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Abstract This article addresses Béziau’s (Sorites 12:5-32, 2001) vision that universal
logic should be capable of helping other fields of knowledge to build the right logic for
the right situation, and that for some disciplines mathematical abstract conceptualization
is more appropriate than symbolic formalization. Hertz’s (Math. Ann. 87(3-4):246-269,
1922) diagrams of logical inference patterns are formalized and extended to present the
universal logic conceptual framework as a comprehensible science of patterns. This fa-
cilitates those in other disciplines to develop, visualize and apply logical representation
and inference structures that emerge from their problématique. A family of protologics is
developed by resemantifying the sign for deduction, —, with inference patterns common
to many logics, and specifying possible constraints on its use to represent the structural
connectives and defeasible reasoning. Proof-theoretic, truth-theoretic, intensional and ex-
tensional protosemantics are derived that supervene on the inference patterns. Examples
are given of applications problem areas in a range of other disciplines, including the rep-
resentation of states of affairs, individuals and relations.

Keywords Universal logic - Inference patterns - Protologic - Protosemantics - Structural
connectives - Paraconsistency - Default reasoning - Applied logic

Mathematics Subject Classification (2000) Primary 03B22 - Secondary 03A05

1 Introduction

Twenty years ago, Jean-Yves Béziau [9] proposed that the notion of deduction in any
logical system should be studied within an integrative conceptual framework that pre-
supposes no particular axioms. He termed this framework universal logic by analogy to
Birkhoff’s [23] universal algebra. This approach encompasses all logical systems and
facilitates specifying each of their particular axioms whether they are common to many
logics, or peculiar to a few.

Logical systems have proliferated since the 1920s when Hilbert, Frege and Russell
extended the inference patterns of Aristotle’s syllogistic [7, 33] to provide formal founda-
tions for mathematics. Béziau’s proposal situates a wide range of historical and ongoing
studies of such systems within a coherent framework, and suggests significant directions
for further research. His publications expounding [11, 13, 14] and illustrating [10, 12, 19]
the approach, and the fora he has provided through editing books [15, 18], conference
proceedings [21, 22], and the Logica Universalis journal, have inspired a research com-
munity collaborating within the universal logic paradigm.
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Béziau [14, p. 14] presents the study of logical structures as a mathematical discipline
in its own right, a Bourbakian [25] mother system “having the same status as algebraic,
topological and order structures”. However, like other sub-disciplines of mathematics,
it also provides foundational capabilities for many other disciplines. A universal logic
conceptual framework contributes to these disciplines by providing techniques for tailor-
ing logical systems to address the precise purposes for which they are required. It helps
build “the right logic for the right situation” [11, p. 19], making it possible to avoid the
wholesale import of inappropriate axioms of a logical system that may introduce artifacts
by going beyond those deriving from a conceptual analysis of the problématique.

In order to support other disciplines, Béziau [11, p. 23] has suggested that univer-
sal logic might be presented as a formal but comprehensible conceptual framework that
avoids unnecessary symbolism, that, for example, “the definitions philosophers need in-
volve mathematical abstract conceptualization rather than symbolic formalization.” How-
ever, most universal logic research has naturally adopted the symbolism of formal logic
and this, like mathematical symbolism in general, can be a significant barrier to under-
standing [66].

This article addresses the question of whether the conceptual framework of univer-
sal logic may be formalized and presented in a way that minimizes the use of technical
terminology and mathematical symbols. Its objective is to preserve formal rigor while
providing a useful and comprehensible tool for those applying logic to problems of rep-
resentation and inference in non-mathematical disciplines. It adopts the perspective that
views mathematics as a science of patterns [95], and presents possible inference patterns
in a logical system as two-dimensional configurations of an arrow symbolizing deduction.

2 Logic as a Science of Patterns

The objective of this section is to develop the conceptual framework of universal logic
in a simple and comprehensible form as a science of patterns. The primitive notion of
deduction is represented as a process of recognizing a pattern within a structure that li-
censes the addition of deletion of part of that structure. This process is itself represented
by metastructures termed inference patterns, a collection of which will be said to consti-
tute a protologic [79].

2.1 Foundations for a Universal Protologic

The genesis of what has come to be termed universal logic was in the philosophy of
Hilbert that he derived by reflecting on his experience in proving his basis theorem [68]
and rationally reconstructing Euclidean geometry [69], and the resultant controversy with
Gordan [83, p. 18] and Frege [49, pp. 1-24] about his innovations in the logical founda-
tions of mathematics.

Hilbert [70] evolved a new conceptual framework for axiomatic thinking that involved
reconstructing a formalized discipline by abstraction to a minimal set of independent ax-
ioms, each having a meaningful interpretation in that discipline. His methodology intro-
duced notions such as logical existence [49, p. 12] being equivalent to lack of contradic-
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tion, and ideal elements [71] being introduced in order to simplify the axioms even though
they were not part of the original system.

Hilbert [70, p. 413] emphasized that the axiomatic foundations of logic underpinned
those of other disciplines and themselves needed to be made secure. When he and his
colleagues at Gottingen, such as Hertz, Bernays and Gentzen, worked on this problem it
was natural for them to adopt his principles of axiomatic thinking and deconstruct logical
deduction as a minimal collection of axioms, introducing ideal elements as necessary to
simplify them, and focusing on freedom from contradiction and the complete reconstruc-
tion of expected inferential outcomes.

The objective was to provide logical foundations for mathematics and the axiomatic
method rather than to characterize all possible logics. However, there were already two
contending logics for mathematics, classical and intuitionistic [58], and it was natural for
Hertz [67] in applying Hilbert’s axiomatic thinking to logic to abstract as much as possible
and consider inference patterns between arbitrary sentences. He even abstracted from the
notion of inference itself, stating that there is no need to specify “what the symbol —
linking the characters a — b or the word ‘if” in the corresponding linguistic formulation
means” [67, p. 247].

Bernays further extends Hertz’s level of abstraction when he used it to exemplify
Hilbert’s philosophy of mathematics by reducing — to a sign rather than a symbol: “If the
hypothetical relationship ‘if A then B’ is symbolically represented by A — B, then the
transition to the formal position is that we abstract from that the meaning of the symbol
— and take the linkage by the ‘sign’ — itself as the primary consideration.” [8, p. 333].

In her analyses of the evolution of written language to include non-phonetic technical
material involving mathematical and logical symbology, Kriamer [75] has characterized
such extreme abstraction as complete desemantification. Dutilh Novaes [39] adopted this
terminology and situated the desemantification of logic historically through her analysis
of the use of the qualifier formal in the logical literature. She [40, §6.1.2] introduces
the term resemantification to describe the process of reintroducing expected features of a
desemantified system.

The following sections develop a universal protologic by commencing with deduction
as a desemantified sign, —, and incrementally resemantifying it by introducing common
logical constraints as inference patterns represented by structures based on —. The ad-
ditional term semantification is used to distinguish various extra-logical interpretations
that add meaning without changing the underlying logical system, including: those intrin-
sic to the logical system, such as truth values (Sect. 4.2), and intensional (Sect. 4.3) and
extensional (Sect. 4.4) reconstruction.

2.1.1 Protosemantics

Whilst the protologic is itself a mathematical abstraction, it is intended to have practical
applications and terms have been adopted to name abstract patterns that reflect those in the
literature and seem natural to those patterns. However, these terms are strictly technical
and none of their possible connotations beyond their formal definitions are used to draw
inferences. That is, the protologic semantifies the terms and not the terms the protologic.

For example, A — B is read as ‘A includes B’ and two complementary technical terms
are also introduced to provide an abstract protosemantics. The term content is used to
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reference that which might be included. That is, A — B may be read as ‘the content of
A includes the content of B.” This terminology is consistent with that of those who have
proposed that logical entailment be explicated as meaning [41], sense [90] or content [26]
containment, and enables one to assess when that notion is appropriate and when it is not.

The term context, is used to reference the effect of inclusion, of being within the scope
of the meaning. That is, A — B may be read as ‘the context of B encloses the context
of A’ This terminology is consistent with Aristotle’s [1, 1061b30] use of the term qua
in his Metaphysics to introduce a context, for example, to consider physical objects ‘qua
moving’ rather than ‘qua bodies.” However, any connotations of the terms ‘content’ and
‘context’ derive explicitly from the constraints placed upon the use of —, rather than from
a priori intuitions.

2.1.2 Arrows, Links and Graphs

Béziau [9, p. 85] introduces a minimal resemantification of a deduction sign by going
back to the Latin roots of the term and interpreting it as leading away from premise to
conclusion, that is, we may regard the arrow in A — B as a directed connective leading
from the symbol ‘A’ at the tail to the symbol ‘B’ at the head. The resulting structure may
be termed a link constituted by the triple (A, —, B). It may also be described as a link out
of A constituted by the pair (—, B) or a link in to B constituted by the pair (A, —).

A link is naturally represented in graphical form as two labeled nodes
with an arrow between them or, more generically, as an arrow between two
anonymous nodes. It is assumed that labels constitute unique identifiers O_)O
from some family of identifiers with an equality relation, and that an anonymous node
has an implicit label unique to that node.

The resemantification involved in labeling nodes is the assumption that the entities
linked by — may be identified, distinguished and equated. Node labels may be chosen
to suggest possible connotations but these make no formal contribution to the logical
structure represented by the links. They are logically meaningful only to the extent that
the linkage structure represents such connotations.

Nodes with identical labels will be taken to represent the same node shown more than
once, and may be merged to form a canonical graph-like structure with no duplication of
nodes. This allows structures to be split into substructures, possibly overlapping, that can
be merged to reconstitute the original structure. It also allows a structure to be merged with
one of several other structures, each representing an alternative component, for example,
a different ‘ontology’ or ‘theory.*

Figure 1 shows a number of links merged into a graphical structure, S, with no dupli-

cation of nodes.
0005 0=
LT

Fig. 1 Graphical structure specified by multiple links



Universal Logic as a Science of Patterns 149

Note that the graph representation adds no additional information to that of a linear rep-
resentation as the multiset,

S=[A—-B,B—-~C,B—-~C,C—-D,D—-E,D—-EE—-EF—-B,B—H,
G— H,H— D,D— H]

It is only a more perspicuous representation of the structure represented by multiple links
involving the same nodes.

Figure 2 shows the same links merged into three overlapping substructures, S1, S2 and
S3, representing the same structure in a modular way.

