
Preface

Despite its long history and its stunning experimental success, the mathematical
foundation of perturbative quantum field theory (pQFT) is still a subject of ongoing
research. This book aims at presenting some of the most recent developments in the
field, and at reflecting the diversity of the approaches and the tools that have been
invented and that are used. Some of the leading experts as well as newcomers in the
field present their latest advances in the attempt for a better understanding of
quantum, but also classical field theories.

The chosen material is, however, far from complete. As mentioned in the first
foreword, the idea for this book grew out of a school in Les Houches on the subject,
most lecturers agreeing to write a contribution. This then was complemented by
selecting some of the customary young-participant-presentations to contribute, too,
as well as by two, three additional invited articles. And, as mentioned in the second
foreword, even though the book is aimed both at mathematicians and physicists, it
is more oriented toward the mathematical developments. Here, it is maybe a pity
that for example Nekrasov’s lectures about the path integral on N ¼ 2 super-
symmetric gauge theories did not find entry into the present addition. But there are
many more promising directions, which did not, at least one of which shall be
mentioned below. Maybe this can be a reason to come back to the enterprise at a
later point again, summarizing also those aspects, and possibly updating the ones
which are contained in the present edition.

On this occasion, we use the opportunity to thank Jürg Fröhlich for his valuable
physical insight arising from decades of own original work on the forefront of the
subject and his complementary remarks on the physics that is involved in the
mathematical descriptions, even if it is partially only in terms of some keywords
due to lack of “space-time”. In the winter school, there was in addition an inspiring
opening lecture of another great person in the field, Ludwig Faddeev, who com-
mented on his perspective on the still open one-million dollar Clay problem
“Yang–Mills Existence and Mass Gap”. His lecture had been published already in a
similar form elsewhere, so that we briefly summarize it here only—also since it
suits well to explain the problematic of the subject.
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The task to win the prize may sound deceptively simple: essentially, one is asked
to prove that Yang–Mills theory (for a semi-simple compact structure group G)
exists (in its quantum version) and that there is a minimal mass for the spectrum of
particles. Deceptively simple, since from the physical perspective there is abso-
lutely no doubt that this theory exists (at least for G ¼ SUð2Þ or G ¼ SUð3Þ); it
is one of the corner stones of the standard model of elementary particles, verified
experimentally to an incredible precision, as also emphasized by Fröhlich in his
foreword. However, as pointed out by Faddeev in his lecture (but also indepen-
dently by R. Jackiw), the problematic becomes already more evident if one notices
that the underlying classical Yang–Mills theory is conformal, i.e., scale-invariant in
four space-time dimensions. One way of seeing this is that the overall coupling
constant does not carry any physical units in precisely this dimension. On the other
hand, any mass of a particle to be specified in a physical theory needs to refer to
some standard mass (like 1 kg). The definition of the theory does not carry any such
a mass (or, equally, length) scale on the outset of the problem, i.e., in its classical
formulation in terms of an action functional.

According to Faddeev, the remedy can lie only in the usually so unloved
infinities encountered typically in interacting quantum field theories (QFTs). Those
infinities that plagued the foundators of the theory, subsequently were handled with
increasing success in a more or less well-founded theory of perturbative renor-
malization, but which still cost many contemporary students of theoretical and
mathematical physics a large number of unpleasant hours; the latter fact is the case,
since in particular in standard physics lectures on QFTs, often the experimentally
verified end is used to justify the mathematical means, with a mathematical argu-
mentation that either appears inconsistent or otherwise at least arbitrarily ad-hoc.
On the other hand, the necessary regularization of the theory on the quantum level
will introduce a length-scale, and in this way there can be hope that the resulting
quantum Yang–Mills theory can yield a minimal mass in a well-defined way.

