Chapter 2

Challenges and Limitations for Very High
Throughput Decoder Architectures

for Soft-Decoding

Norbert Wehn, Stefan Scholl, Philipp Schlifer, Timo Lehnigk-Emden,
and Matthias Alles

2.1 Motivation

In modern communications systems the required data rates are continuously
increasing. Especially consumer electronic applications like video on demand,
IP-TV, or video chat require large amounts of bandwidth. Already today’s
applications require throughputs in the order of Gigabits per second and very short
latency. Current mobile communications systems achieve 1 Gbit/s (LTE [1]) and
wired transmission enables even higher data rates of 10 Gbit/s (e.g., Thunderbolt
[2], Infiniband [3]) up to 100 Gbit/s. For the future it is clearly expected that even
higher data rates become necessary. Early results show throughputs in the order of
100 Thit/s [4] for optical fiber transmissions.

Satisfying these high date rates poses big challenges for channel coding systems.
Software solutions usually achieve only very small data rates, far away from the
required speed of most applications. Therefore dedicated hardware implementations
on ASIC and FPGA are mandatory to meet the requirements for high speed signal
processing. To achieve speeds of Gigabits per second, these architectures need large
degrees of parallelism.

Parallelism and speed can easily be increased by running several single decoders
in parallel. This is however mostly an inefficient solution, because area and
power increase linearly with parallelism. Moreover it implies a large latency.

N. Wehn (D<) « S. Scholl » P. Schlifer

Microelectronic System Design Research Group, University of Kaiserslautern,
Kaiserslautern, Germany

e-mail: wehn @eit.uni-kl.de; scholl @eit.uni-kl.de; schlaefer @eit.uni-kl.de

T. Lehnigk-Emden » M. Alles
Creonic GmbH, Kaiserslautern, Germany
e-mail: info@creonic.com

© Springer International Publishing Switzerland 2015 7
C. Chavet, P. Coussy (eds.), Advanced Hardware Design for Error
Correcting Codes, DOI 10.1007/978-3-319-10569-7__2


mailto:wehn@eit.uni-kl.de
mailto:scholl@eit.uni-kl.de
mailto:schlaefer@eit.uni-kl.de
mailto:info@creonic.com

8 N. Wehn et al.

Thus it is more advantageous to investigate efficient architectures specialized to high
throughput. This may also include modifications to the decoding algorithm itself.

An important metric for analyzing high throughput architectures is area effi-
ciency. Area efficiency is defined as throughput per chip area ([(Gbit/s)/mm?]).
The area efficiency can be increased significantly by new architectural approaches.

We present high throughput decoders for different application relevant coding
schemes, such as Reed—Solomon, LDPC and Turbo codes and point out their
benefits compared to state-of-the-art architectures.

2.2 Architectures for Soft Decision Reed—Solomon Decoders

2.2.1 Introduction

Reed-Solomon (RS) codes are utilized in many applications and communication
standards, either as a stand-alone code or in concatenation with convolutional codes,
e.g., DVB. They are traditionally decoded using hard decision decoding (HDD),
using, e.g., the well-known Berlekamp—Massey algorithm. However, using also the
probabilistic information—so-called soft information—on the received bits can lead
to large improvement of frame error rate (FER) in comparison to HDD.

Numerous algorithms have been proposed for soft decision decoding of RS
codes. They are using different approaches to achieve a gain in FER over HDD
with different complexities. A selection of interesting algorithms can be found in
[5-11]. This chapter will focus on the RS(255,239) and RS(63,55) codes, because
they are widely used in many applications.

Up to now, only few hardware implementations for ASIC and FPGA have
been proposed for soft decoding of RS codes, especially the RS(255,239). One
trend becoming apparent are implementations based on Chase decoding [7] and
the closely related low-complexity chase (LCC) algorithm [8]. Hardware imple-
mentations based on LCC exhibit low hardware complexity [12—-14], but this low
complexity comes at the expense of a poor FER gain. Implementations based on
LCC provide only little FER gain over HDD of about 0.3-0.4 dB.

The design of hardware architectures for a larger gain in FER is more challeng-
ing. Architectures and implementations based on adaptive belief propagation and
stochastic Chase decoding exhibit a larger FER gain (0.75 dB), but having a low
throughput [15, 16].

In this chapter a third approach for soft decoding is described that enables a
large gain in FER and high throughput. It is based on a variant of the information
set decoding algorithm, for which an efficient architecture is presented. This
architecture shows a uncompromised gain in FER of 0.75 dB and a high throughput
that exceeds 1 Gbit/s on a Xilinx Virtex 7 FPGA [17].



2 Very High Throughput Decoder Architectures for Soft-Decoding 9
2.2.2 Information Set Decoding

This section introduces the algorithm, which is the basis of the high throughput
hardware architecture. First, the used variant of information set decoding called
ordered statistics decoding (OSD) algorithm [10] is reviewed. Then, a reduced
complexity version of OSD using the syndrome weight [18] is presented.

2.2.2.1 Original OSD

OSD has been proposed in [10] and belongs to the class of information set
decoders [19].

Basically information set decoding works as follows: First, divide the N received
bits ¥ into two groups according to their reliability. The bit reliability is determined
by the absolute value of the corresponding log likelihood ratio (LLR). The first
group contains the set of K reliable bits, called the information set. The second
group contains the M = N — K unreliable bits, also referred to as low reliable bit
positions (LRPs).

Before actual decoding starts the M LRPs are erased. Then the information set
is used to reconstruct the M erased bits using the M parity checks in the parity
check matrix H. To do so, H has to be put in a diagonalized form H via Gaussian
elimination. If the K bits of the information set are correct, all errors in the M LRPs
can be corrected. This is referred to as order-0 reprocessing in OSD or OSD(0).

To perform successful correction in the case of one error in the information set,
the reconstruction process is repeated several times, each time with exactly one
bit of the information set flipped. This results in a list of K + 1 possible codewords
from which the best codeword is selected by evaluating the Euclidean distance to the
received LLRs. This improved decoding is called order-1 reprocessing or OSD(1).

A key part for understanding information set decoding is the reconstruction
process. To successfully reconstruct the M erased bits, the rows of the parity check
matrix are used, as mentioned before. It is required that the parity check equation
in each row covers mostly one of the erased M bits. To fulfill this requirement, H is
put into a diagonalized form by Gaussian elimination, such that each row covers not
more than one erased bit. Note that the Gaussian elimination does not change the
channel code itself, because an RS code is a linear code.

2.2.2.2 Reduced Complexity Algorithm for Hardware

The computational bottleneck of the original algorithm are the reconstructions of the
M erased bits. For example, in case of decoding an RS(255,239) with OSD(1) this
operation is required 2,041 times. To overcome this problem a reduced complexity
algorithm is utilized which makes use of the syndrome § and its weight [18] that
enables fast and efficient reconstruction.



10 N. Wehn et al.

The reduced complexity algorithm starts (as the original OSD) with determining
the information set according to the bit reliabilities and diagonalization of H by
Gaussian elimination.

Original OSD then evaluates the parity check equations given by the rows of
A whereas the considered low-complexity algorithm merely uses the syndrome to
correct the corrupted bits.