TS

Fig. 2 Same structure specified modularly as three substructures

The linear representations are shown below and S is their multiset sum:

S1=[A—-B,B— C,F— B]
S$2=B—-C,C—-D,D—-E,B—H,H—D,G— H]
S3=[D—E,E—E,D— H]
S=S1wS24¥S3

The resemantification of the arrow sign so far is sufficient to support the basic struc-
tures of graph theory. However, as evident in the examples, there are no constraints to
preclude parallel arrows between the same nodes or loops from a node to itself. Hence, in
graph-theoretic terms, the examples given are not strictly directed graphs but rather nets
[65, pp. 4-7] or directed pseudographs [4, p. 4].

There is also, as yet, no support for the inferential processes of logic. However, in the
continuing resemantification inference pattern are introduced such that — represents a
partial order underlying a logical system (Sect. 2.5).

2.1.3 Inference Patterns and Invariance Under Logical Interpretations

While it is convenient to use the terminology of graph theory to describe the nets that
represent collections of links, logical theory focuses on the dynamics of change in such
collections. This is not a primary concern of graph theory [64].

The logical dynamics of nets will be captured in terms of inference patterns in which
an abstract subnet of a particular form is recognized as licensing the addition or deletion
of one or more links while leaving any ‘logical interpretation’ of the net invariant. These
notions are formalized in the following sections.

A logical interpretation of a net is defined to be an inference-preserving conservative
translation [29] of the net into statements of a logical system supporting some notion of
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inference. To state that it is invariant under a change to the net is to assert that, within that
logical system, the translation of the changed net will have the same inferences as that of
the original net. Two nets with the same logical interpretations will be termed logically
equivalent.

This is a constraint upon appropriate translations, that the target logical system must
implement within its own framework the inference patterns of the protologic, and this
must be verified for each translation. It is also intended that the inference patterns in the
protologic can be understood in their own right and that the graphical language can be
used to represent the form of knowledge structures and the dynamics of inference.

An inference pattern may be seen as an analytic invariant of a net in that it can dynam-
ically expand a net by adding logical inferences implicit in its links, and hence can also
delete them as being superfluous, contracting the net, possibly to a minimal form. Ad-
ditions or deletions that maintain the net logically invariant will be termed conservative
expansions or conservative contractions, respectively.

2.2 Inclusion Inference Pattern

A significant example of resemantification through a logical inference pattern is that tran-
sitivity of — which is common to its usage in most logical systems and has been taken to
be a characteristic feature of ‘a logic’ [101]. Figure 3 shows Hertz’s [67, Fig. 1] diagram
to specify the transitivity of — on the left, and, in the center, its representation by an
inclusion inference pattern in a net.

Fig. 3 Inclusion inference pattern

A metalogical distinction has been made in the inference pattern by showing the
pattern-defining arrows as solid lines and the inferred arrow as a dotted line. The in-
ference pattern indicates that if the pattern-defining links are found then an inferred link
may be added, or any existing inferable link may be deleted, without changing the logical
interpretation of the net of which the pattern is part.

The same pattern is drawn differently on the right to show that the inclusion inference
pattern might be visualized either as the copying, or inheritance, of a horizontal inclu-
sion link downwards from the head to the tail of a vertical inclusion link, or of a reverse
horizontal inclusion link upwards from the tail to the head of a vertical inclusion link.

If x, y and z are links, S a multiset of links, and = indicates identical logical interpre-
tations, an equivalent linear representation might be:

forany x,y,z, S, [S,x—>y,y—=>z]=[S,x—>VYy,y— z, X —> 7]

One advantage of using the two-dimensional structure of the page to provide a non-
linear graphical presentation is that, as Shonfinkel [99, p. 17] has noted, the introduction
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of variable names is distracting because they serve merely to link multiple occurrences of
the same logical entity. This linkage may be specified formally in a net without requiring
an artificial label for a generic node.

However, the graphic representation has introduced no additional constructs beyond
those of a conventional linear representation. It is a formal specification with no depen-
dence on visual intuitions that avoids a proliferation of symbols.

2.2.1 Cycles and Node Equivalence

A cycle of mutual inclusion between two nodes, as shown in Fig. 4 left, may be treated as
a single symmetric link with the directional arrow heads omitted as shown in the center.

O=0 O0—O

Fig. 4 Cycles and node equivalence within cycle

As shown on the right, such a cycle induces an equivalence between nodes because the
inclusion inference pattern implies that any nodes which includes, or is included in, one
node includes, or is included in, the other node.

This generalizes to larger cycles because the inclusion inference pattern implies that
all nodes in a longer cycle are also linked pairwise in simple cycles, and hence all nodes
in a cycle are equivalent (Fig. 5)—Hertz’s [67, Definition 10] web.

Fig. 5 Inference of node equivalence within a longer cycle

It will be noted in introducing other arrows and their link types that, as they are defined
in terms of —, the node equivalence induced by a cycle generalizes to commonality of
links of any type. Any nodes in a cycle have the same incoming and outgoing links of all
types and are equivalent in this respect, and their labels may be regarded as aliases for one
another under this equivalence.

2.2.2 Equivalence and Loop Inference Patterns

Another commonly expected logical constraint on — is that should it be reflexive so that
every node has an associated loop (as illustrated by node E in Figs. 1 and 2). Rather than
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being introduced as an ad hoc assumption, reflexivity can be derived from a more specific
requirement that nodes equivalent to any node may be added or deleted without change
of logical interpretation. This corresponds to the equivalence inference pattern shown on
the left of Fig. 6, which may be explained in terms of nodes always being able to have
more than one label.

O (PT—’

Fig. 6 Equivalence inference pattern and derived loop

As shown on the right, application of the inclusion inference pattern to the equivalence
inference pattern implies that the node has an arrow to itself, a loop. These results may be
used to derive the loop inference pattern corresponding to reflexivity through the inference
sequence shown in Fig. 7.

O O= (Pz Q

Fig. 7 Derivation of loop inference pattern

From left to right: the equivalence inference pattern is used to add an equivalent node
to an isolated node; the inclusion inference pattern is used to infer that the original node
has a loop; and the equivalence inference pattern is used to delete the equivalent node
resulting in the loop inference pattern on the right.

Reflexivity is significant in the theoretical development of logics but irrelevant to prac-
tical applications where, whatever an inclusion link represents, it is unlikely to be useful
to infer that a node includes, or is included in, itself—the epitome of a circular argument.

2.3 Repetition Inference Pattern

Another significant example of resemantification through a logical inference pattern is
that for adding or deleting parallel arrows between nodes. For many logical interpretations
multiple links of the same type in the same direction between two nodes do not affect the
logical interpretation of a net. Their addition or deletion is a conservative expansion or
contraction.

This could be implemented by requiring a collection of links to be a set rather than
a multiset or by requiring the graph to represent a relation rather than a net. However,
in some logical systems such as linear logic [59], the repetition of a statement may be
significant, and the lack of significance in other logics is best represented explicitly as an
repetition inference pattern (Fig. 8).
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Fig. 8 Inclusion repetition inference pattern

2.4 Protoconjunctions and Protodisjunctions

When a node includes, or is included by, two or more other nodes, it is common in inter-
pretations of nets in other logical formalisms to shorten the representation by collecting
the labels of the other nodes separated by conjunction or disjunction symbols, respec-
tively. For example, a description logic [3] translation of the nets in Fig. 9 might be:

ACBMNOC) (AuD)CEB

Fig. 9 Protoconjunction and protodisjunction

However, the nets might equally well be translated without the introduction of conjunction
and disjunction symbols as:

ACB ACC DCB

The use of conjunction and disjunction symbols in the first translation, introduced
only to collect terms rather than compose them to define an ideal node, will be charac-
terized as specifying a protoconjunction or protodisjunction. Protoconjunctions and pro-
todisjunctions satisfying certain extremal conditions to define an additional ideal node as
a composition of links will be termed structural conjunctions (Sect. 5.1) and structural
disjunctions (Sect. 5.2), respectively. Similar considerations lead to a distinction between
protonegations and structural negations (Sect. 2.8.2).

The significance of these distinctions is that the semantics, ontological commitments
and inferential complexity of the protoconnectives is substantially simpler than that of
the structural ones, and that the representation of many significant generic knowledge
schemata requires only the protoconnectives [S1]. However, the linguistic usage of ‘and,
‘or’ and ‘not’ does not give a clear indication of the type of connective intended and
neither do most logical symbolisms.

2.5 The Resemantified — as a Preorder or Partial Order

Given any net, if one conservatively contracts it by merging it to canonical form, using the
inclusion inference pattern to equivalence the nodes in a cycle, the equivalence inference
pattern to delete all but one node in the cycle, and the loop inference pattern to delete any
loops, the resultant net is a directed graph [4, §1.2].
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It can be further contracted by using the inclusion inference pattern to delete all links
that can be inferred from it resulting in the transitive reduction [4, p. 177] of the cycle-
free graph as the minimal canonical form of the original net (unique up to the node label
chosen to represent all the nodes in a cycle). Figure 10 shows Sy, the minimal canonical
form of the net specified in Fig. 2.

@@ s

Fig. 10 Net from Fig. 2 reduced to a minimal canonical form

The transitive, reflexive relation defined by the repetition, inclusion and equivalence
inference patterns indicates that, if — complies with these patterns, it specifies a preorder
on the nodes. If the node equivalence of Sect. 2.2.1 is taken to define equality of nodes
then the preorder becomes a partial order.

A preorder has been taken by Strafurger [101] to answer the question “what is a logic?”
As the remaining constructions in this article are defined in terms of the preorder it might
seem that the preceding sections have already resemantified — adequately to specify a
logical system. The sign — has become the symbol for an abstract copula [37, p. 104]
capturing the essential features of deduction.

However, the preorder alone offers limited representation and reasoning capabilities.
The additional metalogical definitions that follow significantly extend the representation
and inference capabilities of the protologic. Because they are always available as con-
structions within the protologic (as constraints on the usage of —), one could argue that
they are inherent in the order relation. One could also argue that their definition is a sig-
nificant additional resemantification of the sign — leading to a richer notion of what it is
to be a logic.

2.6 Definition of an Exclusion Arrow and Link

In representing logical inference, what is most obviously missing in the structures dis-
cussed so far is the notion that they may be structurally unsound or inconsistent. Every
net based on the inclusion link, and every net derived from it using the various inference
patterns, is a legitimate logical structure. Nodes and links may be added to any net without
logical constraint. There is support for the notion that derived links are logically necessary
but none for the notion that some potential links may be logically impossible.

