Chapter 2
Hydroinformatics and Data-Based
Modelling Issues in Hydrology

Abstract This chapter highlights and addresses some basic issues associated with
data-based modeling. The chapter starts with a brief description of emergence and
development of hydroinformatics as a potent segment of mainstream hydrology and
proceeds to the ignored or least considered modeling queries existing in hydrology,
e.g., how much benefit could be gained by increased complexity in data-based
models or whether increased complexity adversely affects model performance. The
chapter reminds one of the need to evaluate existing hypothetic assumptions on
various modeling properties.

Data-based modeling is subject to different types of uncertainties and ambiguities
because of the presence of different unsolved queries and deliberately over-sim-
plified assumptions. Several studies in hydrology have pointed out the contradictory
fact that, under certain circumstances, a poor model may give acceptable results,
while, under other circumstances, a good, refined model may fail to give better and
more reliable answers. The main reason for this is that developers view modeling as
arigorous mathematical exercise rather than as a subjective activity [56]. Previously
successful model in one phase of the hydrological cycle might not give relevant
results in a new situation. Proper vision or insight into the working of the actual
hydrological system is necessary, even in data-based modeling; else modeling
results from even a sophisticated mathematical model would be irrelevant or mis-
guiding with regard to the behavior of the actual system. In data-based modeling,
the model trusts the quality of the data which should be inherent in the actual
behavior of the system. Savenije [60] emphasized the need to change the modeling
process to a “top-down” approach, i.e., learning from the data to the physical theory
rather than giving a lower preference to the strength of the data. Barnes [11]
suggests that an “adequate” model is a model which represents all the information
contained in the data (so that there is effectively no residual information). As per
this definition, all data-based and artificial intelligence models fall into that cate-
gory. Another required aspect of a model is how efficient the model is in tackling a
particular phenomenon or situation in hydrology. The problems of overparame-
terization and scaling issues have gained much attention and invited detailed studies
in the context of processes modeling on a wide catchment and regional scale.
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However, the modeling issues in data-based models are not addressed properly in
hydrology. It is a fact that there is no such thing as a ‘perfect data-based model’ in
any field. As hydrologists, our aim is to approach to more realistic and “better”
model framework through (1) selecting an “appropriate” model structure and (2)
selecting “correct” inputs through avoiding “redundant” inputs. This chapter
addresses a number of issues in traditional and artificial intelligence data-based
techniques adopted for hydrological modeling.

2.1 Hydroinformatics

Hydroinformatics is one interdisciplinary field of technology which embraces the
application of information technology in different aspects of the water sector,
focusing on integrating information technology with hydrologic, hydraulic, and
environmental science and engineering. The scientist who coined the term ‘Hydro-
informatics,” Professor Abbott [1], defines the term as the study of the flow of
information and the generation of knowledge related to the dynamics of water in the
real world, through the integration of information and communication technologies
for data acquisition, modeling and decision support, and to the consequences for the
aquatic environment and society and for the management of water based systems. It
includes many state-of-the-art applications of modern information technologies in
water management and decision making. Hydroinformatics focuses on:

e New themes such as computational intelligence, control systems, and their
application in data-driven hydrological modeling

e Optimization and real-time control of models

e Flood modeling for management of module integrating modeling theory,
hydraulics, and flood simulation

e Decision support systems module integrating system analysis, decision support
system theory, and model integration

