
Chapter 2
Scenarios, Notation and Stability Conditions
for Adaptive Predictive Control

2.1 Introduction

This chapter further develops the description of adaptive predictive control concepts
expounded in the previous chapter, defining different scenarios where they can be
applied, introducing notation that defines a mathematical language for analysis, and
determining the design conditions that guarantee the desired performance of the
controller.

After defining the scenarios, we will describe the process equation mathematically
and the two functions that the Adaptive Predictive (AP) model carries out. Firstly, we
will consider what is called the ideal case without pure time delays in the process, then
consider the existence of pure time delays and later what is called the real case, which
considers hypotheses that define the actual operating context for industrial control
applications. Secondly, we will define the control objective from the perspective of
stability, introducing the concepts of global and asymptotic stability for the adaptive
predictive controller.

Finally, we will state a Conjecture that establishes conditions for the design of
both the Driver Block and the Adaptive Mechanism that, when verified, guarantees
the desired stability and performance for the adaptive predictive controller.

2.2 Scenarios for Design and Analysis

In this section, without entering into the issue of notation, different scenarios will be
introduced which can be considered when addressing the problem of the design of an
adaptive predictive controller in relation to the process and its operating environment.

To define these scenarios within a theoretical framework enabling this design
and its systematic analysis, it is necessary to use a mathematical model to describe
the process dynamic and its interaction with the environment. This model plays a
relevant role in this context. In effect, the control system is conceived so that the
real process behaves in accordance with certain specifications and during the control
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38 2 Scenarios, Notation and Stability Conditions for Adaptive Predictive Control

system design phase, considers the model as “equivalent” to the process and at least
on paper, ensures that the model under control behaves in the desired way.

It is important to point out that the process model and the Adaptive Predictive (AP)
model are different entities. While it has been stated that the AP model is primarily a
tool describing the process, it is also the tool that the control system uses to predict the
process response and to calculate the control action. In this and subsequent chapters
of the book, we will consider linear models in discrete time like those described in
Chap. 1 (Sect. 1.6), for both the process and the AP model. They do not have to agree
and in general they do not. Moreover, the consideration that a process is described
by a model assumes the introduction of certain hypotheses which may be more or
less realistic, depending on the difficulties of the process and its interaction with
the operating environment. In this section we define design scenarios for adaptive
predictive control systems paying attention to various hypotheses, and progressively
approaching the context of industrial processes.

The problem of the synthesis of an adaptive predictive control system can initially
be approached in a theoretical manner for an ideal case, based on the following
hypotheses:

(a) The process is described by linear equations with constant parameters.

(b) The equations of the process and the model have the same order.

(c) There exist no measurement noises, or unmeasurable disturbances acting on the
process.

However, if we want to guarantee that the adaptive predictive control system works
satisfactorily in an industrial environment, the synthesis problem must be approached
using hypotheses that agree with such an environment. These hypotheses can be the
following:

(a1) The process is described by linear equations, but with time varying parameters.

(b1) The process and model equations may have different orders.

(c1) There exist measurement noises and unmeasurable disturbances randomly acting
on the process.

The hypotheses given above are useful for defining the various scenarios or real
cases that we will consider in this book, and are as follows:

• The real case with no difference in structure. In this case hypotheses (a) and
(b) of the ideal case will be maintained, but hypothesis (c) will be substituted by
hypothesis (c1).

• The real case with difference in structure. In this case only hypothesis (a) of the
ideal case will be maintained, while (b) and (c) will be substituted by hypotheses
(b1) and (c1).

• The real case with time varying parameters. This case takes into account
hypotheses (a1), (b1) and (c1). The first hypothesis accounts for the basically
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2.2 Scenarios for Design and Analysis 39

non-linear and variable nature of the industrial process. Hence, when describ-
ing it through linear equations, parametric changes will occur due to any kind of
variation in the conditions of the operation environment.

2.3 Process and AP Model in the Ideal Case

As was presented in Chap. 1 and described in Fig. 2.1, the adaptive predictive control
scheme resulted from the combination of a predictive controller and an adaptive
system. This combination, as has already been explained, does not consist of a simple
juxtaposition of both systems, but exploits the benefits derived from their interaction.
In effect, the knowledge of the process dynamic acquired by the adaptive model, by
means of the adaptation mechanism, is used by the predictive model of the predictive
controller to calculate the control signal.

We can better understand this combination when we consider that both systems
share the same model, which is adjusted periodically by the adaptation mechanism
and which carries out two different functions, one in the predictive control scheme,
the other in the adaptive system. This shared model is given the name adaptive
predictive (AP) model, alluding to the two functions it performs.

