
Chapter 2
Random Field Representation

Nonlinear conservation laws subject to uncertainty are expected to develop solutions
that are discontinuous in spatial as well as in stochastic dimensions. In order to
allow piecewise continuous solutions to the problems of interest, we follow [7] and
broaden the concept of solutions to the class of functions equivalent to a function
f , denoted Cf , and define a normed space that does not require its elements to
be smooth functions. Let .˝;F ;P/ be a probability space with event space ˝ ,
and probability measure P defined on the �-field F of subsets of ˝ . Let � D
f�j .!/gNjD1 be a set of N independent and identically distributed random variables
for ! 2 ˝ . We consider second-order random fields, i.e., we consider f belonging
to the space

L2.˝;P/ D
�

Cf jf measurable w.r.t.PI
Z
˝

f 2dP.�/ < 1
�
: (2.1)

The inner product between two functionals a.�/ and b.�/ belonging to L2.˝;P/

is defined by

ha.�/b.�/i D
Z
˝

a.�/b.�/dP.�/: (2.2)

This inner product induces the norm kf k2L2.˝;P/ D hf 2i.
Spectral representations of random functionals aim at finding a series expansion

in the form

f .�/ D
1X
kD0

fk k.�.!//;

where f k.�/g1kD0 is the set of basis functions and ffkg1kD0 is the set of coefficients
to be determined.
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12 2 Random Field Representation

The coefficients are defined by the projections

fk D h kf i ; k D 0; 1; : : :

2.1 Karhunen-Loève Expansion

The Karhunen-Loève expansion [10, 14] provides a series representation of a
random field in terms of its spatial correlation (covariance kernel). Any second-order
random field f .x; !/ on a spatial domain˝x can be represented as the Karhunen-
Loève expansion

f .x; !/ D Nf .x/C
1X
kD1

�k.!/
p
�k�

KL

k .x/;

where Nf .x/ is the mean of f .x; !/, the random variables �k are uncorrelated with
mean zero, and �k and �KL

k are the eigenvalues and eigenfunctions of the covariance
kernel, respectively.

The generalized eigenpairs .�k;�
KL

k / can be determined from the solution of the
generalized eigenvalue problem

Z
˝x

C f .x;x
0/�KL

k .x
0/dx0 D �k�

KL

k .x/; k 2 N
C; (2.3)

where the covariance function Cf defines the two-point spatial statistics. The
covariance function Cf does not contain information sufficient to determine
the joint probability distribution of the random variables f�kg. Instead, the joint
probability of these random variables must be determined by data.

The Karhunen-Loève expansion is bi-orthogonal, i.e.,

D
�KL

j .x/;�
KL

k .x/
E
˝x

�
Z
˝x

�
�KL

j .x/
	T
�KL

k .x/dx D ıjk; (2.4)

˝
�j �k

˛
˝

�
Z
˝

�j �kdP D ıjk: (2.5)

For random fields with known covariance structure, the Karhunen-Loève expan-
sion is optimal in the sense that it minimizes the mean-squared error. The covariance
function of the output of a problem is in general not known a priori. However,
Karhunen-Loève representations of the input data can often be combined with
generalized chaos expansions, presented in the next section.
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2.2 Generalized Chaos Expansions

Infinite series expansions in terms of functions that are orthogonal with respect to the
probability measure of some random parametrization are used for representation of
stochastic quantities of interest. The corresponding series expansions of these basis
functions are referred to as generalized chaos expansions. Possible choices include
polynomials and wavelets.

