)). (2.45)
Using norm-inequality, the above equation can be rewritten as,

lx @1 = Ix o)l < x() = x()Il < [ D7 f (1, 1)) ] - (2.46)
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Further, using Lipschitz condition and Lemma 2.13, one can write
[ D (x| < DT I f (. x @) < L o DT Il (2.47)
There exists a nonnegative function 7(¢) satisfying
lx@Il = llxto)l| = L 1 Dy Ix®l — (). (2.48)
By applying Laplace transform to (2.48), one can further write

llx (f0) IIs*~1 — 5%n (s)

lx ()] = ) (2.49)
Now applying Inverse Laplace transform to (2.49), which gives
@)1 = )l Ea(L(t = 10%) = n(0) % |17 Eao(LE =) | (2.50)
where * denotes the convolution operator and
7 B o(L(t — 10)*) = %ﬁm > 0. 2.51)
Using (2.50) and (2.51), one can write
lx @1 < llx @) I Ea (L(t — 10)%). (2.52)

This ends the proof.

The following Lemma is important for establishing the relation between Riemann-
Lioville and Caputo fractional derivative

Lemma 2.15 Suppose that a € (0, 1) and f(0) > 0 then
WDEF() < §DFF ). (253)
Proof One can write

fO)yr=*

d
WD FO = Q"D g 0= "D =

10

(2.54)
Now substituting the condition ¢ € (0,1) and f(0) > O, then ng‘ f@) <
RLDE f (t). This ends the proof.

Based on Theorem 2.14, the following stability condition has been proposed by Li
et al. (2009) [4], which has been termed as Mittag-Leffler stability.
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Definition 2.16 The solution of ;, Dfx(¢) = f(¢, x) is said to be Mittag-Leffler
stable if

e (@)]] < {mlx (1)1 Ea (=1t — 10)*)}" (2.55)

where E,(z) = Z/?io F(#kﬁ)’ to is the initial time ¢ € (0,1), A > 0, b >
0, m(0) = 0, m(x) > 0, and m(x) is locally Lipschitz on x € B € R" with
Lipschitz constant m.

Remark 2.17 Mittag-Leffler stability implies asymptotic stability.

2.3.5 Stability Using $2 Plane Analysis

For the simplicity let us assume that the following fractional order differential equa-
tion [7]

oDy x(t) = —ax(t) + bu(t), (2.56)

where x(¢) € R and u(¢) € R is the control input. It is assumed that all initial
conditions, or initialization functions, are zero. Then the Laplace transform of (2.56)
is given as

sYX(s) = —aX(s) +bU(s). (2.57)
System transfer of (2.56) is given as

_X(s) b

Gls) = U(s) s%+a’

(2.58)

Impulse response of (2.58)
As b is the constant, it can be assumed to be unity without any loss of generality.
Now expanding the right hand side of (2.58) about s = oo, one can write

oot L e @ 1§ 259
(S)_s“—i-a_s_"‘_sﬁ_‘_ﬁ_“_.“_s_“.o e (2.59)
Jj=

The inverse Laplace transform of (2.59), using the fact S% = { F(; l)}

2
g(t):g—l[i_i_i_a__...]

5o 520 g3
tc{—l at2a—l a2t3(x—l

“Tw Tew TG

4+ (2.60)
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Hence generalized impulse response of function is given as

Jrjo
g(t) =19~ ‘Z ;(]‘Zia) (2.61)

Unit step response of (2.58)
If the input function u(¢) is a unit step function, (2.58) can be written as

1 1
X =1 [ } . (2.62)

s* +a

Further, after rearranging (2.62)

X()_l/a[ ¢ i|=£|:l— - }:ﬁ—ﬂ. (2.63)

s | sY+a s s +a s s(s¥ +a)

For obtaining Inverse Laplace transform of the above equation, the following defin-
ition of Mittage Leffler function in summation form is needed

o0 k
X
E = _, 0. 2.64
@ (%) %F(MH) o> (2.64)
Assuming x = —at*, (2.64) becomes
0 k sko
—a)"t
Ey(—at®) = 0. 2.65
=3 L - aos
Taking Laplace transform of (2.65)
1 at® a’r’
LLE(—at®)} = &L -
{Ea(=at) [m) it  TA+2a) ]
1 a a’
=5 s T T (2.66)

or, equivalently
1 a a? 1 (—a)’
"%{Ea(_ata)}:;[l_s_a_‘_@_i_“-}ZE'E (S_‘J‘)

L (2.67)
_;|:s°‘+a:|' ’
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Using (2.67), the step response of the system can be obtained by taking the inverse
Laplace transform of (2.63), which is given as

1
x(t) = - [H(t) — Eq(—at®)], (2.68)

where H (t) is the Heaviside unit step function.