The exclusion arrow - supports the addition of a different type of link to a net that
constrains what further links may be added to it. An exclusion link is defined in terms of
the inclusion arrow:

Definition An exclusion link may be constituted with - iff any node that includes the
tail is excluded from also including the head.

The meta-inference pattern for this definition is shown in Fig. 11. A red cross is used
as a metalogical symbol to indicate that an inclusion link is prohibited.
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Fig. 11 Exclusion link definition

The tail node of an exclusion link is said to exclude the head node, and the head node
to be excluded by the tail node. The head node may also be termed opposite to, contrary
to or incompatible with the tail node.

2.6.1 Exclusion Inference Patterns

Three inference patterns may be derived from the metalogical definition of the exclusion
link. First, it complies with a repetition pattern, the exclusion repetition inference pattern
(Fig. 12 left).

O==0 o OO0 O+0

Fig. 12 Exclusion inference patterns

Second, because any node that includes the lower node also includes that to which it is
linked (inclusion pattern), it cannot have a link to the node on the right. Hence the lower
node satisfies the exclusion link definition and has an exclusion link to the node on the
right. The resulting pattern is the exclusion inference pattern (Fig. 12 second from left).

Third, any node that includes the right hand node cannot also include the left hand
node since the exclusion link definition would be contravened. Hence there is a also an
exclusion link from right to left, resulting in the exclusion symmetry inference pattern
(Fig. 12 second from right). This pattern marks a major difference in the inferential dy-
namics of the two link types, that the exclusion link is symmetric and can be represented
by the single undirected link on the right.

The undirected link has repetition and exclusion inference patterns derived from those
of the exclusion link (Fig. 13 left). The right two nets show a reverse exclusion inference
pattern that also follows from the exclusion inference and symmetry patterns. The variant
on the far right shows how this may also be seen as a reverse inclusion inference pattern
such that an exclusion link to the tail of an inclusion link may be inferred from one to the
head.

OO%O%OCF—O
O

Fig. 13 Exclusion link and reverse exclusion/inclusion patterns
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The exclusion inference pattern implies that if two nodes are in a cycle then any node
which excludes, or is excluded by one node, excludes, or is excluded by the other. This
generalizes the equivalence between nodes in a cycle defined in Sect. 2.2.1 to exclusion
as well as inclusion links.

From the perspective of meaning containment, an exclusion link between two nodes
signifies that the contents of the two nodes are incompatible and their contexts are disjoint.
That is, some part of the content of one node cannot be included with some part of the
content of the other node, and no node may be enclosed in the context of both the nodes.

From an inferential perspective the directed exclusion link can always be replaced by
the undirected one with no change in logical interpretation; exclusion is always mutual
exclusion. However, from a semantic perspective the metalogical distinction between the
specification of the net and the inferences ensuing from that specification may be signifi-
cant. There may, for example, be significance to the notion that the specified direction of
the arrows depicts how a new node depends on existing nodes. Hence the symmetry of
the exclusion link is, for some purposes, best represented as an inference rather than an
intrinsic feature.

2.6.2 Inconsistency Inference Pattern

The definition of an exclusion link in Sect. 2.6 introduces a metalogical constraint that an
inclusion link is not allowed between two nodes. If this constraint is violated in the net,
either by specification or by inference, the outcome will be that two nodes are connected
by both inclusion and exclusion links as shown in Fig. 14 (the exclusion link is shown in
symmetric form to encompass all cases of parallel inclusion and exclusion links).

O—0

Fig. 14 Inconsistent link

Such a pair of links will be considered as constituting a single link combining con-
flicting link types and termed an inconsistent link from the tail of the inclusion link to its
head. The tail node will be termed an inconsistent node, and the net of which it is part an
inconsistent net.

The inconsistency inference pattern shown in Fig. 15 derives from inclusion and ex-
clusion inference patterns. If one node has an inconsistent link to another then any node
that includes it also has an inconsistent link to it and to that node, as will any down a path
to it. Since any node is down a path from itself, any node with an inconsistent link also

has an inconsistent link to itself.

Fig. 15 Inconsistency inference pattern
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An inconsistent link in a net, whether specified or inferred, implies that the exclusion
link definition has been violated by the specification of a node that includes both the tail
and the head of an exclusion link. It derives from the specification of net and indicates a
structural inconsistency in that specification.

2.6.3 Paraconsistency

In translations of the protologic to some logical systems, inconsistency cannot be rep-
resented and is treated simply as an error in the specified logical structure. In a para-
consistent system [20, 91], meaningful inference will generally still be possible, and the
protologic supports both possibilities. Whether the inconsistency corresponds to an in-
trinsically inconsistent entity or to an erroneous specification is an extra-logical issue that
does not affect the inference patterns involved in representing inconsistency.

An inconsistent link in a net is localized in that it can only propagate through the
inclusion and exclusion patterns to a node which includes the tail of its inclusion link.
Inconsistency of some links in a net does not ‘explode’ to inconsistency of all links
in the net. Thus, the logical inference schemata that have been defined are paraconsis-
tent in their containment of inconsistency. It is possible to reason normally both about
the parts of the net which are not inconsistent and about the propagation of the in-
consistencies themselves. The principle of non-contradiction continues to apply, but, if
the specification of a net violates it, the adverse impact of the violation is localized to
a sub-net.

For example, the net shown in Fig. 16 illustrates the inferences when the definition of
the exclusion link specified between nodes A and B is violated by node C which is speci-
fied to include both. C is inferred to have inconsistent links to A and B. These propagate
to node D which is specified to include C. However, the exclusion link between A and E
propagates without inconsistency to C and D, as does the inclusion link from B to F. An
inconsistent entity can still exhibit normal patterns of inference for aspects unrelated to
its inconsistency, and inconsistency itself propagates in a meaningful way.

() 0.
® ) ® ©
©

Fig. 16 Localization of inconsistency

2.7 Generic Inference Patterns for the Kernel Protologic

The protologic based on the resemantification of — with the inference patterns defined
so far will be termed the kernel protologic. It is constituted through inference patterns



158 B.R. Gaines

constraining — to represent the partial order expected of derivation relations together
with a further constraint + restricting the placement of — to represent inconsistency.

The kernel protologic is extremely simple, yet logically powerful enough to illustrate
the dynamics of logical systems that differentiate them from other mathematical structures
(Sect. 3), to provide protosemantics underlying a wide range of semantic interpretations
of many logics (Sect. 4), and to support the representation of a wide range of common
knowledge representation schemata, such as determinables, graded scales, taxonomies
and frames [51].

Structural connectives may be defined through constraints on nodes defined in terms
of the basic inference patterns, but only very restricted forms of them are needed for
much practical reasoning (Sect. 5). Nonmonotonic inference may be represented through
a preference relation between nodes (Sect. 6).

The inference patterns for the kernel protologic have similarities that allow them to
be condensed to a generic form. For example, the exclusion inference pattern mimics the
inclusion inference pattern. If one shows them together (Fig. 17), Fahlman’s [44] process
of virtual copying is apparent. Both inclusion and exclusion links out of the top center
node are ‘copied’ by inference to the lower node so that the links do not need to be shown
explicitly but can be treated as ‘implicit, ‘virtual’ or ‘inherited.’

QO

Fig. 17 ‘Virtual copying’ of links

The inference patterns for — and + are common to six link types, inclusion, equiv-
alence, exclusion (in both directions and symmetric form), and inconsistent. These links
may be treated as parametrized instances of a generic link, symbolized by -»>, allowing
the inference patterns to be represented generically (Fig. 18).

- =>» is —>» or or or or >

Fig. 18 Generic inference patterns

From an algebraic perspective, the inference patterns for -» signify: left, that the in-
stances represent relations; right, that the relations are idempotent when residuating —
on the right. That is, in the Boolean algebra of binary relations, — \-» =-»> for the six sub-
stitution instances of -» that are shown. This is the algebraic basis of notions of ‘copying’
and ‘inheritance’ and foundational to studies of logics as residuated lattices [53].
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2.8 Definition of a Coexclusion Arrow and Link

One may interpret the inference pattern for an inclusion link (Fig. 3 center) as requiring
that any node with an inclusion link to the tail also has an inclusion link to the head,
and for an exclusion link (Fig. 12 second left) that it has an exclusion link to the head.
There are also two obvious complementary link types where an exclusion link to the tail
node requires either an inclusion or exclusion link to the head node. The latter is already
available as the converse of an inclusion link (Fig. 13 right) but the former is a new
link type that will be termed a coexclusion link and represented by an arrow with two
bars +>.!
The formal definition of a coexclusion link is:

Definition A coexclusion link may be constituted with + iff any node that excludes the
head must include the tail.

This definition is illustrated in graphical form in Fig. 19:

&

Fig. 19 Coexclusion link definition

From the perspective of meaning containment, a coexclusion link specifies that if the
content of the head is excluded then that of the tail is included, and if a node is not within
the context of the head then it is within the context of the tail. One might also interpret
this definition as specifying that the content of the tail of a coexclusion link is included
in the content of the tail of any exclusion link with the same head, and that the tail of a
coexclusion link provides a context for the tail of such an exclusion link.

2.8.1 Coexclusion Inference Patterns

Figure 20 shows derived inference patterns for coexclusion links. From left to right, co-
exclusion links have a repetition pattern, are symmetric allowing the arrow heads to be
dropped (subject to semantic considerations) to provide an equivalent line form, and have
a downward inheritance pattern similar to that of the reverse inclusion link (Fig. 3).

Fig. 20 Coexclusion inference patterns

Figure 21 shows a generic representation of the coexclusion inference patterns.

1 Coexclusion is a neologism reflecting the duality between exclusion and coexclusion links. In the an-
cient logical literature, the terms subpares (Apuleius) and subcontarias (Boethius) have been used for a
coexclusion relation in the metalogic of the syllogistic.
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- > is—)or—H—)or(—H—or—H—or_H_’

Fig. 21 Generic inference patterns for inclusion and coexclusion

From an algebraic perspective, the inference patterns for <- signify: left, that the in-
stances represent relations; right, that the relations are idempotent when residuating —
on the left. That is, in the Boolean algebra of binary relations, <-/— =<- for all the sub-
stitution instances of <-.

2.8.2 Negation Inference Patterns
Exclusion and coexclusion links may coexist between the same nodes without inconsis-
tency, and the combination of exclusion and coexclusion links acts as a structural nega-

tion in the protologic. Figure 22 shows some of the possibilities, all of which are logically
equivalent but may be semantically distinct in indicating different origins of the negation.