2.2.1 Generalized Polynomial Chaos Expansion

The polynomial chaos (PC) framework based on series expansions of Hermite
polynomials of Gaussian random variables was introduced by Ghanem and Spanos
[9] and builds on the theory of homogeneous chaos introduced by Wiener in 1938
[18]. Any second-order random field can be expanded as a generalized Fourier
series in the set of orthogonal Hermite polynomials, which constitutes a complete
basis in the Hilbert space L2.˝;P/ defined by (2.1). The resulting polynomial
chaos series converges in the L2.˝;P/ sense as a consequence of the Cameron-
Martin theorem [3]. Although not limited to represent functions with Gaussian
distribution, the polynomial chaos expansion achieves the highest convergence
rate for Gaussian functions. Xiu and Karniadakis [20] introduced the generalized
polynomial chaos (gPC) expansion, where random functions are represented by any
set of hypergeometric polynomials from the Askey scheme [2]. Hence, a function
with uniform distribution is optimally represented by Legendre polynomials that
are orthogonal with respect to the uniform measure, and a gamma-distributed input
by Laguerre polynomials that are orthogonal with respect to the gamma measure,
and so on. The optimality of the choice of stochastic expansion pertains to the
representation of the input; the representation of the output of a nonlinear problem
will likely be highly nonlinear as expressed in the basis of the input.

The Cameron-Martin theorem applies also to gPC with non-Gaussian random
variables, but only when the probability measure P.�/ of the stochastic expansion
variable � is uniquely determined by the sequence of moments,

h�ki D
Z
˝

�kdP.�/; k 2 N0:

This is not always the case in situations commonly encountered; for instance, the
lognormal generalized chaos does not satisfy this property. Thus, there are cases
when the gPC expansion does not converge to the true limit of the random variable
under expansion [6]. However, lognormal random variables may be successfully
represented by gPC satisfying the determinacy of moments (cf. [6] for a detailed
exposition on this topic), e.g., Hermite polynomial chaos expansion. This motivates
our choice to use Hermite polynomial chaos expansion to represent lognormal
viscosity in Chap. 5.
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Consider a generalized chaos basis f i.�/g1iD0 spanning the space of second-
order (i.e., finite variance) random processes on this probability space. The basis
functionals are assumed to be orthonormal, i.e., they satisfy

h i j i D ıij : (2.6)

Any second-order random field u.x; t; �/ can be expressed as

u.x; t; �/ D
1X
iD0

ui .x; t/ i .�/; (2.7)

where the coefficients ui .x; t/ are defined by the projections

ui .x; t/ D hu.x; t; �/ i .�/i; i D 0; 1; : : : : (2.8)

For notational convenience, we will not distinguish between u and its generalized
chaos expansion.

Independent of the choice of basis f i g1iD0, we can express the mean and variance
of u.x; t; �/ as

E.u.x; t; �// D u0.x; t/; Var.u.x; t; �// D
1X
iD1

u2i .x; t/;

respectively. Similarly, higher-order statistics, e.g., skewness and kurtosis, can
be derived as functions of the gPC coefficients. For practical purposes, (2.7) is
truncated to a finite orderM , and we set

u.x; t; �/ �
MX
iD0

ui .x; t/ i .�/: (2.9)

The number of basis functions M C 1 is dependent on the number of stochastic
dimensionsN and the order of truncation of the generalized chaos expansion.

In order to construct a multi-dimensional gPC basis, let � D .�1; : : : ; �N /
T 2

R
N be a random vector of input uncertainties defined on the probability space

.˝;F ;P/. Assume that the entries of � are independent and identically distributed
(i.i.d.). For l D 1; : : : ; d , let f kl .�l /g1kD0 be a polynomial basis orthonormal with
respect to the measure of the random variable �l . The multi-dimensional gPC basis
functions may then be obtained by tensorization of the univariate basis functions
f kl .�l /g1kD0, i.e.,

 k.�/ D
NY
lD1

 kl .�l /; (2.10)
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with the multi-index k 2 N
N
0 WD f.k1; � � � ; kN / W kl 2 N [ f0gg. In practice, the

multi-index k has to be truncated in order to generate a finite cardinality basis. This
may be achieved by restricting k to the sets