Stability using (2.58)
Perform the following conformal transformation of s

2 =s* (2.69)

Then (2.58) is transformed as

b 1
G(s) = . 2.70
(s) 12" 21a (2.70)

Using the above transformation, we will study the $2-plane poles. Once the time
domain responses are obtained corresponding to the $2-plane pole locations, their
behavior in new complex plane can be characterized.

For this, it is necessary to map the s-plane, along with the time-domain function
properties associated with each point, into the new complex $2-plane. For simplicity
assume that 0 < o < 1. Then (2.69) can be written as

2 =5 = (reje)a = r%el?, 2.71)

Using (2.71), itis p0551ble to map s-plane into the §2-plane. For the stability, mapping
of imaginary axis s = re®/7/2 is important. The image of this axis in the £-plane is

am
+j—

2=r% "2, (2.72)

which is the pair of lines at ¢ = M , where ¢ is the angle in £ plane and 2 = pe/?.

Thus, the right half of the s- plane maps into a wedge in the $2-plane of angle less

than +7 « degrees, that is the right half s-plane maps into [¢| < %, which is shown

in Fig. 2 1. Similar, kind of situation in the case of 1 < o < 2 i 1s which shown in

Fig.2.2.

Example Inductor terminated semi-infinite lossy line

Consider the system shown in Fig. 2.3, where the inductor is terminated on the lossy
line. The input to the system is voltage v; (¢) and output vo(¢) will be selected as the
terminal of the lossy line. Assume that the L = 1, then transfer function is expressed
as [7]
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Taking the inverse Laplace transformation, the above problem can be expressed in
time domain as

[

D7 vo(t) + vo(t) = vi(1), (2.74)

where all the initial conditions are assumed to be zero. One can also note the
following:

e Impulse response of the system is given as (2.61) by substituting « = 3/2

3 ( 1)/,3/2/
_ 1 172
w() =2 [3/2 1] § T3 (2.75)

e The step response of the system is given as (2.68) by substituting o = 3/2

_ 1
vo(t) = 27! [m] = H(t) — E3p[—1>?]. (2.76)

e For the stability of (2.73), let the transformation is taken as s1/2 = @. Then the
transfer function is given as

Vos) 1

G(s) = = . 2.77)
Vits) 23+1
Fig.2.1 O0<a <1 ja)"
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Fig. 2.3 Semi-infinite lossy line

The poles in the £2-plane is 2] = —1, £, = e+jTﬂ and 23 = e_an. Hence, all
the poles lie on the left of the instability wedge ¢ = £7 and the system is stable.
One can further note that instability wedge is calculated based on the mapping

1 ..
52 = £, therefore it is +7.

Linear matrix inequality plays a very important role in control theory for both
stability and stabilization of dynamical systems. In the next section, a brief review
of LMI formulation of the fractional order linear systems is given.
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2.4 A Brief Review on Linear Matrix Inequality (LMI) Stability
Conditions for LTI Fractional Order Systems

State space representation [8] of a fractional order linear time-invariant system is
given as

oDYx(t) = Ax(t) + Bu(t), x(0) = xo
y() =Cx(1) (2.78)

where x(t) € R", u(t) € R" and y(¢t) € R? are states, input and output vectors of
the system and A € R, B € R"",C € RP*" and 0 < o < 2 is the fractional
commensurate order and pair (A, B) is controllable.

It has been well established in literature that the controllability and observability
conditions of the continuous-time commensurate fractional order systems are same
as that of the integer order case [9]. Thus, the system (5.1) is controllable if the rank
of the controllability matrix

C=[B AB A’B --- A" 'B], (2.79)

is equal to n. Similarly, the system (5.1) is observable if the rank of the observability
matrix

C
CA

0o=| CA* | (2.80)

CA.nfl

Theorem 2.18 [6, 10] The system oDy x(t) = Ax(t) is asymptotically stable if the
following condition is satisfied

larg(eig(A))| > “7” 2.81)

where 0 < o < 2 and eig(A) are eigenvalues of matrix A.