In this section we will consider the ideal scenario based on two simple examples,
one without and the other with pure time delays, to give a mathematical description
of the process and of the two AP model functions. Also, we will introduce notation
that will permit us to generalize these descriptions and which will be used throughout
the development and proofs presented in this book.
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Fig. 2.1 Adaptive predictive control scheme
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40 2 Scenarios, Notation and Stability Conditions for Adaptive Predictive Control

2.3.1 Example of a Process without Pure Delays

In this first example we will consider that the process shown in Fig. 2.1 can be
described by the following transfer function in z:

T (z) = b1z−1 + b2z−2

1 − a1z−1 − a2z−2 . (2.1)

It can be observed that the process does not contain delays, except for the inherent
delay due to discretization. There are no noise or perturbations acting on the process,
and its dynamic behaviour is governed by the following difference equation:

y(k) = a1 y(k − 1) + a2 y(k − 2) + b1u(k − 1) + b2u(k − 2), (2.2)

where u and y represent the input and output variables respectively.
One of the two functions carried out by the AP model, as can be seen in Fig. 2.1,

is to generate the output of the adaptive model. This model output is an estimation
of the process output that can be generated at every instant k in two different ways,
represented by the following equations for the example under consideration:

ŷ(k|k − 1) = â1(k − 1)y(k − 1) + â2(k − 1)y(k − 2)

+ b̂1(k − 1)u(k − 1) + b̂2(k − 1)u(k − 2), (2.3)

ŷ(k|k) = â1(k)y(k − 1) + â2(k)y(k − 2) + b̂1(k)u(k − 1) + b̂2(k)u(k − 2). (2.4)

The term ŷ(k|k − 1) represents the estimation of the process output at the instant
k, which is calculated according to (2.3) using the parameter values of the AP model
(â1, â2, b̂1, b̂2) given by the adaptation mechanism at the instant k − 1. On the other
hand, ŷ(k|k) indicates the estimation of the output variable at the instant k but using
all the information available up to instant k, particularly the most recent AP model
parameters adjusted at the instant k. The estimation achieved by the Eq. (2.3) is
called the a priori estimation of the process output as it is calculated based on the
information received at the previous instant k − 1. The calculation carried out by
the Eq. (2.4) is called the a posteriori estimation. In both cases, if the AP model
parameters were equal to those of the process, we would have an exact estimation
of the process output, which justifies the selection of (2.3) and (2.4) to describe the
estimating function of the AP model.

The type of notation used in the previous equations will be the standard for the
rest of the book. In general, for a generic variable whose measured value at instant
k is represented by v(k), its estimated value at instant kf, using only the information
available up to instant ki , will be expressed as v̂(k f |ki ). This information will con-
sist of information about the process input and output variables and the AP model
parameters. On the other hand, to refer to a generic parameter of the form p(k), we
will indicate that it is a parameter of the model that describes the process, while the
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notation p̂(k) will represent the estimation of this parameter as calculated by the
adaptive mechanism at the indicated instant k.

The other function of the AP model is to calculate the predictive control action.
For this calculation, the AP model calculates the control action to be applied at each
instant k, so that the predicted future process output equals a desired value. In the
example we are considering, where there are no pure time delays, the prediction for
instant k + 1 is achieved in the following way:

ŷ(k + 1|k) = â1(k)y(k) + â2(k)y(k − 1) + b̂1(k)u(k) + b̂2(k)u(k − 1). (2.5)

This equation provides the process output prediction for the instant k + 1, ŷ(k +
1|k), using both the value of the AP model parameters and the inputs/outputs of
the process all updated at instant k. Note that the equation uses the same notation
introduced in (2.3) and (2.4) since the prediction of the process output at instant k +1
is still an estimation of the output at instant k + 1, using all the acquired knowledge
of the process dynamic up to instant k.

Making the predicted output in (2.5) equal to a desired value expressed in the
form yd(k +1), we obtain the following calculation of the adaptive predictive control
signal:

u(k) = yd(k + 1) − â1(k)y(k) − â2(k)y(k − 1) − b̂2(k)u(k − 1)

b̂1(k)
. (2.6)

In order to generalise the concepts expressed previously in this example and to
simplify the writing of the corresponding equations, we will introduce the following
additional notation:

θT = [a1, a2, b1, b2],
θ̂ (k)T = [â1(k), â2(k), b̂1(k), b̂2(k)],

θ̂0(k)T = [â1(k), â2(k), b̂2(k)]; θ̂1(k) = b̂1(k),

φ(k − 1)T = [y(k − 1), y(k − 2), u(k − 1), u(k − 2)],
φ(k)T = [y(k), y(k − 1), u(k), u(k − 1)],

φ0(k)T = [y(k), y(k − 1), u(k − 1)] ,

(2.7)

where T indicates the transposed vector.
In accordance with this notation, the parameters of the process are grouped into a

vector θ and similarly, the parameters of the AP model are grouped in a vector θ̂ (k).
In the same way, we define a vector φ that contains the values of the input and output
variables in the equations at different time instants.