To formulate a mathematically well-defined and conceptually convincing reg-
ularization and renormalization scheme is one of the tasks of a mathematical
approach to quantum field theory (QFT). But it goes even further: one wants the
theory to satisfy a minimal number of axioms that seem to be enforced by com-
patibility with for example special relativity, running in part under the name of
(Einstein) “locality” in this context. More precisely, basic considerations require a
number of properties any “physically acceptable” QFT should satisfy. One version
of such a set of axioms is the one formulated by Wightman. It contains for example
(projective) equivariance of the quantum fields of the theory with respect to the
action of the Poincare group (the isometry group of Minkowski space in four
dimensions). Later, it was permitted also to trade in Euclidean four-space for the
physical Minkowski space; the idea of the so-called Osterwalder–Schrader axioms
being then that mathematically the theory is easier to define and the physical
interpretation results in a second step by an appropriate analytic continuation, called
Wick rotation in physics. The formulation of the Clay prize requires to define 4d
quantum Yang–Mills theory with a rigor of at least such axioms.
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The only problem here is that up to now there is not a single known interacting
quantum field theory in four dimensions satisfying such a typical set of axioms;
there are only examples of such theories in two or three space-time dimensions,
which have, however, no physical significance and are (to be) considered as
so-called “toy-models” only. As Max Kreuzer from the Technical University of
Vienna used to say, torturing herewith some of the more mathematical-conceptually
oriented students (all the more since the statement is true, at least from a physicist
perspective): “The only theories satisfying the Wightman axioms are free theories.”
A free theory is one that physically corresponds essentially to a single particle
travelling alone through empty space not subject to any interactions and thus not
subject to any experimental observations or tests. Clearly, this is highly dissatis-
fying, all the more, since the formulated axioms, in one or the other form, seem
more or less unavoidable from a point of view of principles governing our con-
temporary understanding of quantum field theory.

At this point, we want to mention one of the unfortunate omissions of this volume,
all themore since it contains a glimpse of hope for possiblyfinding an interactingQFT
in four dimensions after all. The omission comes from a recent direction motivated
by String Theory (but not only!) to consider QFTs on so-called noncommutative
space-times. In fact, the idea is already quite old and pursues the goal that the
“fuzzyness” of the underlying space resulting from non-commuting space(-time)
coordinates could cure the problem of the UV-(or “high energy”/“small distance”)
divergencies of QFTs mentioned already above. In the simplest setting, the com-
mutator of the coordinates is a constant matrix H, corresponding to the deformation
quantization of a constant Poisson tensor (in flat space). The resulting product of
functions on space-time can then be described by theMoyal product ofH. In this way,
the classical action functional of the theory under investigation is replaced by one that
is an infinite formal power series inH, reducing to the original functional forH ¼ 0.
It is then this new functional to be used for the “quantization”, i.e., as a starting point of
the construction of a pQFT.

Although first considerations indeed show improvement of the UV-behavior, it
turns out that the problem is not solved in many cases (keyword “UV/IR”-mixing)
and the original hype on the study of such theories seems to have decreased over the
last years again. However, there is one proposal, the so-called Grosse–Wulkenhaar
model, that resists many of the problems of other theories considered in this context
and now even gives some hope to lead to a well-defined interacting QFT in four
dimensions (although it is still too early to make this statement, there are at least
several indications that look promising). One important issue to address at this point
is that certainly the introduction of the tensor H on Minkowski or Eucildean space
spoils its covariance. However, in a simultaneous limit sending H as well as the
volume (made finite for an IR-regularization) to 1, it was shown to lead to a
covariant and local theory on Euclidean fourspace for this model. Reinterpreting
thus this matrix H as another way of regularizing the theory, one is led to an
apparently consistent, non-trivial quantum version of the u4-theory in four
dimensions. The Wick rotation to Minkowski signature is a problem still under

Preface xvii



investigation on the day of this writing, while preliminary computer simulations in
this direction seem promising.

The remarks of the introduction up to here aimed at a complementary argu-
mentation to the one of Fröhlich of why one would wish to have a mathematically
well-founded theory of quantum fields describing known physics at high energies.
Even on the level of perturbation theory, i.e., in terms of formal power series, the
situation concerning physically relevant theories in this context is far from satis-
factory. Theories of physical relevance are in some sense of quite a different nature
than those of relevant mathematical impact: while the first ones are characterized by
so-called “propagating degrees of freedom”, the latter ones are mostly of “topo-
logical” nature. Essentially or at least in a first approximation, the difference lies in
the dimension of the (generic part of the) moduli space of (classical) solutions to the
Euler–Lagrange equations of the theory modulo its gauge symmetries. For physi-
cally relevant theories, this needs to be an infinite-dimensional space, reflecting the
fact that physically observable excitations describing elementary particles can be
generated locally everywhere in space-time, while for topological models this space
is usually finite-dimensional. On the quantum level, the latter type of theories are
then called topological quantum field theories (TQFTs).