From 1993, hydroinformatics has started developing as a strong stream in
hydrology after the introduction of a Section on Hydroinformatics by the Interna-
tional Association for Hydraulic Research (IAHR). In 1998 the International Water
Association (IWA) then established a Specialist Group on Hydroinformatics [65].
TAHR-IWA-IAHS Joint Committee on Hydroinformatics was formed in 1998 by
The International Association of Hydrological Sciences (IAHS) in collaboration
with IJAHR and IWA. Recently, in 2005, the European Geosciences Union (EGU)
established hydroinformatics as a subdivision of hydrological sciences. The first
international hydroinformatics conference was held at IHE, Delft in 1994, and,
thereafter, bi-annual conferences were conducted all over the world in places such as
Ziirich, Copenhagen, Iowa City, Cardiff, Singapore, Nice, and Chile, the latest in
2014 being held in New York, USA. The theme of the 11th conference is “Infor-
matics and the Environment: Data and Model Integration in a Heterogeneous Hydro
World”. Over the last 20 years the hydroinformatics stream has shown its
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capabilities through success stories published in a wide range of articles. Abbott and
Vojinovic [2] introduced a new role for hydroinformatics in its sociotechnical
environment, developing the concept introduced by Abbott [3]. However,
researchers working in hydroinformatics are still struggling to get full-scale accep-
tance within the hydrological community, which is dominated by larger groups of
traditionalists who care less about data and more about physics. Some argue against
this section of hydrology, saying it adds no scientific knowledge or improved
understanding to the field of physical modeling of hydrology. However, many
studies have clearly shown the capabilities of hidden nodes of artificial neural net-
works to communicate the real physics involved in the process [37, 81]. The
capabilities of new concepts such as Genetic Programming are worth mentioning on
this occasion, having great potential to provide us with new hydrological knowledge
[24]. Some traditional hydrologists argue over generally adopted thumb rules and
assumptions during training and modeling, an obstacle to the wider acceptance of
this new stream. Although hydroinformatics and data-driven modeling have been in
use for more than two decades, it is struggling to find full acceptance within the
hydrological community, which is dominated by large groups of traditional
hydrologists because of inherent problems in these models (e.g., chances of over-
fitting, redundancy of input, lack of modeling rigor, lack of transparency in repro-
ducing results, uncertainty issues, etc.). Some studies [25, 49, 71] suggested better
modeling frameworks and guidelines in data-based modeling. Some of the modeling
shortcomings and ambiguity in such data-based models are discussed below.
Elshorbagy et al. [24] argue that most data-based studies are a ‘less-than-compre-
hensive approach’ focusing on (1) one or two data sets or application models [6] and
(2) random realization of the three subsets for modeling; which makes the generali-
zation ability of that model questionable. Elshorbagy et al. [22], See and Openshaw
[64] and Abrahart et al. [6] have reminded the hydroinformatics research community
of the need to maintain scientific rigor in the application and use of data-driven
techniques in hydrology and environmental sciences. The fundamental means to
assess the capability of any novel approach or modeling technique is to evaluate it
against other modeling techniques or approaches under different modeling conditions
or data sets. Elshorbagy et al. [23] has noted that most modeling comparative studies in
the literature of data-based modeling hydrology are highly impaired due to the less-
than-comprehensive approaches adopted. Single realization of the data set and single
case study makes it difficult to assess the actual capability of the novel concept such as
the Gamma Test. All new techniques should be evaluated against available basic
models (linear regression) and complex models (SVMs or wavelet SVMs).

2.2 Why Overfitting and How to Avoid

Overfitting or overtraining is a statistical phenomenon associated with nonlinear
data-based models when a model is generally complex with too many degrees of
freedom in relation to the amount of data available. The predictive models used in
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this book, such as artificial neural networks (ANNs), and other flexible nonlinear
estimation methods, such as kernel regression models (SVM) and smoothing
splines, are susceptible to either overfitting or underfitting. Underfitting is mainly
because of design or training incompetence of the modeler. A network which is not
sufficiently complex to handle nonlinear data processing may fail to detect the full
characteristics of the signal which leads to underfitting. If networks are too com-
plex, it would lead to a dangerous situation called overfitting, which would give
better predictions in the training data and poor predictive results to future values.
The complexity normally connected with the complexity of a network is related to
both the size of the weights and the number of hidden units and layers. Apart from
that, model input selection and training data length influence the overfitting of
nonlinear models. Overtraining can be detected during training by the use of a test
set. However, the disadvantage of this split technique is that the size of the training
set reduces considerably in limited data cases, and thereby spoils the final perfor-
mance. Another easily adoptable approach is to rotate parts of the available data sets
as the training set and the test set. In some cases, strong nonlinearity of the problem
may lead to overfitting, which is easily noticeable from the size of the weights.
Figure 2.1 presents an example of variation of model performance under scenarios
such as overfitting, underfitting, and a reasonable model during calibration (train-
ing) and testing (validation) phases.

However, there are some standard techniques to tackle overfitting to some
extent, which are briefly described here.

1. Proper selection of model input structure and training data length: Tackled in
this book and discussed through case studies and in the next chapter.