Using the previous notation, the Eqs. (2.2)–(2.6) can be expressed in the following
form:
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y(k) = θT φ(k − 1),

ŷ(k|k − 1) = θ̂ (k − 1)T φ(k − 1),

ŷ(k|k) = θ̂ (k)T φ(k − 1),

ŷ(k + 1|k) = θ̂ (k)T φ(k) = θ̂0(k)T φ0(k) + θ̂1(k)u(k),

u(k) = yd(k + 1) − θ̂0(k)T φ0(k)

θ̂1(k)
.

(2.8)

The new notation greatly simplifies the equations to express different relationships
between the input and output variables which are seen to be scalar products of
parameter and input-output vectors. Moreover, these expressions are more general
than the equivalent ones in (2.2)–(2.6) since its expression would not change even
if the process and the adaptive models were of a higher order than considered in
this case. It would simply be necessary to increase the dimensions of the vectors in
accordance with the appropriate order.

2.3.2 Example of Process with Pure Time Delays

In this second example, we will consider the process seen in Fig. 2.1 responds to the
following transfer function in z:

T (z) = z−1 b1z−1

1 − a1z−1 . (2.9)

The process is of first order and has, in addition to a discretization delay, a pure
time delay of one control period. Neither noise nor perturbations acting on the process
are considered, and its dynamic behaviour is described by the following difference
equation:

y(k) = a1 y(k − 1) + b1u(k − 2). (2.10)

In this case, for the mathematical expression of the two functions carried out by
the AP model, there exist two alternatives that we will now consider.

2.3.2.1 Alternative 1

The a priori and a posteriori estimations of the process output at the instant k (first
function of the AP model) can be expressed in the following form:

ŷ(k|k − 1) = â1(k − 1)y(k − 1) + b̂1(k − 1)u(k − 2),

ŷ(k|k) = â1(k)y(k − 1) + b̂1(k)u(k − 2) .
(2.11)
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In both cases it can be seen that due to the existence of a pure time delay, the calculated
estimation at the instant k does not depend on the control action applied to the process
at the instant k − 1, but on the action u(k − 2) applied at k − 2.

The function of the AP model prediction can be described by means of the equation

ŷ(k + 1|k) = â1(k)y(k) + b̂1(k)u(k − 1) , (2.12)

where, due to a pure time delay, it can be seen that the predicted output at k + 1 does
not depend on the control action at k, but on the control action at k −1, and this is the
reason the control action u(k) cannot be calculated based on this equation. In order
that the output prediction of the process be a function of the control signal u(k), we
must consider this output prediction at the instant k + 2 which will depend on the
output at instant k + 1. Since we do not have the measurement of the process output
at instant k + 1, we can substitute it for the estimation of this measurement given by
the Eq. (2.12). Hence, the prediction in question can be expressed in the form

ŷ(k + 2|k) = â1(k)ŷ(k + 1|k) + b̂1(k)u(k)

= â1(k)2 y(k) + b̂1(k)u(k) + â1(k)b̂1(k)u(k − 1),
(2.13)

where the control action u(k) appears explicitly.
Substituting the predicted process output at the instant k + 2 into (2.13) for the

corresponding desired output yd(k + 2), we obtain

u(k) = yd(k + 2) − â1(k)2 y(k) − â1(k)b̂1(k)u(k − 1)

b̂1(k)
, (2.14)

which represents the calculation of the adaptive predictive control signal for this
alternative.

2.3.2.2 Alternative 2

The second alternative for defining the two functions of the AP model considers the
recursive substitution of the value of y(k − 1), obtained using the process model
(2.10), into the Eq. (2.10). The following equation is derived and used to describe
the dynamic behaviour of the process:

y(k) = a1[a1 y(k − 2) + b1u(k − 3)] + b1u(k − 2)

= a2
1 y(k − 2) + b1u(k − 2) + a1b1u(k − 3).

(2.15)

In this equation the value of the process output measurement at the instant k is
a function of the inputs and outputs of the process measured at the instant k − 2
and at previous instants. Given that, in the context of adaptive predictive control, the
parameters of the process are unknown, we can rewrite the Eq. (2.15) in the form
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y(k) = a∗
1 y(k − 2) + b∗

1u(k − 2) + b∗
2u(k − 3). (2.16)

Based on this method of representing the process dynamics, the first function
of the AP model of estimating the process output can be defined by means of the
following equations:

ŷ(k|k − 1) = â1(k − 1)y(k − 2) + b̂1(k − 1)u(k − 2) + b̂2(k − 1)u(k − 3), (2.17)

ŷ(k|k) = â1(k)y(k − 2) + b̂1(k)u(k − 2) + b̂2(k)u(k − 3), (2.18)

where (2.17) generates the a priori estimation and (2.18) the a posteriori estimation,
and the parameters of the AP model are an estimation of the parameters of the process
Eq. (2.16).