Based on the mapping in §2 plane the following theorem has been proved for the
stability of linear time invariant fractional order system

Theorem 2.19 [11, 12] The fractional order linear time invariant system o D x (t) =
Ax(t) where 1 < o < 2, is t—% stable if and only if there exist a positive definite
Hermitian matrix P = P* > 0 such that

BPA+B*ATP <0, (2.82)
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where B =1+ j¢ and n, ¢ are defined from tan(5 — 0) = g with§ = (@ — 1)7.
Based on the above Theorem, the following lemma is recently derived.

Lemma 2.20 [13] The fractional order linear time invariant system oDyx(t) =
Ax(t) where 1 < a < 2, is stable (regarding input and output) if and only if the
following integer order system is stable

x(t) = (BA)x(2). (2.83)

where B =1+ j¢ and n, ¢ are defined from tan(5 — 0) = g and 6 = (a — 1)%.

Remark 2.21 The above lemma establishes the relationship of the LMI inequality
(2.82) with an integer order linear system (2.83) which ensures the stability of the
linear time invariant fractional order system o D{x(t) = Ax(t). Therefore (2.83) is
nothing but a shadow (equivalent) system of ¢ Dy*x(t) = Ax(¢) from the stability
point of view.

The above mentioned stability condition can be used to illustrate the state feedback
control design for the fractional system (5.1). Let us consider a stabilizing control of
the form u = K x. The closed loop system becomes

oDfx(t) = (A+ BK)x(t) (2.84)

The necessary and sufficient condition for stability of system (2.84), according to
Lemma (2.20) and Theorem (2.19),

BP(A+ BK)+ p*(A+BK)'P < —R Vx e R", (2.85)

where P and R are the symmetric positive definite matrices.
Following remark is necessary for checking the negative definiteness of complex
Hermitian matrix H.

Remark 2.22 [11] A complex Hermitian matrix H is negative definite(H < 0), if
and only if

Re(H) Im(H)

|:—Im(H) Re(H)i| <0, (2.86)

where Re(H) and Im(H) are the real and imaginary part of Hermitian matrix H
respectively.

Theorem 2.23 [11, 12] Thefractional order linear time invariant system o DY x (t) =
Ax(t) where 1 < a < 2, is t—% asymptotically stable if and only if there exist a
positive symmetric definite matrix P = PT > 0, P € R"™" such that
(ATP+ PA)sin@%) (ATP — PA)cos(a%)
T 7 T . E 0. (2.87)
(PA— A P)cos(az) (A" P+ PA)sin(az)
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Proof The system oDy = Ax(t) is t~* asymptotically stable if the following con-
dition is satisfied
am
larg(2)| > -

where 0 < o < 2 and A are eigenvalues of the matrix A. Now define following
regions

e rotate A by an angles (¢ — )5
Rl = {,\ €C:Re (,\ef'(“—“%) < 0} , (2.88)

and
e rotate A by an angles (1 — )75

R2 = {,\ eC:Re (,\ef“—“)%) < o} , (2.89)

where X belongsto R = R1+ R2, C: represents complex number and Re: represents
real part. As for some A € spec(A), conjugate 1* € spec(A), and as R1 and R2 are
symmetric with respect to the real axis of the complex plane.

Ax; € spec(A), A1 € R1 & Jry € spec(A), Ly € R2, (2.90)

hence only relation (2.89) is necessary to derive the stability. Also, (2.89) can be
written as

rel1=0F | p*—id-0F _
b4 . b4
= A (cos ((1 — oz)z) + jsin ((1 — o;)E))

e (cos ((a - 1)%) + jsin ((a - 1)%)) <0, (2.91)

* . .
because for any complex number z, Re(z) = ”21 . From, above relation is true (see

Boyd 1994 [14]) if and only if 3P > 0, P € R™"*" the following LMI is feasible

T . s AT p s
(A P+PA)51n(a2)+](A P PA)cos(az)SO. (2.92)

As an LMI involving real term can be derived from a complex one, the problem
becomes:

(ATP+ PA)sin(@%) (ATP — PA)cos(@%) 0
(PA—ATP)cos(@%) (ATP + PA)sin(e%) '

When 0 < o < 1, the stability domain is not convex. Due to the absence of the
convexity property, the LMI conditions can not be derived directly as in the case of
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integer order or fractional order with 1 < o < 2. However, in literature different
approaches are suggested to by pass this problem and LMI condition are derived indi-
rectly. Some of the well recognized results which exist in literature are discussed here.

