Chapter 2
The Psychology of Agile Team Leadership

For modern managers, one has to adopt a new philosophy, or psychology, for dealing
with agile development teams. While process is important to ensure the team delivers
quality software that meets customer requirements, it is important to understand that
the Agile Method is geared around more of an informal approach to management,
while putting more time, effort, and emphasis on flexibility, communication, and
transparency between team members and between the team and management. It pro-
motes an environment of less control by managers and more facilitation by manag-
ers. The role of the manager takes on a new psychological role, one of removing
roadblocks, encouraging openness and communication, and keeping track of the
change-driven environment to ensure that the overall product meets in goals and
requirements, while not putting too much control on the ebb and flow of the agile
development process. Change is no longer wrong, the lack of ability to change is now
wrong. Here we discuss the new “soft” people skills required for modern managers,
and how they add/detract from modern agile development. How to recognize the
skills, how to utilize the skills, and how to build teams with the right “mix” of person-
alities and soft people skills for effective and efficient development efforts [71].

2.1 Individuals over Process and Tools

Companies have spent decades designing, creating, implementing, and executing
tools required to bid and manage development projects. One major category of tools
is prediction tools like CiteSeer® and COCOMO® (Constructive Cost Model) that
have been used since the late 1900s to provide “objective” cost bids for software
development. A later version of COCOMO, COSYSMO® (Constructive Systems
Engineering Model), attempts to provide objective systems engineering bids also.
All of them are based on the antiquated notion of Software Lines of Code (SLOC).
Productivity metrics are all based on the lines of code written/unit time. They try to
estimate the life-cycle cost of software, including designing, coding, testing,

© Springer International Publishing Switzerland 2015 9
J.A. Crowder, S. Friess, Agile Project Management: Managing for Success,
DOI 10.1007/978-3-319-09018-4_2

10 2 The Psychology of Agile Team Leadership

90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00% -

m Agile

m Traditional

1 2 3

Fig. 2.1 Efficiencies between traditional and agile development

bug-fixes, and maintenance of the software. But ultimately it comes down to
Software Lines of Code/Month (SLOC/Month). While many will claim these are
objective tools for helping to determine the staff loading necessary for a software/
systems development project. In each tool there are dozens of parameters which are
input by the operator, each of which has an effect on the outcome of the cost model.
Parameters like efficiency (average SLOC/Month), familiarity with the software
language used, average experience level, etc., can be manipulated, and usually are,
to arrive at the answer that was determined before the prediction tool was used [43].
Many other tools are utilized to measure the performance (cost and schedule) of
projects once they are in execution. These measurement tools measure how the
project is progressing against its preestablished cost and schedule profile, deter-
mined in the planning phase of the program/project. What none of these tools, cost
estimation, performance metrics tools, etc., take into account is the actual agile team
and their dynamics. The makeup of the each agile team and the facilitation of each
team is as important, if not more important, than the initial planning of the project.
If the Agile Manager/Leader is not cognizant of the skills necessary not to just write
code, but to work cohesively as an agile team, then success is as random as how the
teams were chosen (usually by who is available at the time). Grabbing the available
software engineers, throwing them randomly into teams, and sending them off to do
good agile things will usually result in abject failure of the project, or at least seri-
ously reduced efficiency. This may sound like an extreme example, but you would
be surprised how many agile development projects are staffed in just this fashion.
Many managers point to the following graph (Fig. 2.1) as the reasons not to go to
the expense of changing all their processes to accommodate agile development.
While in each category agile development produces a higher efficiency than tradi-
tional software development methods, the increase is not as dramatic as the promises
made by agile advocates and zealots. Classical managers find this graph disturbing
and feel smugly justified in their classical software development/execution/control
methods. This is especially true for large teams. The data for this graph was taken from

2.1 Individuals over Process and Tools 11

Fig. 2.2 Four main components of the agile development process

50 of each size project, both agile and traditional. What are not taken into illustrated
by this graph are the management methods utilized across the traditional vs. agile
programs/projects: the team makeup, how the teams were chosen, or any discussion of
the types of issues that were encountered during the development process. And while
it’s clear that under any team size agile development has increased efficiency over
traditional methods, and, as expected, smaller team sizes produce better results with
agile methods, understanding the true nature of the agile team process and applying
the psychology of agile management can achieve even greater efficiencies.