�p;N WD ˚
k 2 N

N
0 W kkk1 � p



(2.11)

or

	p;N WD ˚
k 2 N

N
0 W kl � p; l D 1; : : : ; N



(2.12)

to achieve the so-called complete polynomial or tensor polynomial basis, respec-
tively. The bases defined by the index sets (2.11) and (2.12) are isotropic in the
N stochastic dimensions. By replacing p with a dimension-dependent integer
pl , l D 1; : : : ; N , anisotropic bases tailored to accuracy requirements for each
stochastic dimension may be obtained. For simplicity of notation, we subsequently
consider a one-to-one relabeling of the form f k.�/gMkD0 for the gPC basis f k.�/g,
k 2 �p;N or 	p;N , where M C 1 is the cardinality of the gPC basis. In particular,
for the complete polynomial basis, the cardinality is given by

M C 1 D .p CN/Š

pŠN Š
;

while for the tensor polynomial basis, the cardinality is

M C 1 D .p C 1/N :

As an example, consider the case of p D 5 and N D 2 stochastic dimensions.
That means 21 and 36 basis functions for the complete polynomial basis and the
tensor polynomial basis, respectively. If we keep p D 5 and include 5 stochastic
dimensions,N D 5, the complete polynomial basis contains 252 basis functions. In
contrast, the corresponding tensor polynomial basis contains as many as 7,776 basis
functions.

An increase in the number of random parameters corresponds to an exponential
increase in the cardinality of the series. This increase quickly leads to infeasible
numerical problems and has spurred broad interest in alternative formulations not
based on the tensorization introduced earlier. Sparse representations and adaptive
techniques [8, 16, 17] are becoming increasingly popular, although their use remains
fairly limited for hyperbolic problems. For this reason, and because the fundamental
issues related to the numerical treatment of the stochastic Galerkin schemes are well
expressed in one-dimensional uncertain problems, we will not discuss this issue
further but rather focus on the N D 1 case.

The basis f i g1iD0 is often a set of orthogonal polynomials. Given the two lowest-
order polynomials, higher-order polynomials can be generated by the recurrence
relation
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 n.�/ D .an� C bn/ n�1.�/C cn n�2.�/;

where the coefficients an, bn, cn are specific to the class of polynomials.
The truncated chaos series (2.9) may result in solutions that are unphysical. An

extreme example is when a strictly positive quantity, say density, with uncertainty
within a bounded range is represented by a polynomial expansion with infinite
range, for instance Hermite polynomials of standard Gaussian variables. The
Hermite series expansion converges to the true density with bounded range in the
limit M ! 1, but for a given order of expansion, say M D 1, the representation

 D 
0 C 
1H1.�/ results in negative density with nonzero probability since the
Hermite polynomial H1 takes arbitrarily large negative values. Similar problems
may be encountered also for polynomial representations with bounded support.
Polynomial reconstruction of a discontinuity in stochastic space leads to Gibbs
oscillations that may yield negative values of an approximation of a solution that
is close to zero but strictly positive by definition. Whenever discontinuities are
involved, care is needed with the use of global polynomial representations; this
caveat underlies most of the development in Chap. 8.

Spectral convergence of the generalized polynomial chaos expansion is observed
when the solutions are sufficiently regular and continuous [20], but for general non-
linear conservation laws – such as in fluid dynamics problems – the convergence
is usually less favorable. Spectral expansion representations are still of interest
for these problems because of their potential efficiency with respect to brute force
sampling methods and to gain insights from writing the governing equations for the
stochastic problem. However, special attention must be devoted to the numerical
methodology used. For some problems with steep gradients in the stochastic
dimensions, polynomial chaos expansions completely fail to capture the solution
[13]. Global methods can still give a superior overall performance, for instance
Padé approximation methods based on rational function approximation [4], and
hierarchical wavelet methods that are global methods with localized support of each
resolution level [11]. These methods do not need input such as mesh refinement
parameters, and they are not dependent on the initial discretization of the stochastic
space. An alternative to polynomial expansions for non-smooth and oscillatory
problems is generalized chaos based on a localization or discretization of the
stochastic space [5,15]. Methods based on stochastic discretization such as adaptive
stochastic multi-elements [17] and stochastic simplex collocation [19] will be
described in some more detail in Sect. 3.2.3. The robust properties of discretized
stochastic space can also be obtained by globally defined wavelets, see [11,12]. The
next section outlines piecewise linear Haar wavelet chaos, followed by a description
of piecewise polynomial multiwavelet generalized chaos. These classes of basis
functions are robust to discontinuities.