Theorem 2.24 The fractional order linear time invariant system o Df x(t) = Ax(t)
where 0 < o < 1, is t—% asymptotically stable if and only if there exist positive
definite Hermitian matrices Hy = H{' € C**" and Hy = H} € C"*" such that

FHIAT +rAH, + rHhbAT +FAH, < 0, (2.93)

. g
where r = e/ (177

Theorem 2.25 [15] The fractional order linear time invariant system oD{x(t) =
Ax(t) where 0 < a < 1, is asymptotically stable if and only if there exist two real
positive symmetric definite matrices Py1 € R™", k = 1, 2, and two skew-symmetric
matrices Pyy € R"™" k = 1, 2 such that

2 2
D> sym{o; @ (AP} <0, (2.94)
i=1 j=1
P P Py Py
[—Plz Plli| |:—P22 P21i| >0, (2.95)
where
_ [ sin(a%) —cos («3) [ cos(aF) sin(a3)
On = [cos (a%) sin (a%) » On= sin (a%) cos (a%)
o _ [ sin(@%) cos(aF) o _ [—cos(aF) sin(aF)
O [—cos (cx%) sin (a%) » On= sin (a%) —cos (a%) , (296)

where Sym{X} denotes the expression X + X and ® is the Kronecker product of
two matrices.

Proof Let us define Py = Re(Hy), Py, = Re(Hy), k =1, 2. Since Py — ijE =
Pu + jPu, ¢/ = cos(®) + jsin(®) and e/ = cos(9) — jsin(9), using
Theorem 2.24 one can write

Pi1+jP12 >0, Pyy+jPn >0, (2.97)
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which is equivalent to (2.95) and

(cos@ + jsin@)(Py; — jPL)AT + (cos® — jsin@)A(Pyy + jPi2)
4 (cost — jsin@)(Pa; — jP5)AT + (cos@ + jsin0)A(Py + jP)
<0 (2.98)

where 6 = (1 — oc)%. Further, (2.98) can be written as

Sym {APjjcosé + APjpsinf + APjpcosd — APy sinf} + j(PllA—r — APq1)siné
+ j(=PLAT 4 AP2)cosO + j(—PpA™ T 4+ APyy)sing + j(—PpHAT
+ APy)cosf <0, (2.99)

which can be further written as

Sym [AP11 sin (a%) + APppcos (a%)] + Sym [AP21 sin (a%) — APy cos (oz%)]
+j(P1 AT — APy} cos (a%) + j(APy — PLAT ) sin (a%)

4 j(PyAT — Py AT) cos (a%) + j(APy — LA )sin ((x%) <o, (2.100)

this is equivalent to (2.94). This ends the proof.

One more LMI based stability theorem for 0 < o < 1 is proposed by Sabatier
etal.(2010) [6] based on the equivalence of fractional order system with integer order
and by analyzing the geometric property of stability domain, which is stated as:

Theorem 2.26 The fractional order linear time invariant system o D{ x(t) = Ax(t)
where 0 < o < 1, is asymptotically stable if and only if there exists a positive definite
matrix P € S, where S denotes the set of symmetric matrices, such that

(_ (_A)ﬁ)TP-FP(— (—A)ﬁ) <0. (2.101)

A Large class of the dynamical systems used for practical applications, are nonlinear
in nature. So stability and stabilization of this class of the systems are also very
important. In the next subsection a brief review of the stability of fractional order
nonlinear system based on the second method of Lyapunov is discussed.
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2.4.1 A Brief Review of the Stability of Nonlinear Fractional
Order Systems Based on Lyapunov Function

It is well known fact that Lyapunov’s second method provides a platform to analyze
the stability of the system without solving explicitly the differential equations. This
analysis is recently extended by the Li et al. [16] for the fractional order system also.
While obtaining the solution of fractional order differential equation, it is seen that it
contains more generalized function that is called Mittag-Leffler function, rather than
the exponential function (in case of integer order differential equation). Therefore,
more generalized stability concept, which is called Mittag-Leffler stability is defined
for the fractional order. Following Theorems are reported in Li et al. [16].