The function of the AP model prediction can now be defined by means of the
equation:

ŷ(k + 2|k) = â1(k)y(k) + b̂1(k)u(k) + b̂2(k)u(k − 1), (2.19)

where the predicted process output for the instant k + 2 is explicitly a function of
the predictive control signal u(k). Substituting the predicted process output at instant
k+2 into (2.19) for the corresponding desired output yd(k+2), we obtain the control
signal

u(k) = yd(k + 2) − â1(k)y(k) − b̂2(k)u(k − 1)

b̂1(k)
, (2.20)

that represents the calculation of the adaptive predictive control action for this alter-
native.

The two alternatives used to deal with this example are valid. Nevertheless, for
the sake of simplicity, we will use in this book the second alternative when processes
with pure time delays are considered.

As in the first example, and with the objective of facilitating the generalization of
the results obtained and simplifying the writing of the corresponding equations, we
will introduce the following notation for this example:

θT = [a∗
1 , b∗

1, b∗
2],

θ̂ (k)T = [â1(k), b̂1(k), b̂2(k)],
θ̂0(k)T = [â1(k), b̂2(k)]; θ̂1(k) = b̂1(k),

φ(k)T = [y(k), u(k), u(k − 1)],
φ0(k)T = [y(k), u(k − 1)] ,

(2.21)

where θ and θ̂ (k) are the vectors of the process parameters and of the AP model
respectively, and φ(k) is the vector of the inputs and outputs. Using this notation the
Eqs. (2.16)–(2.20) can now be written in the following form



2.3 Process and AP Model in the Ideal Case 45

y(k) = θT φ(k − d),

ŷ(k|k − 1) = θ̂ (k − 1)T φ(k − d),

ŷ(k|k) = θ̂ (k)T φ(k − d),

ŷ(k + d|k) = θ̂ (k)T φ(k) = θ̂0(k)T φ0(k) + θ̂1(k)u(k),

u(k) = yd(k + d) − θ̂0(k)T φ0(k)

θ̂1(k)
,

(2.22)

where the integer d represents the sum of the discretization delay and the pure time
delay of the process. In the example that we are considering the pure time delay has
been 1 and therefore we have d = 2.

These equations represent a simplified form of the process dynamic and the func-
tions of the AP model in this example. However, they are general in the sense that
they serve in any situation where the process and the AP model are of higher order
than the example under consideration, and the process has any number of pure delays.

2.4 General Description of the Real Case

2.4.1 Description of the Process

For the real case with time varying parameters, let us consider a single-input, single-
output process where the relation between the inputs and outputs, using notation
similar to that used in the preceding section, may be given by

ya(k) =
n∑

i=1

ai (k)ya(k − i) +
m∑

i=1

bi (k)ua(k − r − i)

+
p∑

i=1

ci (k)wa(k − r1 − i) + ξ(k), (2.23)

where ya, ua and wa are the actual, present or previous values of the process output,
input and measurable disturbance respectively; r and r1 represent the pure time
delays related to the process input and measurable disturbances respectively; ξ(k)

represents the effect of the unmeasured disturbances on the process output at instant
k; and ai , bi and ci are the process parameters which, in the context of adaptive
systems, are generally unknown and time variant.

Using Eq. (2.23) to express the outputs ya at instants k−1, …, k−r and recursively
substituting the results into the right-hand side of (2.23), the above process equation
may be written in the following form
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ya(k) =
n∑

i=1

a∗
i (k)ya(k − r − i) +

m+r∑

i=1

b∗
i (k)ua(k − r − i)

+
p+r∑

i=1

c∗
i (k)wa(k − r1 − i) + ξ(k), (2.24)

where parameters a∗
i , b∗

i y c∗
i are easily obtained from ai , bi y ci .

In order to use a more manageable notation, the Eq. (2.24) will be expressed in
the form

ya(k) = θ(k)T φa(k − d) + ξ(k), (2.25)

where

φa(k − d)T = [ya(k − d), ya(k − d − 1), . . . , ya(k − d − n + 1),

ua(k − d), ua(k − d − 1), . . . , ua(k − 2d − m + 2),

wa(k − d1), wa(k − d1 − 1), . . . , wa(k − p − d − d1 + 2)]

and

θ(k)T = [a∗
1(k), a∗

2 (k), . . . , a∗
n (k), b∗

1(k), b∗
2(k), . . . , b∗

m+r (k),

c∗
1(k), c∗

2(k), . . . , c∗
p+r (k)],

since φa(k − d) and θ(k) are the input/output and the parameters of the process
vectors at instants k − d and k respectively, we define them in a manner similar to
that used in the ideal case with delays. The integer d represents the time delay related
to the process input and includes the discretization delay plus the pure delay, that is,
d = r + 1; d1 is the equivalent for the measurable disturbances, d1 = r1 + 1.