One of the most famous examples of a TQFT, if not the most famous one among
mathematicians, is the Chern–Simons theory. The major breakthrough was made by
Witten, who observed that one could recover link and three-manifold invariants via
the path integral quantization of the Chern–Simons classical action functional. The
so-called A- and B-models are other famous examples of TQFTs. They are related
by mirror symmetry to one another, a notion originating from physical intuition,
relating seemingly different, but in the end equivalent quantum string theories.
Mirror symmetry and its relation to enumerative and algebraic geometry became a
major research area of pure mathematics by itself in the mean time.

A generalization of the A- and B-model is the Poisson sigma model (PSM),
celebrating its twentieth anniversary this year. It was discovered in the context of toy
models of coupled gravity and Yang–Mills theories defined on two-dimensional
space-time manifoldsR (Ikeda and Schaller–Strobl). Already at this very beginning it
was realized that the quantization of the PSM is intimately related to the quantization
of the target Poisson manifold—applying a particular non-perturbative quantization
scheme to this theory, the integrality condition of geometric quantization pops up for
the symplectic leaves of the Poisson target (cf also Alekseev–Schaller–Strobl).
However, only in an unparalleld work of Kontsevich it was observed that already the
perturbative quantization of the PSM on a trivial world-sheet topology solves the
by then longstanding problem of deformation quantization of Poisson manifolds,
leading him to his famous formality theorem (several steps of this procedure were
retraced in a series of works by Cattaneo-Felder).

This is a good example of the use of (T)QFTs in mathematics: one trades in the
apparently simpler problem of quantization of a Poisson structure on R

n for the
quantization of a field theory the target of which is this Poisson manifold M ¼ R

n.
This now is an infinite dimensional space, the functional being defined over vector
bundle morphisms from TR to T�M. Moreover, one needs to factor out an infinite-
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dimensional gauge group, the quotient yielding in general a complicated, singular,
but in this case finite-dimensional space. However, it turns out that the application
of standard techniques developed in the context of perturbative QFTs with gauge
symmetries leads to formulas relevant to the finite dimensional target space that
otherwise proved resistant over decades for being invented directly!

The flow is expected to also go into the other direction, however, i.e., one
expects to learn from TQFTs and related mathematics for how to sharpen our
approaches for the construction of physically more relevant QFTs. It is in this spirit
instance that Tamarkin wrote a 100 pages paper only about the renormalization
of the PSM—in a standard physics approach the perturbative renormalization of
such a topological model would be dealt with in at most a few paragraphs. The
functorial approach to TQFTs, as developed also at the examples of topological
strings (like the A- and B-model), led to an axiomatic definition of them in terms
of the Atyah–Segal axioms. In the lectures of Fredenhagen about the formulation of
pQFTs on curved space-times of Lorentzian signature one finds a reformulation of
standard QFT axioms closely related to such a functorial perspective.

For the present, as mentioned rather mathematically oriented volume on QFT
(cf. also the foreword of Fröhlich), this is maybe one of the main perspectives from
our editors’ side to its contributions: the hope that, on the long run, topological
models and mathematics in general can have something to say about (also physi-
cally relevant) QFTs. It is thus not so surprising that one out of in total four parts to
this book is devoted to mathematics around the Chern–Simons theory. Subsequent
to Witten’s work, Reshetikhin and Turaev proposed a rigorous mathematical con-
struction of a (nonperturbative!) quantization of the Chern–Simons theory in terms
of quantum groups and modular tensor categories. And despite this great
achievement, there are many questions that remain open in the context of
Chern–Simons theory, both of computational and theoretical nature.