Theorem 2.27 Let x = 0 be an equilibrium point for the autonomous fractional-
order system
0Dy x (1) = f(t, x), (2.102)

and D C R" be a domain containing the origin. Assume that there exist a Lyapunov
candidate V (t, x(t)) : [0,00) x D — R, which is a continuously differentiable
function and locally Lipschitz with respect to x such that

arllx||* < V(. x) < o lx]|
§ DIV (t, x) < —azlx||*, (2.103)
where t > 0, x € D, o € (0,1), ay, a2, a3, &, a and b are arbitrary positive

constants. Then x = 0 is Mittag-Leffler stable. If the assumptions hold globally on
R", then x = 0 is globally Mittag-Leffler stable.

Proof Using (2.103), one can write
C no a3
o DIVt x) < _oz_zv(t’ X). (2.104)
It is always possible to find a function 7 (f), such that
C na a3
o DIV, x)+n() = —a—zV(t,x). (2.105)
After taking Laplace transform,

SV (s) = V(O0)s! 4 5(s) = —Z—3V(s)
2

V(0)s*~" = n(s)

o
s“—i—a—;

Vi(s) = , (2.106)

where V(0) = V(0,x(0)) and V(s) = Z{V(t,x)}. If x(0) = 0 = V(0) = 0, the
solution of (6.2) is x = 0. For the case when x(0) # 0 = V(0) > 0, the inverse
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Laplace of (2.106) is given as

V) = V(O)E, (—5#’) — () % [t“—‘Ea,o, (—%z”)} . (2.107)
a

o2

Since 1%~ > 0 and Eq.o (—g—;za) > 0, it follows from (2.107) that

V() < V(0)E, (—“-%“) . (2.108)
(2%}

After substitution of (2.108) into (2.103)

Ix(@)| < [%E (—%t“)]a, (2.109)

where V(IO) > 0 for x(0) # 0. Also, x(0) = 0 only when V(O) = 0, because V (¢, x)
is locally Lipschitz with respect to x. Further, using (2. 109) itis concluded that (6.2)
is Mittag-Leffler stable.

When system (6.2) is represented using Riemann-Liouville definition, then fol-
lowing inequality is required which is already discussed in (2.53)

DV () < REDEV (1) < —asllx ]|, (2.110)

which further implies

1

()]l < [&O)E (—@ta)}” .
o1 an

Similar kind of proof can be extended for these two theorems also.

This ends the proof.

Theorem 2.28 [4] Let x = 0 be an equilibrium point for (either Caputo or Riemann-
Liouville) autonomous fractional-order system (6.2), where f(t,x) satisfies the
Lipschitz condition with Lipschitz constant L > 0 and o € (0, 1). Assume that
there exist a Lyapunov candidate V (t, x(t)) satisfying

arllx||* < V(t, x) < azllx]|
V(t,x) < —asl|x]], (2.111)
where a1, oy, a3 and a are positive constants and ||.|| denotes an arbitrary norm.
Then the equilibrium point of the system (6.2) is Mittag-Leffer stable.

Theorem 2.29 [4] Let x = 0 be an equilibrium point for the autonomous fractional-
order system (6.2). Assume that there exists a Lyapunov function V (t, x(t)) and
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class-k functions o1 (i = 1,2, 3) satisfying

ar(lxI) < V, x) < ea(lIx]])
§DYV (1, x) < —as(|Ix]). 2.112)

Then the system (6.2) is asymptotically stable.

In general fractional calculus offers the following advantages to control
engineering.

e adequate modeling of control plant’s dynamic features
e cffective robust control design
e reasonable realization by approximation.

A brief survey has been already presented in the initial part of the book about the
first feature. Second feature is actually the main concern of this monograph and the
last point is discussed in the next section.