Moreover, if the syndrome vector is calculated using the diagonalized parity
check matrix, i.e.,§ = ﬁiT, two distinct cases for the binary weight of the syndrome
vector can be observed:

e The syndrome weight is small: In this case, it is assumed that only errors in the
M bits are present, i.e., OSD(0) processing is sufficient.

* The syndrome weight is large: In this case, it is assumed that also errors in the
information set are also present. Then OSD(1) processing is performed.

A fixed weight threshold to decide between the two cases is denoted by ©@ € N
and determined by simulation.

OSD(0) (small syndrome weight) is performed by simply flipping the M LRPs
that have led to the 1s in the syndrome vector. Conducting OSD(1) (large syndrome
weight) to correct one error inside the information set is done by first flipping the
bit position

Jj= argmin wgt (§®ﬁi)
i=0,..,N—1

where h; denotes the ith column of H. After flipping the error inside the information
set at position j, the syndrome is calculated again and the remaining errors outside
the information set (i.e., among the LRPs) are corrected by performing OSD(0).

Note that this algorithm inherently determines the best codewords among the
possible candidates only by looking at the syndrome weight. It is sufficient to select
the candidate with smallest syndrome weight. In case of original OSD the Euclidean
distance between candidate and received LLRs had to be evaluated many times.

For more detailed information on the syndrome weight OSD please refer to
[18] or [17].

2.2.2.3 HDD Aided Decoding

One disadvantage of OSD over other soft decision decoding algorithms is the
tendency for a weak FER performance if SNR increases. To improve FER OSD
is extended with a conventional HDD, whose result is output if OSD fails.

A failure in OSD can be easily detected again by looking at the syndrome weight.
If after OSD(1) reprocessing the updated syndrome still has a large weight, OSD can
be considered as unsuccessful.



2 Very High Throughput Decoder Architectures for Soft-Decoding 11

1. Sorting:
determine the information set of K reliable bits
2. Gaussian Elimination:
diagonalize H at the N — K low reliable positions to obtain H

3. calculate the syndrome § = AyT
and its binary weight wgt (8)

4. If wgt (8) > O: /* errors in the information set */
[lip the received bit at position

update the syndrome § =§& flj and wgt (8), goto 5

5. If wgt (8) < O: /* only errors outside the information set remaining (LRP errors) */
For all $; = 1, flip bit position , for which izil =1
output OSD result, terminate
else
perform HDD on ¥ and output HDD result, terminate

Fig. 2.1 Reduced complexity OSD(1) based on the syndrome weight that is implemented

2.2.2.4 Implemented OSD Version

The reduced complexity OSD algorithm for hardware implementation is summa-
rized in Fig.2.1. It features sorting to determine the information set, followed by
Gaussian elimination to diagonalize the matrix. Then the syndrome weight for the
diagonalized matrix is determined and a decoding strategy (OSD(1)+OSD(0) or
OSD(0) only) is selected. HDD is performed only if OSD fails.

2.2.3 Hardware Architecture

In this section a hardware architecture based on the previously introduced algorithm
(Fig.2.1) is presented.

2.2.3.1 Architecture Overview

Figure 2.2 shows the overall hardware architecture. P LLRs are fed in parallel into
the decoder and stored in the “I/O bit memory.” During data input the received LLRs
are sorted using a parallelized sorter. The M bit positions outside the information
set are stored in the “LRP memory.” Simultaneously, the syndrome is calculated
based on the original (non-eliminated) parity check matrix H for reasons that will
be explained below. Also HDD is carried out, whose result is stored in the “HDD
memory.”



12 N. Wehn et al.

—w»| Syndrome
Calculation
input > Gaussian
LLRs / bits . LRPs Column  |columns iminati ™| Correction
Elimination
4 Sorting _l r Generator ]
> flip
Qs error bits
x5
£
> 1/0 bit memory output
bits
Hard Decision i
L) >
rd Decls HDD memory

Fig. 2.2 Decoder architecture overview

After that, the column generator generated the columns of H corresponding to
the M LRPs for Gaussian elimination. These LRP columns are fed into the Gaussian
Elimination Unit to dynamically set up the unit (see below) for further processing.
After having set up the Gaussian Elimination Unit, the syndrome s is put into the
elimination unit to obtain § (its version based on the diagonalized matrix).

After determining the initial syndrome §, the Correction Unit calculates the
syndrome weight and determines the decoding strategy (OSD(0) or OSD(1)).
If OSD(1) is executed, the Column Generator outputs successively every column
of H, which are transformed into the columns of H by the Gaussian Elimination
Unit. The Correction Unit determines the erroneous bit positions based on these
columns and the syndrome and flips these bits in the “I/O bits memory.” Finally, the
Correction Unit decides if the best OSD codeword or the HDD codeword is output.

2.2.3.2 Sorting Unit

The first step of decoding is finding the LRPs by taking the absolute value of the
received LLRs and partially sorting them. This is accomplished by the Sorting Unit
depicted in Fig.2.3. Sorting is performed by using a shift register based insertion
sort.

In order to reduce the latency for sorting, the shift register is partitioned in
P parts. Each part is calculated in parallel. However, the results provided by the
parallelized Sorting Unit are not exactly the LRPs, but rather an approximation of
the LRPs. This introduces a small loss in FER, but simulations show that this loss is
less than 0.1 dB for the RS(255,239) using an input parallelism of P = 8.

Finally, the LRPs are read out of the shift register and stored in the “LRP
memory” for further processing.



2 Very High Throughput Decoder Architectures for Soft-Decoding 13

LLRs —> Sorting Lane 0 >

LLRS — Sorting Lane 1 — least reliable
positions

LLRS —— Sorting Lane P-1 e

minimum minimum minimum

LLRs/
bit positions

Fig. 2.3 Parallelized sorting unit

2.2.3.3 Syndrome Calculation Unit

The subsequent stages require the calculation of the syndrome using the diagonal-
ized matrix § = ﬁyT. However, it is advantageous to first calculate the syndrome
using the original parity check matrix H and afterwards pass it through the Gaussian
Elimination Unit to obtain H.

This allows to use efficient syndrome calculation using Galois field arithmetic,
as it is well known in literature [20]. The syndrome unit is a parallelized implemen-
tation that can handle one received symbol (P bits) per clock cycle.

2.2.3.4 Column Generator Unit

The column generator consists of a ROM, which holds the original parity check
matrix H. The Column Generator receives a column number at its input and outputs
the requested column of H.

2.2.3.5 Gaussian Elimination Unit

Gaussian Elimination is required to diagonalize H and the syndrome s. This is the
most complex operation in the algorithm. Therefore sophisticated architectures are
required to achieve high throughput.

An elegant architecture for Gaussian elimination has been proposed in [21]. This
architecture consists of a pipelined array, which eliminates the columns on the fly.
The columns of the original matrix H are input from the left and the corresponding



14 N. Wehn et al.

columns of the eliminated matrix H are output at the right. Each of the M column
eliminators is responsible for carrying out the operations needed to eliminate exactly
one of the M columns corresponding to the LRPs.

The array works in two phases:

1. The Setup Phase: The M columns, which are supposed to become unit vectors
after elimination, (here: the LRPs) are passed into the array to dynamically set
up the structure for row adding in the column eliminators.

2. The Elimination Phase: Columns of the original matrix are passed into the array.
The columns of the eliminated matrix are output after M clock cycles.