2. Jittering: Somewhat similar to data enrichment. In this method, an artificial
noise deliberately added to the inputs during training. A good example in
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Fig. 2.1 Illustration of performance of an overfitted model, underfitted model and a reasonable
model
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hydrology is Olden and Poff [54]. They have applied Jittering to tackle
redundancy in hydrologic indices of long-term flow records from 420 sites from
across the continental USA. Jittering is also related to regularization methods
such as weight decay and ridge regression.

3. Early stopping: In this approach, we need to stop training processes just before an
adaptation to the noise starts. The optimal stopping time can be found using test
data. In other words, the modeler requires three subsets of data (training, test, and
verification). At much later stages of the modeling process the prediction accu-
racy of the model may start worsening for the test set. This is the stage when the
model should cease to be trained to overcome the over-fitting problem.

4. Weight decay: Weight-decay reduces the effect of noise associated with the
inputs.

5. Bayesian learning: The conventional training statistical approaches are replaced
by Bayesian statistics.

This approach involves modification of general objective functions, such as the
mean sum of squared network errors (MSE or E,,):

1<
F =E, = MSE,, = N;(ei) (2.1)
F = BE, + oE, (2.2)

The modification of MSE is to improve the generalization capability to avoid
overfitting. The above equation will be modified to a new F value by adding a
new E, term. In (2.2) the parameters B and o are to be optimized by a Bayesian
framework. It is usually assumed that the weights and biases of the network are
random variables following Gaussian distributions, with enormous computa-
tions required.

6. Use of small networks: If parameters in the training network are less than the
objects in the training set, it cannot be overtrained unless the tackled case is too
complex.

7. Pruning: The method for reducing the size of a network just after the training
process. This approach helps to detect redundant neurons which cause delay in
modeling. In the case of pruning network modeling, the training process starts
with a large, densely connected network, and then examines the trained net-
work’s performance to assess the relative importance of network weights. After
that, the pruning algorithm removes the least important weight/node from the
network and performs analysis on the new pruned network. This procedure
continues till the modeler is happy with the results.

8. Data enrichment: An approach for artificially enlarging the training set by
artificial data. This process is not found to be effective in all cases.

9. Regularization: In this method, we add a penalty term to the optimization cri-
terion for networks with large weights, as these are related to strong
nonlinearity.
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Fig. 2.2 Partition procedure adopted conventionally in learning to prevent overfitting

The traditional data partitioning method adopted to prevent overfitting in most of
the literature is shown in Fig. 2.2

2.3 Input Variable (Data) Selection

One of the serious problems encountered in data-based modeling in hydrology
using either traditional or intelligent approaches is the choice of independent
variables or data series from the available data pool for inclusion in the predictive
model. Although overfitting issues in the previous section are addressed in the
context of neural models, studies have shown that overfitting is not confined just to
neural models with hidden units. Overfitting can occur even in generalized linear
models with no hidden nodes or layers because of improper selection of inputs.
“Multicollinearity” is another weakness in data-based modeling. It is a statistical
situation from the presence of input variables or data series in the input architecture,
which are highly correlated with each other. Although this is the situation in most of
the studies in water resources using data-based models, very little attention or no
attention is being given to the selection process of better input model structure [49].
The lack of methodological approach in selecting the significant inputs may lead to
the modeling issues listed below:

1. Increase in input dimensionality: when we use all available inputs indiscrimi-
nately, this would cause computational complexity and memory insufficiency

2. Presence of more local minima in the error surface due to inclusion of irrelevant
data points

3. Early convergence and divergence due to the presence of irrelevant data: this
will lead to poor model accuracy.

Maier and Dandy [49] have highlighted the fact that issues relating to the
optimal division of the available data, data pre-processing, and the choice of
appropriate model inputs are seldom considered in data-based modeling and
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artificial intelligence models for application in hydrology. They have reviewed
more than 43 journal papers in hydrology and pointed out that in most cases the
inputs were chosen arbitrarily without any scientific reasoning and some studies
used a trial and error approach or validation data. A study by Bowden et al. [19]
gives an extensive review of the background and methodology adopted in input
determination for neural network models in water resource applications. They have
classified major attempts in input data selection in water resources into five
categories:

1. Relying on prior knowledge of the system
ASCE Task Committee on Application of Artificial Neural Networks in
Hydrology [9] has pointed out the predominant use of a priori knowledge of the
system as an indicator of model selection in hydrology. Studies such as
Campolo et al. [20] and Jayawardena et al. [38] have used modelers’ expert
knowledge on the system and the study condition to select the influencing
inputs. Some studies have benefited from the combination of a priori knowledge
and analytical approaches [47, 48]. Factors such as large dependency on an
expert’s knowledge, very subjective nature, and case dependency are considered
as disadvantages of such methods.