2.5 Realization Issue of Fractional-Order Controller

It is obvious from the definition of fractional order operators that, to realize fractional
order controllers perfectly, all the past input should be memorized. However, this is
not possible in real scenario. Therefore, proper approximation by finite differential or
difference equation must be introduced. There are many approximation methods exist
in the literature. But, the most commonly used discretization method of a fractional-
order controller is termed as short memory principle [2]. This discretization is based
on the philosophy that, for the Griinwald-Letnikov definition, the values of the bino-
mial coefficients near “starting point” t = 0 are small enough to be neglected or
“forgotten” for large 7. Therefore short memory principle takes into account the
behavior of f(¢) only in “recent past”, i.e., in the interval [t — L, t], where L is the
length of “memory”

wDF ()~ DY f(t), t >0+ L, a > 0. (2.113)

Based on approximation of the time increment /4 through the sampling time 7', the
discrete equivalent of the fractional-order « derivative is given by

Z{D*f()} ~ %chz_j F(2), 2.114)
=0

where F(z) = Z{f(t)} m = [L/T] and the coefficients c; are

co=1
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i« j—a—1 .

The following theorem is useful for showing the reasonability of the above approx-
imation.

Theorem 2.30 When the Riemann-Liouville (or the Griinwald-Letnikoff) definition
isused, if | f(t)| < M, Nt > 1y, then the error ¢ committed by approximation (2.113)
is bounded by

M
le] < —————. (2.116)
LY\ (1 — )]
Proof When a < 0,
lel < | DEf (1) — - D f ()] = |1 DI £ (1)]. 2.117)

t—L

t—L
(t — 7:)70571 (t — .L,)fafl
le] < /Wf(r)dr < /WMCJ‘C
0]

fo

M 1 t—L
F( a) |:—(t — 'L') iIIO =

M[(t —19)~% — L]
' —a)

(2.118)

Note This is not a very useful bound, because it grows with ¢ — 7o and can become
very large. Butif o > 0

4l 4l
o] < ‘d a0 D0 = g DT @)
drel
‘ T D @) (2.119)
Using (2.118)
ol < dl Mt —tg)~FTel — [~ a+[a1] (2.120)
=il rd—a+lal]) '
Note that
r(+1
oD% (—Hﬂ*a, reRY, A¢Z . (2.121)
Fh—a+1)

Using (2.121), one can write
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Mt — 1) (1 — M
le| < (¢ = f0) 710~ + [er]) - . (2.122)
Fd—a+fa]l =TaDIA —a+TaD)| (=101 —-0a)
Since ¢ — fo > 0 which implies (t — 19)* > L* = == < 7
M M
(2.123)

le] < < .
(t—1)*I'd—a) L*T'(l —a)
This ends the proof.

Remark 2.31 The above theorem is known as short memory principle, because
(2.113) corresponds to a shortening of the memory of operator D, which remembers
nothing older than L (thereby called memory length).

Corollary 2.32 Thus to ensure the absolute value of error ¢ should not be larger
than a certain value, the memory length in approximation (2.113) must satisfy

Mo

2.6 A Brief Review of Fractional Order PID Control

History of fractional order control started from the work of Bode [17, 18]. He formu-
lated a problem to design a feedback amplifier to devise a feedback loop, so that the
performance of the close-loop is invariant to changes in the amplifier gain. He gave
a simple and elegant solution for this specified problem, which is termed as Bode’s
ideal loop transfer function, whose Nyquist plot is a straight line through the origin
giving a phase margin invariant to gain changes. The Bode’s ideal transfer function
is represented as G(s) = (wo/s)%, where 0 < o < 1, wq is the gain crossover
frequency and the constant phase margin is ¢,, = 7 — %-.

Above frequency characteristic is very interesting in term of robustness of the
system to parameter changes or uncertainties. In fact, the fractional order integrator
can be used as an alternative for more robust reference system for control. The
frequency characteristics and the transient response of the non-integer order integral
and its application to the control system was introduced by Manabe [19] and more
recently by Barbosa et al. [20].

Analysis and design of controller for linear and nonlinear fractional order dynam-
ical systems are easy and more efficient in time domain. Because, frequency domain
approach is not easily extendable for the nonlinear or linear fractional order systems
with disturbances which occurs in most of the cases. Several time design based con-
troller design approaches are existing in the literature for the fractional order system
as that for integer order system. One of the most successful controllers which is
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popular and useful in the practical industries is fractional order PID. The fractional
order PID controller, namely the PI*D*, which is the generalization of the clas-
sical PID controller is proposed by Podlubny [21] and Oustaloup [22-24]. In their
series of papers and books Podlubny [2] and Oustaloup [22—24] successfully used the
fractional order controller to develop the CRONE-controller (Commande Robuste
d’Ordre Non Entrier controller), which is an interesting example of application of
fractional calculus in control. He also demonstrated the superiority of fractional
order PI* D" controller in comparison to the classical PID controller both for the
fractional order and integer order dynamical systems.

