Perturbative Algebraic Quantum Field Theory
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Abstract These notes are based on the course given by Klaus Fredenhagen at the
Les Houches Winter School in Mathematical Physics (January 29-February 3,2012)
and the course QFT for mathematicians given by Katarzyna Rejzner in Hamburg for
the Research Training Group 1670 (February 6—11, 2012). Both courses were meant
as an introduction to modern approach to perturbative quantum field theory and are
aimed both at mathematicians and physicists.

1 Introduction

Quantum field theory (QFT) is at present the by far most successful description of
fundamental physics. Elementary physics is to a large extent explained by a specific
quantum field theory, the so-called Standard Model. All the essential structures of the
standard model are nowadays experimentally verified. Outside of particle physics,
quantum field theoretical concepts have been successfully applied also to condensed
matter physics.

In spite of its great achievements, quantum field theory also suffers from sev-
eral longstanding open problems. The most serious problem is the incorporation
of gravity. For some time, many people believed that such an incorporation would
require a radical change in the foundation of the theory, and one favored theories
with rather different structures as e.g. string theory or loop quantum gravity. But
up to now these alternative theories did not really solve the problem; moreover there
are several indications that QFT might be more relevant to quantum gravity than
originally expected.
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Another great problem of QFT is the difficulty of constructing interesting exam-
ples. In nonrelativistic quantum mechanics the construction of a selfadjoint Hamil-
tonian is possible for most cases of interest, in QFT, however the situation is much
worse. Models under mathematical control are

free theories

superrenormalizable models in 2 and 3 dimensions
conformal field theories in 2 dimensions
topological theories in 3 dimensions

integrable theories in 2 dimensions

but no single interacting theory in 4 dimensions, in particular neither the standard
model nor any of its subtheories like QCD or QED. Instead one has to evaluate the
theory in uncontrolled approximations, mainly using formal perturbation theory, and,
in the case of QCD, lattice gauge theories.

If one attempts to incorporate gravity, an additional difficulty is the apparent non-
locality of quantum physics which is in conflict with the geometrical interpretation
of gravity in Einstein’s theory. Even worse, the traditional treatment of QFT is based
on several additional nonlocal concepts, including

vacuum (defined as the state of lowest energy)

particles (defined as irreducible representations of the Poincaré group)
S-matrix (relies on the notion of particles)

path integral (involves nonlocal correlations)

euclidean space (does not exist for generic Lorentzian spacetime)

There exists, however, a formulation of QFT which is based entirely on local
concepts. This is Algebraic QFT (AQFT), or, synonymously, Local Quantum Physics
[20]. AQFT relies on the algebraic formulation of quantum theory in the sense of
the original approach by Born, Heisenberg and Jordan and formalized in terms of
C*-algebras by 1. Segal. The step from quantum mechanics to QFT is performed
by incorporating the principle of locality in terms of local algebras of observables.
This is the algebraic approach to field theory proposed by Haag and Kastler [18]. By
the Haag-Ruelle scattering theory the Haag-Kastler framework on Minkowski space,
together with some mild assumptions on the energy momentum spectrum, already
implies the existence of scattering states of particles and of the S-matrix.

It required some time before this framework could be generalized to generic
Lorentzian spacetimes. A direct approach was performed by Dimock [12], but the
framework he proposed did not contain an appropriate notion of covariance. Such
a notion, termed local covariance was introduced more recently in a programmatic
paper by Brunetti, Verch and one of us (K.F.) [9] motivated by the attempt to define
the renormalized perturbation series of QFT on curved backgrounds [7, 21, 22]. It
amounts to an assignment of algebras of observable to generic spacetimes, subject
to a certain coherence condition formulated in the language of category theory. In
Sect.3 we will describe the framework in detail.

The framework of locally covariant field theory is a plausible system of axioms
for a generally covariant field theory. Before we enter the problem of constructing
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examples of quantum field theory satisfying these axioms we describe the corre-
sponding structure in classical field theory (Sect.4). Main ingredient is the so-called
Peierls bracket by which the classical algebra of observables becomes a Poisson
algebra.

Quantization can be done in the sense of formal deformation quantization, i.e. in
terms of formal power series in 7 at least for free field theories, and one obtains an
abstract algebra resembling the algebra of Wick polynomials on Fock space (Sect.5).
Interactions can then be introduced by the use of a second product in this algebra,
namely the time ordered product. Disregarding for a while the notorious UV diver-
gences of QFT we show how interacting theories can be constructed in terms of the
free theory (Sect.6).

In the final part of these lectures (Sect.7) we treat the UV divergences and their
removal by renormalization. Here again the standard methods are nonlocal and loose
their applicability on curved spacetimes. Fortunately, there exists a method which
is intrinsically local, namely causal perturbation theory. Causal perturbation theory
was originally proposed by Stiickelberg and Bogoliubov and rigorously elaborated
by Epstein and Glaser [16] for theories on Minkowski space. The method was gener-
alized by Brunetti and one of us (K.F) [7] to globally hyperbolic spacetimes and was
then combined with the principle of local covariance by Hollands and Wald [21, 22].
The latter authors were able to show that renormalization can be done in agreement
with the principle of local covariance. The UV divergences show up in ambiguities
in the definition of the time ordered product. These ambiguities are characterized by
a group [10, 13, 23], namely the renormalization group as originally introduced by
Petermann and Stiickelberg [38].

2 Algebraic Quantum Mechanics

Quantum mechanics in its original formulation in the Dreiménnerarbeit by Born,
Heisenberg and Jordan is based on an identification of observables with elements of
a noncommutative involutive complex algebra with unit.

Definition 1 Aninvolutive complex algebra 2l is an algebra over the field of complex
numbers, together with a map, * : 2 — 2, called an involution. The image of an
element A of 2 under the involution is written A*. Involution is required to have the
following properties:

1. forall A, B € %: (A + B)* = A* + B*, (AB)* = B*A*,
2. forevery A € C and every A € 2: (AA)* = LA¥,
3. forall A € A: (A*)* = A.

In quantum mechanics such an abstract algebra is realized as an operator algebra on
some Hilbert space.
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Definition 2 A representation of an involutive unital algebra 2 is a unital
*-homomorphism 7 into the algebra of linear operators on a dense subspace D
of a Hilbert space H.

Let us recall that an operator A on a Hilbert space H is defined as a linear map
from a subspace D C ‘H into H. In particular, if D = H and A satisfies ||A]| =
supy =1 {llAx[|} < oo, it is called bounded. Bounded operators have many nice
properties, but in physics many important observables are represented by unbounded
ones. The notion of an algebra of bounded operators on a Hilbert space can be
abstractly phrased in the definition of a C*-algebra.

Definition 3 A C*-algebra is a Banach involutive algebra (Banach algebra with
involution satisfying || A*|| = ||A|]), such that the norm has the C*-property:

[A®All = [AIA™]. VA €.

One can prove that every C*-algebra is isomorphic to a norm closed algebra of
bounded operators B(H) on a (not necessarily separable) Hilbert space H. A repre-
sentation of a C*-algebra 2 is a unital *-homomorphism 7 : 2 — B(H).

In the simplest example from quantum mechanics the algebra of observables is the
associative involutive complex unital algebra generated by two hermitian! elements
p and g with the canonical commutation relation

[p, q] = —ihlg[ . (1)

This algebra can be realized as an operator algebra on some Hilbert space, but the
operators corresponding to p and g cannot both be bounded. Therefore it is conve-
nient, to follow the suggestion of Weyl and to replace the unbounded (hence discon-
tinuous) operators p and ¢ by the unitaries> (Weyl operators) W (a, B), a, € R.
Instead of requiring the canonical commutation relation for p and g one requires the
relation (Weyl relation)

Wi W@ . ) =T F DWW +a'. p. ) )

The antilinear involution (adjunction)
W(a, ) = W(-a, —B) . 3)
replaces the hermiticity condition on p and g. The Weyl algebra 2y is defined as

the unique C*-algebra generated by unitaries W («, B) satisfying the relations (2),
with involution defined by (3) and with unit 19 = W (0, 0).

' An operator A on a Hilbert space H with a dense domain D(A) C M is called hermitian if
D(A) C D(A*) and Ax = A*x for all x € D(A). Itis selfadjoint if in addition D(A*) C D(A).
2 An element A of an involutive Banach algebra with unit is called unitary if A*A = 14 = AA*,
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One can show that if the Weyl operators are represented by operators on a Hilbert
space such that they depend strongly continuously> on the parameters « and 8, then
p and g can be recovered as selfadjoint generators, i.e.

W(a, ) = &' @PHha),

satisfying the canonical commutation relation (1). As shown by von Neumann, the
C*-algebra 2y has up to equivalence only one irreducible representation where
the Weyl operators depend strongly continuously on their parameters, namely the
Schrodinger representation (L2(R), ) with

(T (W(e, B)®) (x) = ¢ 2 P P (x + har) | “4)

and the reducible representations with the same continuity property are just multiples
of the Schrodinger representation. If one does not require continuity there are many
more representations, and they have found recently some interest in loop quantum
gravity. In quantum field theory the uniqueness results do not apply, and one has to
deal with a huge class of inequivalent representations.

For these reasons it is preferable to define the algebra of observables 2l indepen-
dently of its representation on a specific Hilbert space as a unital C*-algebra. The
observables are the selfadjoint elements, and the possible outcomes of measurements
are elements of their spectrum. The spectrum spec(A) of A € Aisthesetofalll € C
such that A — Alg has no inverse in 2. One might suspect that the spectrum could
become smaller if the algebra is embedded in a larger one. Fortunately this is not the
case; for physics this mathematical result has the satisfactory effect that the set of
possible measurement results of an observable is not influenced by the inclusion of
additional observables.