2. Based on linear cross-correlation
Cross-correlation methods are the most common and popular analytical tech-
niques for selecting appropriate inputs [35, 36, 67]. In this approach research
normally depends on linear cross-correlation analysis values to determine the
strength of the relationship between the input time series and the output time
series at various lags [31]. The disadvantage associated with this method is its
inability to capture any nonlinear dependence that may exist between the inputs
and the output. The cross-correlation method works on linear dependence
between two variables, so there is a good chance of the omission of important
inputs that are related to the output in a nonlinear fashion.

3. Based on heuristic approach
In this approach, various models are trained using different subsets of inputs. In
this method, some researchers often employ stepwise selection of inputs such as
forward selection and backward elimination to avoid total enumeration [75]. The
concepts of these two approaches are self-explanatory from the name itself.
Forward selection is the most common approach, in which we try to find the best
single input and select it for the final model [48]. Backward elimination works in
the opposite way; it starts modeling with a set of all inputs, and sequentially
removes the input set which reduces performance least. Most of the heuristic
approaches are computationally intensive trial and error procedures and there is
no guarantee that they will find the globally best subsets.

4. Methods that extract knowledge contained within trained ANNs
In this type of method, researchers mostly depend on sensitivity analyses to
extract information from a trained ANN [45, 61]. Abrahart et al. [5] used a novel
concept known as saliency analysis to disaggregate a neural network solution in
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terms of its forecasting inputs. The saliency analysis was achieved by setting
one input data stream at a time to zero and then performing the modeling,
replacing the input data stream after the computation, then repeating this process
on the next data set, and so on. This approach determines the relative importance
of each input by examining the change in forecasting error and the plots from
the flood hydrograph. Abrahart et al. [5] claimed superiority of the saliency
approach over sensitivity analysis, as sensitivity analysis does not investigate
the rate of change of one data variable with respect to the change in another.
Bowden et al. [19] suggests the disadvantages of their approach are (1) lack of
retraining the ANN after removing each input and (2) the possibility of pro-
ducing nonsensical outputs due to the presence of zero inputs.
5. Methods that use various combinations of the above four approaches

Some studies have used effective combinations of the above-mentioned methods
in data selection [4, 61, 67]. Abrahart et al. [4] used a genetic algorithm (GA)-
based approach to optimize the inputs to an ANN model used to model runoff.
Approaches such as Pearson correlation, stepwise forward regression analysis,
and sensitivity analysis were used by Schleiter [61] to select appropriate inputs
for water quality modeling.

The above-mentioned approaches are widely used, even in multiple linear
regression models, although many disadvantages are associated with them [46].
Another possible approach associated with models with nodes is the method cited
in the previous section, the “pruning approach.” There are very powerful pruning
algorithms available which are used effectively for input variable selection in other
fields of engineering [74]. The study by Livingstone et al. [46] has pointed out the
relevance of selection of effective modeling of the responsive variables (data series)
to the success of nonlinear models, which is dictated by the data.

Bowden et al. [19] proposed state-of-the-art methods such as the Partial mutual
information algorithm (applied for calculation of dependence in the case of multiple
inputs), the Self-organizing map (SOM) (used to reduce the dimensionality of the
input space and obtain independent inputs), the GA, and the General regression
neural network (GRNA) (applied to determine which inputs have a significant
relationship with the output (dependent) variable) for input selection of ANN
models.