Note that linear independency of LRPs is required for full elimination. Possible
dependencies are inherently checked during the setup phase. If an LRP column turns
out to be dependent on some other LRP column, it is simply discarded, so that the
matrix is not fully diagonalized. Since the number of dependent columns is usually
very low the resulting loss in correction performance is negligible.

This two-phase architecture has proven to be an efficient solution for this appli-
cation and outperforms standard Gaussian elimination architectures (e.g., systolic
arrays) as can be seen in Table 2.1. For more information on the functionality and
the architecture of the utilized Gaussian elimination please refer to [21] (Fig. 2.4).

2.2.3.6 Correction Unit

The unit first determines if OSD(0) or OSD(1) has to be performed. To determine
the decoding strategy and the erroneous bit positions the syndrome weight has to

Table 2.1 Comparison of state-of-the-art implementations for Gaussian elimination
of the binary 128 x 2040 matrix for the RS(255,239) code on a Xilinx Virtex 7 FPGA

using Vivado 2012
Architecture LUTs | FFs Sfmax (MHz) | Throughput (matrices/s)
SMITH (estimated) [22] | 780k | 260k |- -
Systolic array [23] 81.7k |98.6k | 350 145k
Proposed [21] 16.6k | 329k | 370 171k
> T
T X
5 x 5%
Eg Es
3s > 0%
= .g . 3 %
Fig. 2.4 Array for Gaussian ~\ J_ fixed pivot

elimination (here with M = 4) column eliminators positions



2 Very High Throughput Decoder Architectures for Soft-Decoding 15

be calculated. The weight calculation of binary vectors is accomplished by an adder
tree consisting of P stages. Several pipeline stages have been added between the
adder stages to reduce the critical path.

However, the main task of this unit is to perform the actual error correction.
To determine erroneous bit positions, the syndrome and its correlation to the
columns of H are evaluated according to Steps 4 and 5 of the decoding algorithm
(Fig. 2.1). In case of an error, the corrupted bits are flipped in the “I/O bits memory.”

2.2.3.7 Hard Decision Decoder

To improve the FER, an additional HDD is employed. For the FPGA imple-
mentation a HDD IP core for decoding RS codes from Xilinx [24] is used. It
supports the considered codes and provides the necessary throughput for the decoder
architecture.

2.2.3.8 Fixed Point Quantization Issues

Since soft information (LLRs) is only processed in the Sorting Unit, quantization
of the LLR values affects only this small part of the decoder. By simulations it is
determined that an LLR quantization of 7 bits for the RS(255,239) and 5 bits for the
RS(63,55) code does not noticeably impact the FER performance.

2.2.3.9 Pipelining and Latency Issues

In the proposed decoding architecture, performing OSD(0) and OSD(1) has a
latency of 795 and 2,838 clock cycles, respectively (RS(255,239)). This shows that
OSD(1) is much more costly than OSD(0). In conjunction with the thresholding
of the syndrome weight (see Sect.2.2.2.4), decoding throughput can be increased
largely, if OSD(1) is only performed, if it is actually needed. This leads to a large
improvement of throughput, especially for SNR values of practical interest (typical
throughput).
Moreover, a two-stage pipelining is used:

¢ Stage 1: LLR input, sorting, syndrome calc., HDD
* Stage 2: Gaussian elimination and error correction

2.2.4 Implementation Results

In this section, implementation results for the RS(255,239) and the RS(63,55) codes
based on the new architecture are presented. FPGA implementations have been done
on a Virtex 7 (xc7vx690t-3) device using Xilinx ISE 14.4. All results shown have
been obtained after place & route.



16 N. Wehn et al.

Table 2.2 Implementation RS(255,239) | RS(63,55)
results for the new ’ :
architecture for the LUTs 15.9 3100
RS(255,239) and the FFs 41.7k 7480
RS(63,55) on a Virtex 7 BRAMs (36K/18K) 718 1/5
FPGA Fmas 280MHz | 300 MHz

Worst case throughput | 200 Mbit/s 170 Mbit/s
Typical throughput 1,190 Mbit/s | 690 Mbit/s
Gain 0.75dB 1.4dB

hardware |mplementat|ons vs HDD

100
1071
1072
1073
i
L
[T
104
10°°
i-e- RS(255 239) HDD
. 1-+- RS(63,55) HDD
107 1 —e— RS(255,239) hardware
11— HS(63 55) hardware

45 5 55 6 6.5 7 75 8
Ey/No/ dB

Fig. 2.5 FER for the hardware implementations

Implementation results for the RS(255,239) and for the RS(63,55) can be found
in Table 2.2. For typical throughput calculations FER= 10~ is considered. The
communication performance of the proposed decoder is shown in Fig.2.5. For the
RS(255,239) a gain of 0.75 dB and for the RS(63,55) a gain of 1.4 dB are achieved.

A comparison with other state-of-the-art FPGA soft decoders for RS codes is
presented in Table 2.3. Since the other decoders rely on older FPGAs, results are
given for Virtex 5, which provides a more fair comparison between the different
implementations.

In terms of FER gain, the new architecture is comparable to other state-of-the-art
implementations (gain of 0.7-0.75 dB). However the decoder achieves this gain in
FER with considerably higher throughput and significantly less resource utilization.



2 Very High Throughput Decoder Architectures for Soft-Decoding 17

Table 2.3 Comparison with other soft decoder implementations for RS(255,239)

on FPGA
Implementation Throughput | Gain over HDD
(Algorithm) FPGA LUTs | FFs (Mbit/s) (FER= 10"%)
[15] (ABP) Stratix II | 43.7k |n/a 4 0.75dB
[16] (Chase) Virtex 5 | 117k | 143k 50 0.7dB
New proposed Virtex5 | 13.7k 41.8k | 805 0.75dB

(information set)

The implementation shows that information set decoding is a viable way
to implement soft decoders for RS codes efficiently, also for large throughput
requirements.

2.3 Architectures for Turbo Code Decoders

Turbo codes are widely used for error correction in mobile communications, e.g.,
in UMTS and LTE systems. Similar as in other areas, their throughput demand is
increasing, currently reaching beyond 1 Gbit/s for LTE.

Turbo code decoding is inherently serial on component and on the decoder
level. A turbo code decoder consists of two component decoders which iteratively
exchange data on block level. A complete data block of length B is fully processed
by one component decoder before the processed block can be sent to the other com-
ponent decoder. This process continues for a certain amount of iterations, typically
between 5 and 8. However, the data is not directly sent to the other component
decoders. Instead the data is interleaved before exchanging. This interleaving is
pseudo-random with limited locality and can result in access conflicts if several
messages are produced in one clock cycle by a component decoder. Resolving these
access conflicts imposes constraints on an interleaver to permit a parallelized data
exchange.