The measured values of the process variables differ from their actual values due
to measurement errors, noise, etc., as expressed by the following equations:

y(k) = ya(k) + ny(k),

u(k) = ua(k) + nu(k),

w(k) = wa(k) + nw(k),

(2.26)

where, for each variable, subscript a denotes its actual value and n denotes the
additional corrupting signal.

As a result, the corresponding measured vector φ becomes

φ(k) = φa(k) + nφ(k). (2.27)

This vector is known as the input/output (I/O) vector or regression vector. Substitut-
ing (2.26) and (2.27) into process Eq. (2.25) we obtain
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y(k) = θ(k)T φ(k − d) + Δ(k),

Δ(k) = ny(k) − θ(k)T nφ(k − d) + ξ(k).
(2.28)

Δ(k) can be referred to as the perturbation signal and represents the effect of the
unmeasured perturbations and measurement noise acting on the process. The previous
assumptions about the relation between the inputs and outputs of the process come
from hypotheses (a1) and (c1) of the real case, in which the existence of measurement
noise and unmeasured perturbations are considered and where the process parameters
may vary with time.

The process Eq. (2.28) may also be written in the form:

y(k) = θo(k)T φo(k − d) + θ1(k)u(k − d) + Δ(k), (2.29)

where θ1(k) is the single parameter included in vector θ(k) in the process Eq. (2.28)
that multiplies the control signal in the inner product at instant k −d, u(k −d). θo(k)

and φo(k − d) result after the exclusion of the parameter θ1(k) and the control signal
u(k − d) from the parameter vector θ(k) and the I/O vector φ(k − d) respectively.

The parameter vector θo(k) and the parameter θ1(k) are always assumed to be
bounded, while the absolute value of θ1(k) is assumed to be greater than a certain
positive constant, that is, |θ1(k)| > ν > 0.

2.4.2 Description of the AP Model Functions

The simplified notations used in this section for the mathematical description of the
AP model functions have been introduced in the adaptive predictive control scheme
shown in Fig. 2.2.
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Fig. 2.2 Adaptive predictive control scheme
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In the adaptive system, the AP model provides an estimation of the process output
at instant k using the model parameters also estimated at instant k, which will be
denoted by θ̂r (k), and the control signals and process outputs already applied or
measured at previous instants, which are included in the I/O vector denoted by
φr (k − d). This estimation is expressed in the form

ŷ(k|k) = θ̂r (k)T φr (k − d), (2.30)

where

φr (k − d)T = [y(k − d), y(k − d − 1), . . . , y(k − d − nr + 1),

u(k − d), u(k − d − 1), . . . , u(k − d − mr + 1),

w(k − d1), w(k − d1 − 1), . . . , w(k − d1 − pr + 1)]

and

θ̂r (k) = [â1(k), â2(k), . . . , ânr (k), b̂1(k), b̂2(k), . . . , b̂mr (k),

ĉ1(k), ĉ2(k), . . . , , ĉpr (k)].

The dimensions of φr and θr are usually less than or equal to the dimensions of
φ and θ previously considered in process equation (2.28). Thus, φr (k − d) contains
a subset of the most recent process inputs and outputs included in φ(k − d). These
assumptions account for hypothesis (b1) of the real case, in which it was considered
that the process and model equations had different orders.

The a posteriori and a priori estimation errors are given by the equations

e(k|k) = y(k) − ŷ(k|k) = y(k) − θ̂r (k)T φr (k − d) (2.31)

e(k|k − 1) = y(k) − ŷ(k|k − 1) = y(k) − θ̂r (k − 1)T φr (k − d). (2.32)

The predictive function of the AP model can now be defined by means of the
expression

ŷ(k + d|k) = θ̂r (k)T φr (k). (2.33)

When r > r1, some terms within φr (k) related to the disturbance w will not have
been measured at instant k yet and, since they will be generally unknown, their value
will be taken as equal to the latest measured value. For the sake of simplicity we will
assume in the following that r ≤ r1.

Applying the principle of predictive control, that is to say, substituting the pre-
dicted value for the desired at k + d, yd(k + d), we obtain the expression

yd(k + d) = θ̂r (k)T φr (k). (2.34)

This equation may also be written in the form
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yd(k + d) = θ̂ro(k)T φro(k) + θ̂1(k)u(k), (2.35)

where θ̂ro(k) and φro(k) result from excluding the parameter θ̂1(k) and the control
signal u(k), respectively, from θ̂r (k) and φr (k).

The predictive control law can be written from (2.35) in the form

u(k) = yd(k + d) − θ̂ro(k)T φro(k)

θ̂1(k)
. (2.36)

Clearly, the adaptation mechanism must always guarantee that the parameter θ̂1(k)

is not zero for any instant k.
The difference between the process output and the desired output is defined as the

control or tracking error
ε(k) = y(k) − yd(k). (2.37)

which will play an important role in characterizing the performance of adaptive
predictive controllers, as is considered in the following section.