2.4 Redundancy in Input Data and Model

Hydrologists often face challenges in identifying redundant input data during the
preprocessing period as the sets of possible inputs into a hydrological system are
huge. This process becomes more challenging in the modeling of some hydro-
logical processes, as all measurable variables are highly nonlinear in dynamics and
have multiple interrelations. The normal practice for data-based model practitioners



2.4 Redundancy in Input Data and Model 27

is to present a large number of inputs to the model and rely on the network to
identify the critical model inputs. Usually, not all of the available data pool will be
equally supportive for effective modeling, since some may be redundant with very
close correlation with another; some may have predominant noise over the infor-
mation or may not have any appreciable relationship with the target variable of the
expected study. So such a practice normally causes adverse effects on modeling
results. Another serious issue is that the redundancy of a network is related to both
the number of weights and the size of the weights. Selection of appropriate and
effective models connects with the number of weights, and hence the number of
hidden units and layers. Until now there has been no exact solution for questions
such as how many hidden layers and how many hidden nodes there should be in
node-based modeling [51, 72]. The selection of hidden neurons is the tricky part in
ANN modeling, as it relates to the complexity of the system being modeled and is
usually set by the user. There should be an effective way to decide on the number of
nodes, considering many factors such as number of input and output units, number
of training data points, amount of noise in the targets, complexity of the function or
classification or learning algorithm, topology of the model, type of hidden unit
activation function, and regularization.

There are many practical rules of thumb that are available in the literature to
facilitate a decision on the number of hidden nodes. Blum [17] reports that the
number of nodes in the hidden layer—somewhere between the input layer nodes
and the output layer node size—is appropriate for modeling. Hecht-Nielsen [32]
proposes that the maximum number of elements in the hidden layer be twice the
input layer dimension plus one. Another study by Maren et al. [5S0] recommends
using the number of nodes equal to the geometric average between the input and
output node dimension. Mechaqrane and Zouak [52] have used a feed-forward
network with the size of the hidden layer equal to the size of the input layer. Some
companies working on commercial neural network software development adopt a
rule of thumb of the sum of input and output nodes multiplied by 2/3 as the
indicator to choose the number of hidden neurons. Swingler [73] suggests that, for
networks with one hidden layer, the model give better performance if we use twice
the number of input nodes in the hidden layer. At the same time, Berry and Linoff
[13] note that the number of hidden nodes should never be more than double the
nodes in the input layer. Boger and Guterman [18] used principle component
analysis to find the number of hidden nodes and they suggested using the same
number of components which express 70-90 % of the variance of the input data.
However, our experience shows that, in general, these rules give only some indi-
cation for the hidden layer dimension and none are properly right or wrong.

The above-mentioned Hecht-Nielsen suggestion has more scientific authenticity
as the method is based on the Kolmogorov theorem in node based computation.
There were strong arguments against this recommendation by many researches
[33, 34], saying that it is sufficient to use a single hidden layer when using regular
transfer functions (e.g., sigmoidal) but the number of required hidden nodes can be
as high as the number of training samples, and justifying their arguments through
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valid proofs. Huang [33] made some recommendations for the two-hidden-layer
case. He suggested the number of hidden nodes sufficient to train N samples with a
reasonable minimum error is

Npig = 24/ (M +2)N (2.3)

The sufficient number of hidden nodes in the first layer is

N
Nlpg = 2¢/(M +2)N +2 ED) (2.4)

The sufficient number of hidden nodes in the second layer is

N

N2pig = My |
hid (M +2)

(2.5)

In all these equations, M = output neurons and N = training data points.

Stathakis [72] suggests the most accurate structure will have fewer nodes than
the one suggested by Huang [33] and this high structure leads to redundancy in
structure and over-fitting of the training data. Stathakis [72] proposed a near-
optimal solution approach with a GA to find a better topology.

Traditionally, identification of topology has been based on trial and error, on
heuristic approaches, on heuristics sometimes followed by trial and error, and on
pruning or constructive methods.

Trial and error: This is the most traditional and primitive way of assessment. It
may yield severely suboptimal structures, especially when adopted by inexperi-
enced users.

Heuristic methods: Several approaches are found in the literature [8, 59, 79]
which are all based on the objective to devise a formula which estimates the number
of nodes in the hidden layers as a function of the number of input and output nodes.
However, most of the heuristics lack the theoretical evidence to support the dis-
covery of an optimal structure, so they are commonly used in subsequent search by
trial and error.

Exhaustive search: This is one of the perfect but impracticable approaches in real
life applications, as the number of search alternatives is exceedingly large, com-
putationally intensive, and with longer computation time. Yao [82] illustrates the
difficulties in exhaustive searching to find hidden neurons; he identified that the
major complication is due to the noisy fitness evaluation problem.