Placing the emphasis on the individuals in the agile development teams rather
than on process or tools means understanding people, recognizing their strengths
(not only in terms of programming skills, but also in terms of soft people skills), and
understanding the differences between people of different backgrounds and how the
differences affect team dynamics. This is the first generation where it is possible to
have 60-year-old software engineers in the same agile development teams with soft-
ware engineers in their early 20s. The generational differences in perspectives can
severely hamper team dynamics, and therefore team efficiencies will suffer greatly
if they are not dealt with appropriately and the team members are not trained in how
to function in an agile development team. All members of the teams need to be able
to understand and come to grips with four main components of agile development,
illustrated below in Fig. 2.2. While there are other components that are important,

12 2 The Psychology of Agile Team Leadership

without a good handle and agreement on these, agile development teams are in
trouble from the start. These and other issues relating to team dynamics will be
explored in Chap. 3.

As explained, Fig. 2.2 represents four of the major components of the Agile
Development Process that must be embraced by the agile development team in
order to have a successful and efficient development process. As important are the
skills, or philosophies, that the manager of the program/project must embrace and
practice in order for the teams to be able to function in an agile environment and
have the best chance for success. Figure 1.4 provided a high-level look at the skills
of the effective agile manager/leader. The descriptions of these skills are:

1. Effective Communicator: The effective communicator fosters and increases
trust, is transparent, considers cultural differences, is able to be flexible in deliv-
ery of communications, encourages autonomy and role models, exudes confi-
dence to solve problems and handle whatever comes up, and has the courage
to admit when they are not sure and willingness to find out. They are willing to
work side by side versus competitive with followers. They have the ability to
communicate clear professional identity and integrity, their values are clear, and
so are their expectations. The effective communicator communicates congruence
with values and goals, as well as being a role model of ethical and culturally
sensitive behavior and values.

2. Diplomat: The diplomat considers the impacts on all stakeholders and how to
follow up with all those affected, even if it is delegated. There is willingness to
consult cultural experts.

3. Effective Listener: The effective listener checks that they understand the mean-
ing being portrayed, and goes with an idea even if they disagree until the whole
idea is expressed and the originator can think through the complete thoughts
with the leader.

4. Analytical Thinker: The analytical thinker must be able to see the forest and the
trees. The analytical thinking manager/leader must be able to anticipate out-
comes and problems, and explore how they might anticipate handling them,
walking through possible solutions. They must initiate Professional Development
of team members. They think about the how, not just the what-ifs.

2.2 The Agile Manager: Establishing Agile Goals

For the effective agile project/program manager, it is crucial early on to establish
goals and objectives that establish the atmosphere for each sprint development team.
Understanding how much independence each developer is allowed, how much inter-
dependence each team member and each team should expect, and creating an envi-
ronment that supports the agile development style will provide your teams with the
best chance for success. Below is a list of agile team characteristics and constraints
that must be defined in order for the teams to establish a business or development

http://dx.doi.org/10.1007/978-3-319-09018-4_3
http://dx.doi.org/10.1007/978-3-319-09018-4_1#Fig1

2.2 The Agile Manager: Establishing Agile Goals 13

“rhythm” throughout the agile development cycle for the program/project. Each will
be explained in detail in its own section, but general definitions are given below:

1. Define and Create Independence: Independence is something many developers
crave. In order for agile development to be successful, there must be a large
degree of independence and need to feel an atmosphere of empowerment, where
the developers are free to create and code the capabilities laid out during the
planning phase of each sprint. This requires a level of trust. Trust that the devel-
opers and the leader all have stakeholders in mind. Trust that the developer is
working toward the end product [23]. Empowerment at the organizational level
provides structure and clear expectations [17]. At the individual level it allows
for creativity. Independence means having a voice and yet operating under com-
pany structure of policies and procedures. Independence is also a sense of know-
ing that the developer is good and what they do. There is no need to check in too
frequently with the leader, but enough to keep the teamwork cohesive.

2. Define and Create Interdependence: While independence is a desired and nec-
essary atmosphere for agile teams, the agile manager must also establish the
boundaries where individual developers, and development teams, must be inter-
dependent on each other, given that the goal is to create an integrated, whole
system, not just independent parts. Interdependence is being able to rely on team
members [16]. The end goal will require a level of commitment from each per-
son with a common mission in mind. The trust that all individuals on the team
have all stakeholders in mind. This gets the whole team to the common goal and
reduces each member motivated solely for their own end goal.