Fractional order dynamical system can be represented in the time domain by the
following differential equation

D an- DU |y = £(0), (2.125)

J=0

where ap,—j > ay—j—1(j =0,1,2,---,n) € R, ay—j are arbitrary constants, and
D% = g Df denotes Caputo’s fractional-order derivative of order «. The fractional-
order transfer function for the system represented as (2.125) is given by

-1

n
Gu(s)=| D an_js | . (2.126)
=0

The unit-impulse response y; (¢) of the system is given as follows
Yit) = L7 HGu(9)) = ga(0), (2.127)

and the unit-step response function is given by the integral of the g, (¢) so that

t

ys(?) =/gn(f)df- (2.128)

0

2.6.1 Brief Overview of Fractional Order Integral Action

Following main effects are observed in case of integral actions

e it makes the system response slower

e decreases the system relative stability

e climinates the steady state error for those inputs, for which the system had a finite
error.

The effects of PID actions of a controller are analyzed using complex plane, time
domain and frequncy domain methods. Similarly the fractional PID controller can be
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analyzed using these same techniques. For example consider the close loop system
as shown in Fig.2.4.
2.6.1.1 Complex Plane Analysis
In the complex plane, root locus of the system is displaced towards the right half
plane after applying the integral action. Mathematically, the root locus of the system
with control action is governed by

1+ Ks*G(s) =0 (2.129)
Its magnitude and phase is given as

1

K| = ——
ls*1G (s)]
arg[s*G(s)] = @n+ D, n=0,+1,£2,.... (2.130)
s = |s|e? can be written as
5% = |s|%e/Y0, (2.131)

The conditions of phase can be further expressed as
arg[s“G(s)] = arg[G(s)] + a0 = 2n+ D, n=0,+1,£2,.... (2.132)

Therefore, it is obvious that, by choosing o € (—1, 0), the root locus is displaced
towards the right half plane.

R(s)
+

E(s) Y (s)

@ Ks* | G(s)

Fig. 2.4 Fractional integral action « € (—1, 0)
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2.6.2 Frequency Domain Analysis

In frequency domain, a pole at zero adds —20dB/dec in the magnitude curve and
decreases the phase plot by 7 /2 rad. The effect of fractional order integral is explained
as follows.

The magnitude curve in the frequency domain is given as

20log [s“G(s)]S:jw = 20log|G (jw)| + 20alogw (2.133)
and the phase plot is given by
b
arg [s“G(s)]S:jw = arg|G(s)| + o (2.134)

Therefore, by varying the value of « between —1 and 0, it is possible to introduce a
constant increment in the slope of the magnitude curve by introducing a fractional
order integrator, which varies between —20 and 0 dB/dec. Similarly, a constant delay
in phase plot, which varies between —7 and 0 rad.

2.6.3 Time Domain Analysis

By introducing a fractional order integrator, there are clear cut effects over the tran-
sient response, which consists of the decrease in the rise time, increase of the settling
time and the overshoot. Mathematically, this effects can be studied considering the
error signal of the following form

n
e(t) = > (=DIup(t — jT). j=0.1,2,....n (2.135)
j=0
where u((¢) represents the unit step input. Its Laplace equivalent is given as
n —JjTs

E(s) =D (-1

j=0

(2.136)

Therefore, the control action can be expressed as

u(t) = 2 U (s))

n »—=JTs
=y KZ(—l)f N

J=0

-
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" —1/
=KZ%(t—jT)—“uo(r—jT) (2.137)
j=0

It is clear that the control action over the error signal, vary between the effects of
a proportional action & = 0 (square signal) and an integral action « = —1 (straight
line curve). For the intermediate value of «, the control action increases for a constant
error, which results in the elimination of the steady state error and decrease when
error is zero, resulting a more stable system.

2.6.4 Brief Overview of Fractional Order Derivative Action

Same as fractional integral action, the derivative action of fractional order controller
can be analyze in complex domain, frequency domain and time domain. For example
consider the close loop system as shown in Fig.2.5.

2.6.5 Complex Plane Analysis
In the complex plane, root locus of the system is displaced towards the left half plane
after applying the derivative action.