Now we know what the possible outcome of an experiment could be, but what
concrete value do we get, if we perform a measurement? In QM this is not the right
question to ask. Instead, we can only determine the probability distribution of getting
particular values from a measurement of an observable A. This probability distrib-
ution can be obtained, if we know the state of our physical system. Conceptually, a
state is a prescription for the preparation of a system. This concept entails in partic-
ular that experiments can be reproduced and is therefore equivalent to the ensemble
interpretation where the statements of the theory apply to the ensemble of equally
prepared systems.

A notion of a state can be also defined abstractly, in the following way:

Definition 4 A state on an involutive algebra 2l is a linear functional w : A — C,
such that:

w(A*A) >0 and ow(lg)=1.

3 A net {T,,} of operators on a Hilbert space H converges strongly to an operator 7T if and only if
||Tqx — Tx|| — O forall x € H.
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The first condition can be understood as a positivity condition and the second one is
the normalization. The values @ (A) are interpreted as the expectation values of the
observable A in the given state. Given an observable A and a state @ on a C*-algebra
2 we can reconstruct the full probability distribution (4 ., of measured values of A
in the state @ from its moments, i.e. the expectation values of powers of A,

/ Mdpa () = w(A").

States on C*-algebras are closely related to representations on Hilbert spaces. This
is provided by the famous GNS (Gelfand-Naimark-Segal) theorem:

Theorem 1 Let w be a state on the involutive unital algebra A. Then there exists a
representation 7 of the algebra by linear operators on a dense subspace D of some
Hilbert space 'H and a unit vector §2 € D, such that

w(A) = (82, 71(A)2),

and D = {n(A)$2, A € A}.

Proof The proof is quite simple. First let us introduce a scalar product on the algebra
in terms of the state w by

(A, B) = w(A*B).

Linearity for the right and antilinearity for the left factor are obvious, hermiticity

(A, B) = (B, A) follows from the positivity of @ and the fact that we can write A* B
and B* A as linear combinations of positive elements:

2(A*B+ B*A)=(A+B)*(A+B)—(A—B)*(A—-B),
2(A*B — B*A) = —i(A+iB)*(A+iB)+i(A—iB)*(A—iB).

Furthermore, positivity of « immediately implies that the scalar product is positive
semidefinite, i.e. (A, A) > 0 for all A € 2. We now study the set

MN={A eAw(A*A) =0}.
We show that 91 is a left ideal of 2A. Because of the Cauchy-Schwarz inequality Ot

is a subspace of . Moreover, for A € 9t and B € 2 we have, again because of the
Cauchy-Schwarz inequality:

w((BA)*BA) = w(A*B*BA) = (B*BA, A) < /(B*BA, B*BA)\/(A, A) =0,

hence BA € 91. Now we define D to be the quotient 2(/91. Per constructionem the
scalar product is positive definite on D, thus we can complete it to obtain a Hilbert
space H. The representation 7 is induced by left multiplication of the algebra,
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w(A)(B+N) = AB+ M,

and we set £2 = 1 + 91. In case that 2 is a C*-algebra, one can show that the oper-
ators  (A) are bounded, hence admitting unique continuous extensions to bounded
operators on H.

It is also straightforward to see that the construction is unique up to unitary
equivalence. Let (', D', H', 2’) be another quadruple satisfying the conditions of
the theorem. Then we define an operator U : D — D’ by

Un(A)R = 7'(A)2'.

U is well defined, since 7 (A)$2 = 0 if and only if w(A*A) = 0, but then we have
also /(A)$2" = 0. Furthermore U preserves the scalar product and is invertible and
has therefore a unique extension to a unitary operator from H to H’. This shows that
7 and 7’ are unitarily equivalent.

The representation 7 will not be irreducible, in general, i.e. there may exist a non-
trivial closed invariant subspace. In this case, the state w is not pure, which means
that it is a convex combination of other states,

o=+ 1 —-MNwr, 0<Ai<l, w1 #Fwy. 5)
To illustrate the concept of the GNS representation, let 71 2 be representations of 2
on Hilbert spaces H 2, respectively. Choose unit vectors ¥ € Hj, ¥ € Hp and
define the states

wi(A) = (¥, mi(A)Y;) , i=1,2. (6)

Let w be the convex combination
1 1
w(A) = 71 (A) + sz(A) . @)

w is a linear functional satisfying the normalization and positivity conditions and
therefore is again a state in the algebraic sense. Now let H = H @ H> be the direct
sum of the two Hilbert spaces and let

_(m(A) O
yr(A)_( ¢ HZ(A)) ®)
Then the vector
_ 1 (w
v=7 () ®

satisfies the required relation
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w(A) = (W, n(A)VY) . (10)

For more information on operator algebras see [5, 6, 32].

In classical mechanics one has a similar structure. Here the algebra of observables
is commutative and can be identified with the algebra of continuous functions on
phase space. In addition, there is a second product, the Poisson bracket. This product
is only densely defined. States are probability measures, and pure states correspond
to the evaluation of functions at a given point of phase space.

3 Locally Covariant Field Theory

Field theory involves infinitely many degrees of freedom, associated to the points of
spacetime. Crucial for the success of field theory is a principle which regulates the
way these degrees of freedom influence each other. This is the principle of locality,
more precisely expressed by the German word Nahwirkungsprinzip. It states that
each degree of freedom is influenced only by a relatively small number of other
degrees of freedom. This induces a concept of neighborhoods in the set of degrees
of freedom.

The original motivation for developing QFT was to combine the QM with special
relativity. In this sense we expect to have in our theory some notion of causality. Let
us briefly describe what it means in mathematical terms. In special relativity space
and time are described together with one object, called Minkowski spacetime . Since
it will be useful later on, we define now a general notion of a spacetime in physics.

Definition 5 A spacetime (M, g) is a smooth (4 dimensional) manifold (Hausdorff,
paracompact, connected) with a smooth pseudo-Riemannian metric* of Lorentz sig-
nature (we choose the convention (4, —, —, —)).

A spacetime M is said to be orientable if there exists a differential form of maximal
degree (a volume form), which does not vanish anywhere. We say that M is time-
orientable if there exists a smooth vector field # on M such that for every p € M it
holds g(u, u), > 0. We will always assume that our spacetimes are orientable and
time-orientable. We fix the orientation and choose the time-orientation by selecting
a specific vector field u with the above property. Let y : R D I — M be a smooth
curve in M, for I an interval in R. We say that y is causal (timelike) if it holds
g(y,y) = 0 (> 0), where y is the vector tangent to the curve.

Given the global timelike vector field # on M, one calls a causal curve y future-
directed if g(u, y) > 0 all along y, and analogously one calls y past-directed if
g(u, y) < 0. This induces a notion of time-direction in the spacetime (M, g). For
any point p € M, J*(p) denotes the set of all points in M which can be connected
to x by a future(+)/past(—)-directed causal curve y : I — M so that x = y (inf I).

4 asmooth tensor field g € T(T*M QT*M),s.t. forevery p € M, gp is a symmetric non degenerate

bilinear form.
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The set JT(p) is called the causal future and J~(p) the causal past of p. The
boundaries 3.J % (p) of these regions are called respectively: the future/past lightcone.
Two subsets O1 and O, in M are called causally separated if they cannot be connected
by a causal curve, i.e. if for all x € Oy, J¥(x) has empty intersection with O,. By
O+ we denote the causal complement of O, i.e. the largest open set in M which is
causally separated from O.

In the context of general relativity we will also make use of following definitions:

Definition 6 A causal curve is future inextendible if there is no p € M such that:
YU C Mopen neighborhoods of p, 3t's.t. y(t) € UVt > 1.

Definition 7 A Cauchy hypersurface in M is a smooth subspace of M such that
every inextendible causal curve intersects it exactly once.

Definition 8 An oriented and time-oriented spacetime M is called globally hyper-
bolic if there exists a smooth foliation of M by Cauchy hypersurfaces.

For now let us consider a simple case of the Minkowski spacetime M which is just
R* with the diagonal metric n = diag(l, —1, —1, —1). A lightcone with apex p is
shown on Fig. 1, together with the future and past of p.