3. Establish Overall, Individual, and Team Goals and Objectives: setting the
project/program overall goals, team goals, and individual goals and objectives up
front and at the beginning of each sprint helps each team and individual team
member to work success at all levels of the program/project. This can help to
identify strengths of individuals so that the team can use its assets to their highest
production. This also allows room for individual development and growth along
with a place for passions. This also sets up clear expectations, say, of the overall
and team goals. There may be some individual development that is between the
leader and the developer that stays between them. This would also build individual
trust between members of the team and between the leader and the developers.

4. Establish Self-Organization Concepts: self-organizing teams is one of the holy
grails of agile development teams. However, self-organization is sometimes a
myth, mostly because teams are not trained into how to self-organize. People do
not just inherently self-organize well. If not trained, the stronger personalities
will always run the teams, whether they are the best candidates or not [24]. Self-
organization can be nearly impossible when there are very structured people
coupled with not-so-structured people. There may be some work that the leader
can do to promote self-organization. Part of that is opening communication,
building dyads, calling behavior what it is, and being transparent so that others
will follow. It may be helpful for team members to get to know strengths of other
members and how each member can be helpful to each individual.

14 2 The Psychology of Agile Team Leadership

5. Establish Feedback and Collaboration Timelines and Objectives: given the
loose structure and nature of agile development, feedback early and often is cru-
cial to allowing the teams to adapt to changing requirements or development
environments. Also, customer collaboration and feedback at each level in the
development allows the teams to adjust and vector their development efforts,
requirements, etc., to match customer expectations at all points in the develop-
ment cycle. Feedback timelines can increase trust and clarify all expectations. It
is nice to know when you need to change a direction, when you need to change
it, instead of later when you had already put so much work into the project. The
more feedback is modeled and practiced, the more natural it becomes and
becomes more automatic. This builds on the independence and interdependence
of the team and individual stakeholders.

6. Establish Stable Sprint Team Membership: choosing the right teams is impor-
tant for success in an agile development program/project. Creating teams that are
not volatile (changing members often) is essential to continued success across
multiple sprints. If the teams constantly have to integrate new members, effi-
ciency will suffer greatly. New expectations and explanations will take up much
time that could be used for developing. A trusting team can be an efficient team.
The more often it changes the more work needs to be done to build the trust.
There may be increased commitment from those that work on a cohesive team
with high trust levels and knowledge of one another [18].

7. Establish Team’s Ability to Challenge and Question Sprints: if the teams are
going to be allowed individual and team empowerment, then they must be
allowed to challenge and question sprint capabilities and content across the
development cycle. Forcing solutions on the teams fosters resentment and a lack
of commitment to the program/project. If you’ve built the right team, you should
listen to them. It seems more productive to work on something that makes sense
to you, instead of handed down by others. The ability to challenge and question
will lead to better understanding and more commitment to the end goal.

8. Establish an Environment of Mentoring, Learning, and Creativity: invari-
ably, teams are composed of a combination of experience levels. This provides
an excellent atmosphere of mentoring and learning, if the agile manager allows
this. This must be built into the sprint schedules, understanding that an atmo-
sphere of mentoring, learning, and creativity will increase efficiencies as the
team progresses, not just on this project, but on future projects as well, as the
team members learn from each other. Keep in mind that experienced developers
can learn from junior developer too, as the more junior developer may have
learned techniques and skills that were not previously available to more senior
developers. The learning environment promotes growth. An environment that
fosters learning decreases negative feelings of one’s self, and thus other people.
An environment that fosters learning isn’t run by guilt, or feelings of not being
good enough, or doing something wrong. A learning environment allows people
to grow and the mentor helps the individuals self-determine the direction they
want to develop. The learning environment will foster older members learning
from younger members as well. People will want to learn more and more and

2.3 Independence and Interdependence: Locus of Empowerment 15

reduce competitiveness that can destroy a team. The competitiveness can come
out as a good product not team dynamics. Transparency can help individuals feel
more comfortable with learning. This can show that is ok to have areas of devel-
opment and that everyone has room to grow.