The component decoders are soft-in, soft-out decoders. State-of-the-art turbo
code decoders are using the Bahl, Cocke, Jelinek, and Raviv algorithm, often also
called Maximum-a-posteriori algorithm (MAP) [25]. This algorithm sequentially
processes a block from the beginning to the end, named forward recursion, and vice
versa, called backward recursion [26]. Due to the recursive nature of the forward
and backward calculations, the standard MAP algorithm cannot straightforward be
parallelized. Thus, we are facing two challenges for high throughput turbo code
decoders:

» parallelizing the MAP algorithm and
e parallelizing the data exchange

An overview of different levels of parallelisms for turbo code decoders can be
found in [27]. Parallelizing the MAP algorithm can be achieved by splitting the



18 N. Wehn et al.

complete data block into P smaller sub-blocks. So, the sub-block size is B/P. Since
this splitting breaks up the recursion for forward and backward calculation, it will
result in a large degradation of the communications performance. To counterbalance
this effect, a so-called acquisition can be performed at the sub-block borders for the
forward and/or backwards recursion. This acquisition consists of some additional
recursions steps and approximates the state probability at the borders of the sub-
blocks. The accuracy of this approximation strongly depends on the number of
additional recursion steps. The number of additional steps is named acquisition
length Lycp. In this way each sub-block can be processed independently of the
other sub-block on a dedicated MAP engine. That is, in this case a component
decoder consists of P parallel working MAP engines where each MAP engine
serially processes a sub-block. So, instead of B clock cycles needed to process one
data block of size B (here we assume that one recursion step is performed in one
clock cycle), we need only B/P clock cycles. State-of-the-art MAP decoders use
the same splitting technique to reduce the storage amount when processing this sub-
block inside a MAP engine. This technique is called sliding windowing [28]. We
use the term window instead of sub-block to avoid a confusion with the splitting on
block level. The window length is denoted Ly ..

Since one component decoder is always idle while waiting for the result of the
other decoder, we can map both component decoders on the same hardware unit
without degrading the throughput. If we assume that there is no throughput penalty
due to the data exchange between the two component decoders, we can calculate
the throughput TP of a state-of-the-art turbo code decoder with Eq. (2.1).

B .
"= (B/P+Lyap) - Nhaif_iter -logy(r) - f[Mbit /s], (2.1)

with f being the frequency and np4 ¢ .- the number of invocations of a component
decoder. Please note that a component decoder is invoked twotimes per decoding
iteration. r is the used radix. Radix-2 means that the MAP engine processes one
recursion step per clock cycle. In radix-4, two recursion steps are merged into a
single one which can be processed in one clock cycle. This merging increases the
area and slightly decreases the frequency, but reduces the number of clock cycles
for processing a sub-block by a factor 2. Lys4p is the overhead due to the parallel
processing of a data block and is composed of three components:

* Lyipeline: @ MAP engine is pipelined to increase the frequency. This implies a
certain latency which is typically 10-20 clock cycles.

* Lycg is the aforementioned acquisition length.

e Ly is the window length of the sliding windowing.

From this equation we see a linear increase in the throughput with increasing
parallel processing as long as Lyap can be neglected. We see also that high
throughput decoders require a large P. However a large P increases the impact of
Lyap on TP. Moreover current communication standards like LTE specify high
throughputs only for high code rates (R = 0.95). It can be shown that large code



2 Very High Throughput Decoder Architectures for Soft-Decoding 19

1400 | i NSH MAP —t— | H T
NII MAP, We=64 =i 2
| MAP, We128, ACO mem .
)
ulUOO

Throughput tp [MBi
[+,
o
o

124 8 16 32 64
Parallelism p

Fig. 2.6 Throughput for different MAP architectures: Non-sliding window MAP with NII and 6
iterations, sliding window MAP with NII and /yys = 64 and 6 iterations, sliding window MAP with
laco = lws = 128 and 6 iterations

rates demand large Lycp for a good communications performance which further
exacerbates the dominance of Lyap, €.g. in LTE Lycg > 64 is mandatory. In other
words, the throughput starts to saturate with large P and high code rate demands, as
shown in Fig. 2.6. This fact poses a further challenge for turbo decoder architectures
when high throughput is required. However we can use two techniques to relax
this problem:

¢ We can reduce the large acquisition length by exploiting the state probabilities at
the borders of the sub-block from the previous decoding iteration. This technique
is called next iteration initialization and largely helps to reduce Laco [29].
Sometimes it is even possible to perform no acquisition at all by using only the
information of the previous iteration.

e We quit the sliding window technique inside a MAP engine. This normally
largely increases the memory and energy consumption inside the engine. How-
ever this can be avoided by so-called re-computation [30]. Here, instead of
storing every metric of a forward recursion step, we store only every nth metric
and re-calculate the other n — 1 metrics. That is, we trade-off storage versus
additional computations. It can be proven that the optimum n is y/B/2P. For
example, this technique reduces the number of metrics to be stored for LTE from
6,144 for the largest block size to 768.

So far we assumed that interleaving implies no additional latency. Obviously
a component decoder produces P data per clock cycle. These data have to be



20 N. Wehn et al.

Table 2.4 Previously published high throughput 3GPP TC decoders

This work [33] [34] [35]
Radix and Parallelism 4/32 2/64 2/8 4/8
Throughput (MBit/s) 2,300 1,200 150 390
@Clock f (MHz) 500 400 300 302
Parameters affecting communications performance
Iterations 6 6 6.5 5.5
Acquisition NII NII 96 4 NII 30
Window length 192 64 32 30
Input quantization 6 6 6 5
Technology (nm) 65 65 65 130
Voltage 1.1V 09V 1.1V 1.2V
Area (mm?) 7.7 8.3 2.1 3.57

concurrently interleaved. Since each MAP engine has its own memory, random
interleavers can result in access conflicts if we have single- or dual-port memories.
That is, several data have to be written simultaneously into the same memory.
Such conflicts have to be resolved by serialization. Another possibility is to design
the interleaver a-priori in a way such that these conflicts are avoided. Current
communication standards like LTE are based on such interleavers and show no
access conflicts for up to 64 simultaneous produced data. On the other side HSDPA
has no conflict free interleavers due to its downward compatibility with UMTS.
Parallel MAP processing was not yet an issue at the time when UMTS was defined.
Sophisticated techniques exist for run-time conflicts resolution, but this discussion
is not in the scope of this chapter [31]. The influence of the explained techniques on
the achievable throughput is shown in Fig. 2.6.

In [32] an LTE compatible turbo code decoder was presented which used all
the aforementioned techniques. It achieves a throughput of 2.15 Gbit/s on a 65 nm
CMOS bulk technology under worst case PVT parameters. It uses 32 MAP engines
with radix-4, next iteration initialization and no sliding window but re-computation.
The detailed results and comparison with state-of-the-art decoders are shown in
the Table 2.4.

2.4 High Throughput Architectures for Low Density
Parity Check Decoders

As discussed in Sect. 2.3, turbo code based systems cannot provide data rates in the
order of several hundred Gigabits per second. For these applications LDPC codes
are the best choice. The decoding algorithms for LDPC codes have an inherent
parallelism which can be exploited by highly parallel architectures.



2 Very High Throughput Decoder Architectures for Soft-Decoding 21

LDPC codes have been introduced by Gallager in 1962 [36] but the high
decoding complexity made the application at that time impossible. When LDPC
codes have been rediscovered in the late 1990s, the throughput demands have been
moderate. Serial decoder architectures have been sufficient to fulfill the require-
ments. As demands on the throughput rose, partially parallel architectures became
necessary. Today LDPC codes are used in a wide range of applications like 10 Gbit
Ethernet (10 GBASE-T, IEEE802.3an) [37], broadband wireless communication
(UWB, WiGig) [38, 39], and storage in hard disc drives [40]. State-of-the-art
LDPC decoders can already process data rates in the range of 10-50 Gbit/s. This is
sufficient to satisfy the requirements of all mentioned standards. However, as future
standards emerge, current architectures will not be able to facilitate the demanded
throughputs of 100 Gbit/s and more. For higher throughputs even LDPC decoders
reach their limit. This results in a gap in decoder performance which has to be closed
by new approaches. Therefore a new architecture is presented which can overcome
these limitations and the key aspects for next generation LDPC decoders are
discussed. It is shown that new architectures significantly reduce routing congestion
which poses a big problem for high speed LDPC decoders. The presented 65 nm
ASIC implementation results underline the achievable gain in throughput and area
efficiency in comparison to state-of-the-art architectures.