One of the main principles of special relativity tells us that physical systems which
are located in causally disjoint regions should in some sense be independent. Here we
come to the important problem: How fo implement this principle in quantum theory?
A natural answer to this question is provided by the Haag-Kastler framework [18,
19], which is based on the principle of locality. In the previous section we argued
that operator algebras are a natural framework for quantum physics. Locality can be
realized by identifying the algebras of observables that can be measured in given

Fig.1 A lightcone in
Minkowski spacetime

Future

Spacelike region

Past
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bounded regions of spacetime. In other words we associate to each bounded O C M
a C*-algebra 20(O). This association has to be compatible with a physical notion of
subsystems. It means that if we have a region O which lies inside O’ we want the
corresponding algebra 2((O) to be contained inside 2A(O"), i.e. in a bigger region we
have more observables. This property can be formulated as the Isotony condition
for the net {A(O)} of local algebras associated to bounded regions of the spacetime.
In the Haag-Kastler framework one specializes to Minkowski space M and imposes
some further, physically motivated, properties:

e Locality (Einstein causality). Algebras associated to spacelike separated regions
commute: O; spacelike separated from O,, then [A, B] = 0, VA € A(O),
B € A(O3). This expresses the “independence” of physical systems associated to
regions O and O;.

e Covariance. The Minkowski spacetime has a large group of isometrics, namely
the Poincaré group. We require that there exists a family of isomorphisms a? :
2A(0) — A(LO) for Poincaré transformations L, such that for O; C O, the
restriction of oeg)z to A(O1) coincides with oe?‘ and such that: ozf,o ) a? = a?,L,

e Time slice axiom: the algebra of a neighborhood of a Cauchy surface of a given
region coincides with the algebra of the full region. Physically this correspond to a
well-posedness of an initial value problem. We need to determine our observables
in some small time interval (fy — €, fo + €) to reconstruct the full algebra.

e Spectrum condition. This condition corresponds physically to the positivity of
energy. One assumes that there exist a compatible family of faithful representations
o of A(O) on a fixed Hilbert space (i.e. the restriction of 7, to A(O1) coincides
with o, for O C O») such that translations are unitarily implemented, i.e. there
is a unitary representation U of the translation group satisfying

U@)ro(A)U@) " = 1014(aq(A)), A € A(0),

and such that the joint spectrum of the generators P,, of translations P = U(a),
aP = a" Py, is contained in the forward lightcone: o (P) C V4.

We now want to generalize this framework to theories on generic spacetimes. To
start with, we may think of a globally hyperbolic neighborhood U of a spacetime
point x in some spacetime M. Moreover, we assume that any causal curve in M with
end points in U lies entirely in U. Then we require that the structure of the algebra of
observables associated to U should be completely independent of the world outside.
We may formalize this idea by requiring that for any embedding x : M — N of a
globally hyperbolic manifold M into another one N which preserves the metric, the
orientations and the causal structure® (these embeddings will be called admissible),
there exist an injective homomorphism

oy A(M) — A(N) (11

5 The property of causality preserving is defined as follows: let x : M — N, for any causal curve
y :la,b] - N,if y(a), y(b) € x (M) then for all r €]a, b[ we have: y(t) € x(M).
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of the corresponding algebras of observables, moreover if x; : M — N and x» :
N — L are embeddings as above then we require the covariance relation

Uyrox) = Uy, O Uy, - (12)

In this way we described a functor 2 between two categories: the category Loc
of globally hyperbolic spacetimes with admissible embeddings as arrows and the
category Obs of algebras (Poisson algebras for classical physics and C*-algebras for
quantum physics) with homomorphisms as arrows.

‘We may restrict the category of spacetimes to subregions of a given spacetime and
the arrows to inclusions. In this way we obtain the Haag-Kastler net of local algebras
on a globally hyperbolic spacetime as introduced by Dimock. In case the spacetime
has nontrivial isometries, we obtain additional embeddings, and the covariance con-
dition above provides a representation of the group of isometries by automorphisms
of the Haag-Kastler net.

The causality requirements of the Haag-Kastler framework, i.e. the commutativity
of observables localized in spacelike separated regions, is encoded in the general case
in the tensor structure of the functor . Namely, the category of globally hyperbolic
manifolds has the disjoint union as a tensor product, with the empty set as unit object
and where admissible embeddings x : M| ® M> — N have the property that the
images x (M1) and x (M>) cannot be connected by a causal curve. On the level of
C*-algebras we may use the minimal tensor product as a tensor structure. See [8] for
details.

The solvability of the initial value problem can be formulated as the requirement
that the algebra 2((NV) of any neighborhood N of some Cauchy surface X' already
coincides with 2(M). This is the time slice axiom of axiomatic quantum field theory.
It can be used to describe the evolution between different Cauchy surfaces. As a first
step we associate to each Cauchy surface X' the inverse limit

A(X) = lim A(N) . (13)
NDX
Elements of the inverse limit consist of sequences A = (Ay)r,onox With

anck (An) = Ak, K C L4, with the equivalence relation
A~BifAy=Byforal NCLsNLp. (14)
The algebra 2(X) can be embedded into 2A(M) by
aycm(A) = anycp(Ay) for some (and hence all) ¥ C N C Ly . (15)
If we now adopt the time slice axiom we find that each homomorphism «yps is an

isomorphism. Hence «x s is also an isomorphism and we obtain the propagator
between two Cauchy surfaces X'| and X» by



28 K. Fredenhagen and K. Rejzner

M _ -1
0521)_72 —(lecMoagsz (16)

This construction resembles constructions in topological field theory for the descrip-
tion of cobordisms. But there one associates Hilbert spaces to components of the
boundary and maps between these Hilbert spaces to the spacetime itself. This con-
struction relies on the fact that for these theories the corresponding Hilbert spaces are
finite dimensional. It was shown [39] that a corresponding construction for the free
field in 3 and more dimensions does not work, since the corresponding Boboliubov
transformation is not unitarily implementable (Shale’s criterion [34] is violated).
Instead one may associate to the Cauchy surfaces the corresponding algebras of
canonical commutation relations and to the cobordism an isomorphism between
these algebras. For the algebra of canonical anticommutation relations for the free
Dirac fields the above isomorphism was explicitly constructed [40]. Our general
argument shows that the association of a cobordism between two Cauchy surfaces
of globally hyperbolic spacetimes to an isomorphism of algebras always exists pro-
vided the time slice axiom is satisfied. As recently shown, the latter axiom is actually
generally valid in perturbative Algebraic Quantum Field Theory [11].

In the Haag-Kastler framework on Minkowski space an essential ingredient was
translation symmetry. This symmetry allowed the comparison of observables in dif-
ferent regions of spacetime and was (besides locality) a crucial input for the analysis
of scattering states.

In the general covariant framework sketched above no comparable structure is
available. Instead one may use fields which are subject to a suitable covariance
condition, termed locally covariant fields. A locally covariant field is a family ¢, of
fields on spacetimes M such that for every embedding x : M — N as above

ay (o (x)) = on(x (x)) . (17)

If we consider fields as distributions with values in the algebras of observables, a
field ¢ may be considered as a natural transformation between the functor ® of test
function spaces to the functor 2l of field theory. The functor © associates to every
spacetime M its space of compactly supported C°°-functions,

D(M)=C(M,R), (18)

and to every embedding x : M — N of spacetimes the pushforward of test functions
S edWM)

Fx@) , x e x(M)

® is a covariant functor. Its target category is the category of locally convex vector
spaces Vec which contains also the category of topological algebras which is the target
category for 2. A natural transformation ¢ : ©® — 2 between covariant functors with
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the same source and target categories is a family of morphisms ¢y : ©(M) — A(M),
M e Obj(Loc) such that

Ax ooy = oy 0Dy (20

with 2y = «ay.

4 Classical Field Theory

Before we enter the arena of quantum field theory we show that the concept of
local covariance leads to a nice reformulation of classical field theory in which the
relation to QFT becomes clearly visible. Let us consider a scalar field theory. On a
given spacetime M the possible field configurations are the smooth functions on M.
If we embed a spacetime M into another spacetime N, the field configurations on N
can be pulled back to M, and we obtain a functor ¢ from Loc to the category Vec of
locally convex vector spaces

EM)=C*(M,R), €x = x~ @h

with the pullback x*¢ = ¢ o x for ¢ € C®°(M, R). Note that € is contravariant,
whereas the functor © of test function spaces with compact support is covariant.

The classical observables are real valued functions on (M), i.e. (not necessarily
linear) functionals. An important property of a functional is its spacetime support.
Is is defined as a generalization of the distributional support, namely as the set of
points x € M such that F depends on the field configuration in any neighbourhood
of x.

supp F = {x € M|V neighbourhoods U of x ¢, ¥ € E(M),suppy C U (22)
such that F(¢ + ¥) # F(p)} .

Here we will discuss only compactly supported functionals. Next one has to select
a class of functionals which are sufficiently regular such that all mathematical oper-
ations one wants to perform are meaningful and which on the other side is large
enough to cover the interesting cases.

One class one may consider is the class Freg (M) of regular polynomials

F(p) = Z/dm coedXn fu (X1, X)) @(x1) L () (23)
finite

with test functions f, € ®(M"). Another class 1o (M) consists of the local func-
tionals
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F(p) = /dxﬁ(x, e(x), dp(x),...) (24)

where £ depends smoothly on x and on finitely many derivatives of ¢ at x. The local
functionals arise as actions and induce the dynamics. The only regular polynomials
in this class are the linear functionals

F(g) = / dxf (D)) 25)

It turns out to be convenient to characterize the admissible class of functionals in
terms of their functional derivatives.

Definition 9 (After [30]) Let X and Y be topological vector spaces, U € X an open
setand f : U — Y amap. The derivative of f at x in the direction of 4 is defined as

1
df(e)(h) = im = (f (x +th) = f(x)) (26)

whenever the limit exists. The function f is called differentiable at x if df (x)(h)
exists for all 4 € X. It is called continuously differentiable if it is differentiable at all
points of U and df : U x X — Y, (x, h) — df(x)(h) is a continuous map. It is
called a C'-map if it is continuous and continuously differentiable. Higher derivatives
are defined for C"-maps by

1
d" fx)(hy, ..., hn) = }E);(d"_lf(ﬁ-thn)(hl ----- hnD)=d" ' f )Ry, hn-1))
(27

In particular it means that if F is a smooth functional on &(M), then its n-th derivative
at the point ¢ € (M) is a compactly supported distributional density F™ (¢)
E'(M"). There is a distinguished volume form on M, namely the one provided by
the metric: «/—det(g)d*x. We can use it to construct densities from functions and to
provide an embedding of D(M™) into £'(M™). For more details on distributions on
manifolds, see Chap. 1 of [2]. Using the distinguished volume form we can identify
derivatives F (")(<p) with distributions. We further need some conditions on their
wave front sets.