2.5 Control Objectives

Recalling the basic concepts introduced in the previous chapter, if the process
dynamic is known, the application of predictive control allows us to guide the process
output by means of suitably selected trajectories. The precision of the guide is lim-
ited only by the level of noise and perturbations, defined in the previous section as
the perturbation signal, acting on the process. In this context, the control objective
can be determined by the design objective of the driver block, which generates the
desired trajectory for the process output, and which can be defined conceptually in
the two following points:

• The desired trajectory must drive the process output towards the setpoint value,
as set by the operator, in accordance with the desired dynamic. As a consequence,
the desired trajectory remains bounded, as long as changes in the setpoint value
introduced by the operator also remain bounded, which from now on, will always
be considered the case.

• The desired trajectory must be physically realizable, that is, the sequence of control
signals capable of producing a process output that follows the desired trajectory
must also be bounded.

Nevertheless, it is difficult in industrial practice to have a precise knowledge of
the process dynamic. Even though we might, on occasion, be able to obtain some
knowledge of the process, given its varying dynamic, it could evolve at any time,
and that does happen frequently in the industrial domain. The objective in adding an
adaptive system to the predictive controller is precisely to achieve the satisfactory
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results that predictive control could obtain if the process dynamic were known in the
variable operating environment under consideration.

Consequently, the objectives we should expect to reach with the application of
adaptive predictive control can be conceptually defined as follows:

1. After a certain period of adaptation, the process output must follow a desired
trajectory with a tracking error which must always remain bounded in the real
case and must tend towards zero in the ideal case.

2. The desired trajectory must respond to the desired dynamic, be bounded and
physically realizable.

The first point concerns the design of the adaptation mechanism, whereas the
second point summarizes the two design objectives of the driver block noted pre-
viously. In fact, the boundedness of the control sequence is imposed, in practice,
by the limitations of the actuators which determine the control action applied to the
process. Also, the boundedness of the desired output is naturally associated with a
limited variation range of the sensors which measure the process variables.

These boundedness conditions do not, in practice, pose limitations on the ability
to control, since any variable that due to its nature would evolve in an unbounded
way, could always be controlled by means of an associated incremental or derivative
variable evolving within a certain limited variation range.

In short, the control objectives we have presented can be summarized by saying
that the ultimate aim of adaptive predictive control is to make the process output
follow a desired, bounded and physically realizable trajectory.

2.6 Design from the Perspective of Stability

In this section we transfer the above intuitive control objectives to a mathematical
setting in terms of stability. Thus we will have a framework with which to work out
all the subsequent formulation involved in the design of AP controllers in this and
the following chapters of this book.

The stability theory results, presented in this book and in previous literature, are
in fact related to the context of a control loop, which has usually been referred so
far in the stability analysis as control system. In the following, we will keep this
denomination in the stability analysis for the control loop, since it can properly be
considered as a simple case of a control system and it is in agreement with previous
literature. On the other hand, stability of control loops must imply stability of the
control system including them.

The stability perspective of the adaptive system design was mentioned in Sect. 1.10.
Within the adaptive system operation, the adaptation mechanism must adjust the
parameters of the AP model in order to make this model produce an output that is as
close to the process output as possible when both receive the same input. Thus it is
reasonable to characterize the performance of the adaptive system by the difference
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between the process output and the AP model output. In our case, this difference is
represented by the a posteriori estimation error e(k|k).

In the ideal case considered in Sect. 2.2, under hypotheses (a)–(c), the result we
should expect from a good solution to the problem of synthesis of the adaptation
mechanism is that the error e(k|k) → 0 as k → ∞ from any initial condition.
If we obtain this result, associating the estimation error e(k|k) with the state of the
adaptive system with an equilibrium state at zero, we can say that the adaptive system
is globally asymptotically stable, as defined classically in Appendix A.

In the real cases considered in Sect. 2.2 it is not realistic to require the estimation
error to tend asymptotically to zero since, for example, simply the measurement
noise could cause this error to deviate from zero, even in the hypothetical case
that this value had been reached. Therefore, the result to be expected from a good
solution to the problem of designing the adaptation mechanism is that from any
initial condition, the error should become bounded after a certain sampling instant
k f and the corresponding bound should be the smallest possible taking into account
the level of noise, disturbances of all types, and parametric changes acting on the
process. This result can be expressed mathematically in the form

|e(k|k)| < M̄ for all k ≥ k f .

In the real cases, we may also associate the error e(k|k) with the state of the
adaptive system, but now considering the disturbances and noise as exogenous inputs.
Then we can interpret the above boundedness condition of this error in terms of the
stability concepts outlined in Appendix A by saying that the adaptive system is
externally stable.

When considering the basic adaptive predictive control loop or control system, we
would like to relate the desired performance to the corresponding stability concepts
considered above for the adaptive system. Thus we can assume that the tracking
error ε(k), which represents the difference between the driving desired output and
the process output, is related to the state of the adaptive predictive control system
(APCS) and, if the adaptive system has been designed to be stable, the tracking error
should satisfy the stability properties previously considered for the estimation error
e(k|k).