A LDPC decoder system with state-of-the-art communications performance and
a throughput far beyond 100 Gbit/s is presented which is a candidate for future
communications systems.

2.4.1 LDPC Decoding

LDPC codes [36] are linear block codes defined by a sparse parity check matrix
H of dimension M x N, see Fig.2.7a. A valid codeword x has to satisfy Hx' = 0
in modulo-2 arithmetic. A descriptive graphical representation of the whole code is
given by a Tanner graph. Each row of the parity check matrix is represented by a
check node (CN) and corresponds to one of the M parity checks. Respectively each
column corresponds to a variable node (VN) representing one of the N code bits.
The Tanner graph shown in Fig. 2.7b is the alternative representation for the parity
check matrix of Fig. 2.7a. Edges in the Tanner graph reflect the 1’s in the H matrix.
There is an edge between VN n and CN m if and only if H,,, = 1. LDPC codes can
be decoded by the use of different algorithms. Belief Propagation (BP) is a group

a
1100
Fig. 2.7 H Matrix and H=|1111
Tanner graph hardware 0001

mapping



22 N. Wehn et al.

of algorithms which is used in most state-of-the-art decoders. Which type of BP
fits best has to be chosen dependent on the required communications performance.
For example, the A-min algorithm [41] performs better than the min-sum algorithm
[42] but has a significantly higher implementation complexity. All algorithms have
in common that probabilistic messages are iteratively exchanged between variable
and check nodes until either a valid codeword is found or a maximum number of
iterations is exceeded.

2.4.2 LDPC Decoder Design Space

The LDPC decoder design space comprises a multitude of parameters which have
to be tuned to the specific requirements. Each standard has different needs in means
of error correction performance, number of supported code rates, codeword lengths,
and throughput. There are numerous design decisions which have to be made for
the hardware to satisfy these requirements. Due to their inherent parallelism, LDPC
decoders are of special interest for high throughput applications. Therefore the
focus is on the design decisions concerning the decoder parallelism. They have the
strongest impact on the system’s throughput. An in-depth investigation of the design
space for slower state-of-the-art partially parallel decoders is presented in [43].
This part of the design space is not highlighted as it is orthogonal to the presented
schemes. For example, different check node algorithms can be combined with all
levels or parallelism presented here.

There are multiple dimensions in which the degree of parallelism can be chosen,
see Fig.2.8. The lowest level of parallelism is on the message level. Each message

Level Parallel Serial

Message y 010011 ¥ 010011 Y 010011

Bge Ik F  IF

| H HEL T

| i [} |
Core (:)'“(f;] [;J]'“[P‘/?]

Fig. 2.8 Levels of parallelism in the high throughput LDPC decoder design space



2 Very High Throughput Decoder Architectures for Soft-Decoding 23

Channel values

[ Variable Nodes

Check Nodes

Decoded bits

Fig. 2.9 Fully parallel hardware mapping of an LDPC decoder. All variable and check nodes
are instantiated and two networks are required to exchange the messages between them. Massive
routing congestion is observed for this architecture

can be transmitted in tuples of bits or fully parallel. Today fully parallel message
transfer can be found in the vast majority of architectures as it has been shown to
be more efficient. The second degree of parallelism is represented by the number
of parallel edges. The node’s in- and outgoing edges can be processed one after
another, partially parallel or fully parallel. However the choice of the node’s edge
parallelism is directly linked to the so-called hardware mapping. The hardware
mapping describes how many check and variable nodes are instantiated. When
talking of a fully parallel decoder, an architecture instantiating all processing nodes
is meant. In contrast partially parallel decoders have a lower number of physical
nodes than the Tanner graph. They process the parity check matrix in a time
multiplex fashion. This allows for easy adaption of the architecture to new standards
but limits the achievable throughput.

For applications like 10 GBASE-T Ethernet only fully parallel architectures can
achieve the required throughput. Figure 2.9 depicts the high-level structure of such
a decoder. However in general it is not advisable to build this architecture as it
has a serious drawback which is directly related with the two networks between
VNs and CNs. Dependent on the code length and quantization, each of them
comprises between several thousands and hundred thousands of wires which have to
be routed according to the parity check matrix. To achieve a good communications
performance, parity check matrices have long cycles and thus no locality, resulting
in massive routing congestion. It has been shown in earlier publications [44,45] that
the area utilization is heavily impaired by this fact and only 50 % of the chip is used
by logic.

Fully parallel decoders can still satisfy today’s requirements in means of
throughput. They represent the highest level of parallelism used in state-of-the-art
decoder designs. However, for future standards the throughput demands will further
increase and cannot be achieved using the presented dimensions of parallelism.



24 N. Wehn et al.

Channel value

DEMUX

[ MEM ][ MEM |
LR A T N A1

LDPC, H{ LDPC, Jowrerereree

W _— W W W
[ MEM J[_ _MEM | MEM

|>—sm>—w—‘o>-$rfEOO|

Decoder output

Fig. 2.10 Core duplication architecture

2.4.3 Exploring a New Dimension in the High Throughput
LDPC Decoder Design Space

Considering the degrees of parallelism which are used for state-of-the-art decoders
no further increase in throughput can be acquired. In the following section two
more degrees in parallelism are discussed which can be explored to overcome the
limitations in LDPC decoder throughput, see Fig. 2.8. Moreover it is shown that the
area efficiency of decoders can even be increased by the proposed techniques.

2.4.3.1 Core Duplication

One solution to achieve the throughputs required by future standards is to instantiate
several LDPC decoder cores in parallel, see Fig. 2.10. There are two possible starting
points for the core duplications. Partially parallel architectures which allow for
flexibility but suffer from high latencies and low throughput. The second option is to
instantiate several fully parallel decoder cores allowing for reduced latency and high
throughput. However due to routing congestion they cannot achieve a satisfying area
efficiency and flexibility. To connect multiple instances of a decoder, a distribution
network and memories are required. Moreover a control unit to keep the blocks in
order must be instantiated in the system.

Summarized straightforward decoder duplication can increase the system
throughput. However the latency issues caused by partially parallel architectures
cannot be solved. Potential enhancements due to the increased parallelism are not
explored and the system’s efficiency is slightly decreased due to the introduced
overhead.