Let us make a brief excursion to the concept of wave front sets and its use for
the treatment of distributions. Readers less familiar with these topics can find more
details in the appendix 2.7 or refer to [25] or Chap.4 of [1]. Let t € D'(R") and
f € D(R™). The Fourier transform of the product ft is a smooth function. If this
function vanishes fast at infinity for all f € D(R"), ¢ itself is a smooth function.
Singularities of ¢ show up in the absence of fast decay in some directions. A point
(x,k) e R" x (R™\ {0}) is called a regular point of 7 if there exists a test function
f with f(x) = 1 such that the Fourier transform of f7 decays strongly in an open
cone around k. The wave front set of ¢ is now defined as the complement of the set
of regular points of # in R” x (R" \ {0}).
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On a manifold M the definition of the Fourier transform depends on the choice
of a chart. But the property of strong decay in some direction (characterized now
by a point (x, k), k # 0 of the cotangent bundle 7*M) turns out to be independent
of the chart. Therefore the wave front set WF of a distribution on a manifold M is
a well defined closed conical subset of the cotangent bundle (with the zero section
removed).

Let us illustrate the concept of the wave front set in two examples. The first one
is the §-function. We find

/ dxf(x)8(x)e™ = f(0), (28)

hence WF(5) = {(0, k), k # 0}.
The other one is the function x — (x 4+ i€)~! in the limit € | 0. We have

oo
13{3 arxx]:(:‘i)6 e = —j / dK' f k') . (29)
k

Since the Fourier transform f of a test function f € D(R) is strongly decaying for
k — oo, [*°dk' f(K') is strongly decaying for k — oo, but for k — —oo we obtain

Jim / dk' f(K') = 27 £(0) (30)
k
hence
WF(liFg(x +ie)™ Y ={0,k),k <0} . (31)

The wave front sets provide a simple criterion for the pointwise multiplicability
of distributions. Namely, let ¢, s be distributions on an » dimensional manifold M
such that the pointwise sum (Whitney sum) of their wave front sets

WE(1) + WF(s) = {(x, k + k)| (x, k) € WE(1), (x, k') € WF(s)} (32)

does not intersect the zero section of 7*M. Then the pointwise product ¢s can be
defined by

(15, fg) = / dk 7T ()53 (—k) (33)

Qm)"

for test functions f and g with sufficiently small support and where the Fourier trans-
form refers to an arbitrary chart covering the supports of f and g. The convergence
of the integral on the right hand side follows from the fact, that for every k # 0 either
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t/f decays fast in a conical neighborhood around k or sg decays fast in a conical
neighborhood around —k whereas the other factor is polynomially bounded.

The other crucial property is the characterization of the propagation of singular-
ities. To understand it in more physical terms it is useful to use an analogy with
Hamiltonian mechanics. Note that the cotangent bundle 7*M has a natural sym-
plectic structure. The symplectic 2-form is defined as an exterior derivative of the
canonical one-form, given in local coordinates as 0 x) = Z’Ll k,-dxi (k; are coordi-
nates in the fibre). Let P be a partial differential operator with real principal symbol
op. Note that op is a function on 7*M and its differential dop is a 1-form. On
a symplectic manifold 1-forms can be canonically identified with vector fields by
means of the symplectic form. Therefore every differentiable function H determines
a unique vector field Xy, called the Hamiltonian vector field with the Hamiltonian
H.Let X p be the Hamiltonian vector field corresponding to o p. Explicitly it can be
written as:

" dop 0 dop 0

p = -

1 3kj 3)6]' 3)Cj akj

j =
Letus now consider the integral curves (Hamiltonian flow) of this vector field. A curve
(xj(t), k(1)) is an integral curve of X p if it fulfills the system of equations (Hamil-
ton’s equations):

de 301)

IR ITR

dkj 80'p

T
The set of all such solution curves is called the bicharacteristic flow. Along the
Hamiltonian flow it holds ‘%” = Xp(op) = 0 (this is the law of conservation of

energy for autonomous systems in classical mechanics), so op is constant under the
bicharacteristic flow. If op ((x; (1), k;())) = 0 we call the corresponding flow null.
The set of all such integral curves is called the null bicharacteristics.

Let us now define the characteristics of P as charP = {(x,k) € T*M|o(P)
(x, k) = 0} of P. Then the theorem on the propagation of singularities states that the
wave front set of a solution u of the equation Pu = f with f smooth is a union of
orbits of the Hamiltonian flow X p on the characteristics char P.

In field theory on Lorentzian spacetime we are mainly interested in hyperbolic
differential operators. Their characteristics is the light cone, and the principal symbol
is the metric on the cotangent bundle. The wave front set of solutions therefore is a
union of null geodesics together with their cotangent vectors k = g(y, -).

We already have all the kinematical structures we need. Now in order to specify
a concrete physical model we need to introduce the dynamics. This can be done by
means of a generalized Lagrangian . As the name suggests the idea is motivated by
Lagrangian mechanics. Indeed, we can think of this formalism as a way to make
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precise the variational calculus in field theory. Note that since our spacetimes are
globally hyperbolic, they are never compact. Moreover we cannot restrict ourselves
to compactly supported field configurations, since the nontrivial solutions of globally
hyperbolic equations don’t belong to this class. Therefore we cannot identify the
action with a functional on (M) obtained by integrating the Lagrangian density
over the whole manifold. Instead we follow [10] and define a Lagrangian L as a
natural transformation between the functor of test function spaces ® and the functor
Floc such that it satisfies supp(Ly(f)) € supp(f) and the additivity rule®

Ly(f+g+h)=Ly(f+g —Lu(g+Lug+h),

for f, g, h € ©(M) and supp f N supph = &. The action S(L) is now defined as
an equivalence class of Lagrangians [10], where two Lagrangians L, Ly are called
equivalent L1 ~ L, if

supp(L1,m — L2,m)(f) C suppdf , (34)

for all spacetimes M and all f € ©(M). This equivalence relation allows us to
identify Lagrangians differing by a total divergence. For the free minimally coupled
(i.e. £ = 0) scalar field the generalized Lagrangian is given by:

_1 Wy 2 2
Lu(H) = 5 / (Vo Vie — m2g?) f dvol,, 35)
M

The equations of motion are to be understood in the sense of [10]. Concretely, the
Euler-Lagrange derivative of S is a natural transformation S’ : ¢ — ©’ defined as

(S (@), h) = {Lu(HV (@), h), (36)
with f = 1 on supph. The field equation is now a condition on ¢:
Sy(p) =0. (37)

Note that the way we obtained the field equation is analogous to variational calculus
on finite dimensional spaces. We can push this analogy even further and think of
variation of a functional in a direction in configuration space given by an infinite
dimensional vector field. This concept is well understood in mathematics and for
details one can refer for example to [29, 30]. Here we consider only variations in the
directions of compactly supported configurations, so the space of vector fields we
are interested in can be identified with U(M) = {X : EM) — D(M)|X smooth}.
In more precise terms this is the space of vector fields on (M), considered as a

6 We do not require linearity since in quantum field theory the renormalization flow does not preserve
the linear structure; it respects, however, the additivity rule (see [10]).
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manifold” modeled over © (M). The set of functionals

¢ = (Sy (@), X (@), X € B(M) (38)
is an ideal Jg(M) of F(M) with respect to pointwise multiplication,

(F-G)(p) = F(p)G(e) . (39)

The quotient
Ss(M) =§(M)/Ts(M) (40)

can be interpreted as the space of solutions of the field equation. The latter can be
identified with the phase space of the classical field theory.

We now want to equip §s(M) with a Poisson bracket. Here we rely on a method
originally introduced by Peierls. Peierls considers the influence of an additional term
in the action. Let F € Foc(M) be a local functional. We are interested in the flow
(®;) on E(M) which deforms solutions of the original field equation S;\/I () =w
with a given source term w to those of the perturbed equation S}, (¢) +AF D) = w.
Let @o(¢) = ¢ and

d

= (Su@i@) + FO@n)| _ =0. (41)

=0
Note that the second variational derivative of the unperturbed action induces an
operator S, (¢) : €(M) — ©'(M). We define it in the following way:

(Si (@), h1 @ ha) = (LD (£)(9), h1 ® ha),

where f = 1 on the supports of /| and h. This defines S},(¢) as an element of
©’(M?) and by Schwartz’s kernel theorem we can associate to it an operator from
D(M) to D'(M). Actually, since L (f) is local, the second derivative has support
on the diagonal, so S;{,I(gp) can be evaluated on smooth functions A1, i, where only
one of them is required to be compactly supported, and it induces an operator (the
so called linearized Euler-Lagrange operator) E'[Sy](¢) : €(M) — D' (M).

From (41) it follows that the vector field ¢ — X (¢) = %05 2 (@) ]5.=0 satisfies the
equation

(Sh (@), X(@) ®-) +(FV(p), ) =0, (42)

which in a different notation can be written as

7 An infinite dimensional manifold is modeled on a locally convex vector space just as a finite
dimensional one is modeled on R”". For more details see [29, 30].
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(E'1Sm1(9), X (9)) + FD(p) = 0.