9. Keep Mission Vision always out in Front of Teams: many believe that an
established architecture is not required for agile development. This is absolutely
wrong; a solid architecture is even more important during agile development, so
each team and team member understands the end goals for the system. However,
in order for the architecture and software to stay in sync, the systems engineering
must also be agile enough to change as the system is redesigned (or adapted)
over time [19]. Agility is not free from structure but the ability to move about
within the structure.

2.3 Independence and Interdependence:
Locus of Empowerment

Locus of Empowerment has been conceptualized as a function of informed choice
and self-determination and has been linked to the concepts of self-efficacy and locus
of control as it applies to agile team membership [6]. Self-understanding and
empowerment, in relation to development opportunities and factual strength/weak-
ness assessment, represents an important underlying component of feelings of self-
empowerment within an agile development team [74]. Locus of empowerment and
its counterpart, Locus of Control, help to establish both independence and interde-
pendence for agile team members. Determining those things each team member is
“empowered” to make decision on and work independently provides each person
with a sense of autonomy, allowing them to work at their peak efficiency without
interference or too much oversight control over their work. Establishing the
Interdependence, or those things which are outside of the control of the team mem-
ber, defines communication lines and those things which are necessary to collabo-
rate on, or get inputs from other team members to facilitate integration and validation
of “system-wide” capabilities [7]. What follows is a discussion of Locus of
Empowerment. Locus of Control will be discussed in Sect. 2.4.

2.3.1 Locus of Empowerment

The notion of Locus of Empowerment is an interactive process that involves an
individual team member’s interaction with the team and the manager [70], allow-
ing each team member to develop a sense of acceptance into the team, develop a
sense of where they belong in the team, self-assessment of skills, and determina-
tion of their self-efficacy—their ability to function and participate both on an indi-
vidual level and as part of an agile development team [49]. These allow each

16 2 The Psychology of Agile Team Leadership

New/Unfinished
Capabilities

v
Most Important
Capabilities

v
Sprint
Planning

> Heartbeat

Y

Working Honest
Software Evaluation

-~

Empowerment

Daily
Collaboration

Fig. 2.3 The agile development process with empowerment

individual team member to participate with others, based on their understanding of
their independence and interdependence from and to the team, allowing them to
deal with the daily, weekly, monthly, etc., rhythms of the agile development cycles
throughout the program/project [53].

The process of team and team member empowerment is a continual and active
process; the form and efficacy of the empowerment process is determined by past,
current, and ongoing circumstances and events [69]. In essence, the empowerment
process is an ebb and flow of independence and interdependence relationships that
change throughout the agile development process, including each daily Scrum, each
Sprint planning session, and each Lessons Learned session, throughout the entire
agile development cycle of the program/project. Figure 2.3 illustrates this process.

In Fig. 2.3, empowerment becomes an integral part of the overall agile develop-
ment process, with evaluation of the team members’ abilities, roles, independence,
and interdependence, based on the capabilities needed to be developed within a
given Sprint, the honest evaluation of skills and abilities; i.e., how to develop the
heartbeat, or development rhythm required for each development Sprint. Without an
environment of Empowerment, the team has no real focus, since each team member

2.4 Overall, Individual, and Team Goals: Locus of Control 17

does not have a sense of what they are individually responsible for, what the other
team members are individually responsible for, and what communication is required
throughout the Sprint development [68]. There will eventually be a breakdown of
the team, a loss of efficiency, and the team will not be successful in their develop-
ment efforts within cost and schedule constraints. Next we discuss the concepts of
goal setting for an agile development project: project/program, team, and individual
goals within the context of Locus of Control.

2.4 Opverall, Individual, and Team Goals: Locus of Control

As explained above, the very nature of agile software development is to create a
loose structure both within each Sprint team and across the Sprint team structure.
The purpose of agile development is to allow developers, and subsequently the sys-
tem being developed to adapt and change as requirements, features, capabilities,
and/or development environment change over time (and they will change). However,
this does not mean that there are not system-level, team-level, and individual-level
goals at each point in time. In fact, it is more important in agile development to have
well-defined goals as teams and individual developers write and test software, to
ensure the software integrates and, more importantly, creates a set of capabilities
and a system the customer wanted and is paying for. Customer and cross-team col-
laboration and feedback at each level is crucial to allow the teams to adjust, either
from customer needs or inter-team needs across the agile Sprint developments.
Again, independence and interdependence is essential for overall successful devel-
opment. Further refinement of the Empowerment concept is to define, for each indi-
vidual developer, what things are within their own control, and those things are
outside of their control, even if they affect the individual.