2 Very High Throughput Decoder Architectures for Soft-Decoding 25

Channel value

( Variable Nodes ]—
)

Iteration 0

[ Check Nodes

Iteration 1

> Reg

Decodjd bits

Fig. 2.11 In an unrolled LDPC decoder architecture each decoding iteration is instantiated as
a dedicated hardware. A feedback from the end of the iteration back to the beginning is no more
required with this approach. One of the two networks between variable and check nodes is removed
and makes the routing feasible. Due to the unidirectional data flow pipelining can be applied
without penalty in throughput. Synthesis results show an increased area efficiency compared to
a fully parallel decoder

2.4.3.2 Unrolling Iterations

A new architecture is proposed in [46], shown in Fig.2.11 to overcome the
highlighted drawbacks. The iterative decoding loop is unrolled and an unrolled, fully
parallel, pipelined LDPC decoder is instantiated. It has several advantages over core
duplication and is a good choice for very high throughput architectures.

A drawback of this architecture is the need to specify the maximum number of
iterations at design time. Once the decoder is instantiated there is no possibility to
increase the performance by additional decoding iterations. The number of pipeline
stages determines the latency, but the throughput is fixed by the cycle duration. The
decoder can be considered as one big pipeline where received codewords are fed into
and decoded words are returned at the end. Hence this architecture has a throughput
of one codeword per clock cycle and can be pipelined as deep as required to achieve
the target frequency. This allows for ultra-high throughput LDPC decoder cores.

Compared to the core duplication approach, no overhead in means of distribution
networks and memory is introduced by the unrolling. Moreover there is an essential
change in the resulting data flow. Where before data have iteratively been exchanged
between VNs and CNs, now all data flow in one direction. Each iteration has a
dedicated hardware unit and thus the decoder’s overall area scales linear with the



26 N. Wehn et al.

number of decoding iterations. The result is an unidirectional wiring avoiding the
overlap of opposed networks. This is a big benefit for the routing and makes the
architecture more area efficient than state-of-the-art decoders which is shown in
Sect.2.4.4.

The control flow of the proposed architecture is reduced to a minimum. A valid
flag is fed into the first decoding stage whenever a block is available. This flag is
propagated along the decoding pipeline and enables the corresponding stages as
soon as new data is available. At the same time this implies that all hardware blocks
which are not used currently get clock gated.

Even though the number of decoding iterations is defined at design time, schemes
like early termination can be applied to further reduce the energy consumption.
Once a valid codeword is found all following decoding stages are clock gated for
this block and the decoded data is bypassed in the channel value registers. By this
approach besides some multiplexors no hardware overhead is introduced and the
energy per decoded bit can be reduced significantly.

Even different code rates can be implemented in the unrolled architecture.
Special codes like the one used in the IEEE 802.11ad standard allow for the
operation of one CN instance as two CNs by cutting the node degree by two.
Using these codes only minor modifications are required for the check nodes and
the routing network to support all codes of the IEEE 802.11ad family. For a more
detailed explanation of the CN splitting scheme see [47]. A similar scheme as
proposed there can also be applied on the unrolled architecture. The control flow for
the different code rates can easily be implemented by an additional flag propagated
with the according input block. This allows to change the code rate for every block,
e.g., in each clock cycle. Table 2.5 summarizes the benefits and drawbacks of the
different approaches.

2.4.4 Comparison of Unrolled LDPC Decoders
to State-of-the-Art Architectures

Two decoder architectures are presented which are compared to a state-of-the-
art LDPC decoder from literature. The first decoder presented is a fully parallel
architecture with iterative decoding. The second has also a fully parallel hardware

Table 2.5 Parallel LDPC decoder architectures

Architecture Flexibility | Low latency | Area efficiency
Parallel inst., partially parallel architecture | + — 0

=]

Parallel inst., fully parallel architecture -

Unrolled, fully parallel architecture — + +



2 Very High Throughput Decoder Architectures for Soft-Decoding

27

Table 2.6 State-of-the-art high throughput LDPC decoder comparison

Decoder [48] Iterative Proposed unrolled
CMOS technology 65 nm 65nm SVT 65nm SVT
Frequency (MHz) 400 189 194

Standard IEEE 802.3an | IEEE 802.11ad | IEEE 802.11ad
Block size 2,048 672 672

Iterations 8 6 6

Quantization (bit) 4 5 5

Post P&R area (mm?) 5.1 1.4 7.0

Throughput (Gbit/s) 8.5 53 130.6

Area Eff. (Gbit/s/rmm?) | 1.7 38 18.7

Fig. 2.12 Unrolled fully
parallel LDPC decoder chip
layout. Each iteration is
represented by one of the
vertical areas. Channel
messages ripple from left to
right through the decoder
pipeline. All routing is very
structured and pointing from
one iteration to the next.

A very high utilization of
more than 70 % is achieved

by the simplified routing

mapping but in addition the decoding iterations are completely unrolled. Both
decoders support the same standard (IEEE 802.11ad) and use the same algorithm,
quantization, etc.

The LDPC decoders are implemented on a 65 nm low power bulk CMOS library.
The post place and route (P&R) results are summarized in Table 2.6. The physical
layout of the unrolled LDPC decoder can be seen in Fig.2.12. Comparing the
synthesis results of the iterative and the unrolled decoder shows that the routing
congestion is significantly reduced by the loop unrolling. The number of introduced
buffers for the interconnect is significantly reduced in the unrolled decoder and leads
to a high utilization of more than 70 %. A five times higher area efficiency of the
unrolled decoder underlines this finding.



28 N. Wehn et al.

For the comparison, in addition to the two presented decoders, a partially
parallel decoder from literature is listed. The number of iterations, quantization, and
algorithm is reasonably similar to allow for a fair comparison. It can be observed
that no state-of-the-art decoder architecture is capable to produce a competitive area
efficiency to the unrolled architecture. The presented architecture has a throughput
which is more than fifteen times higher than the one of state-of-the-art decoders.
Moreover, if more throughput is required the unrolled architecture can easily be
pipelined deeper to increase the core frequency. These results show the great
potential of unrolled decoder architectures for future applications.

2.4.5 Future Work

The unrolled LDPC decoder architecture allows for several optimizations. In this
section the most important of them are presented and current research topics are
pointed out.

Unrolling the decoding loop generates a dedicated hardware instance for each
iteration. While for systems working iteratively, a generic hardware fulfilling the
needs of all iterations needs to be built, an unrolled architecture gives the designer
the freedom to optimize the hardware for each iteration independent of the others.
Thus it is possible to use specialized hardware instances for each iteration. For
example, one can implement different algorithmic approximations. For example, for
a decoder performing P iterations, a simplified decoding algorithm can be applied
for iterations 1...7 and an exact but more complex algorithm might be necessary
only for iterations i+ 1...P. Like this a targeted communications performance can
tightly be met while minimizing the required hardware resources. Even more than
the area efficiency, the energy efficiency can be increased by this approach. Most
blocks are decoded in the simplified first iterations of the decoding process and the
higher complexity part of the decoder must not be used for them. This significantly
reduces the energy per decoded bit and has almost no impact on the communications
performance. Other aspects like message quantization can also be applied to this
scheme and generate many new possibilities in the LDPC decoder design space.
These new possibilities are currently investigated and must be considered for future
architectures.

Regarding energy optimizations the proposed architecture is an excellent can-
didate for a Near-Threshold circuit technique [49]. For example, the throughput
of 10 Gbit/s can already be fulfilled by the presented decoder running at less than
20 MHz. Thus aggressive voltage scaling to 0.5-0.6 V can be applied. This increases
the energy efficiency by at least a factor of three and allows for a better energy
efficiency than any other state-of-the-art decoder.