We now assume that E'[Sy](¢) is, for all ¢, a normally hyperbolic differential
operator (M) — (M), and let AR, A? be the retarded and advanced Green’s
operators, i.e. linear operators D (M) — &(M) satisfying:

E'[Sulo AN =idow) ,

R/A
A

° (E/[SM]|©(M)) = idp) -

Moreover, with the use of Schwartz’s kernel theorem one can identify Af/ A
D(M) — E(M) with elements of D’'(M?). As such, they are required to satisfy
the following support properties:

supp(AR) € {(x,y) € M*|y € J~ (1)}, (43)
supp(A™) C {(x,y) € M?|y € JT(x)}. (44)

Their difference Ag = A? — Alé is called the causal propagator of the Klein-Gordon
equation. Coming back to equation (42) we have now two distinguished solutions
for X,

xBAp) = a8 FD (). (45)
The difference of the associated derivations on §(M) defines a product

{F, Gls(p) = (As(@)FV(g), GV (p)) (46)

on Floc (M), the so-called Peierls bracket.

The Peierls bracket satisfies the conditions of a Poisson bracket, in particular the
Jacobi identity (for a simple proof see [26]). Moreover, if one of the entries is in
the ideal Jg(M), also the bracket is in the ideal, hence the Peierls bracket induces a
Poisson bracket on the quotient algebra.

In standard cases, the Peierls bracket coincides with the canonical Poisson bracket.
Namely let

1 m? A
L(0) = —0"0d,0 — —@? — Zo* . 47
(@) 70 P0up — 9T = e 47)

Then S}, (¢) = — ((D +m?)p + %(,03) and S, (¢) is the linear operator

- (I:I +m? + %q)z) (48)

(the last term acts as a multiplication operator).
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The Peierls bracket is

{p(x), o(¥)}s = As(@)(x, y) (49)

where x > Ag(¢)(x, y) is a solution of the (at ¢) linearized equation of motion
with the initial conditions

0
As@)(°,x;y) =0, mAs«p)(yo,x; y) =8(x,y) . (50)

This coincides with the Poisson bracket in the canonical formalism. Namely, let ¢
be a solution of the field equation. Then

2 A3 2 A
0={@+m)e(x)+ 3¢ X)), e(M}=@O+m" + Efﬂ(x) Nex), (y)} (1)

hence the Poisson bracket satisfies the linearized field equation with the same initial
conditions as the Peierls bracket.

Let us now discuss the domain of definition of the Peierls bracket. It turns out that
it is a larger class of functionals than just §joc (M). To identify this class we use the
fact that the WF set of Ag is given by

WE(Ag) = {(x, k; x', =k') € T*M?|(x, k) ~ (x', k')},

where the equivalence relation ~ means that there exists a null geodesic strip such
that both (x, k) and (x’, k") belong to it. A null geodesic strip is a curve in T*M
of the form (y(X), k(1)), L € I C R, where y(A) is a null geodesic parametrized
by A and k() is given by k(1) = g(y (A), -). This follows from the theorem on the
propagation of singularities together with the initial conditions and the antisymmetry
of Ag. (See [31] for a detailed argument.)

It is now easy to check, using Hormander’s criterion on the multiplicability of
distributions [25] that the Peierls bracket (46) is well defined if F and G are such
that the sum of the WF sets of the functional derivatives F( (), GV (¢) € £ (M)
and A € D' (M?) don’t intersect the O-section of the cotangent bundle T*M 2 This
is the case if the functionals fulfill the following criterion:

WE(F™(¢)) C B,, VneN, VYo € €M), (52)

where Z, is an open cone defined as

.....

where (V1), is the closed future/past lightcone understood as a conic subset of
T} M. We denote the space of smooth compactly supported functionals, satisfying
(52) by §puc(M) and call them microcausal functionals. This includes in particular
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local functionals. For them the support of the functional derivatives is on the thin
diagonal, and the wave front sets satisfy >_k; = 0.

To see that {., .}s is indeed well defined on §,c(M), note that WF(A) consists
of elements (x, x’, k, k"), where k, k" are dual to lightlike vectors in TyM, Ty M
accordingly. On the other hand, if (x, k1) € WF(F m((p)), then k; is necessarily
dual to a vector which is spacelike, so k| 4+ k cannot be 0. The same argument is
valid for G(l)(q)). Moreover it can be shown that {F, G}s € §,,c(M). The classical
field theory is defined as A(M) = (Fuc(M), {., .}s). One can check that 2l is indeed
a covariant functor from Loc to Obs, the category of Poisson algebras.

5 Deformation Quantization of Free Field Theories

Starting from the Poisson algebra (§,c(M), {.,.}s) one may try to construct an
associative algebra (§,c(M)[[R]], ) such that for A — 0

FxG—>F-G (54)
and
[F,Gl./ih — {F,G}s . (55)

For the Poisson algebra of functions on a finite dimensional Poisson manifold the
deformation quantization exists in the sense of formal power series due to a theorem
of Kontsevich [28]. In field theory the formulas of Kontsevich lead to ill defined
terms, and a general solution of the problem is not known. But in case the action is
quadratic in the fields the »-product can be explicitly defined by

X n
(F*G)(g) = %(F(")(w), (A9)®"G" (), (56)
n=0 "

. . m<A5,i,> . .
which can be formally written as e > 505¢' | F (9) G (¢")|'=¢- This product is well
defined (in the sense of formal power series in /) for regular functionals F, G €
Sreg(M) and satisfies the conditions above. Let for instance

F(p) = efdw(x)f(X) , G(p) = efdxrﬂ(X)g(X) , (57)

with test functions f, g € ©(M). We have

n

———F(p) = f(x1) ... f(xn) F(p) (58)
o(x1) ... o(xn)
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and hence

(F % G)(p) (59)

© i n
=> - ( / dxdy . As(x, y)f(x)g(y)) F(@)G(@) (60)
n=0

For later purposes we want to extend the product to more singular functionals which
includes in particular the local functionals. We decompose

Asg = A — Ag (61)

such that the wavefront set of Ag is decomposed into two disjoint parts. The wave
front set of Ag consists of pairs of points x, x’ which can be connected by a null
geodesic, and of covectors (k, k') where k is the cotangent vector of the null geodesic
at x and —k’ is the cotangent vector of the same null geodesic at x". The lightcone
with the origin removed consists of two disjoint components, the first one containing
the positive frequencies and the other one the negative frequencies. The WF set of
the positive frequency part of Ag is therefore:

WE(AL) = {(x, k; x', —k') € TM?|(x, k) ~ (x', k'), k € (V1)i). (62)

On Minkowski space one could choose —i A;‘ as the Wightman 2-point-function, i.e.
the vacuum expectation value of the product of two fields. This, however, becomes
meaningless in a more general context, since a generally covariant concept of a
vacuum state does not exist. Nevertheless, such a decomposition always exist, but
is not unique and the difference between two different choices of A‘S" is always a
smooth symmetric function. Let us write AT = Ag+ H. We then consider the linear
functional derivative operator

52
I'n =(H, W> (63)
and define a new *-product by
F¥ G = et (@ HTnp) (37 G)) (64)

which differs from the original one in the replacement of %A s by ihA;r. This
*-product can now be defined on a much larger space of functionals, namely the
microcausal ones §,¢(M). The transition between these two x-products correspond
to normal ordering, is just an algebraic version of Wick’s theorem. The map oy =

e2TH provides the equivalence between x and +’ on the space of regular functionals
Sreg(M). Its image can be then completed to a larger space §,c(M). We can also
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build a corresponding (sequential) completion oz;{] (§uc(M)) of the source space.
This amounts to extending §reg (M) with all elements of the form lim,, ag,l (Fy,),
where (Fy) is a convergent sequence in §,c(M) with respect to the Hormander
topology [10, 25]. We recall now the definition of this topology.

Let us denote the space of compactly supported distributions with WF sets con-
tained in a conical set C C T*M" by E/C (M"™). Now let C,, C &), be a closed cone
contained in &, defined by (53). We introduce (after [1, 10, 25]) the following family
of seminorms on S’Cn (M™y:

Prp.éi @) = sup{(1 + kD [gu (o)1},
keC

where the index set consists of (n, ¢, C‘, k) such that k € Ny, ¢ € D(M) and Cisa
closed cone in R” with (supp(¢) x C ) N C,, = &. These seminorms, together with
the seminorms of the strong topology provide a defining system for a locally convex
topology denoted by 7¢,. To control the wave front set properties inside open cones,
we take an inductive limit. The resulting topology is denoted by 7z,. One can show
that D(M) is sequentially dense in £ /En (M) in this topology.

For microcausal functionals it holds that F' (”)((p) € E/En(M), SO we can equip
Suc(M) with the initial tpopolgy with respect to mappings:

C®(E(M),R) > F > F"(p) € (£5,(M),15,) n=>0, (65)

“n

The locally convex vector space of local functionals Fioc (M) is dense in § e (M) with
respect to Tz . To see these abstract concepts at work let us consider the example of
the Wick square:

Example 1 Consider a sequence F, (p) = f exX)p(¥)gn(y —x) f (x) with a smooth
function f and a sequence of smooth functions g, which converges to the § distrib-

ution in the Hormander topology. By applying o Hl =e2 T we obtain a sequence

' Fu = [ @020 =0 (1)~ H )ty =000,
The limit of this sequence can be identified with f Ce(x)?: f(x), e
/ L) f(x) = nlilgo/(w(x)w(y) — H(x,y)gn(y — x) f(x)

We can write it in a short-hand notation as a coinciding point limit:

L) 1= lim (p(x)p(y) — H(x.y)) .
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We can see that transforming with a;ll corresponds formally to a subtraction of
H(x,y). Now, to recognize the Wick’s theorem let us consider a product of two
Wick squares : ©(x)? i p(y)? :. With the use of the isomorphism a;ll this can be
written as:

/ o) f1 () # / 02 fo(y) = / o202 f1(0) ()
120k / eOO AL (X 1) 1) o)

— / (AL (x, ) filx) fo(y) -

Omitting the test functions and using a;] we obtain

ih 'h
PP 9O 1= 00 1 pl0p () 1 5 A +2( S AT )

2
which is a familiar form of the Wick’s theorem applied to : (@)% o(y)? .