2.2.2 Haar Wavelet Expansion

Haar wavelets are defined hierarchically on different resolution levels, representing
successively finer features of the solution with increasing resolution. They have
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non-overlapping support within each resolution level, and in this sense they are
localized. Still, the Haar basis is global due to the overlapping support of wavelets
belonging to different resolution levels. Haar wavelets do not exhibit spectral
convergence, but avoid the Gibbs phenomenon.

Consider the mother wavelet function defined by

 W .y/ D
8<
:

1 for 0 � y < 1
2

�1 for 1
2

� y < 1

0 otherwise
: (2.13)

Based on (2.13), we get the wavelet family

 Wj;k.y/ D 2j=2 W .2j y � k/; j D 0; 1; : : : I k D 0; : : : ; 2j�1:

Given the probability measure of the stochastic variable � with cumulative distribu-
tion function F�.�0/ D P.! W �.!/ � �0/, define the basis functions

Wj;k.�/ D  Wj;k.F�.�//:

Adding the basis functionW0.y/ D 1 in y 2 Œ0; 1� and concatenating the indices j
and k into i D 2j C k so that Wi.�/ �  Wn;k.F�.�//, we can represent any random
variable u.x; t; �/ with finite variance as

u.x; t; �/ D
1X
iD0

ui .x; t/Wi .�/;

which is of the form (2.7). Figure 2.1 depicts the first eight basis functions of the
generalized Haar wavelet chaos.

2.2.3 Multiwavelet Expansion

The main idea of multiwavelets (MW) is to combine the localized and hierarchical
structure of Haar wavelets with the convergence properties of orthogonal polynomi-
als. The procedure of constructing these multiwavelets using Legendre polynomials
follows the algorithm in [1] and is outlined in [12]; additional details are included
in Appendix A.

Starting with the space VNp of polynomials of degree at most Np defined on
the interval Œ�1; 1�, the construction of multiwavelets aims at finding a basis of
piecewise polynomials for the orthogonal complement of VNp in the space VNpC1
of polynomials of degree at most Np C 1. Merging the bases of VNp and that of the
orthogonal complement of VNp in VNpC1, we obtain a piecewise polynomial basis
for VNpC1. Continuing the process of finding orthogonal complements in spaces of
increasing degree of piecewise polynomials leads to a basis for L2.Œ�1; 1�/.
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Fig. 2.1 Haar wavelets, resolution levels 0,1,2

We first introduce a smooth polynomial basis on Œ�1; 1�. Let fLei .�/g1iD0 be
the set of Legendre polynomials that are defined on Œ�1; 1� and orthogonal with
respect to the uniform measure. The normalized Legendre polynomials are defined
recursively by

LejC1.�/ D p
2j C 3

�p
2j C 1

j C 1
�Lej .�/ � j

.j C 1/
p
2j � 1

Lej�1.�/
�
;

Le0.�/ D 1; Le1.�/ D p
3�:

The set fLei.�/gNpiD0 is an orthonormal basis for VNp . Double products are readily
computed from (2.6), and higher-order products are precomputed using numerical
integration.