Fig. 22 Structural negation as paired exclusion and coexclusion

The negation aspects of the combination are apparent in the inference patterns shown
in Fig. 23. On the left it can be seen that an inclusion link to one node results in an
exclusion link to the other, and vice versa.

&

Fig. 23 Structural negation inference patterns

In the center, it can be seen that a node which includes one node excludes the other, and
one that is included coexcludes the other. The lower exclusion inference captures Bran-
don’s [27, p. 126] definition that a contradiction is that which is entailed by any contrary,
and Dunn [38, p. 10] and Brady’s [26, p. 20] that it is a disjunction of all possible con-
traries. The upper coexclusion inference provides dual definitions: that a negation entails
any coexclusion and is the conjunction of all possible coexclusions. The inference pattern
may also be seen as splitting a negation into its exclusion and coexclusion components.
On the right is shown the inference pattern for double negation, that if two nodes have
negation links to the same node then they are equivalent. The inferred inclusion links
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derive directly from the coexclusion definition of Fig. 19. This pattern also shows that the
negation of a node is unique modulo equivalence.

The exclusion and coexclusion link types may be seen as a protonegations: that the
inclusion of some content is incompatible with the inclusion of some other; or that the
exclusion of some content requires the inclusion of some other.

The latter is a less natural constraint than the former and may be seen as the source
of the semantic fragmentation [45] that led to Plato and Aristotle’s critiques of a bare
negation used as if it generated a meaningful concept. For example, that, whilst ‘being
Greek’ is a meaningful concept, use of the term ‘barbarian’ for ‘not being Greek’ does
not define a concept having a coherent meaning [89, 262d].

2.8.3 Coexclusion Squares and Hexagons of Oppositions
Figure 24 left shows a square net with coexclusion links on the diagonals and an exclusion
link on the top side such that inclusion links may be inferred on the left and right sides and

a coexclusion link on the bottom side. Similar structures have been studied in the logical
literature, both ancient [78] and modern [21, 22], as squares of oppositions.

Q Q

Fig. 24 Coexclusion squares of oppositions

The inferred implications on the left and right of the square are derived directly from
the coexclusion definition. The inferred coexclusion link is derived because any node with
an exclusion link to one of its nodes will also have an exclusion link to the node above
(exclusion inference pattern) and hence an inclusion link to the other node (coexclusion
inference pattern) and hence satisfies the coexclusion definition.

In the net on the left, having only coexclusion links as diagonals, the additional in-
clusion and coexclusion links may be derived from these and the exclusion link at the
top. However, if this link is omitted, it cannot be derived by specifying one of the links
previously derived.

However, if exclusion links are added to the coexclusion links on the diagonals to make
them negations then specifying the link on any side allows those on the other three sides
to be derived (Fig. 24 right). These are the classic squares of oppositions that are common
to many logical systems [21].

The net on the left demonstrates that the main phenomena of interest in squares of
oppositions derive from the co-exclusion component of the negations on the diagonals,
that a node that excludes a node at one end of the diagonal must include that at the other
end.

Blanché [24] extended the square of oppositions with nodes to a hexagon of opposi-
tions by adding the disjunction of the top nodes and the conjunction of the bottom ones.
His construction has proved significant in a universal logic framework in representing the
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relations between major constructs in a wide range of logical systems [17, 19], and is
interesting to see how it may be represented in the kernel protologic with coexclusion.

Figure 25 left shows the basic square extended to a hexagon with a protoconjunction at
the bottom and a protodisjunction at the top, and that one may be inferred from the other.
On the right this is extended to a full hexagon of oppositions by adding an exclusion link
between the top two nodes of the square and inferring the other links on the sides of the
square. As already shown in Fig. 24, any of the four links on the sides of the square could
be added to infer the others.

Fig. 25 Inferences in a square extended to hexagon

Thus the logical derivations involved in the Blanché hexagon may be factored through
the inclusion, exclusion and coexclusion links involved in their derivations, and only pro-
todisjunction and protoconjunction nodes are required for the top and bottom nodes that
he added, not the ideal nodes of structural definitions (Sect. 5).

3 Dynamics of Logical Structures

As noted in Sect. 2.1.3, although logical structures may be represented in graph-theoretic
form, logic goes beyond graph theory in its emphasis on the dynamics of change in those
structures. This encompasses not only the addition and deletion of links in nets through
inference patterns but also various ways of restructuring nets, splitting and merging of
nets, the specification of additional nodes and links, and the consequences for the logical
interpretations of the nets involved. It also involves considerations of effective means of
communicating the dynamics to those developing and using knowledge structures repre-
sented in nets.

3.1 Minimal and Maximal Canonical Forms

In has been noted (Sect. 2.5) that a net with inclusion links can be reduced to a minimal
canonical form having the same logical interpretation. The exclusion and coexclusion in-
ference patterns support a similar deletion of exclusion and coexclusion links that may be
regarded as superfluous because they can be inferred from others. However, the symmetry
of these links means that the direction in which they are specified is inferentially irrele-
vant and it is appropriate to treat the symmetric form as canonical in deriving a unique
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canonical form. Similarly, the repetition inference pattern for all links means that it is
appropriate to treat reduction to a single link as canonical for the sake of unicity.

These considerations lead to a minimal canonical form for a net with that is unique up
to the choice of node label used to represent all the nodes in a cycle, and has the same
logical interpretation as the net from which it was derived. The inclusion, exclusion and
coexclusion inference patterns may be used to expand this minimal canonical form to a
unique maximal one. Figure 26 illustrates the minimal and maximal canonical forms of a
specified net of inclusion and exclusion links.

Specified Minimal Maximal

Fig. 26 Example of minimal and maximal canonical forms

The inference patterns of Sect. 2 and their use to expand or contract the net as discussed
in this section exemplify net dynamics through the addition or deletion of links. The
following sections extend this to expansion and contraction of nets through the addition
or deletion of other nets (including single nodes). Since some expansions do not change
the logical interpretation of the net, this allows for further expansion beyond the maximal
canonical form to a net that is logically equivalent modulo added nodes.

3.2 Consistent and Conservative Imports and Merges

Nets are dynamic, not only through inference patterns that do not change their logical
interpretation, but also though the addition of links that are not implicit in the inference
patterns and hence change the interpretation, and through the addition of nodes and asso-
ciated links that may have a variety of effects.

When nodes are added they may already be named and/or linked, and the general case
may be considered as one where one net is imported by another, either through merging
nodes with the same names, or by linking nodes in one net with nodes in the other, or
both.

One major consideration is whether the resultant net has additional inconsistent links.
An import is termed consistent if it does not. Usually the focus is on the import of a
consistent net by a consistent net to produce a consistent net, but it can be appropriate to
consider situations where the importing or imported net is inconsistent.

Another major consideration is whether the import is conservative in that no additional
links may be inferred between the nodes in the imported net. This is of concern, for
example, in many computational applications where the imported net is intended to be a
generic module representing a ‘library,” ‘ontology’ or ‘theory.’” The intent is to generate
additional inferences in the importing net but not in that which is imported [62].
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A conservative import may impact the dynamics of the importing net by making in-
consistent potential links that could have been added to that net, that is, constraining it
more strongly. An import that imposes no such constraints is termed ultra-conservative.

An import of one net by another may also be regarded conversely as an import by the
second net of the first. If both imports are conservative, or ultra-conservative, it may be
termed a conservative, or ultra-conservative, merger of the nets.

Since the inference patterns are such that only inclusion or coexclusion links from
nodes in one net to nodes in another can generate new links within the first net, importing
a net such that there are no inclusion or coexclusion links from the imported net to the
importing one is always a conservative import, but generally not ultra-conservative.

Conservative imports are reversible through deletion of the imported net provided this
deletion is from the maximal canonical form. This restriction is necessary because the
purpose of some imports is to simplify the net by reducing the number of links in the
minimal canonical form and, hence, the links removed from the original net must be
restored before the imported net is removed (for example, in the factoring expansion
pattern of Sect. 3.4).

3.3 Single Node and Link Expansion Patterns

Adding an additional anonymous node as an ideal element with up to one link to a node
in a net is an ultra-conservative merger, and the single node and link expansion patterns
of Fig. 27 are always available.

Fig. 27 Single node and link expansion patterns

Thus, nets are extensible by an anonymous node with a single link without logical con-
straint. However, extra-logical or metalogical constraints may be applied such as a node
being specified to be a bottom or top node.

Expansion patterns based on ultra-conservative mergers provide a symmetric contrac-
tion pattern, similar to those of the inference patterns, in that the anonymous node may be
removed without affecting the logical interpretation of the original net. The addition of a
labeled node is conservative if there are no nodes with that label in the net, but generally
not conservative if this is not so unless the link is one that may already be inferred.

3.4 Factoring Expansion Patterns

The minimal canonical form (Sect. 3.1) minimizes the number of links whilst keeping
the number of nodes constant (treating nodes in a cycle as a single node). There are other
forms of restructuring that can further reduce the number of links at the expense of adding
additional nodes. For example, one can factor several links with a common tail or head
and add an additional node to group them.
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Figure 28 left shows a net having 8 nodes and 12 links, with the links at the top having
common tails and those at the bottom having common heads. In the center is shown a net
with 10 nodes and 10 links where two anonymous nodes have been interpolated to factor
out the commonality. The two nets have the same logical interpretation with respect to the
nodes in the original net. The import of the anonymous nodes is ultra-conservative, and
the original links are implicit, or virtual, in that they may be inferred from the inference
patterns.

(© @@

R

Fig. 28 Example of factoring a net

On the right the factored net has been split into modules and the added nodes have
been named. The inferface nodes between the modules have been duplicated to separate
the net into two simpler components.

The factoring pattern is analogous to introducing the middle term of a syllogism, and
Vaihinger [104, pp. 212-213] discusses it as an illustration of the introduction in logic of
fictions, abstract notions that are treated ‘as if” they were real. Hertz [67, pp. 248-249]
uses this pattern to simplify systems of axioms and notes that the interpolated node may
be regarded as an ideal element.

Factoring clusters some collection of links in a way that reduces the arrow crossings
making common structures more apparent. In an application the resulting sub-structures
may well suggest labels for the anonymous nodes that have been created as significant
entities in the domain of the application. It generally does not lead to a unique canonical
form as there may be several possible factorings having the same logical interpretation as
the original net.