In the next step we want to define the involution on our algebra. Note that the
complex conjugation satisfies the relation:

FxG=G«F. (66)

Therefore we can use it to define an involution F*(¢) = F(¢). The resulting struc-
ture is an involutive noncommutative algebra (§,c(M)[[A]], *'), which provides a
quantization of (§uc(M), {., .}s). To see that this is equivalent to canonical quan-
tization, let us look at the commutator of two smeared fields @(f), @(g), where
D(f)p) = f fe dvoly,. The commutator reads

[¢(f)v@(g)]*’:lh<fs ASg) s f,ge@(M),

This indeed reproduces the canonical commutation relations. Here we used the fact
that the choice of A‘; is unique up to a symmetric function, which doesn’t contribute
to the commutator (which is antisymmetric). In case A;r is a distribution of positive
type (as in the case of the Wightman 2-point-function) the linear functional on §(M)

w(F) = F(0) (67)
is a state (the vacuum state in the special case above), and the associated GNS

representation is the Fock representation. The kernel of the representation is the
ideal generated by the field equation.
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6 Interacting Theories and the Time Ordered Product

If we have an action for which S, still depends on ¢, we choose a particular ¢y and
split

1
Sulpo +¥) = 5(5&(¢0),¢®1ﬂ>+51(¢0,1//)~ (68)

From now on we drop the subscript M of Sy, since it’s clear that we work on a fixed
manifold. We now introduce the linear operator

inaR, 2
T =455 (69)
which acts on Freg (M) as
o h”
(TF)g) =D {89, FE (@),
n=0 "

with the Dirac propagator A? = %(Ag + Ag‘) at ¢g. Formally, 7 may be understood
as the operator of convolution with the oscillating Gaussian measure with covariance
ihAD. By

For G:T(T—lp.rlc) (70)
we define a new product on Free (M) which is the time ordered product with respect

to » and which is equivalent to the pointwise product of classical field theory. We
then define a linear map

Rs, F = (eif)H * (eif T F) 71)
where e+ is the exponential function with respect to the time ordered product,
eg = T(eTﬁlF) . (72)
Rg, is invertible with the inverse
R5'F =ep® or (e + F) (73)
We now define the -product for the full action by

FxsG = Rgll (Rs, F * Rs, G) (74)
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7 Renormalization

Unfortunately, the algebraic structures discussed so far are well defined only if Sy isa
regular functional. An easy extension is provided by the operation of normal ordering
as described in the section of deformation quantization. This operation transforms
the time ordering operator 7 into another one 77, such that the new time ordered
product is now defined with respect to the Feynman propagator AL, no longer the
Dirac propagator A? . Note that the Feynman propagator does depend on the choice
of A}'. Contrary to the *” product which is everywhere defined due to the wave front
set properties of the positive frequency part of Ag, the time ordered product is in
general undefined since the wave front set of the Feynman propagator contains the
wave front set of the §-function. We want, however, to extend to a larger class which
contains in particular all local functionals. As already proposed by Stiickelberg [36]
and Bogoliubov [3, 4] and carefully worked out by Epstein and Glaser [16], the
crucial problem is the definition of time ordered products of local functionals. Let
us first consider a special case.

Let F = %fdxq)(x)zf(x), G = %fdxtp(x)z. Then the time ordered product
-7+ 1s formally given by

(F -7 G)(p) = F(9)G(p) +ih/dxdyw(x)w(y)f(x)g(y)Ag(x,y)
h2
- / dxdy AL (x, v F ()80 (75)

But the last term contains the pointwise product of a distribution with itself. For
x # y the covectors (k, k") in the wave front set satisfy the condition that k and —k’
are cotangent to an (affinely parametrized) null geodesics connecting x and y. k is
future directed if x is in the future of y and past directed otherwise. Hence the sum
of two such covectors cannot vanish. Therefore the theorem on the multiplicability
of distributions applies and yields a distribution on the complement of the diagonal
{(x, x)|x € M}. On the diagonal, however, the only restriction is k = —k’, hence the
sum of the wave front set of Ag with itself meets the zero section of the cotangent
bundle at the diagonal.

In general the time-ordered product 7,,(Fy, ..., F,) = F| -7 ... F, of n local
functionals is well defined for local entries as long as supports of Fi, ..., F, are
pairwise disjoint. The technical problem one now has to solve is the extension of
a distribution which is defined outside of a submanifold to an everywhere defined
distribution. In the case of QFT on Minkowski space one can exploit translation
invariance and reduce the problem in the relative coordinates to the extension problem
of a distribution defined outside of the origin in R”. The crucial concept for this
extension problem is Steinmann’s scaling degree [37].

Definition 10 Let U C R” be a scale invariant open subset (i.e. AU = U for A > 0),
andlett € D' (U)beadistributionon U. Let t, (x) = ¢ (Ax) be the scaled distribution.
The scaling degree sd of t is
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sdt = inf{8 € R| lim A°r,, = 0} . (76)
r—0

There is one more important concept related to the scaling degree, namely the degree
of divergence. It is defined as:

div(r) = sd(t) —n.

Theorem 2 Let t € D(R" \ {0}) with scaling degree sdt < oo. Then there exists
an extension of t to an everywhere defined distribution with the same scaling degree.
The extension is unique up to the addition of a derivative P(9)d of the delta function,
where P is a polynomial with degree bounded by div(t) (hence vanishes forsdt < n).

A proof may be found in [13]. In the example above the scaling degree of Ag (x)?
is 4 (in 4 dimensions). Hence the extension exists and is unique up to the addition of
a multiple of the delta function.

The theorem above replaces the cumbersome estimates on conditional conver-
gence of Feynman integrals on Minkowski momentum space. Often this conver-
gence is not proven at all, instead the convergence of the corresponding integrals on
momentum space with euclidean signature is shown. The transition to Minkowski
signature is then made after the integration. This amounts not to a computation but
merely to a definition of the originally undefined Minkowski space integral.

The generalization of the theorem on the extension of distributions to the situation
met on curved spacetimes is due to Brunetti and one of us (K.F.) [7]. It uses techniques
of microlocal analysis to reduce the general situation to the case covered by the
theorem above.

The construction of time ordered products is then performed in the following
way (causal perturbation theory). One searches for a family (7,),en, of n-linear
symmetric maps from local functionals to microcausal functionals subject to the
following conditions:

T1.7)=1
T2 7 =id
T 3. T,(F1,...., Fy) = T (Fy, ..., Fr) x Ty (Fgy1, ..., Fy) if the supports
suppFi, i = 1,...,k of the first k entries do not intersect the past of the sup-
ports suppFj, j = k+ 1,...,n of the last n — k entries (causal factorisation
property).

The construction proceeds by induction: when the first » maps 7z, k = 0,...,n

have been determined, the map 7,11 is determined up to an (n + 1)-linear map Z,,
from local functionals to local functionals. This ambiguity corresponds directly to
the freedom of adding finite counterterms in every order in perturbation theory.

The general result can be conveniently formulated in terms of the formal S-matrix,
defined as the generating function of time ordered products,



44 K. Fredenhagen and K. Rejzner
1
s<v>=§a%(v,...,V>. (77)
n=

Then the S-matrix S with respect to an other sequence of time ordered products is
related to S by

~

S=80Z (78)

where Z maps local functionals to local functionals, is analytic with vanishing zero
order term and with the first order term being the identity. The maps Z form the
renormalization group in the sense of Petermann and Stiickelberg. They are formal
diffeomorphisms on the space of local functionals and describe the allowed finite
renormalization.

In order to illustrate the methods described above we work out the combinatorics
in terms of Feynman diagrams (graphs). Let D be the second order functional differ-
ential operator D = ih(A g , %). The time ordered product of n factors is formally
given by

Fiop...Fy=T/(Fi....F) =eP@ PF ... e 2PF,)

Using Leibniz’ rule and the fact that D is of second order we find
(Fi 7 ... F)(@) = eZi<i PUF1(1) -+ Fu@n)lgr=_gumg (79)

with D;; =i h(Ag , 59'?_2%'>' The expansion of the exponential function of the differ-
ential operator yields

[ij
Dij

Iij!

eZi<j D — H i

i<j l,‘j:()

(80)

The right hand side may now be written as a sum over all graphs I" with vertices
V(') ={1,...,n} and [;; lines e € E(I") connecting the vertices i and j. We set
lij =1lji fori > jandl; = 0 (no tadpoles). If e connects i and j we set de := {i, j}.
Then we obtain

T, = Z T 81)
reG,
with G, the set of all graphs with vertices {1, ...n}and 7p = SyLm(I‘)(gr, or) where

Se= ] AfCei.icde)
ecE()
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SIEM)I
|<01:--~:<p
HieV(F) [e:icoe 89i (xe.i) "

or =

and the symmetry factor is Sym(I") = Hi<j l;j!. Note that St is a well-defined
distribution in D’ ((Mz\Diag)‘E(r ) (Diag denotes the thin diagonal) that can be
uniquely extended to D' (M £ since the Feynman fundamental solution has a

unique extension with the same scaling degree. More explicitly we can write (81) as:

1 ~
Tu(F1y ... Fy) = Z S—m(F)(Sr,Sr(Fl,-.-,Fn» (82)
reGg,

Graphically we represent F* with a vertex e and D;; with a dumbbell o—o, s0
each empty circle corresponds to a functional derivative. Applying the derivative
on a functional can be pictorially represented as filling the circle with the vertex.
Note that the expansion in graphs is possible due to the fact that the action used as a
starting point is quadratic, so D is a second order differential operator. If it were of
order k > 2, instead of lines we would have had to use k — 1 simplices to represent
it. Let us illustrate the concepts which we introduced here on a simple example.