In the context of the PSM, on the other hand, one seems still quite far from a
nonperturbative quantization. So, this model is not yet really defined as a TQFT—in
the sense of the Atiyah–Segal axioms, although there is no serious doubt that such a
formulation should exist. However, already now the PSM teaches us at least two
more lessons related to the present volume: First, as found by Cattaneo and Felder,
the reduced phase space of the PSM, i.e. its Weinstein symplectic quotient, when
smooth, carries the structure of a symplectic groupoid (cf. also the contribution of I.
Contreras to this volume). And this groupoid is precisely the one that integrates the
Lie algebroid T�M associated to the target Poisson manifold M, a construction
suggesting the one needed for the integration problem of general Lie algebroids to
Lie groupoids, finally solved by Crainic and Fernandes (in the sense of necessary
and sufficient conditions for a smooth integration to exist). This is only one of the
examples for a renewed interest in geometrical questions related to field theories
already on the classical side. Such an understanding of the classical theory is also
important in order to identify the difficulties specific to the quantum side when trying
to provide rigorous constructions of QFTs. One of the four parts to this book is thus
devoted to merely classical or semi-classical investigations of field theories.
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Second, the PSM can be viewed as a Chern–Simons theory for the Lie algebroid
T�M: while the integrand of the Chern–Simons theory for an ordinary Lie algebra
arises as a transgression of the Pontryagin class, “trðF ^ FÞ ¼ dðCSÞ”, likewise
the integrand of the PSM relates to a characteristic 3-form class, “Fi ^ Fi ¼
dðPSMÞ” where here F corresponds to the obstruction of the vector bundle mor-
phism TR ! T�M to be a Lie algebroid morphism—it has a 1-form part Fi (from
the base map) in addition to a standard 2-form part for curvatures. In fact, there is a
topological sigma model that reduces to the PSM in two dimensions and includes
the Chern–Simons theory in three, and this is the so-called AKSZ sigma model
(after Alexandrov–Kontsevich–Schwarz–Zaboronski; cf. the contribution of Bon-
avolontà–Kotov as well as the introduction of one of us to this book); and even the
relation to higher characteristic classes extends to those (Kotov–Strobl, cf. also
Fiorenza–Rogers–Schreiber as well as the contribution of Fiorenza–Sati–Schreiber
to this volume). In general, there is a—to our mind useful—trend to higher structures
in theories of relevance to mathematical physics and this is also reflected partially in
the present book.

One of the, from a mathematical point-of-view, most well-understood classes of
QFTs which are not topological consists of 2-dimensional conformal field theories
(CFTs). In this context the axiomatization of the operator product expansion has led
to the notion of vertex (operator) and chiral algebras, which are now widely used
both in mathematics and physics. There have been several attempts to generalize
these and base the axiomatics of perturbative QFT and the renormalization pro-
cedure on the operator product expansion: Kontsevich (unpublished), Hollands, and
Costello–Gwilliam (see e.g., the contribution of Costello–Scheimbauer to this
volume) in the Euclidean context, Fredenhagen et al in the Lorentzian context
(cf. the contribution of Fredenhager–Rejzner to this volume). All these approaches
share two things: the appearance of a pattern resembling the one of little disk
operads, which axiomatizes the physical concept of “locality,” and the use of
techniques from deformation quantization.

The concept of locality in 2d conformal field theory can also be formulated by
defining a CFT as a functor from a suitable category of cobordisms to vector spaces
(cf. Atiyah–Segal) satisfying certain properties. The foundational work of Beilin-
son–Drinfeld on chiral algebras exhibits a close relation between these two
approaches to the concept of locality: namely, chiral homology associates a CFT à
la Atiyah–Segal with any (conformal) vertex algebra. Recently, Lurie defined a
topological analog of chiral homology, known as factorization homology: it
assigns a TQFT to any algebra over the little n-disk operad, or to any En-algebra
(cf. contributions of Markarian and Tanaka to this volume for an approach to
Chern–Simons theory using factorization homology), which can be proven to be
fully extended (Scheimbauer). Fully extended TQFTs are known, after the cobor-
dism hypothesis (Lurie, Baez–Dolan), to be the “most local” TQFT (cf. also the
contibutions of Fiorenza–Sati–Schreiber and Cattaneo–Mnev–Reshetikhin to this
volume). Factorization/chiral homology can actually be defined for any factorization
algebra (Costello–Gwilliam); a new concept that encompasses the ones of En-,
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vertex and chiral algebras, and whose definition was designed to encode the general
algebraic structure of local observables of an arbitrary field theory. It has
applications that range from conjectures on renormalization of lattice models
(cf. the introduction of one of us to this book) to algebraic topology (cf. Ginot’s
contribution to the last part of this volume).