The increased perspicuity that can result from factoring is not an artifact of the graph-
ical presentation of the net. If one represents the structures in Fig. 28 as multisets of links
then the more modular representation of the net after factoring is also apparent:

I+-AI—-BI—>ClJ+»AJ—>BJ—>CA—KB—K,
C—-KA+-~LB-+-LC-+L]

[[I—)a,J—)cx],[a—»A,(x—)B,a—)C],

[A— B,B— B,C— B[ — K, B+ L]

[[[I—)Ol,]—)()l],[Ol—HA,Ot—)B,Ol—)C]],
[[A— B,B— B,C— Bl,[B—K,B+L]|]
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The description logic translation makes the protodisjunctions and protoconjunctions
represented graphically by the interpolated nodes more apparent:

IuhCaoe (—ANBMOC) (AuBuUC)C B (Kn=L)

From a meaning containment perspective the factoring is innocuous because the logical
interpretation of the original net is unchanged; the links between the original nodes are
unchanged. The ideal nodes which have been introduced derive content only through
their links. Their lack of intrinsic content may be represented logically by making the
protoconjunction or protodisjunction structural (Sect. 5), defining the ideal nodes in terms
of their links. If this is not done and they are named to introduce additional content then
extra-logical criteria are involved.

3.5 Existential Status of Added Nodes

Vaihinger’s analysis raises the issue of the existential status of added nodes. One may
distinguish at least five aspects of the notion of existence in the protologic: being a node
(conceptual existence, daseinfrei [81, p. 51]); being a consistent node (logical existence,
[49, p. 12]); being specified as an essentially top node representing a maximally generic
entity (categorical existence); being specified as an essentially bottom node represent-
ing a single entity (singular existence); and being a bottom node representing an entity
within a specified universe of discourse (situated existence), such as a state of affairs,
phenomenon, event, experience or individual, in some situation, world or time interval
specified in logical terms.

The semantification involved in naming ideal elements is not a resemantification of the
underlying logical system. It is the extra-logical semantification provided by attaching
domain-specific meanings to abstract patterns within that system that represent concepts
in the domain.

3.6 Adding a Bottom Node, Probes

A simple but important structure is a probe, a bottom node that is added to a net but
not regarded as part of it and has an inclusion or exclusion link to some of the nodes
constituting the net. Two probes will be termed distinct if they have different sets of links.

A probe is compatible if it is in maximal canonical form, having all the links that may
be inferred from the net. A probe is admissible if it is compatible and has no inconsistent
links other than those resulting from a link to an inconsistent node; that is, it has no
unnecessary inconsistent links. If the net itself is consistent then an admissible probe is
also consistent.

Figure 29 illustrates these distinctions for a simple net with a single link between two
nodes: P1 is consistent, admissible and compatible; P2 is incompatible because the in-
ferable inconsistent links are not shown; P3 is inconsistent but still incompatible because
only one inconsistent link is shown; P4 is compatible but not admissible since the in-
consistent links do not derive from an inconsistent node; P5 is admissible because its
inconsistent links derive from one in the net.
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consistent consistent inconsistent inconsistent inconsistent
admissible inadmissible inadmissible inadmissible admissible
compatible incompatible incompatible compatible compatible

Fig. 29 Examples of different forms of probe

A full probe is one with a link to every node in the original net, otherwise it is a partial
probe. If there are n nodes with distinct labels in the net then there will be 2" distinct full
probes having different combinations of link types, but not all of them may be consistent.
A set of all possible distinct admissible probes is said to saturate a net.

A probe is not unique and there is no way of specifying it to be so within the protologic
so far defined. Unicity can be specified in the metalogic by defining it relative to its links
as being the greatest node in the preorder that has those links. The general form of this
additional constraint is analyzed in Sect. 5.1 and, if pushed down to the protologic, is
shown to provide a structural conjunction [73, Chap. 13].

3.7 Admissible Probes Characterizing Possible Links Between Two
Nodes

The four possible probes for the two nodes A and B are:
PO: A<« B Pl: A<~ —B P2: A« —B P3: A<~ +»B

There are 16 possible combinations of consistent probes and these may be used to distin-
guish between the 16 nets having two nodes linked by all possible types of link or link
combination. Figure 30 shows the admissible probes (including the inconsistent probe Pi)
for all possible links between A and B. It can be seen that each net has a distinct charac-
teristic set of consistent probes, and hence that such a set may be used to identify the link
between the two nodes.

(3) 5) @)

(1)(2) ( (6)/(7)/ /
RO
k2 (2 ® ) () ©,
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.,,,e Gy
@ (9) (10) (11) (12) (14) (1 )

(16)

Fig. 30 Admissible probes for sixteen link types
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More generally, one can reconstruct the nets from functions, 7 and 7, associating with
each node the set of admissible probes that include or exclude that node, respectively.
There is an inclusion link from A to B if the set of probes with inclusion links to A, T A,
is a subset of that with inclusion links with B, 7B, and the set of probes with exclusion
links to B, B, is a subset of that with exclusion links to A, w A, that is 7 A C 7B and
B C A. There is an exclusion link from A to B if A C 7B and 7B C A, and a
coexclusion link if tA C 7B and 7B C wA.

The conjunction of the two tests is necessary to allow for inconsistent nodes that would
otherwise lead to spurious links because a probe has an exclusion link to every exclusion
inconsistent node and an inclusion link to every coexclusion inconsistent node. Unless
both nodes are inconsistent, the conjunction of the two tests ensures a correct reconstruc-
tion.

As shown in Table 1, for the 16 nets of Fig. 30 the links are correctly reconstructed
from the relations between the sets of consistent probes. The final example for net (16) is
a pseudo inference pattern; all completely inconsistent nodes are both equivalent to and
contradictory to one another, playing no useful role in inference processes.

Table 1 Reconstructing links from probe sets

TA 7B TA 7B 7ACaB |7BCnA |7rACnB |zACnaB

rBCrA |rACmB |7BCrmA |zBCrwA
A—B B— A A—+B A-#B

(1) {1,3} {1,2} {0, 2} {0, 3} false false false false

2) {1} {1,2} {0, 2} {0} true false false false

3) {1,3} {1} {0} {0, 3} false true false false

“) {1} {1} {0} {0} true true false false

(5) {3} {2} {0, 2} {0, 3} false false true false

6) {i} {i, 2} {0,1,2} |{0,1} true false true false

7 {i, 3} {i} {0, 1} {0,1,3} | false true true false

(8) {i} {i} {0, 1} {0, i} true true true false

) {1,3} {1,2} {2} {3} false false false true

10) |{i, 1} {i, 1,2} | {i,2} {i} true false false true

(1 i, 1,3} | {i, 1} {i} {i, 3} false true false true

12) |{i, 1} {i, 1} {i} {i} true true false true

(13) | {3} {2} {2} {3} false false true true

14) | {i} {i, 2} {i, 2} {i} true false true true

(15) | {i, 3} {i} {i} {i, 3} false true true true

1e6) | {i} {i} {i} {i} true true true true

In Sect. 4.4, it is shown that this technique scales up to nets with any number of nodes
and provides extensional semantics for the paraconsistent protologic.
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4 Protosemantics

The notion of semantics in the logical literature is based on translations between a logical
system and some other systems, either formal or informal. If one side of the translation
is regarded as better founded than the other then it may be used to provide ‘foundations’
for the other. If not, then both sides may provide insights into aspects of the other. If one
system is naturalistic and informal then the more formal system may be seen as provid-
ing an explicatum of the less formal. Conversely, the naturalistic system may be seen as
providing a test of the adequacy of its representation by the formal one.

For a universal protologic one would expect there to be a very wide variety of signifi-
cant translations between it and many other systems, providing protosemantics underlying
each of the wide range of approaches to semantics for various logical systems. Some of
these have already been mentioned such as the algebraic interpretations in terms of graph
theory, residuated relations and preorders. Others have been suggested in terms of poten-
tial formalizations of notions of content and context. The possibility of the reconstruction
of nets from probes, bottom nodes that may be regarded as representing states of affairs
acting as protoindividuals, provides extensional semantics.

This section addresses basic semantic interpretations for the kernel protologic that are
common to many logical systems, and later sections examine how they extrapolate to
further patterns of inference as they are introduced. Examples of meaningful knowledge
structures represented in the protologic are provided in Sect. 7.

4.1 Proof-Theoretic Semantics

Gentzen [57, § II 5.1.3] provided proof-theoretic foundations for logical systems when
he extended Hertz’s [67] approach to the definition of logical systems by defining natural
deduction inference schema comprising paired rules for the introduction and elimination
of logical constants. He remarks that the introduction rules could be seen as definitions of
the constants and the elimination rules as consequences of those definitions.

The protologic has a foundational proof-theoretic semantics though its specification
in terms of inference patterns, each of which licenses the addition and deletion of a link
(including some to an additional node). The patterns form complementary pairs where the
addition of a link defines a feature of a logical constant, such as transitivity, and deletion
is in harmony with addition, because the link deleted remains ‘virtually’ present, always
available to be reintroduced.

This leads to two levels of meaning for the protologic connectives: at the logical level,
it has operational semantics in terms of the inference patterns; at the metalogical level, it
has conceptual semantics in terms of phenomena induced by the operations such as the
idempotence, transitivity, reflexivity, and symmetry.

4.2 Truth-Theoretic Semantics

The graphical representation of inference used so far is to indicate inferred links and
nodes with dotted lines. However, as Fig. 26 right illustrates, in larger nets the inferred
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links may become difficult to discriminate. The graphic language provides an alternative
way of displaying the same information by allowing one or more nodes to be marked and
then marking the other nodes to show what kind of specified or inferred link the marked
nodes have to them.

A vertical mark placed in a node results in all those it includes being marked with a
vertical bar, and those it excludes, or exclude it, by a horizontal bar. A horizontal mark
placed in a node results in all those nodes that include it being marked by a horizontal bar,
and all those that it coexcludes, or coexclude by it, being marked with a vertical bar.

Figure 31 shows a net in which the center node labeled ‘A’ has different links to five
other nodes, and the effect of marking that node with a vertical mark, a horizontal mark,
or both.

& © e & © o
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Fig. 31 Propagating marks from one node to linked nodes

The marks are colored similarly to the links to indicate the nature of the source: brown
for an asserted mark; black for a vertical bar inferred from an inclusion link; blue for a
vertical bar inferred from a coexclusion link; grey for a horizontal bar from an inclusion
link; and green for a horizontal bar from an exclusion link (with grey having priority). It
is apparent from Fig. 31 that propagation of a vertical mark through negation is through
its exclusion component, and a horizontal mark through its coexclusion component.