This notion of internal vs. external control is called “Locus of Control.” Locus of
control refers to the extent to which individuals believe that they can control events
that affect them [63]. Individuals with a high internal locus of control believe that
events result primarily from their own behavior and actions. Those with a high exter-
nal locus of control believe that powerful others, fate, or chance primarily determine
events (in this case other team members, other teams, the program/project manager,
and/or the customer). Those with a high internal locus of control have better control
of their behavior, tend to exhibit better interactive behaviors, and are more likely to
attempt to influence other people than those with a high external locus of control;
they are more likely to assume that their efforts will be successful [12]. They are
more active in seeking information and knowledge concerning their situation.

Locus of control is an individual’s belief system regarding the causes of his or
her experiences and the factors to which that person attributes success of failure.
It can be assessed with the Rotter Internal-External Locus of Control Scale
(see Fig. 2.4) [63]. Think about humans, and how each person experiences an event.
Each person will see reality differently and uniquely. There is also the notion of how
one interprets not just their local reality, but also the world reality [79]. This world
reality may be based on fact or impression.

18 2 The Psychology of Agile Team Leadership

External Locus of Control Internal Locus of Control
Individual believes that their Individual believes that their
behavior is guided by external behavior is guided by their
circumstances personal decisions and efforts

Fig. 2.4 The locus of control scale

Y
Collective
Collective Empowerment -| External Locus of _ ; Evaluation
A g Locus
- Collective Status - p of Control 1
- Collective Efficacy -| (Team-Efficacy)
Success/
Soticn Failure
¥
Ind|\r|dL,iall Empfwle;rt?’::: Il.tternal Locus of m
- Individual Efficacy -| (Self-Efficacy) otcontrel dividual
Evaluation
£

Fig. 2.5 Locus of control within an empowerment cycle

For further thought let’s then consider Constructivist Psychology. According to
“The internet Encyclopedia of Personal Construct Psychology” the Constructivist
philosophy is interested more in the people’s construction of the world than they are
in evaluating the extent to which such constructions are “true” in representing a
presumable external reality. It makes sense to look at this in the form of legitima-
cies. What is true is factually legitimate and what is people’s construction of the
external reality is another form of legitimacy. In order to have an efficient, success-
ful agile development team [62], each member must understand and accept their
internal and external level of Locus of Control, as well as their Locus of
Empowerment level. Figure 2.5 illustrates how this flows throughout the Sprint
development cycles.

2.5 Self-Organization: The Myths and the Realities 19

How an individual sees the external vs. internal empowerment drives their view
of internal vs. external Locus of Control. During each development cycle, evalua-
tions are made (whether the individual is aware of it or not) as to their internal and
external Empowerment, and subsequent Locus of Control. Actions are determined,
based on this self-assessment, and self-efficacy determination. Based on the results
of their efforts, individuals, as well as the team, and the entire program/project
reevaluate the efficacy of the levels of internal vs. external Empowerment that are
allowed, and adjustments are made. These adjustments to Empowerment levels
drive changes in Locus of Control perception, which drives further actions. This
process is repeated throughout the project/program. The manager must understand
this process and make the necessary adjustment so that each individual can operate
at their peak self-efficacy, as well as support team efficacy, providing the best atmo-
sphere for successful development.

2.5 Self-Organization: The Myths and the Realities

One of the holy grails of agile development is self-organizing teams. Many soft-
ware developers dream of having a team with complete autonomy, able to organize
however works for them, completely without management involvement or interfer-
ence. However, what most developers fail to realize is that given to their own
devices, without training as to how to organize and what “organizing” actually
means, most would fail miserably. Often, agile development efforts fail, even with
efforts to educate the team about agile principles [53]. That is because the team
doesn’t fail because they don’t understand agile software development. It’s because
they don’t understand human nature and the difficulties in taking a team of highly
motivated, strong personalities, and get them to automatically give up their egos,
preconceived notions, and past experiences, and embrace the agile team dynamics
required to put together a highly successful agile development effort. We call this
“Agile Team Dysfunctionality,” and there are many common dysfunctions that
plague improperly trained teams and team members. Figure 2.6 illustrates several
of the most serious dysfunctions, most of which come both from basic human
nature and from people’s experience with work on programs/projects in the past.
Nothing drives failure of agile development like past failures. Remember Figs. 1.1
and 1.2. Teams that have experienced Fig. 1.2 are hard pressed to throw off their
suspicions and embrace agile development processes, team dynamics, and the
entire agile agenda fresh. Management must be cognizant of these dysfunctions and
work within the teams to dispel them.