Pruning and constructive algorithms: These are developed with the objective of
devising an effective network topology by incrementally adding or removing links
(weights) to the redundant or simple structures, respectively. Optimal Brain
Damage [44] and Optimal Brain Surgeon [29] are two commonly used algorithms.
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2.5 Data-Based Modeling—Complexity, Uncertainty,
and Sensitivity

Two major modeling themes focusing on modeling errors are upward or mecha-
nistic approaches (associated issues are overparameterization, equifinality) and
downward or data-driven approaches (associated issue is lack of a priori defined
model structure) with different complexities [78]. Are more complex models better?
Should the increasing complexity of the existing model add any benefit to the
model users? These issues are not properly addressed in hydrology and data-based
modeling although in abundance in the many competing artificial intelligence
models in the literature. These questions can be answered by tackling the com-
plexity of a model’s structure and the uncertainty associated with its output. It is
often difficult in hydrology to decide which model should be used for a particular
purpose, and the decision is often made on the basis of familiarity rather than the
appropriateness and effectiveness of the model. Another major concern is overpa-
rameterization of the model to represent an uncertain process over limited and noisy
data. Comparing different models just in terms of their better accuracy in predicting
numerical values is often ludicrous; there are many other aspects which need to be
taken into account before declaring one model a success with entirely different
mathematical concepts over the other. The best model is not necessarily the most
complex, or the one which overtly reflects the most sophisticated understanding of
the system [11]. There is a hypothesis that more complex models simulate the
processes better but with high variability in sensitivity and relatively less error [68].
However, a study by Oreskes et al. [55] argues that there is no strong evidence that
simple models are more likely to produce more accurate results than complex ones.
Case studies in this book use a simple index of utility which evaluates in terms of
model complexity (we used training time as the indicator of complexity), model
sensitivity (response to changes in input), and model error (closeness of simulation
to measurement). Perrin et al. [57] performed an extensive comparative perfor-
mance assessment of the structures of 19 daily lumped models, carried out on 429
catchments, and suggested that the main reason why complex models lack stability
is that the structure, i.e., the way components are organized, is not suited to
extracting information available in hydrological time series. Complex models in
their study face considerable difficulties in parameter estimation and structure
validation. Gregory et al. [27] have applied Akaike’s information criterion (AIC)
[7] and Bayes information criterion (BIC) (Schwartz [63] model selection model
complexity problems in rainfall time series modeling, and similar approaches were
applied in groundwater modeling [42]. Cherkassky and Mulier [21] have developed
structural risk minimization (SRM) as an alternative model complexity control
method. Schoups et al. [62] used the above-mentioned three models. We compare
three model complexity control methods for hydrologic prediction. Information
theory could be selected as the central framework to evaluate information content in
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training data and associated predictions. Weijs et al. [80] proposed that hydrological
system should be based on information-theoretical scores.

2.5.1 Modeling Uncertainty

In hydrology and water resources research, there are two major bases of uncertainty
attitudes; one is based on stochasticity as a necessary factor and the other on the
deterministic nature of the system. The definition of the uncertainty is much more
uncertain about the modeled numerical values; it relates much deeper processes and
pertains to the governing mechanisms of the model. Distinguishable uncertainties in
hydrology are data uncertainties (mainly associated with measurements), sample
uncertainties (e.g., number of data for calibration), and model uncertainty [58]. Klir
[41] made an attempt to consider uncertainty in terms of the complexity of the
model. He found both categories have a conflictive nature, i.e., if complexity
decreases, uncertainty grows. Halfon [28] also addressed the issue of modeling in
the context of Lake Ecosystem models; he evaluated the performance of several
models of varying complexity. There are many ways to assess roughly the modeling
uncertainty and these methods range from the use of statistical parameters such as
standard deviation to analytical calculations to find the propagation of error.
Recently, very powerful tools such as Monte Carlo analysis have been used for
sensitivity estimation of more complicated methods. Other criteria such as fractals,
Bayesian fuzzy-sets, and random fields have been applied successfully to solve
uncertainty problems in hydrology and other fields such as applied mathematics,
physics, systems theory, etc. Wagener et al. [77] applied a Monte Carlo analysis
toolbox, combining a number of analysis tools to investigate parameter identifi-
ability, model behavior, and prediction uncertainty to establish a sensible rela-
tionship between model parameters and catchment characteristics. Beck [12] points
out valid reasons to concentrate more on the uncertainty of model structure as an
important area of study. Mizumura [53] combined a conceptual tank model and a
fuzzy logic model to yield satisfactory results with minimum uncertainty issues.
Kindler and Tyszewski [39] acknowledged the applicability of fuzzy theory to a
diagnostic approach of problem solving and uncertainty assessment. Feluch [26]
applied non-parametric estimation methods to two classes of hydrological prob-
lems. Various studies have been carried out to ascertain the ‘best and right” model
in environmental chemistry using modern statistical approaches [43, 76], consid-
ering uncertainty. Beven [15, 16] introduced the concept of equifinality which is
related to the uncertainty associated with parameters. Equifinality arises when, in a
hydrological model, many different parameter sets are equally good at reproducing
an output signal.
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2.5.2 Model Complexity