One can recover a familiar logical vocabulary by terming a vertical mark logically frue
and a horizontal one logically false. The inference patterns shown can then be interpreted
as: ‘if A is true then B and G are true, C and D are false;’ ‘if A is false then D and E are
true, F and G are false;” ‘if A is inconsistent (both true and false) then B and E true, C and
F are false, D and G inconsistent.’

When a node is marked false all those nodes included in its context are also inferred to
be marked false, and this may be viewed as the context determining their relevance. One
might prefer to say that the node has become irrelevant because its context is inapplicable
rather than that it is simply false. The grey color of a horizontal bar for falsity distinguishes
this type of inference from the other two possibilities of the node being asserted to be false
(brown), or being inferred to be so from a node with an exclusion link being inferred false
(green).

This explication of logical truth in the protologic is simply an alternative way of rep-
resenting the inference patterns in a net, a deflationary account according to Gupta’s defi-
nition [63, p. 57]. The complexity of more profound notions of truth [76] beyond those of
logic is epistemological, the consideration of issues of the extra-logical justifications for
making assertions.

The paraconsistency of the protologic corresponds to it not being bivalent and support-
ing inference from nodes that are incoherent in being marked both ‘true’ and ‘false.” The
inference patterns of Fig. 31 are those of Belnap’s [6] useful four-valued logic based on
‘told true’ and ‘told false’ as independent assertions.
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4.3 Intensional Semantics

The set of links having the same tail node provides an intensional characterization that
node in terms of those of other nodes. A node includes itself, and this link is part of its
intension. This corresponds to nodes in the protologic so far developed being primitive,
constrained by their links to other nodes but not defined by them.

Glashoff [60] has developed an intensional semantics for the categorical syllogistic in
which a term, A, is characterized by an intensional interpretation comprising a pair of
disjoint subsets of a set O, (s(A), o (A)), such that the inclusion and exclusion links may
be recovered as:

A— B iffs(A) 2 s(B)and o(A) 2 o (B)
A—+B iff s(A)No(B) # @ or 6(A) Ns(B) #

He does not exemplify particular interpretations of members of O, but it is reasonable
to suppose each member is a ‘merkmal,” ‘mark,” ‘feature, ‘property,” ‘quality,” ‘charac-
teristic’ or a similar term used technically or colloquially for a component of content or
meaning, or atom of intensionality.

The pair of sets may be reduced to a single set by using a syntactic marker, such as
an overbar, to distinguish each member of o (A) from those of s(A), and merging the two
sets to represent the content of A, c(A). If content is defined to be inconsistent if one pair
of members has the same label both marked and unmarked, then one can recover the links
as:

A — B iff c(A) Dc(B)
A —+B iff c(A) Nc(B) is inconsistent

which nicely characterizes content inclusion as meaning containment, and content exclu-
sion as meaning incompatibility.

Glashoff’s construction provides the basis for the mereological explication of the in-
clusion of content in the kernel protologic, complementary to Euler diagrams as a mereo-
logical explication of context.

An intensional partition of a net in the kernel protologic (without coexclusion links) is
the set of subgraphs each constituted by a single node together with the two sets of nodes
at the head of the inclusion and exclusion links of which it is the tail (corresponding to
Glassoff’s [60, §1.2.2] sets of positive and negative terms). If X is a node in a net,

sX)={Y: X—Y}

cX)={Y:X -+ Y}

defines an intensional partition where all links are included, and the recovery of the net is
a simple merger of the node sub-graphs equivalent to

A— B iffBes(A)
A—B iffBeo(A)

When the net characterized is in maximal canonical form, Glashoff’s recovery of the
connectives may be seen as a consequence of the inclusion inference pattern and the
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exclusion link definition. More complex intensional partitions satisfying these definitions
may be developed by following Glashoff and treating node labels as designating non-
empty sets which conform with the inclusion and exclusion inference patterns and whose
members represent atoms of intensionality.

Such sets may be subsumed within the protologic by representing their members as
additional nodes with links that have not been explicitly specified as part of the net. The
acceptance that node labels may designate implicit links provides an intensional semantics
in terms of the explicit and implicit structure of a net that explicates notions of meaning
and content within the protologic without introducing additional constructions. In partic-
ular, it recognizes that nodes may have unspecified common content.

Coexclusion adds a third link type to the kernel protologic and the intensional partition
of a net may be extended to encompass this by defining a third set, w(X), characterizing
the coexclusion links of node X such that

oX)={Y : X+ Y}

The net can be recovered by the merger of the node sub-graphs, equivalent to adding the
recovery of coexclusion links through

A+ B iff Be w(A)

4.4 Extensional Semantics

Extensional semantics in which a logical structure is characterized through the set-
theoretic relations between the sets of individuals providing models that are consistent
with that structure play a central role in modern logic. They can be studied in the proto-
logic without introducing an additional construct to represent an ‘individual’ by noting
that the only feature required in a suitable entity is that it be impredicable or noninstan-
tiable [61], that is, specified to be a bottom node in the protologic.

Thus, the question becomes one of whether a sufficient collection of bottom nodes may
be used to reconstruct the inclusion and exclusion links between the non-bottom nodes in
a net. Probes were introduced in Sect. 3.6 as bottom nodes added to investigate a net from
outside in order to infer its internal structure as constituted by the links between its nodes.

Extensional semantics for syllogistic systems with essentially the same connectives as
inclusion and exclusion links have been developed [34] and the techniques and results are
applicable to the protologic. The standard result is that, for a consistent net in the kernel
protologic, a set of consistent full probes that saturates the net by including all possible
distinct examples of such probes may be used to reconstruct the inclusion and exclusion
relations in the net [80]. If A is the set of probes that include node A, then

A—B iff rtACnB
A—+B iffrtANaB=9o

The algorithm is basically that of Sect. 3.6 illustrated in Table 1 since tA N 7B =9
is equivalent to w A C B if the net is consistent (since r is then the complement of
relative to the set of admissible probes).
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Coexclusion relations may be reconstructed in terms dual to those for exclusion rela-
tions: A +B iff A Nz B = &, which is equivalent to A B iff 7 A C 7B if the net is
consistent.

If the net is inconsistent, there will be one or nodes where the associated set of consis-
tent nodes is empty and the algorithm would infer that such nodes include and exclude all
others, that is, the structure of the links leading to inconsistency would be lost. As noted
in Sect. 3.6, the algorithm can be extended to recover the full structure from the set of
admissible probes some of which may be inconsistent.

The inference of A — B from the subset relation carries over, but that of A —+B and
A B from the disjoint relations does not; inconsistency arises because a node has been
specified that violates the exclusion or coexclusion link constraints. However, these rela-
tions can be inferred through a slight extension to the definitions (noting that x, the set of
probes that exclude a node, is no longer the complement of 7 in inconsistent nets). The
extended reconstructions are:

A—B iffrACnBandzBCrA
A—+B iff rACaBandnBCrwA
A—+B iff rtACnBandnrBCrmA

For consistent nets, where r is the complement of 7, these definitions reduces to

A—B iff rtACnB
A—+B iffrtANnB=g
A-+#B iff rtANzB=0o.

As an illustration of the reconstruction algorithm, consider the set of admissible probes
(Table 2) for the net of Fig. 16, the last two probes of which are inconsistent, one having
a positive link to C and another to D. Table 3 shows the = and & sets of probes associated
with each node.

Table 2 Admissible probes

for the net of Fig. 16 A B C D E F
1 -+ -+ -+ -+ -+ -+
2 id -+ -+ -+ — -+
3 -+ -+ -+ -+ -+ —
4 -+ -+ -+ -+ — —
5 -+ — -+ -+ -+ —
6 -+ — -+ -+ — —
7 — - -+ - - -
8 — -+ - - -+ —
9 - — e - — -+ - —
10 - — - — - — - — -+ —
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Table 3 Admissible probes

associated with each node il T
A {7,8,9,10} {1,2,3,4,5,6,9,10}
B {5,6,9,10} {1,2,3,4,7,8,9, 10}
C {9, 10} {1,2,3,4,5,6,7,8,9,10}
D {10} {1,2,3,4,5,6,7,8,9, 10}
E {2,4,6)} {1,3,5,7,8,9, 10}
F {3,4,5,6,8,9, 10} {1,2,7}

The subset relations for 7 and & reconstruct the maximal canonical form of the net of
Fig. 16 as shown in Table 4.

Table 4 Extensional
reconstruction of links for the
net of Fig. 16

(—+,B), («—+,0), («~—+,D),(—+,E)

(—+,A), («~—+,0), (<~ —+,D), (—,F)

(= —+,A), (—» —+,B), (+.0), (<« —+,D), (+,E), (—.F)
(= —+,A), (= —+,B), (= —+,0),(+,D), (+,B), (—,F)
(—+,A), (+,0),(—+,D)

(<, B), («-,0C), («<-,D)

| m| g QW >

5 Structural Connectives

The focus of prior sections has been on logical structures based on the basic inclusion and
exclusion connectives in order to demonstrate the representational and inference capabil-
ities of the foundational logical connectives. This contrasts with specifications of logical
systems that take structural connectives as primitive.

Structural connectives may be introduced in the protologic as ideal elements [7, 71]
represented by the addition of nodes that are extremal relative to a set of links in the order
relation associated with —. Koslow [73, 74] uses this approach to generalize Gentzen’s
introduction and elimination rules for logical connectives. He considers a general impli-
cation relation subject to the normal axioms for a consequence operator [14] and defines
the usual structural connectives as extremal structures in the order relation of implica-
tion/consequence.

5.1 Structural Conjunction

The inclusion and exclusion links out of a node may be viewed as specifying a proto-
conjunction (Sect. 2.4) in that, if a probe includes that node then, from the inclusion and
exclusion inference patterns, it will also include or exclude all the linked nodes. In the
terminology of Sect. 4.2, if the node is marked true all the nodes that it includes will be
marked true and those it excludes false.
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However, the converse does not apply. One cannot infer that the node is true if some or
all of the nodes to which it has outgoing links are marked appropriately. One can, however,
define a constraint that specializes a node to be a full structural conjunction through an
inference pattern that specifies this.

Definition A node is the conjunction of a set of outgoing links iff any node with the same
links includes it.

Figure 32 is a graphical representation of this definition. The outgoing links defin-
ing the conjunctive node at the bottom left are distinguished by conjunctive variants of
the inclusion and exclusion arrows that have a heavier head. Any node, such as that at
the bottom right, that has the same set of outgoing links may be inferred to include the
conjunctive node.