Inability to recognize or deal with agile team dysfunctions can destabilize
the team(s) and derail the agile development process faster than anything else.
Keeping a stable set of Sprints teams is important, as constantly changing out team
members radically changes team dynamics, and affects both personal and team
Empowerment and Locus of Control [58]. Section 2.6 discusses the concept of
stable team membership.

http://dx.doi.org/10.1007/978-3-319-09018-4_1#Fig1
http://dx.doi.org/10.1007/978-3-319-09018-4_1#Fig2
http://dx.doi.org/10.1007/978-3-319-09018-4_1#Fig2

Absence of Trust
(Invulnerability)

Fear of Conflict
(Artificial Harmony)

Lack of Commitment
(Ambiguity)

2 The Psychology of Agile Team Leadership

Uncomfortable with each other
Don’t admit weaknesses
Never ask for help

Afraid to challenge other’s views
Individuals making team decisions
Command and control leadership

Team fails to achieve clear decisions and actions steps
Individuals put their own needs ahead of the team
Teams are not allowed to make decisions on work

Team members do not confront each other on things that do

Avoidance of
not conform to agreed decisions

Accounta b' I 'ty * Team members do not take ownership for mistakes
(LOW Sta n da rdS) + Team members do not step up to take on risky assignments

. + Quality of work not up to standards or drops over time
Inattention to Results e Managers continuing to demand deadlines and not

(Status and Ego) functional code

* No vision from leaders

Fig. 2.6 Common agile team dysfunctions

2.6 Creating a Stable Team Membership: Containing Entropy

As previously discussed, it is vital to choose the right teams for any program/project,
but it is even more important for agile development. Teams with stable memberships
across Sprints are vital, as team members develop trust over time, gain an under-
standing of each member’s strengths and idiosyncrasies, and, with proper training,
mentorship, and facilitation by the manager, settle into an agile development
“rhythm” throughout the program/project. If the team has to integrate new members,
efficiency will always suffer until the new team member is properly integrated into
the rhythm. New expectations are created; the new person will most likely have an
entirely different notion of Empowerment and Locus of Control than the previous
team member, throwing the overall team out of balance. A stable team can be a trust-
ing and efficient team [56]. There is generally an increase in commitment over time
with a stable team [52]. In order to facilitate creation of stable agile sprint teams, the
Agile Manager must recognize, understand, and know how to deal with the dysfunc-
tionalities discussed in Sect. 2.2. For each dysfunction, the Agile Manager must take
on a role, or provide guidance that dispels the dysfunction and allows the team to
move toward and independent cohesiveness between the team members [60].
Figure 2.7 illustrates the Agile Manger’s role in dealing with classical agile team

2.6 Creating a Stable Team Membership: Containing Entropy 21

Dysfunction Leader’s Role

Absence of Trust —+ + === Always Goes First

Observe/Resolve

Fear of Conflict — e+ — Conflicts

Drives for Clarity and

Lack of Commitment fe= « ¢ o=
Closure

Avoidance of

Accountability — « + ===Confronts Difficult Issues

Focusses on Collective

Inattention to Results fe= + « o=
Outcomes

Fig. 2.7 The Agile Manager’s response to team dysfunctions

dysfunctions, creating a team that works together, in Empowered independence and
dependence, to develop software in an efficient agile environment.

As depicted in Fig. 2.7, for each of the agile team dysfunctions described in
Fig. 2.6, Fig. 2.7 illustrates the Agile Manager’s response required to eliminate the
dysfunction and allow the agile development teams to function effectively and
efficiently:

1. Absence of Trust: In order to build trust within the teams, the Agile Manager
must always be willing to take the lead and prove to the team members that they
will “roll up their sleeves” and do whatever is necessary to either get the pro-
gram/project moving or to keep it moving along.