We now give a very brief overview on the contents of the book, which starts
with an introductory chapter that emphasizes the importance of derived and
homotopical (or higher) structures in the mathematical treatment of TQFTs.

Summary of Part I

The first Part is about local aspects of perturbative quantum field theory, with an
emphasis on the axiomatization of the algebra behind the operator product
expansion and the ideas coming from deformation quantization techniques.

It begins with a Chapter, by Fredenhager–Rejzner, summarizing the approach
that was developed for the Lorentzian signature and applicable to also curved
(globally hyperbolic) space-times, applying a quantization procedure to QFT by
adapting deformation quantization to its setting. It then continues with a contri-
bution, by Costello–Scheimbauer, on partially twisted supersymmetric four-
dimensional gauge theories that are studied using the foundational work of Costello
and Costello–Gwilliam. The last chapter, written by Wendland, is a short review of
Conformal Field Theory, summarizing in particular recent progress made in that
field and its relation to the geometry of K3 surfaces and Mathieu moonshine.

Summary of Part II

The second Part focuses on Chern–Simons (CS) gauge theories.
It begins with a Chapter of Andersen–Kashaev on a construction of SLð2;CÞ

quantum CS theory by means of Teichmüller theory and the quantum dilogarithm
of Faddeev. This is followed by a Chapter of Fiorenza–Sati–Schreiber, exhibiting
higher structures in a systematic way in the context of an extended prequantum
theory of CS-type gauge field theories. The subsequent Chapter consists of two
contributions, one by Markarian and one by Tanaka, and deals with the relation
between three-dimensional CS theory and factorization homology. Part II is com-
pleted by a review of Thuillier about the use of Deligne–Beilinson cohomology for
an alternative or deepened understanding of abelian Uð1Þ CS theory.
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Summary of Part III

The third Part of this book is devoted to a classical or at most semi-classical
analysis of field theories.

It begins with a Chapter of Cattaneo–Mnev–Reshetikhin, introducing some very
recent work on the treatment of constraints and boundary conditions in classical
field theories, with an emphasis on the BV and BFV formalism. The subsequent
contribution, written by Kotov–Bonavolontà, deals with the BV-BRST formalism
in the context of AKSZ sigma models, improving previous local results to a global
level. The following Chapter of Li-Bland–Ševera provides a beautiful treatment
of the (quasi-)Hamiltonian and Poisson geometry of various moduli spaces of flat
connections on quilted surfaces, which are relevant in classical Chern–Simons and
WZW theories. The final Chapter of this Part aims at understanding the construction
of the sympletic groupoid associated to the PSM from the axiomatics of Frobenius
algebras.

Summary of Part IV

The fourth Part consists of a single Chapter written by Ginot. It provides a detailed
account of the mathematical foundations of Factorization Algebras and Factorization
Homology, making extensive use of higher homotopical structures, thus closing the
circle opened in the introductory Chapter.

We would like to conclude this preface with a quotation from the Clay Institute’s
official description of the “Yang–Mills existence and Mass gap” problem as for-
mulated by Arthur Jaffe and Edward Witten:

… one does not yet have a mathematically complete example of a quantum gauge theory in
four-dimensional space-time, nor even a precise definition of quantum gauge theory in four
dimensions. Will this change in the 21st century? We hope so!

Wewholeheartedly share this wish, and hope in turn that some of the mathematical
concepts presented in this book will help to better understand, one day, quantum field
theories in four dimensions.

France Damien Calaque
Thomas Strobl
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