- & is—& or - =>»is —>» or
generic arrows to same node are of same type
ellipsis symbol, - - -, indicates one or more conjucts

Fig. 32 Structural conjunction inference pattern

If the bottom node on the right is regarded as a probe then the inference pattern implies
that any probe that marks the nodes to which the conjunctive node has inclusion links true,
and those to which is has exclusion links false, also marks node the conjunctive node as
true. These are the converse truth conditions defining a full structural conjunction.

The inference pattern of Fig. 32 parallels Koslow’s [73, §13.1] approach to the defini-
tion of conjunction but takes into account exclusion as well as inclusion links. It specifies
that, in terms of the order relation associated with —, the conjunctive node is maximal
among all nodes having the outgoing links specified by the heavier arrows.

Arbitrary conjunctive nodes may be freely added as ideal elements to any net but they
will not always be consistent; for example, if inclusion links are specified to nodes be-
tween which there is an exclusion link. In terms of content containment, these ideal nodes
are defined by their conjunctive links and have no other content. However, if additional
links are added such that they include or exclude additional content then the nodes be-
come rules imposing meaning constraints upon the net that reflect extra-logical normative
or empirical contingencies.

5.2 Structural Disjunction

The inclusion and coexclusion links into a node may be viewed as specifying a protodis-
Jjunction (Sect. 2.4) in that, if a probe excludes that node then, from the exclusion and
coexclusion inference patterns, it will also exclude or include all the linked nodes. In the
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terminology of Sect. 4.2, if the node is marked false all the nodes that it includes will be
marked false and those it coexcludes true.

However, the converse does not apply. One cannot infer that the node is false if all
the nodes from which it has incoming links are marked appropriately. One can, however,
define a constraint that specializes the node itself through an inference pattern that allows
this to be inferred.

Definition A node is the disjunction of a set of incoming links iff it includes any node
with the same links.

Figure 33 is a graphical representation of this definition. The incoming links defining
the disjunctive node at the top left are distinguished by disjunctive variants of the inclu-
sion and coexclusion arrows that have a double head. Any node, such as that on at the
top right, that has the same set of incoming links may be inferred to be included in the
disjunctive node.

- is—»» or—>» - > is —> or—i>
generic arrows to same node are of same type
ellipsis symbol, - - -, indicates one or more disjuncts

Fig. 33 Structural disjunction inference pattern

If a probe has exclusion links to the tail nodes of the inclusion links, and inclusion links
to the tail nodes of the coexclusion links, defining the disjunctive node then it may, without
inconsistency, have an exclusion link to a an arbitrary node with inclusion links from
these nodes such as that at the top right. Such a node also has an inclusion link from the
disjunctive node so that an exclusion link may be inferred from the probe to the disjunctive
node. That is, if the tail nodes of the incoming links defining the disjunctive node are all
marked to propagate false then the disjunctive node is false. This is the converse condition
defining a full structural disjunction.

The definition of structural disjunction specifies that, in terms of the order relation
associated with —, the disjunctive node is minimal among all nodes having the incoming
links specified by the double arrows. This differs from Koslow’s [73, §13.1] definition
which specifies the maximality of a different construction, but the two definitions are
equivalent.

An important application of structural disjunction is to represent abduction as infer-
ence to those abducibles consistent with a state of affairs [47]. If the disjuncts in Fig. 33
are bottom nodes representing possible states of affairs, such as Millikan’s [82] substance
templets, asserting the disjunction true for a particular state of affairs represents the abduc-
tive hypothesis that one or more of those templets must fit that state. Disjunctive inference
then derives the consequences of this hypothesis.



Universal Logic as a Science of Patterns 177
5.2.1 Material Implication and Other Sentential Calculus Formulae

The inclusion link, —, is appropriate to represent entailment, necessary, rather than ma-
terial, implication. It specifies relations between terms prescribing their proper usage,
conventions of language rather contingencies of a world. In addition, the implicative con-
ditional is not represented in a form subject to inference; it may only be used in the
protologic, not mentioned.

The disjunctive inference pattern may be used to represent a material implication as a
logical structure in which the implication is itself represented as a node subject to infer-
ence. Figure 34 left illustrates the simplest case. If node M is asserted true then at least
one of its disjuncts may be inferred to be true. Thus —A V B is true, the classical interpre-
tation of A D B as material implication. However, the conditioning on M means that what
is represented is M D (A D B).

SRS AN AN

Fig. 34 Representing material implication in the protologic

This non-truth-functional representation in terms of implication rather than equiva-
lence avoids the so-called ‘paradoxes of material implication’ [42, §2.3]. The only situa-
tion in which the truth value of M is determined by those of A and B is that it is inferred
false if A is asserted true and B false, that is when the material implication does not hold.

Figure 34 right shows a more general form of material implication where there are
multiple disjuncts of nodes with multiple outgoing links. This represents:

MD (((A1V---VAD)A---A(NIV---VNn)) D (BIA---ABn)V---V(MIA---AMn)))

Thus a disjunctive node together with inclusion/exclusion links may be used to represent a
material implication between complex clauses with premises in conjunctive normal form
and conclusions in disjunctive normal form.

6 Defeasible Inference

Paraconsistency in a logical system is desirable in that an inconsistency is localized and
does not undermine reasoning outside that locale. However, such containment alone is
inadequate to support reasoning within the logical system about the sources and conse-
quences of the inconsistency. These aspects of the inconsistency remain at the metalogical
level.

Reasoning about inconsistency can be pushed down to the logical level by introduc-
ing nodes representing potential inconsistencies as anomalies, and playing no role un-
less nodes representing normal states of affairs do not apply. This may be implemented
through a preference relation between possible states of affairs represented as disjuncts
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of a disjunction such that, when that disjunction is asserted true, a disjunct is inferred to
be false if any preferred disjunct is not false.

If an anomalous state of affairs is represented as a disjunct that is less preferred than
the other disjuncts, it will be inferred false and play no role unless all the other disjuncts
are false (non-applicable). Then, being the only non-false node, it will be inferred to be
true (applicable).

6.1 Preferential Defeasible Inference

The preference relation allows a partial order to be specified between the
nodes of a structural disjunction. It is represented textually by the symbol,
<, with A < B specifying that node B is preferred to node A, and in a net by a preference
link as shown on the right.

The associated inference patterns are shown in Fig. 35: left, transitivity of preference;
right, exclusion if a preferred node is included or not linked (that is, it is not excluded).

Fig. 35 Preference inference patterns

In terms of contextual semantics, if the context of a node is part of that of a node that
has sub-contexts then it is assumed to be disjoint with that of a less preferred sub-context
if it is not disjoint with that a more preferred one.

These inference patterns are only applicable once all other inference patterns have
been applied. They, and ensuing inferences, are defeasible because they are based on the
preference relation. The source of the defeasibility is apparent in the inference pattern on
the far right which licenses an inference to be made when the truth value of a node is
unspecified.

6.1.1 Normal Defaults

The preference inference patterns may be used to represent the normal defaults [77, 94]
used in applications of nonmonotonic reasoning, that a proposition is true unless there
are grounds for it being false. Figure 36 from left to right shows nets representing, from
left to right: :A, that A is normally true; A:B, that A normally materially implies B; A:B
and —B:—A, Lehman’s [77, §6] preferred representation of a default material conditional
that also incorporates default modus tollendo tollens; and a more complex combination
of defaults such that: A is normally true; B false; A normally implies C; but A and B
normally implies not C.
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Fig. 36 Normal defaults

Figure 37 from left to right illustrates default reasoning: (1) when no truth values are
asserted for A and B, no inferences are made about them (the nodes inferred false by
the preference inference patterns are colored mauve); (2) when A is asserted true, B is
defeasibly inferred true; (3) if B is also asserted false, this is accepted and an anomaly is
inferred (anomalous node is colored red as an inference from the disjunctive definition);
(4) if B is asserted false, A is defeasibly inferred false (if the inference is overridden then
(3) results again).

Fig. 37 Inference from normal defaults

This implementation of defeasible reasoning encompasses the test cases in the litera-
ture collected in [77], and more complex ones such as Stalnaker’s [100] combinations of
classical and default inference. It also encompasses abductive, or case-based, reasoning
where the disjuncts represent states of affairs templets to be fitted to a particular state of
affairs.

7 Some Illustrative Applications

A major objective of this article has been to address Béziau’s [11] proposal that universal
logic should be able to support other fields of knowledge to build the right logic for the
right situation. This section provides some brief illustrative example of how the protolog-
ics developed above can be applied in other disciplines.

7.1 Merging Biological Taxonomies

Reasoning about taxonomies is important to biological science, for example, in analyses
of the consequences of merging taxonomies of the same species from different sources.
There are literature studies of the use of powerful theorem provers to reason about taxo-
nomic merging [103], but the same results may be obtained in the kernel protologic in a
more perspicuous form.
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Figure 38 presents an example of two simple taxonomies, their proposed merging
through the articulations shown, and queries arising about the outcome.

g Q implied? consistent?  consistent?
& o d © >0

taxonomies articulations queries

Fig. 38 Some taxonomy articulation queries [103, p. 198]

The three nets on the left of Fig. 39 show the inferred links corresponding to the to the
three queries: there is no inferred link from C to E; equivalencing C and D makes the net
inconsistent; but doing so for A and E does not.

Fig. 39 Inferred responses to the taxonomy articulation queries

The nets on the right provide the same information in terms of true—false marking: if
C is marked true there is no propagation to E; if C is equivalenced to D then node D is
marked false in all consistent truth-assignments, that is, inconsistent; if A is equivalenced
to E there are no such inferences.

The study cited represents the taxonomic data by similar diagrams but treats inferences
from them as informal and resolves the queries through logical symbolism and a first-
order logic theorem prover. However, the diagrams themselves can be used to provide
formally well-founded responses to the queries.

7.2 An Expert System

Figure 40 shows a net implementing a simple expert system [32] that prescribes hard or
soft contact lenses for a client having the attributes the four determinables shown at the
top left leading to one of three prescriptions shown at the top right.

The solution is specified in terms of conjunctions specifying rules and exceptions: a
client whose tear production is normal should be prescribed a hard lens if astigmatic and
a soft lens if not; however, there is an exception to the soft prescription if the patient
is presbyopic and myopic, and to the hard if hypermetropic and old. The inferences are
shown when the state of affairs representing a client at the bottom of Fig. 40 is activated
by marking it true.
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Fig. 40 Inference from rules with exceptions in an expert system

7.3 Defining an Art Object

The problem of defining what it is to be an art object has been a continuing issue for
the philosophy of art community since ancient times [30, 35]. It is generally accepted
that a definition in terms of necessary and sufficient conditions is not appropriate [106],
and a variety of other classificatory techniques have been investigated such as family
resemblances [28] and cluster concepts [55].