Example 2 (removing tadpoles) Let us look at the definition of the time ordered
product of F and G in low orders in A. We can write D(F - G) diagramatically as:

1
—D(F-G) = <A§, F<2>> G+ F<A§, G<2>> + 2<A§, FO G(”> (83)
1

=Oo +-O—20—¢

o _1
Here we see that the tadpoles are present. The lowest order contributions toe 2P F
can be written as:

e PP =F-IDF+0(*)= o —h (O +OM?).

Now we write the expression for F -7 G up to the first order in h:

(1+3D)[(1-4D)F-(1-4D)G]= o e +h e—e +O(K).

All the loop terms cancel out. We can see that applying ¢=2P on G and F reflects
what is called in physics “removing the tadpoles”. In formula (80) it is reflected by
the fact that we set [;; = 0.

As long as the formula (79) is applied to regular functionals there is no problem,
since their functional derivatives are by definition test functions. But the relevant
functionals are the interaction Lagrangians which are local functionals and therefore
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have derivatives with support on the thin diagonal, hence all but the first derivative
are singular. As a typical example consider

k
Fip) = [ dzfc oo
Its derivatives are
k—I
FOlolGxr, ... x) =/d f(z)(p(Z) Y l_[8<Z (84)

In general, the functional derivatives of a local functional have the form

l
FOlgla. o) = [ de 3 101@p @80 [[56 — 30
j i=1

with polynomials p; and ¢-dependent test functions f;[¢]. The integral represen-
tation above is not unique since one can add total derivatives. This amounts to the
relation

/dZQ(az)f(Z)p(axl»~--a3x1)H5(Z_xi) =/a’zf(z)q(8xl + 1 0y)  (85)

xly-- 8XI)H8(Z_-XI

We insert the integral representation (84) into the formula (82) for the time ordered
product and in each term we obtain:

(§1~,81~(F1,...,Fn)):/dxdz I1 (Zf 1(z)

veV(I) v

Qy
Pi, @l de) T 6% — %))t

e:vede

where «, is the number of lines adjacent at vertex v and we use the notation
X = (x.ple € E(I'),v € de), z = (zy|lv € V(I')). We can move the partial
derivatives dy,, by formal partial integration to the distribution Sr. Next we inte-
grate over the delta distributions, which amounts to the pullback of a derivative of
Sr with respect to the map pr : MV — MZEMI given by the prescription

(or(2))ey =zv ifv € de.
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Let p be a polynomial in the derivatives with respect to the partial derivatives
dx,,. v € de. The pullback pjt of pSr is well defined on MY ™\DIAG, where
DIAG is the large diagonal:

DIAG = {z eMVD 3, weV(T),vEw: z, = zw} .

The problem of renormalization now amounts to finding the extensions of py: pSr to
everywhere defined distributions St , € D'(M!V ™!y which depend linearly on p.
These extensions must satisfy the relation

azv Sr)F = Srs(ze 8«"6,11)17 (86)

We present now the inductive procedure of Epstein and Glaser that allows to define
the desired extension of pf pSr. For the simplicity of notation we first consider the
case where no derivative couplings are present.

Let us define an Epstein-Glaser subgraph (EG subgraph) y C T to be a subset
of the set of vertices V (y) € V(I') together with all lines in I" connecting them,

E(y)={ec E():de C V(y)}.

The first step of the Epstein-Glaser induction is to choose extensions for all EG
subgraphs with two vertices, |V (y)| = 2. In this case we have translation invariant
distributions in D’ (M?\Diag), which correspond in relative coordinates to generic
distributions 7, in D'(M)\ {0}). The scaling degree of these distributions is given
by |E(y)|(d — 2), and we can choose a (possibly unique) extension according to
Theorem 2. By translation invariance this gives extensions t,, € D' (M3).

Now we come to the induction step. For a generic EG subgraph y C T" with
n vertices we assume that the extensions of distributions corresponding to all EG
subgraphs of y with less than n vertices have already been chosen. The causality
condition T3. then gives a translation invariant distribution in D’(M!V®)\ Diag)
which corresponds to a generic distribution 7], e D'MIVWI=1\ {0}). The scaling
degree and hence the degree of divergence of this distribution is completely fixed by
the structure of the graph:

div(y) = [E(W)Id -2) = (VI —-Dd, d=dm®). 87)

We call y superficially convergent if div(y) < 0, logarithmically divergent if
div(y) = 0 and divergent of degree div(y) otherwise. Again by Theorem 2 there is
a choice to be made in the extension of t~y in the case div(y) > 0.

Let us now come back to the case where derivative couplings are present. The
scaling degree of p§p fulfills:

sd(pSr) < sd(Sr) + |pl,
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where | p| is the degree of the polynomial p. We can see that p encodes the derivative
couplings appearing in the graph y. In the framework of Connes-Kreimer Hopf
algebras it is called the external structure of the graph. The presence of derivative
couplings introduces an additional freedom in the choice of the extension in each
step of the Epstein-Glaser induction and one has to use it to fulfill (86). This relation
follows basically from the Action Ward Identity, as discussed in [14, 15]. It can be
also seen as a consistency condition implementing the Leibniz rule, see [24].

Let us now remark on the relation of the Epstein-Glaser induction to a more con-
ventional approach to renormalization. Firstly we show, how the EG renormalization
relates to the regularization procedure. We are given an EG subgraph y with n vertices
and we assume that all the subgraphs with n — 1 vertices are already renormalized.
Let

DM == {f e D" | (39 /)(0) =0 Via| < A} (88)

be the space of functions with derivatives vanishing up to order A and let D) Y ot
be the corresponding space of distributions. Theorem 2 tells us that the distribution
t~,, e D'(M"~!) associated with the EG subgraph y has a unique extension to an

element of ’D(/ﬁv( ) (M"~1). An extension to a distribution on the full space D(M"~!)

can be therefore defined by a choice of the projection:
W i DOM"™") — Dyiyeyy (M1

There is a result proven in [13], which characterizes all such projections:

Proposition 1 There is a one-to-one correspondence between families of functions
{we € DI VIBI <22 9% we(0) =8, el <2} (89)

and projections W : D — D,. The set (89) defines a projection W by

Wfi=f—> f0) w,. (90)

o] <A

Conversely a set of functions of the form (89) is given by any basis of ran(1 — W)
dual to the basis {8 : |a| <A} of Di- C D'

Let us now define, following [27], what we mean by a regularization of a distribution.

Definition 11 (Regularization) Letf € D'(R" \ {0}) be a distribution with degree of
divergence A, and let 7 € D) (R") be the unique extension of 7 with the same degree
of divergence. A family of distributions {r¢};co\j0}, 1° € D'(R"), with 2 C C a
neighborhood of the origin, is called a regularization of 7, if

Vg e D, (RY) :  lim (%, g) = (7, g) . 91)

—0
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The regularization {¢¢} is called analytic, if for all functions f € D(R") the map
2\ {0} 3¢~ (t*, f) 92)

is analytic with a pole of finite order at the origin. The regularization {t¢} is called
finite, if the limit limgﬁo(tf, f) e Cexists Vf € D(R"); in this case lim; o 5 e
D’ (R") is called an extension or renormalization of 7.

For a finite regularization the limit lim; _, ¢ #* is indeed a solution 7 of the extension
problem. Given a regularization {¢°} of ¢, it follows from (91) that for any projection
W:.:D— D)L

(T, Wf)= }imo(tf, Wf) YfeDR". (93)

Any extension ¢ € D'(IR") of 7 with the same scaling degree is of the form (¢, f) =
(f, Wf) with some W-projection of the form (90). Since 16 € D’(R") we can write
(93) in the form

= — 1 ¢ _ ¢ ()
WS =lm | (€)= > @ wa) FO0) ] (94)

lo|<sd(1)—n

In general the limit on the right hand side cannot be split, since the limits of the
individual terms might not exist. However, if the regularization {¢t°, ¢ € 2 \ {0}} is
analytic, each term can be expanded in a Laurent series around ¢ = 0, and since the
overall limit is finite, the principal parts (pp) of these Laurent series must coincide.
It follows that the principal part of any analytic regularization {°} of a distribution
t € D'(R"\{0}) is alocal distribution of order sd(¢) —n. We can now give a definition
of the minimal subtraction in the EG framework.

Corollary 1 (Minimal Subtraction) The regular part (rp = 1 — pp) of any analytic
regularization {t°} of a distribution € D'(R" \ {0}) defines by

(M3, f) = g]i_r>I})rp(<t{, m (95)

an extension of t with the same scaling degree, sd(tMS) = sd (7). The extension ™S
defined by (95) is called “minimal subtraction”.