However, this result is not sufficient to cover the desired performance objectives
for APCS as stated in the previous section. In fact, the AP controller has to generate a
control signal within conditions imposed in practice; mainly that it must be bounded.
As will be analyzed in Chap. 3, in order to make the process output follow certain
trajectories, it may be necessary to apply unbounded control signals. In such cases,
even with stable estimation and tracking errors, we would obtain an undesirable
APCS performance. In the same way, the process output driven by APCS will have
to evolve bounded and within the range limits of the sensors. The same consideration
may also be extended to the different kinds of perturbation. All these requirements
on the input/output signals can be included in a single condition by stating that
the input/output vector φ(k) must be bounded. This condition has necessarily to be
included for satisfactory performance of APCS.
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Taking the preceding considerations into account, we may now state the following
definition of global stability for APCS that corresponds to the desired performance.

Definition 2.1 An adaptive predictive control system is said to be globally stable if
the following conditions are satisfied:

(1) |ε(k)| ≤ M < +∞ ∀k ≥ k f > 0.

(2) ‖φ(k)‖ ≤ Ω < +∞ ∀k ≥ k f > 0.

‖ · ‖ denotes the Euclidean norm.

The above definition corresponds to the stability result that may be expected in
the real cases. For the ideal case, the expected result will correspond to the following
definition.

Definition 2.2 An adaptive predictive control system is said to be globally asymp-
totically stable if the following conditions are satisfied:

(1) ε(k) → 0 as k → ∞.

(2) ‖φ(k)‖ ≤ Ω < +∞ ∀k ≥ k f > 0.

The methodological and theoretical developments that follow in this book are
aimed at the design of adaptive predictive control systems that verify the stability
results expressed in the prior definitions, and particularly the design of the driver
block and the adaptation mechanism.

2.7 Stability Conditions

This section establishes the principles of adaptive predictive control system design,
which we will provide in this book by means of a conjecture. This conjecture estab-
lishes conditions for the driver block and the adaptation mechanism which guarantee
the global stability of the adaptive predictive control system in the sense of Defini-
tion 2.1 (for the real case) and Definition 2.2 (for the ideal case), and as a consequence,
the achievement of the objectives in desired operating performance for the control
system.

The conjecture considers the description of the process and the two functions of
the AP model described for the real case in Sect. 2.4, of which the ideal case is a
particular case.

Conjecture 2.1 If the driver block verifies that the desired output yd(k + r + 1) is

(1) bounded, and
(2) physically realizable,

and, for certain values M and kf, the adaptive system (or adaptive mechanism) satisfies
the conditions
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(a) θ̂r (k) = θ̂r (k − d), ∀k ≥ k f > 0, and
(b) |e(k|k)| ≤ M < ∞, ∀k ≥ k f > 0,

then the adaptive predictive control system will fulfil the following properties:

(I) |ε(k)| = |y(k) − yd(k)| ≤ M < ∞, ∀k ≥ k f > 0, and
(II) ‖φ(k)‖ ≤ Ω < ∞, ∀k ≥ k f > 0.

Proof The Eq. (2.34), which defines the function of the AP model making the pre-
dicted output equal to the desired output at instant k + d, can be written for instant
k in the form:

yd(k) = θ̂r (k − d)T φr (k − d). (2.38)

Comparing the Eqs. (2.30) and (2.38), it is obvious that, if condition a holds, we can
deduce:

yd(k) = ŷ(k|k), ∀k ≥ k f > 0,

and as a consequence:

ε(k) = e(k|k), ∀k ≥ k f > 0.

Based on this result and condition b of the Conjecture, the property I is directly
deduced. Also, if condition 1 is satisfied, based on property I previously proven, it
can be derived that y(k) will be bounded for all k ≥ k f . Additionally, if condition 2
is satisfied, also based on property I, we can also derive that u(k) will be bounded for
all k ≥ k f − d. As a result, property II is proven, thus concluding the demonstration
of this conjecture. �

It may be arguable to use the term conjecture when, as proven, it is a mathematical
result. However, previous literature used this nomenclature because it established a
sound stability conclusion from premises that were not yet proven. Under this scheme,
conditions 1, 2, a and b are used as the guidelines for the design of the driver block
and the adaptive mechanism in order to satisfy the stability objective.

In relation to the design of the driver block, verifying condition 1 of the desired
output boundedness is simple and in principle only requires the boundedness of the
corresponding setpoints. To verify condition 2, that of physical realizability, we must
first take into account that the noise and non-measurable perturbations, that is to say,
the perturbations vector, is continuously acting on the real process, and secondly, the
effect of the dynamics of the process in question.