Gaut [56] has defined the notion of an art object as a cluster concept, and one may
argue [51] that the definitional aspects of his model lie in the frame constituted by the
eleven determinables that he uses to characterize art objects. Figure 41 illustrates the
use of the kernel protologic and default reasoning to analyze aspects of his classificatory
structure.

At the top are shown: left, four of Gaut’s determinables; right, the frame for an art
object that represents the relevance of these determinables. Beneath these are shown tem-
plets for five types of art of art object including, on the left, that for an ‘ideal art object’
that includes all the positive determinates. These together capture the essence of Gaut’s
analysis of art as a cluster concept.

The defaults at the bottom capture expectations when one is told that some entity is
an art object: that, by default, it should have the characteristics of an ideal art object. The
markings illustrate the reasoning when it is asserted that something is an art object but not
created with the intent that it be one, such as Duchamps’ readymades [36]. The default
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Fig. 41 Default reasoning about art objects

inferences are that it has the other characteristics of an ‘ideal art object’ but is only an
‘incidental art object.’

A similar structure of defaults may be used to represent logical aspects of fiction such
as Ryan’s [98] principle of minimal departure from expectations corresponding to those
of a world appropriate to the fictional genre.

7.4 Representing States of Affairs, Individuals and Relations

The notions of states of affairs [2, 72] and their constituent individuals and relations are
important to most applications of logical systems but their appropriate definition raises
many deep philosophical issues [43] leading to a range of different approaches to their
representation. A universal logic framework needs to be able to represent these adequately
whilst making no commitment to any in particular.

The protologic as developed above does not require the definition of individuals as
primitive entities for any of the technical purposes for which they are normally required.
Set-theoretic extensional semantics have been provided in Sect. 4.4 based on probes sim-
ply defined as bottom nodes in Sect. 3.6. Bottom nodes satisfy Gracia’s impredicability
criterion for an individual and could be termed protoindividuals but they need not satisfy
Strawson’s [102, p. 214] criteria that they be distinct and reference some other entity. Ex-
tensional semantics are a technical feature intrinsic to the protologic involving no other
connotations or denotations.
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Figure 42 is a simple illustration of the representation of a state of affairs referencing
an individual based on the well-known example that Ramsey [92] provided to counter
Russell’s [97] argument that there was an essential logical distinction between universals
and particulars. The anonymous bottom node represents a templet for a state of affairs
in which an individual named ‘Socrates’ exhibits behavior that can be characterized as
‘wise.’

Cocrates>  C_wise D
@

Fig. 42 Representation of an individual

The nature of the Russell-Ramsey debate may be analyzed in terms of Fig. 42. Ram-
sey’s position corresponds to the anonymous node being symmetrically ‘some Socrates’
entity and ‘some wise’ entity. However, in its role of representing reference to the state
of an individual, it may be distinguished from the other nodes in being an impredica-
tive bottom node corresponding to the focus in Russell’s article on singulars as states of
affairs.

The bottom node satisfies Gracia’s criterion for an individual if it is intended to repre-
sent a particular situation. If it is intended as a generic substance templet [82] that applies
to particular states of Socrates then it does not, but those instances of which it is predi-
cated will satisfy the criterion. That is, impredicability is not an absolute distinction but
rather a pragmatic feature of use.

Strawson’s criterion of reidentification captures the essence of the intent behind the
use of proper names, to track what is imputed to be the ‘same’ individual in different
situations. That is, reference to an individual is intended to be a rigid designator and this
is also a pragmatic rather than logical distinction [5].

The bottom node will satisfy Strawson’s criterion of distinctness if the term ‘Socrates’
is always used to identify what is intended to be a single individual, but, if it is applica-
ble to several individuals, then additional identifying terms may be required to track the
intended individual. That is, proper names may require contextual information to disam-
biguate their intended application [87, p. 295].

As Engel [43, §3.3.2] notes, Ramsey’s argument concerns the logical, rather than on-
tological, status of particulars and universals. The distinction between a node being used
to reference an individual and to ascribe a property to one still needs to be representable,
but not necessarily as a logical primitive.

Castaiieda [31] models individuation as requiring an individuator operator providing
indexical access. One can model the individuator operator as one that infers which bot-
tom nodes would make the specified indexical nodes true, and this is implemented in the
protologic through the form of abductive inference discussed in Sect. 5.2. That is, given
the assignment of truth values to the indexical nodes, one considers the disjunction of all
the bottom nodes representing states of affairs that have not been inferred to be false and
draws the inferences common to them.

This corresponds to Perry’s [88, 93] analysis of proper names as functioning to index
mental files of information about an individual, it may be that a combination of name and
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context is required to disambiguate the file access. One may generalize this to any combi-
nation of terms, including names, being used to provide a context sufficiently constrained
to identify a particular individual, as in Orilia’s [84] contextual descriptivist account of
singular reference.

7.4.1 Venus as Morning Star and Evening Star

To illustrate the representation of states of affairs, Fig. 43 represents the two perceived
states of Venus that Frege [48] used to exemplify his distinction between sense and ref-
erence. The planet appears as a bright celestial object near the rising or setting sun at
dawn or dusk. Early Greek astronomers regarded the phenomena as arising from different
celestial bodies and named them differently [105, n. 23]. As shown, abductive inference
over the bottom nodes marks the common features as defeasibly true.

BN, Cdusi)
Corpnt) CHesperus
CEgmepoc>

Phosphorus

Fig. 43 Representation of perceived states of Venus

The net illustrates the major issues. Many names may be used to reference the same
physical entity, and someone may not be aware that they do not refer to different ones;
removing the node for Venus illustrates this. Someone may know some of the names
and that they have a common referent but not know those names in another language;
removing some state-specific names illustrates this.

Abductive inference after marking the nodes representing dawn or dusk as true leads
to all the morning star names and Venus being marked true but none of the evening star
names, and vice versa. That is, it is reasonable to have different names that reference the
same entity in different contexts.

7.4.2 Representing Relations and Structural Universals

While the representation of individuals requires no additional constructs in the protologic,
that of relations requires distinguishing the states of affair that are related. One version
implemented in the protologic is based on Orilia’s [85] representation of neutral relations
[46] in terms of onto-thematic roles.

As shown in Fig. 44, relations are represented by nodes having relational links repre-
sented by arrows having distinctive tails that serve to group relational links of the same
type. There may be any number of types of relational links. Nodes with only one type
of relational link represent symmetric relations, and those with two or more asymmetric
relations. On the left are inference patterns through which relational links interact with
inclusion links.
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Fig. 44 Relation inference patterns and example relation

At the bottom center ‘Anthony’ and ‘Cleopatra’ are typed as two distinct individuals,
with the node ‘individual’ making Castafieda’s individuator operator available as needed.
On the right, the state of affairs where there is a loving relationship between them is
represented as a personal relationship having two thematic roles, ‘loves’ as agent and
‘loved’ as patient. Inferences from the patterns are shown with dotted lines.

This representation avoids many of the known issues of representing relations
[46, 54, 85]. There is a single relation and the notion of converse is a matter of its lin-
guistic expression. Subordination of relations is represented. The relational arrows have
no ontological role but serve only to link the constraints on each component of a re-
lation. The components are distinguished by their thematic roles, not their positions or
link types. The roles themselves are simply nodes that may be part of a net represent-
ing their logical interrelationships. The generic linguistic roles mark those that include
them as relational roles, providing similar functionality to an individuator operator. Ad-
ditional types of relational arrows may be added to represent other roles such as ‘instru-
ment.

Figure 45 exemplifies Armstrong’s [2] structural universals in terms of a templet of
the states of affairs and their relationships in a water molecule.

Atom Bond Water Molecule

Fig. 45 Relational structure of a water molecule

From left to right: the determinable, atom, is represented with oxygen, hydrogen and their
isotopes as determinates; the hydroxyl chemical bond is represented together with some
of its forms; the structure constituting a water molecule is represented as a structural uni-
versal having two hydroxyl bonds with a common oxygen atom and two distinct hydrogen
atoms [86].
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8 Conclusions

Over the past two decades, Béziau’s [9] notion of universal logic as an integrative concep-
tual framework for all logical systems that presupposes no particular axioms has provided
a focal point for a wide range of historical and ongoing studies of foundational issues in
logic and the nature and relationship of logical systems, as did Birkhoff’s [23] notion of
universal algebra for foundational studies of algebras.

Béziau also envisioned [11] that the universal logic conceptual framework could help
many fields of knowledge build the right logic for the right situation, noting that for some
disciplines mathematical abstract conceptualization is more appropriate than symbolic
formalization. This idea has so far had less impact although Béziau has exemplified it in
his own research, for example, on the diverse interpretations of the square of oppositions
and the special issue of Logica Universalis on ‘Is logic universal?’ [16] raising a range of
cross-disciplinary issues [52].

One should not expect a significant impact of the conceptual framework of universal
logic on other disciplines to develop rapidly because the diffusion of knowledge and tech-
niques between different fields of knowledge is known to be intrinsically slow [96]. In
particular, the symbolic formalism of the normal expositions of logic may be an impedi-
ment to diffusion and it might help expedite wider adoption if the conceptual framework
of universal logic could be presented in a way that is more accessible whilst remaining
formally sound.

This article has provided an alternative formalism that avoids mathematical symbolism
by extending Hertz’s [67] original graphic presentation of the principles of logical deduc-
tion to encompass the sequent calculus that he, Gentzen [57], and others developed. The
approach is based on past research on the formal representation of semantic networks as a
practical tool applicable to the development, representation and application of knowledge
structures in diverse applications [50, 51].

One side-effect of the techniques used to avoid mathematical symbolism is that the
knowledge structures used in various disciplines become represented in a graphical form
that often mimics the informal diagrams used in those disciplines yet allows formal logical
inference patterns to be applied.

The conceptual and computational tools illustrated in this article have proved useful
in several disciplines, and should, hopefully, contribute to the wider adoption of Béziau’s
visionary ideas. Universal logic can provide a mathematical abstract conceptualization
that is logically sound, readily comprehensible and practically useful in the clarification,
communication and evaluation of ideas, theories and associated controversies in many
fields of knowledge. Facilitating this is a significant and challenging research objective
for the universal logic community.
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