To finish this discussion we want to remark on the difference between the Epstein-
Glaser procedure and the BPHZ scheme. It is best seen on the example of the rising
sun diagram of the ¢* theory. In the framework of BPHZ, it contains three logarithmi-
cally divergent subdiagrams, which have to be renormalized first. In the perspective
of EG, however, it is a diagram with two vertices and, hence, contains no divergent
subdiagram at all. This way one saves some work computing contributions, which,
as shown by Zimmermann [42] cancel out in the end.
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We have just seen how to define the n-fold time ordered products (i.e. multilinear
maps 7,,) by the procedure of Epstein and Glaser. An interesting question is whether
the renormalized time ordered product defined by such a sequence of multilinear
maps can be understood as an iterated binary product on a suitable domain. Recently
we proved in [17] that this is indeed the case. The crucial observation is that multipli-
cation of local functionals is injective. More precisely, let $o(M) be the set of local
functionals vanishing at some distinguished field configuration (say ¢ = 0). Iterated
multiplication m is then a linear map from the symmetric Fock space over §o(M)
onto the algebra of functionals which is generated by §o(M). Then there holds the
following assertion:

Proposition 2 The multiplication m : S*§o(M) — F(M) is bijective (where Sk
denotes the symmetrised tensor product of vector spaces).

Let 8 = m~!. We now define the renormalized time ordering operator on the space
of multilocal functionals F(M) by

T=P7T)op (96)

This operator is a formal power series in & starting with the identity, hence it is
injective. The renormalized time ordered product is now defined on the image of 7;
by

AnB=T(T,'A-T7'B), 97)

This product is equivalent to the pointwise product and is in particular associative
and commutative. Moreover, the n-fold time ordered product of local functionals
coincides with the n-linear map 7, of causal perturbation theory.

Appendix—Distributions and Wavefront Sets

We recall same basic notions from the theory of distributions on R”. Let 2 C R”
be an open subset and £(£2) = C*(£2, R) the space of smooth functions on it. We
equip this space with a Fréchet topology generated by the family of seminorms:

Pr.m(@) = sup [3%p(x)], (98)
xekK
lee|<m

where @ € NV is a multiindex and K C 2 is a compact set. This is just the topology
of uniform convergence on compact sets, of all the derivatives.

The space of smooth compactly supported functions D(£2) = C°(§2, R) can be
equipped with a locally convex topology in a similar way. The fundamental system
of seminorms is given by [35]:
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Pimiera(@) =sup ( sup |DPp(x)|/ey), (99)
v [x[>v,
|P|va

where {m} is an increasing sequence of positive numbers going to 400 and {¢} is a
decreasing one tending to 0.

The space of distributions is defined to be the dual D’ (§2) of D(§2) with respect
to the topology given by (99). Equivalently, given a linear map L on D(£2) we can
decide if it is a distribution by checking one of the equivalent conditions given in the
theorem below [25, 33, 41].

Theorem 3 A linear map u on E£(82) is a distribution if it satisfies the following
equivalent conditions:

1. To every compact subset K of §2 there exists an integer m and a constant C > 0
such that for all ¢ € D with support contained in K it holds:

lu(p)| < C max sup |37 ¢(x)].
Pk xeQ

We call ||ul|cr (o) = max p<k sup,cp [07¢(x)| the C*-norm and if the same inte-
gerk can be usedin all K for a given distribution u, then we say that u is of order
k.

2. If a sequence of test functions {¢r}, as well as all their derivatives converge
uniformly to 0 and if all the test functions @y have their supports contained in a
compact subset K C 2 independent of the index k, then u(¢r) — O.

An important property of a distribution is its support. If U” C U is an open subset
then D(U’) is a closed subspace of D(U) and there is a natural restriction map
D' (U) — D'(U’). We denote the restriction of a distribution u to an open subset U’
by M|U/.

Definition 12 The support suppu of a distribution u € D’(£2) is the smallest closed
set O such that u|o\@ = 0. In other words:

suppu = {x € £2| YU openneigh.of x, U C 2 3¢ € D(§2),suppp C U, s.t. < u, ¢ ># 0}.
Distributions with compact support can be characterized by means of a following

theorem:

Theorem 4 The set of distributions in §2 with compact support is identical with the
dual £'(2) of £(£2) with respect to the topology given by (98).

Now we discuss the singularity structure of distributions. This is mainly based on
[25] and Chap. 4 of [1].

Definition 13 The singular support sing supp u# of u € D’(£2) is the smallest closed
subset O such that u| o\ € £(£2\0).

We recall an important theorem giving the criterion for a compactly distribution to
have an empty singular support:
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Theorem 5 A distribution u € £'(§2) is smooth if and only if for every N there is a
constant Cy such that:

la(k)] < Cy(1+ k)N,

where i denotes the Fourier transform of u.

We can see that a distribution is smooth if its Fourier transform decays fast at infinity.
If a distribution has a nonempty singular support we can give a further characteri-
zation of its singularity structure by specifying the direction in which it is singular.
This is exactly the purpose of the definition of a wave front set.

Definition 14 For a distribution u € D’(£2) the wavefront set WF(x) is the com-
plement in £2 x R" \ {0} of the set of points (x, k) € £2 x R" \ {0} such that there
exist

e afunction f € D(£2) with f(x) =1,
e an open conic neighborhood C of k, with

sup(1 + kDN |7 -u(k)| <00 VN e Ny.
keC

On a manifold M the definition of the Fourier transform depends on the choice
of a chart, but the property of strong decay in some direction (characterized now by
a point (x, k), k # 0 of the cotangent bundle 7*M) turns out to be independent of
this choice. Therefore the wave front set (WF) of a distribution on a manifold M is
a well defined closed conical subset of the cotangent bundle (with the zero section
removed).

The wave front sets provide a simple criterion for the existence of point-wise
products of distributions. Before we give it, we prove a more general result concerning
the pullback. Here we follow closely [1, 25]. Let F : X — Y be a smooth map
between X C R” and Y C R". We define the normal set Ny of the map F as:

N = {(F(x),n) € Y x R"|(dF)" () = 0},

where (dF,)T is the transposition of the differential of F at x.

Theorem 6 Let I' be a closed cone in' Y x (R"{0}) and F : X — Y as above,
such that Np N T = @&. Then the pullback of functions F* : £(X) — E(Y)
has a unique, sequentially continuous extension to a sequentially continuous map
D}(Y) — D' (X), where Dia(Y ) denotes the space of distributions with WF sets
contained in T.

Proof Here we give only an idea of the proof. Details can be found in [1, 25]. Firstly,
one has to show that the problem can be reduced to a local construction. Let x € X.
We assumed that Np N I" = &, so we can choose a compact neighborhood K of
F(x) and an open neighborhood O of x such that F(O) C int(K) and the following
condition holds:




Perturbative Algebraic Quantum Field Theory 53

de > 0s.t. V = U {k|(dF)Tk} satisfies (K x V)N = @.
xeO

Such neighborhoods define a cover of X and we choose its locally finite refinement
which we denote by {Oy}qca, Where A is some index set. To this cover we have
the associated family of compact sets K; C Y and we choose a partition of unity

> 8o = 1, suppgy C O, and a family {fy}eea of functions on Y with supp
acA

fo = Ky and f, = 1 on F(suppgy). Then:

F*(@) = D" gaF*(fup).

a€A

This way the problem reduces to finding an extension of F) = (F | o)

CX(Ky,R) — C®(Oy,R) to a map on D(Ky). Note that for ¢ € CX(Kg),
suppx C Oy, we can write the pullback as:

(Fi(p), x) = / @(Fy(x)x (x)dx = / PO Ty (xydxdn = / ¢ Ty (m)dn

where we denoted Ty (1) = f e Fa()n) v (x)dx. We can use this expression to define
the pullback for u € D[.(K), by setting:

(FEW), x) ﬁ/ﬁ(n)Tx(n)dn-

To show that this integral converges, we can divide it into two parts: integration over
Vi and over R" \ V,,, i.e.:

(FXw), x) = / ()T, (dy + / )T, (.

Va R\ V,

The first integral converges since K, x V, NI" = & and therefore it (n) decays rapidly
on Vy, whereas |T) ()| < f |x (x)|dx. The second integral also converges. To prove
it, first we note that 7i() is polynomially bounded i.e. ¢(17) < C (1 + |n|)" for some
N and appropriately chosen constant C. Secondly, we have a following estimate on
T, (n): for ever k € N and a closed conic subset V C R" such that (d Fo)Tn # 0 for
n € V, there exists a constant Cy y for which it holds®

T, (M| < Crv(1+ 07,

8 For the proof of this estimate see [1, 25]
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Since for € V, it holds (dF,)"n > € > 0, we can use this estimate to prove the
convergence of the second integral.

We already proved that F* : D.(Y) — D'(X) exists. Now it remains to show
its sequential continuity. This can be easily done, with the use of estimates provided
above and the uniform boundedness principle.

Using this theorem we can define the pointwise product of two distributions ¢, s on
an n-dimensional manifold M as a pullback by the diagonalmap D : M — M x M
if the pointwise sum of their wave front sets

WF(t) + WF(s) = {(x, k + k')|(x, k) € WF(¢), (x, k") € WF(s)},

does not intersect the zero section of 7*M. This is the theorem 8.2.10 of [25]. To
see that this is the right criterion, note that the set of normals of the diagonal map
D : x — (x,x)is given by Np = {(x, x, k, —k)|x € M,k € T*M}. The product
ts is defined by: ts = D*(r ® 5) and if one of ¢, s is compactly supported, then so is
ts and we define the contraction by (¢, s) = 75(0).
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