The consideration of the perturbation vector acting on the process originated the
the first design of the driver block within the framework of the so called “basic
predictive control strategy”. The limitations of the basic strategy led to the consid-
eration of the process dynamic in the design of the driver block and further, to what
we will refer to as the “extended predictive control strategy”. Both predictive control
strategies, and their corresponding driver block designs, are the topic of Part II.
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With regards to the design of the adaptive system or the adaptation mechanism,
condition a defines a form of convergence of the AP model parameters, while con-
dition b formulates the stability of the adaptive system as we have considered in the
previous section. Conditions a and b represent a change in philosophy or perspective
regarding control system design, as will be explained next.

The design of control systems has traditionally been based on the knowledge of
the equations representing the process dynamic behaviour. Control methodologies
have used so far this knowledge, at least theoretically, to determine the control laws
to apply to processes. It is for this reason that process identification techniques have
been one of the most important areas of focus in control theory research.

Therefore, it should be noted that conditions a and b established by the Conjecture
for achieving desired control performance, definitely do not require identification of
the process parameters by means of the AP model parameters. In effect, condition a
does not require that the parameters of the AP model be equal to or tend towards the
process parameters, but only that these parameters converge to certain values that do
not have to be equal to those of the process. Additionally, condition b requires the
stability of the adaptive system, as indicated previously.

Hence, the difficulty in resolving the identification problem, which is particularly
well known in the case of industrial processes, is avoided or substituted, as suggested
by the Conjecture, by the verification of less demanding or easier to attain conditions.

Part III will present solutions illustrating the synthesis problem of the adaptation
mechanism, in the various contexts of the ideal case, the real case without struc-
tural differences and the real case with structural differences. It will be demonstrated
that the proposed adaptive systems verify the conditions of convergence and stabil-
ity of the Conjecture in the case where the series of values {‖φr (k)‖} is bounded.
Obviously, the boundedness of the input/output vector cannot be guaranteed by the
adaptive system, since the control signal is produced by the adaptive predictive
controller. Thus, it is only the adaptive predictive control system that can guaran-
tee the condition of boundedness. Nevertheless, it will be shown that the proposed
adaptive systems have properties which come close to satisfying the conditions
of the Conjecture and these are inherent to the adaptive system itself, independently
of whether the series {‖φr (k)‖} is bounded or not. Part IV will combine these prop-
erties with those of physical realizability, boundedness of the desired output, and
the principle of predictive control to formally prove the boundedness of the series
{‖φr (k)‖}, and consequently, achieve the desired performance objective of the con-
trol system.

In the real case where the process parameters vary with time, condition a of the
Conjecture cannot be attained when the variation of the process parameters is per-
manent. However, Chap. 6 in Part III will consider the synthesis of the adaptation
mechanism for this real case and prove a form of convergence of the AP model
parameters that, within the reasonable restrictions of an industrial environment, may
be sufficient to achieve the desired practical objectives of the control system perfor-
mance as illustrated in the application chapters of this book.
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2.8 From Conceptual Knowledge to a Profound Understanding

This chapter completes Part I, in which the conceptual and intuitive knowledge of the
material covered in this book were presented. The basic concepts were presented in
Chap. 1 and in this chapter we provided a mathematical language that enabled a basic
level of analysis. Hence, we have deduced the conditions that must be verified for
the technological realization of the concepts, in order to achieve the desired results
in their practical application.

The technological realization of the adaptive predictive expert control (ADEX)
concepts, explained in this Part, must

1. Define all the information processing relating to the operation of the control
system, verifying the previously stated stability conditions.

2. Ensure the computing support to enable the calculations associated to the required
information processing.

3. Define the system operation in the appropriate environment that will enable the
necessary information flows to take place, including real time capture of the
process signals and the application to the process of the control signals generated.

In this book, Parts II, III, V and VI define and analyse a design for the differ-
ent blocks that enable the functioning of adaptive predictive expert control. Part II,
therefore, focused on the analysis and design of the driver block and its operation
together with the Predictive Model, included in the Control Block. Similarly, Part
III is focused on the analysis and design of the Adaptation Mechanism, and Part VI
presents a design for the Expert System, also included in the Control Block.

Also, Part VI presents the design and instructions for the using the software plat-
form ADEX COP (an acronym of ADEX “Control and Optimization Platform”)
version 1. This platform enables the integration of ADEX controllers into the control
logic of currently available commercial systems, hence guaranteeing the program-
ming support required for the calculations that must be made by the controllers and, at
the same time, the appropriate operating environment. Additionally, Part VI presents
the design and application of the ADEX COP version 2 platform and the ADEX
controller module.

In accordance with the learning focus of this book, the profound knowledge of the
technology must be acquired by means of practical experimentation. In this sense,
Parts V and VI present the student with examples of predictive control applications
without adaptation, adaptive predictive control or adaptive predictive expert control to
various real processes. Additionally, Parts I, II and III present exercises that allow the
student to simulate processes by means of programming, and apply the technological
knowledge which is the objective of these units.
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