2 Very High Throughput Decoder Architectures for Soft-Decoding

Conclusion
In this chapter, we presented soft decision Reed—Solomon, turbo, and LDPC
decoder implementations with high throughput.

The introduced soft decision decoder architecture for Reed—Solomon
codes is based on information set decoding. It allows a considerable improve-
ment of error rates in combination with a high throughput. The FPGA
implementation shows a throughput of beyond 1 Gbit/s and a gain of 0.75 dB
over HDD for the widely used RS(255,239) code. Further research includes
the evaluation of the architecture using ASIC technology and the further
improvement of the correction performance.

For turbo decoding the design space has been summarized. The key
techniques to a high throughput implementation have been introduced. It was
demonstrated how a LTE turbo code decoder can be implemented that
achieves 2.15 Gbit/s on a 65mm ASIC technology. In the future, further
investigations have to be made to ultimately increase the throughput of a turbo
code by unrolling iterations.

A new LDPC decoder architecture was presented that achieves an out-
standing throughput and state-of-the-art communications performance. The
ASIC implementation provides a throughput of 130 Gbit/s and has a very high
efficiency. Further optimizations for even higher area and energy efficiency
have been discussed and will be investigated in the future.

29

Acknowledgements This work has been supported by the Deutsche Forschungsgemeinschaft
(DFG) within the projects “Entwicklung und Implementierung effizienter Decodieralgorithmen
fiir lineare Blockcodes” and “Optimierung von 100 Gb/s Nahbereichs Funktransceivern unter

Beriicksichtigung von Grenzen fiir die Leistungsaufnahme.”

References

1. Third Generation Partnership Project (2010) 3GPP TS 36.212 V10.0.0; 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal

Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 10)
2. Intel (2014) Thunderbolt. URL http://www.thunderbolttechnology.net
3. Infiniband Association (2014). URL http://www.infinibandta.org

4. Qian D, Huang MF, Ip E, Huang YK, Shao Y, Hu J, Wang T (2011) 101.7-Tb/s (370x294-
Gb/s) PDM-128QAM-OFDM transmission over 3x55-km SSMF using pilot-based phase noise
mitigation. In: Optical fiber communication conference and exposition (OFC/NFOEC), 2011

and the national fiber optic engineers conference, pp 1-3

5. Wenyi J, Fossorier M (2008) Towards maximum likelihood soft decision decoding of the
(255,239) Reed Solomon code. IEEE Trans Magn 44(3):423. DOI 10.1109/TMAG.2008.

916381

6. Jiang J (2007) Advanced channel coding techniques using bit-level soft information. Disserta-

tion, Texas A&M University

7. Chase D (1972) Class of algorithms for decoding block codes with channel measurement

information. IEEE Trans Inf Theory 18(1):170. DOI 10.1109/TIT.1972.1054746


http://www.thunderbolttechnology.net
http://www.infinibandta.org

30

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27

28.

N. Wehn et al.

. Bellorado J, Kavcic A (2006) A low-complexity method for chase-type decoding of Reed-

Solomon codes. In: Proceedings of the IEEE international information theory symposium,
pp 2037-2041. DOI 10.1109/1SIT.2006.261907

. Koetter R, Vardy A (2003) Algebraic soft-decision decoding of Reed-Solomon codes. IEEE

Trans Inf Theory 49(11):2809. DOI 10.1109/TIT.2003.819332

Fossorier MPC, Lin S (1995) Soft-decision decoding of linear block codes based on ordered
statistics. IEEE Trans Inf Theory 41(5):1379. DOI 10.1109/18.412683

El-Khamy M, McEliece RJ (2006) Iterative algebraic soft-decision list decoding of Reed-
Solomon codes. IEEE J Sel Areas Commun 24(3):481. DOI 10.1109/JSAC.2005.862399

An W (2010) Complete VLSI implementation of improved low complexity chase Reed-
Solomon decoders. Ph.D. thesis, Massachusetts Institute of Technology

Garcia-Herrero F, Valls J, Meher P (2011) High-speed RS(255, 239) decoder based on LCC
decoding. Circuits Syst Signal Process 30:1643. DOI 10.1007/s00034-011-9327-4. URL
http://dx.doi.org/10.1007/s00034-011-9327-4

Hsu CH, Lin YM, Chang HC, Lee CY (2011) A 2.56 Gb/s soft RS (255,239) decoder chip for
optical communication systems. In: Proceedings of the ESSCIRC (ESSCIRC), pp 79-82. DOI
10.1109/ESSCIRC.2011.6044919

Kan M, Okada S, Maehara T, Oguchi K, Yokokawa T, Miyauchi T (2008) Hardware
implementation of soft-decision decoding for Reed-Solomon code. In: Proceedings of the
5th international symposium on turbo codes and related topics, pp 73-77. DOI 10.1109/
TURBOCODING.2008.4658675

Heloir R, Leroux C, Hemati S, Arzel M, Gross W (2012) Stochastic chase decoder for reed-
solomon codes. In: 2012 IEEE 10th international conference on new circuits and systems
(NEWCAS), pp 5-8. DOI 10.1109/NEWCAS.2012.6328942

Scholl S, Wehn N (2014) Hardware implementation of a Reed-Solomon soft decoder based
on information set decoding. In: Proceedings of the design, automation and test in Europe
(DATE ’14)

Ahmed A, Koetter R, Shanbhag NR (2004) Performance analysis of the adaptive parity check
matrix based soft-decision decoding algorithm. In: Proceedings of the conference on signals,
systems and computers record of the thirty-eighth Asilomar conference, vol 2, pp 1995-1999.
DOI 10.1109/ACSSC.2004.1399514

. Dorsch B (1974) A decoding algorithm for binary block codes andJ/-ary output channels

(Corresp.). IEEE Trans Inf Theory 20(3):391. DOI 10.1109/TIT.1974.1055217. URL http://
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1055217

Lin S, Costello DJ Jr (2004) Error control coding 2nd edn. Prentice Hall PTR, Upper Saddle
River

Scholl S, Stumm C, Wehn N (2013) Hardware implementations of Gaussian elimination over
GF(2) for channel decoding algorithms. In: Proceedings of the IEEE AFRICON

Bogdanov A, Mertens M, Paar C, Pelzl J, Rupp A (2006) A parallel hardware architecture for
fast Gaussian elimination over GF(2). In: 14th annual IEEE symposium on field-programmable
custom computing machines, 2006 (FCCM ’06), pp 237-248. DOI 10.1109/FCCM.2006.12
Kung HT, Gentleman WM (1982) Matrix triangularization by systolic arrays. Technical Report
Paper 1603, Computer Science Department. URL http://repository.cmu.edu/compsci/1603
Xilinx LogiCORE IP Reed-Solomon Decoder (2013). http://www.xilinx.com/products/
intellectual-property/DO-DI-RSD.htm

Bahl L, Cocke J, Jelinek F, Raviv J (1974) Optimal decoding of linear codes for minimizing
symbol error rate. IEEE Trans Inf Theory IT-20:284

Robertson P, Villebrun E, Hoeher P (1995) A comparison of optimal and sub-optimal MAP
decoding algorithms operating in the log-domain. In: Proceedings of the 1995 international
conference on communications (ICC ’95), Seattle, Washington, 1995, pp 1009-1013

. Thul MJ, Gilbert F, Vogt T, Kreiselmaier G, Wehn N (2005) A scalable system architecture

for high-throughput turbo-decoders. J VLSI Signal Process Syst (Special Issue on Signal
Processing for Broadband Communications) 39(1/2):63

Mansour MM, Shanbhag NR (2003) VLSI architectures for SISO-APP decoders. IEEE Trans
Very Large Scale Integr (VLSI) Syst 11(4):627


http://dx.doi.org/10.1007/s00034-011-9327-4
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1055217
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1055217
http://repository.cmu.edu/compsci/1603
http://www.xilinx.com/products/intellectual-property/DO-DI-RSD.htm
http://www.xilinx.com/products/intellectual-property/DO-DI-RSD.htm

29.