In the last 20 years, the study of complexity in modeling systems has emerged as a
recognized field in statistics. However, the initial attempts to formalize the concept
of complexity go back even further, to Shannon’s inception of Information theory
[66]. The complexity of a model is closely related to the uncertainty of the system,
which can be defined in terms of model properties such as model sensitivity and
modeling error. The general hypothesis of model complexity and its influence
during training and testing phases is shown in Fig. 2.3. The general hypothesis
states that more complex models can simulate reality better than simpler models
(i.e., less prediction error), and with a greater variance and low bias during training
phase. Less complex models provide a relatively approximate simulation (i.e., with
more prediction error), but with less variance and higher bias. However, the case is
somewhat different in the testing phase; highly complex models won’t give the best
test results as the graph is parabolic, with a minimum somewhere in the middle.
Figure 2.4 displays the hypothesis which shows the variation of different model
parameters, particularly with bias-variance interaction during the test phase.

Fig. 2.3 Hypothesis showing High Bias Low Bias
the effect of complexity Low Variance High Variance
during training and testing >
[30]

Testing phase
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Low Model complexity High

Fig. 2.4 Hypothesis showing
effect of complexity on bias-
variance interaction
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error
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Bias/ Variance
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Fig. 2.5 Hypothetical Saiaiing Tt
relation of model complexity Length
with sensitivity, flexibility, [
data requirements and
predictive error

Flexibility

Length

Predictive Error

Prediction Error/Data

Flexibility/Sensitivity

Low High
Model Complexity

Models of different complexity may show different modeling properties, such as
sensitivity, flexibility, error, and data requirements based upon their structure.
Figure 2.5 illustrates the hypothetical relationship between model sensitivity,
modeling error, model flexibility, training data requirement, and model complexity.

2.5.3 Training Data Requirements

More complex models may have more parameters, state variables, or linkages, and
therefore the hypothesis is that such models require more data. However, for node-
based modeling systems, if the training data length causes overfitting then the
hypothetical relation depicted above may not be true. There is a need to investigate
the optimal length of the training data phase as too little data for training may lead
to poorly trained model and too much data may lead to overfitting. The hypothetical
relation of model data requirements for node based modeling systems is as shown in
Fig. 2.6.

Fig. 2.6 Hypothetical
relation of modeling data Information u'itll‘in the
length in node based models fcde
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Data interval for modeling: The case studies in this book also address a mostly
ignored area in data-based hydrological modeling—data time interval for models.
Modern data collection and telecommunication technologies can provide us with
very high resolution data with extremely fine sampling intervals. We hypothesized
that both too large and too small time intervals were detrimental to a model’s per-
formance, which has been illustrated in this book with particular reference to rainfall-
runoff modeling. The data time interval is a major factor affecting forecast perfor-
mances of node-based models, particularly neural network models. The performance
of neural network models is highly time-dependent [10]. Very large and small data
time intervals could have negative effects on modeling results. The hypothetical
condition for the effect of data time interval on modeling is shown in Fig. 2.7.

2.5.4 Flexibility for a Model

The flexibility of a model increases as the number of parameters goes up. However,
the modeler should be careful in increasing the flexibility of a model by addition of
extra parameters, and in most cases it may cause irrationality. Flexibility of a model
is dependent on the assumptions and rules employed during its development. The
hypothesis is that less complex models are less flexible because of adoption of
tough restricting assumptions to reduce the parameters. In general, complex models
have minimal assumptions, and thus they are more flexible and applicable to a wide
range of scenarios. Because of this flexibility factor, applications of less complex
models are limited only to situations where the assumptions are valid. The flexi-
bility of a model is invariably accompanied by extensibility of the mathematical
code which is determined by the level of complexity of the model. In data-based
modeling, the modeler should always be aware of five basic aspects before mod-
eling: (1) has the selected model sufficient rigor to represent the process; (2) ade-
quacy of the selected model for simulation of hydrological processes; (3) flexibility
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of the model; (4) model design and optimization method; and (5) computational
capabilities and complexities of the code.