2. Fear of Conflict: Many developers are fearful of bringing up issues, not wanting
to start controversy within the team. Many people, particularly strong introverts,
may internalize the conflict, never bringing it up, but eventually the conflict will
drive controversy between the developers, create a lack of trust, and may drive
the team to withdraw from each other, destroying the collaborative nature of
agile development teams. In order to diffuse these situations before they begin,
the Agile Manager must be observant and cue in on body language and utilize the
soft people skills like paying attention to changes in personal habits, language,
friendliness, and other clues apparent between team members, and facial expres-
sions to understand when such nonverbal controversies exist and work to resolve
the conflict before they begin to negatively impact the development efforts.

22 2 The Psychology of Agile Team Leadership

3. Lack of Commitment: A lack of commitment to either the agile development
team or the agile process in general can destroy an agile program/project before
it gets started. Observing a low quality of work, absenteeism, lack of willingness
to communicate, or constantly seeming to be overwhelmed by the volume of
work may be indications of a lack of commitment. The Agile Manager needs to
understand the developer’s reasons for the lack of commitment, clarifying for the
developer what is expected, clearing up any misconceptions the developer may
have. In the end, if the Agile Manager does not feel they have dispelled the lack
of commitment, the developer must be removed from the team or there is little
hope for successful agile development. I know this sounds harsh, but agile only
works if all parties have a buy-in to the agile development process.

4. Avoidance of Accountability: There may be issues getting developers to step up
and take on rolls of responsibility within the agile teams because they are afraid that
if they take responsibility for the team’s activities during a given Sprint and there
are problems, they will be punished. This lack of accountability needs to be dealt
with in order for the Sprint development teams to develop a good business rhythm
and operate effectively. It is up to the Agile Manager to confront issues, while not
assigning blame or punishment, but working through difficult issues, helping each
developer learn from the issues in order to solidify the teams and allow the develop-
ers to grow and mature as members of an agile development team. This will pay off
in the future as each developer becomes more embedded in the agile process and
learns to be effective in and excited about agile programs/projects.

5. Inattention to Results: Some developers like the agile team process because
they feel they can just write code and let other people worry about the details,
results, testing, etc. But, it is vitally important that the entire team focus on the
results: working, error-free code with capabilities required for each Sprint that
can be demonstrated. If any of the developers/team members are not focused on
the results, the team will never develop a good agile development rhythm. Also,
one member being inattentive to details and results will breed mistrust between
the members, reducing the effectiveness of the team(s). Therefore, the Agile
Manger must keep the program/project vision in front of all developers and
teams, making sure everyone is marching down the same path, ensuring that the
collective outcomes of all the Sprint teams, across all of the Sprints, integrate
together and are heading toward a common, customer-focused goal.

2.7 Challenging and Questioning Sprints:
Individual Responsibility

Creating a team of highly motivated, capable, and experienced developers that are
expected to work in an agile development environment and not allowing them the
freedom, or Empowerment, to question and/or challenge Sprint capabilities, plan-
ning, sequencing, etc., will destabilize the team quickly. The Agile Manager should

2.9 Keeping the Vision in Front of the Team: Ensuring System Integration 23

not force solutions on the team, for this fosters resentment and breeds an attitude
of lack of commitment to the program/project. If you build and train the teams
correctly, they should be able to discuss and come to agreement on how capabilities
are spread across Sprints, who is the best choice for what role across each Sprint,
and to work together when collaboration is needed. The ability to challenge and
question leads team members to a better understanding and more commitment to
the end goal, not only for each Sprint, but to the entire program/project as well [54].

2.8 Mentoring, Learning, and Creativity: Creating
an Environment of Growth

Agile development teams, at least the majority of teams, will be composed of devel-
opers at a variety of experience levels. Each member comes with their own strengths
and weaknesses and should be provided an atmosphere that not only allows them to
succeed, but to grow and learn, both from the experience of developing code for the
program/project across the Sprints, but from each other as well. If facilitated cor-
rectly by the Agile Manager, the agile development program/project will allow
opportunities for mentoring and learning. However, this must be designed into the
Sprints, both in schedule and in capability distribution across the team members.
Creating an atmosphere of mentoring, learning, and creativity increases efficien-
cies, as the team progresses through the Sprints, and helps future programs/projects
as well. Given the probable diversity of team members, the Agile Manager should
make sure everyone has the opportunity and personal attitude of both mentoring and
learning from each other. New software techniques brought by junior developers
may be necessary for certain capabilities that older more experienced software
developers may not be aware of. At the same time, junior developers should also
bring an attitude of mentoring and learning, as the experienced developers can aid
junior developers from going down disastrous roads already traveled by senior
developers. In short, the atmosphere the Agile Manager must NOT bring to the agile
development teams is illustrated in Fig. 2.8.