2.6.6 Frequency Domain Analysis

In frequency domain, a derivative action of a controller adds a slope of 420 db/dec
in the magnitude plot and adds /2 radian in phase plot. Similarly in its fractional
counter part, fractional derivative can add a slope of 0-20 db/dec, when f is varied.
Similarly, a constant delay in phase plot, which varies between 0 and 7 radian.

R(s E(s Y(s
<>+® I PP I (s)

Fig. 2.5 Fractional derivative action 8 € (0, 1)
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2.6.7 Time Domain Analysis

In the time domain, a decrease in the overshoot and the settling time is observed.
This can be studied using the trapezoidal error signal given as

e(t) = tug(t) — t(t — TYug(t — T) — t(t — 2T)ug(t — 2T) + t(t — 3T)ug(t — 3T),
(2.138)

where uq represents the unit step input. The laplace transform of (2.138) can be
written as

efTs e*ZTs e*3Ts

(2.139)

2 2

1
E(s) = — —
()= >

N N s

Therefore, the control action can be expressed as

u(t) =2 U (s)}

1 efTs e*2Ts 673TS
— g1 _ _ _

- F(ZK— 8) {IFB”O(” — (0 =T Puot = T) = (¢t = 27) Pu(r — 2T)}
K s
T re=p {(r —37) Puo(t — 3T)} : (2.140)

The effects of the fractional order control over the error signal vary between the
effects of a proportional action 8 = 0 (trapezoidal signal) and a derivative action
B = 1 (square signal).

2.6.8 The Fractional Order PI® DB Controller

The fractional order P 1% D# controller is the generalization of the integer order PID
controller. The transfer function of PI% D? controller is defined as the ratio of the
controller output U (s) and error E(s) as

G(is)=——=Kp+Kis*+Kps?, o B>0. (2.141)

U(s)
E(s)

Output u(r) = £~ {U(s)}, in the time domain as

u(t) = Kpe(t) + Ky D™ %e(t) + KpDPe(r), (2.142)
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It is quite natural to conclude that by introducing more general control actions of the
form PI1%DP, one could achieve more satisfactory performances between positive
and negative effects of classical PID, and combining the fractional order actions one

could develop more powerful and flexible design methods to satisfy the controlled
system specifications.

2.6.9 Unit-Impulse and Unit-Step Response of the some Simple
Transfer Function

Example Consider the following transfer function
G(s) = (aos® +bo) ', >0, (2.143)

The unit-impulse and unit-step response of (2.143) are given as follows

W) = g(0) = 27 {ans® +bo) ' = Lt (t, b, oz) a4
agn ap
t
1 bo
ys(@) = /g(t) = —& (t, ——a, 0+ 1) . (2.145)
ap a
0

where, & (¢, z; «, B) is defined in terms of Mittage-Leffler’s function E, g(x) as

gtz p) =1"PES %), m=0,1,...
ED ) = L By p)
a.p _d j o,f s

x
00 i
Eqp(x) = —, a>0, §>0. (2.1406)
! ;0 r@j+p)
and the Laplace transfer is
a,p 0 - (s* F ag)m 1 :

The function &; satisfies the property

oD/ém (t, 230, B) =& (t, 20, —n), B >n. (2.148)
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Example Consider the following transfer function

1

G(s) = (Cl()sa + bosﬂ + CO)

, a>p>0 (2.149)

The fractional differential equation in the time domain is expressed as
aoy @ (1) + boy'P (1) + cy(t) = f() (2.150)
with the following initial conditions
y(0) =y =y =0. (2.151)

The unit-impulse and unit-step response of (2.149) are given as follows

yi(t) = g(t) = L7 HG ()}, (2.152)
t 1 <& (=1)/ J b
= [s0=—3 5 (C—O) g (r,—(’;a—ﬁ,a+ﬁj+1).
) aop =0 J: ap ap
(2.153)

2.7 Summary

This chapter discussed the solution issues of fractional differential equations and
Mittag-Leffler function. Along this a brief summary of the notation of stability for
the fractional order system are also presented. Linear matrix inequality (LMI) is the
one of the most important tool to analyzed the stability and stabilization problem in
control theory, this chapter present a brief review on that also. Ideal realization of the
fractional order controller requires infinite memory, which is not practically feasible.
Therefore, concept of short memory principle comes into picture. This issue is also
discussed in this Chapter. Finally, fractional order PID and its benefits over classical
PID control is presented.
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