Following the algorithm by Alpert [1] (see Appendix A), we construct a set of
mother wavelets f Wi .�/gNpiD0 defined on the domain � 2 Œ�1; 1�, where

 Wi .�/ D
8<
:
�i .�/ �1 � � < 0

.�1/NpCiC1�i .�/ 0 � � < 1

0 otherwise;
(2.14)

where �i .�/ is an i th-order polynomial. By construction, the set of wavelets
f Wi .�/gNpiD0 are orthogonal to all polynomials of order at most Np , hence the
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wavelets are orthogonal to the set fLei.�/gNpiD0 of Legendre polynomials of order
at most Np . Based on translations and dilations of (2.14), we get the wavelet family

 Wi;j;k.�/D2j=2 Wi .2j ��k/; iD0; : : : ; Np; j D0; 1; : : : ; kD0; : : : ; 2j�1:

Let  m.�/ for m D 0; : : : ; Np be the set of Legendre polynomials up to order Np,
and concatenate the indices i; j; k into m D .Np C 1/.2j C k � 1/ C i so that
 m.�/ �  Wi;j;k.�/ for m > Np. With the MW basis f m.�/g1mD0, we can represent
any random variable u.x; t; �/ with finite variance as

u.x; t; �/ D
1X
mD0

um.x; t/ m.�/;

which is again of the form (2.7). In the computations, we truncate the MW series
both in terms of the piecewise polynomial order Np and the resolution level Nr .
With the index j D 0; : : : ; Nr , we retain P D .Np C 1/2Nr terms of the MW
expansion.

The truncated MW basis is characterized by the piecewise polynomial order Np
and the number of resolution levels Nr , illustrated in Fig. 2.2 for Np D 2 and
Nr D 3. As special cases of the MW basis, we obtain the Legendre polynomial
basis for Nr D 0 (i D j D 0), and the Haar wavelet basis of piecewise constant
functions for Np D 0.
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Fig. 2.2 Multiwavelets for Np D 2, Nr D 3. Resolution level 0 consists of the first Np C 1

Legendre polynomials and their orthogonal complement. Resolution level j > 0 contains
.Np C 1/2j wavelets each. Each basis function is a piecewise polynomial of order Np
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2.2.4 Choice of Basis Functions for Generalized Chaos

The choice of basis functions for the generalized chaos expansion of a given
problem of interest is in general non-trivial. An optimal set of basis functions for
the input parameters may be highly inappropriate for the propagation of uncertainty
to the output. In particular, this is the case for the nonlinear hyperbolic problems that
will be encountered in subsequent chapters. These problems develop discontinuities
in finite time, and a polynomial reconstruction will lead to oscillations. The
consequence is lack of accuracy or even breakdown of the numerical method.

For smooth problems, the situation is not that severe. Transformations between
probability measures allow the use of non-optimal basis functions, e.g., Legendre
polynomials to represent normal distributions. The exponential convergence rate of
PC expansions is in general not maintained when a non-optimal basis is chosen [21].

2.3 Exercises

2.1. PC formulations of UQ problems typically start from infinite series expansions,
ending up with a formulation involving a finite number of PC terms. This truncation
introduces a stochastic truncation error that propagates in subsequent operations on
the PC series. Verify that the finite order expansion of the product of F � G is
different from the product of the expansions of F and G.

2.2. Orthogonal polynomial representations are often used with the hope that a
small number of terms are sufficient to accurately represent a given function. Study
the truncation error of Hermite expansions of the non-linear functions sin.�/, x3.�/,
log.�/, x2.�/=.3��/, assuming that � is a standard normal random variable. Plot the
L2 error as a function of the order M of the expansion (you need to find functions
that can be integrated analytically for the coefficients – or ensure that sufficient
accuracy is achieved by the numerical integration).

2.3. Orthogonal polynomials are frequently used to represent PDE solutions in
UQ. Depending on the PDE, we may have an idea of the kind of solution we can
expect. To accurately represent the PDE solution, it is necessary to know how to
accurately represent a function similar to the solution, i.e., how many gPC terms
to be retained, and whether the chosen gPC basis is suitable. Consider Legendre
polynomial expansion of the sine and Heaviside functions. Consider expansions of
different order and compare the resulting approximations with the true function.
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