2.9 Keeping the Vision in Front of the Team: Ensuring
System Integration

I have heard many developers tell me that the one advantage with agile development
is that they are free to do what they want, because it isn’t necessary to establish a
systems and software architecture for agile programs/projects. Such notions lead to
serious problems later in the development cycle. Without a systems and software
architecture, integration and final testing of the system is problematic at best and
normally results in much rework and recoding to create a complete system [26].

24 2 The Psychology of Agile Team Leadership

-
2. Really, wow! It's -
been a long time S kmeansmove ™
coming according to schedule and
don’t change ANYTHING

— -
4. Yeah, what doe‘;\
this mean for the
organization?

1 We did it werre
Officially AGILE! |

3. Ok, what are our

next steps?
Fig. 2.8 The “Rigid” Agile Manager
Initiating Envisioning
Processes Processes
3 =
: :
Planning | | \\0/ms
Processes
l Speculating | Release__ | Exploring
Processes Plan Processes
Controlling _ o = Executing
Processes - o Processes
[i [: Actio Completed
Final Closing Feature n Adapting Features
Product Processes List Processes —

Initiating —— Envisioning g i
Planning — . Speculating)
Executing—— Exploring Closing
Controlling———— Adapting Processes

Closing — = Closing

Fig. 2.9 The traditional vs. agile development process

Each team member and each team must understand the end goals for the system.
You must remember that agility does not mean there is no structure, but the agile
development methodology provides the abilities to move about within a given archi-
tecture or structure. Figure 2.9 illustrates the differences between the traditional
development process and the agile development process [57].

2.9 Keeping the Vision in Front of the Team: Ensuring System Integration 25

Every aspect of the classical development cycle has a counterpart for the agile
design process, but is designed, or intended, to promote the agile mind-set: one of
adaptability to changing requirements or environments. Many are uncomfortable in
the agile software development paradigm. Many like the structure of classical soft-
ware development. So how does one understand who is and is not comfortable with
agile development. Can any developer be made to function within the “freedom” of
agile? In Chap. 3 we will explore all of the dynamics of agile development teams,
how to create, manage, facilitate, and empower agile development teams.

Where the traditional development process involves and is focused on detailed
planning, budgeting, controlling, and program/project execution, the agile develop-
ment process must be adaptive and innovative, deriving solutions to a changing
requirements/capabilities baseline, the focus being on working software, not cost
and schedule. This is not to say that cost and schedule are not important in agile
development, because cost and schedule are always important in any program/proj-
ect execution. However, the agile development process has much more flexibility to
deal with risks or issues that arise than the classical development process, giving the
Agile Manager more tools and more opportunities to adjust without major rework
in extensive schedules and budgets.

http://dx.doi.org/10.1007/978-3-319-09018-4_3

2 Springer
http://www.springer.com/978-3-319-09017-7

Agile Project Management: Managing for Success
Crowder, lLA.; Friess, 5.

2015, Wl 72 p. 28 illus., 11 illus, in color., Hardcover
ISBM: 978-3-319-09017-7

	Chapter 2: The Psychology of Agile Team Leadership
	2.1 Individuals over Process and Tools
	2.2 The Agile Manager: Establishing Agile Goals
	2.3 Independence and Interdependence: Locus of Empowerment
	2.3.1 Locus of Empowerment

	2.4 Overall, Individual, and Team Goals: Locus of Control
	2.5 Self-Organization: The Myths and the Realities
	2.6 Creating a Stable Team Membership: Containing Entropy
	2.7 Challenging and Questioning Sprints: Individual Responsibility
	2.8 Mentoring, Learning, and Creativity: Creating an Environment of Growth
	2.9 Keeping the Vision in Front of the Team: Ensuring System Integration