2.5.5 Sensitivity of a Model

Sensitivity of a model is a major factor which decides its reliability in real situa-
tions. It often refers to the amount of change in model output resulting from a
change in model input. As this book deals with data-based training models, the
variations in modeling results are assessed with a certain percentage change in each
input data series. Actually, this process tests the robustness of model results of a
model under uncertain inputs. However, for physical models in general, the sen-
sitivity of a model refers to the changes in its individual parameters. The overall
sensitivity would be a cumulative result of the effects of all parameters in the system
model. The general hypothesis is that sensitivity increases with increasing com-
plexity because of the presence of more parameters or links. However, variation of
sensitivity is dependent on many factors, so this hypothesis is much generalized. To
resolve uncertainty-sensitivity issues, different kinds of optimization algorithms
have been developed, namely the variance-based Sobol’ method [69, 70] and the
GLUE procedure [14]. Sensitivity analyses are valuable tools for identifying
important model parameters to test model conceptualization and model structure.

2.5.6 Predictive Error of a Model

Prediction error is a generalized indicator of the performance of a model. The true
predictive error is the sum of training error and training optimism. It is often
referred to as the quality of the output, and the way the model performance should
be interpreted and assessed. Training optimism is a measure of how bad our model
can be over unseen data in comparison to training data. The more optimistic we are,
the better our training error will be compared to what the true error is, and the worse
our training error will be as an approximation of the true error. The hypothesis is
that highly complex models simulate the real systems and give least prediction
error. The inadequacies of simple models in most cases are because of the presence
of simplifying assumptions.

2.5.7 Identifiability of a Model

Identifiability is a measure of how well the system is defined by the model, which is
not directly assessable. This quantity tells the model whether the model ‘over-defines’
the system, which normally happens when the degree of freedom of the model is
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higher than that of the real system. One can find discussions of hydrological model
identifiability from the late 1980s [12, 40] in the hydrological literature.

Defining modeling uncertainty as a function of the model properties above
(particularly model sensitivity and modeling error), it is important to investigate the
relationship between modeling uncertainty and model complexity.

2.6 Index of Model Utility (U)

This book adopts an index of model utility to make a decision about which is the
‘best and right’” model for any hydrological modeling exercise. The adopted
approach is a somewhat modified version of Snowling and Kramer [68] for suit-
ability in data-based modeling. Statistically, the proposed ‘index of model utility’ of
a model can be defined as a scaled distance from the origin on a graph of sensitivity
versus modeling error of different models to the point corresponding to that model
in the graph. Mathematically it can be written as

K.S? + K, FE?
;= 1 — [t S 2.
v \ (K +K.) 26)

where

U; is the utility index for model 1,

S; is the sensitivity value for model i (relative to the maximum
sensitivity), in this study the value obtained from the mean value of
slope of all sensitivity curves obtained from all inputs,

E; is the error value for model i (relative to the maximum error; in this

study we have adopted root mean squared error as the indicator of
model error), and

K, and K, are weighting constants for sensitivity and error, respectively.

The value of U varies between 0 and 1 and if the value of U is larger, the model
has higher utility. The values of S and E for each model should be normalized to
satisfy the equation, which is the reason for dividing all values by the maximum
sensitivity and error value. The values of K, and K, depend on how the model
values error and sensitivity. If error and sensitivity are valued equally, then K and
K, should both be set to 1. In this study, both values were set to 1. In this book, the
model utility indexes (U) were calculated for the three case studies and are illus-
trated in Chaps. 5-7. The purpose of this equation is to explore the usefulness of
several statistical models, considering their complexity and sensitivity in hydrologic
prediction in a simpler way. Further research can be accomplished by considering
varying proportions of K and K, values.
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2.7 Conclusions

This chapter summarizes some of the data modeling issues where one can find
major over-simplified assumptions and unsolved issues. It covers the relatively
simple and neglected topics of training data length, data redundancy, and
assumptions in neuron selection in ANN modeling.
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