30.

31.

32.

33.
34.
35.
36.
37.

38.

39

40.

41

42.

43.

44,

45.

46.

47.

48.

49.

Very High Throughput Decoder Architectures for Soft-Decoding 31

Dielissen J, Huiskens J (2000) State vector reduction for initialization of sliding windows
MAP. In: Proceedings of the 2nd international symposium on turbo codes & related topics,
Brest, France, pp 387-390

Schurgers C, Engels M, Catthoor F (1999) Energy efficient data transfer and storage
organization for a MAP turbo decoder module. In: Proceedings of the 1999 international
symposium on low power electronics and design (ISLPED ’99), San Diego, California, 1999,
pp 76-81

Sani A, Coussy P, Chavet C (2013) A first step toward on-chip memory mapping for parallel
turbo and LDPC decoders: a polynomial time mapping algorithm. IEEE Trans Signal Process
61(16):4127. DOI 10.1109/TSP.2013.2264057. URL http://ieeexplore.ieee.org/stamp/stamp.
jsp?arnumber=6517513

Ilnseher T, Kienle F, Weis C, Wehn N (2012) A 2.12Gbit/s turbo code decoder for LTE
advanced base station applications. In: 2012 7th international symposium on turbo codes and
iterative information processing (ISTC) (ISTC 2012), Gothenburg, Sweden, 2012

Sun Y, Cavallaro J (2010) Efficient hardware implementation of a highly-parallel 3GPP
LTE/LTE-advance turbo decoder. Integr VLSI J. DOI 10.1016/j.v1s1.2010.07.001

May M, Ilnseher T, Wehn N, Raab W (2010) A 150Mbit/s 3GPP LTE turbo code decoder. In:
Proceedings of the design, automation and test in Europe, 2010 (DATE *10), pp 1420-1425
Studer C, Benkeser C, Belfanti S, Huang Q (2011) Design and implementation of a parallel
turbo-decoder ASIC for 3GPP-LTE. IEEE J Solid State Circuits 46(1):8

Gallager RG (1962) Low-density parity-check codes. IRE Trans Inf Theory 8(1):21

IEEE 802.3an-2006 (2006) Part 3: CSMA/CD Access Method and Physical Layer Specifica-
tions - Amendment: Physical Layer and Management Parameters for 10 Gb/s Operation, Type
10GBASE-T. IEEE 802.3an-2006

WiMedia Alliance (2009) Multiband OFDM Physical Layer Specification, Release Candidate
1.5

. IEEE 802.11ad (2010) Part 11: Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications - Amendment: Enhancements for Very High Throughput in the 60
GHz Band. IEEE 802.11ad-draft

Kavcic A, Patapoutian A (2008) The read channel. Proc IEEE 96(11):1761. DOI 10.1109/
JPROC.2008.2004310

. Guilloud F, Boutillon E, Danger J (2003) A-min decoding algorithm of regular and irregular

LDPC codes. In: Proceedings of the 3nd international symposium on turbo codes & related
topics, Brest, France, pp 451-454

Chen J, Dholakia A, Eleftheriou E, Fossorier MPC, Hu XY (2005) Reduced-complexity
decoding of LDPC codes. IEEE Trans Commun 53(8):1288

Schlifer P, Alles M, Weis C, Wehn N (2012) Design space of flexible multi-gigabit LDPC
decoders. VLSI Des J 2012. DOI 10.1155/2012/942893

Blanksby A, Howland CJ (2002) A 690-mW 1-Gb/s, rate-1/2 low-density parity-check code
decoder. IEEE J Solid State Circuits 37(3):404

Onizawa N, Hanyu T, Gaudet V (2010) Design of high-throughput fully parallel LDPC
decoders based on wire partitioning. IEEE Trans Very Large Scale Integr (VLSI) Syst
18(3):482. DOI 10.1109/TVLSI.2008.2011360

Schlifer P, Wehn N, Lehnigk-Emden T, Alles M (2013) A new dimension of parallelism in ultra
high throughput LDPC decoding. In: IEEE workshop on signal processing systems (SIPS),
Taipei, Taiwan

Weiner M, Nikolic B, Zhang Z (2011) LDPC decoder architecture for high-data rate personal-
area networks. In: Proceedings of the IEEE international symposium on circuits and systems
(ISCAS), pp 1784-1787. DOI 10.1109/ISCAS.2011.5937930

Zhang Z, Anantharam V, Wainwright M, Nikolic B (2010) An efficient 10GBASE-T ethernet
LDPC decoder design with low error floors. IEEE J Solid State Circuits 45(4):843. DOI 10.
1109/JSSC.2010.2042255

Calhoun B, Brooks D (2010) Can subthreshold and near-threshold circuits go mainstream?
IEEE Micro 30(4):80. DOI 10.1109/MM.2010.60


http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6517513
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6517513

2 Springer
http://www.springer.com/978-3-319-10568-0

Advanced Hardware Design for Error Correcting Codes
Chavet, C.; Coussy, P. (Eds.)

2015, X, 192 p. 81 illus., 25 illus. in color., Hardcover
ISBEMN: 978-3-319-10568-0



	2 Challenges and Limitations for Very High Throughput Decoder Architectures for Soft-Decoding
	2.1 Motivation
	2.2 Architectures for Soft Decision Reed–Solomon Decoders
	2.2.1 Introduction
	2.2.2 Information Set Decoding
	2.2.2.1 Original OSD
	2.2.2.2 Reduced Complexity Algorithm for Hardware
	2.2.2.3 HDD Aided Decoding
	2.2.2.4 Implemented OSD Version

	2.2.3 Hardware Architecture
	2.2.3.1 Architecture Overview
	2.2.3.2 Sorting Unit
	2.2.3.3 Syndrome Calculation Unit
	2.2.3.4 Column Generator Unit
	2.2.3.5 Gaussian Elimination Unit
	2.2.3.6 Correction Unit
	2.2.3.7 Hard Decision Decoder
	2.2.3.8 Fixed Point Quantization Issues
	2.2.3.9 Pipelining and Latency Issues

	2.2.4 Implementation Results

	2.3 Architectures for Turbo Code Decoders
	2.4 High Throughput Architectures for Low Density Parity Check Decoders
	2.4.1 LDPC Decoding
	2.4.2 LDPC Decoder Design Space
	2.4.3 Exploring a New Dimension in the High Throughput LDPC Decoder Design Space
	2.4.3.1 Core Duplication
	2.4.3.2 Unrolling Iterations

	2.4.4 Comparison of Unrolled LDPC Decoders to State-of-the-Art Architectures
	2.4.5 Future Work

	References


