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Abstract Compared to macroscopic systems, fluids on the micro- and nanoscales
have a larger surface-to-volume ratio, thus the boundary condition becomes crucial
in determining the fluid properties. No-slip boundary condition has been applied
successfully to wide ranges of macroscopic phenomena, but its validity in micro-
scopic scale is questionable. A more realistic description is that the flow exhibits
slippage at the surface, which can be characterized by a Navier slip length. We
present a tunable-slip method by implementing Navier boundary condition in
particle-based computer simulations (Dissipative Particle Dynamics as an example).
To demonstrate the validity and versatility of our method, we have investigated two
model systems: (i) the flow past a patterned surface with alternating no-slip/partial-
slip stripes and (ii) the diffusion of a spherical colloidal particle.
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1 Introduction

Modeling fluids in small length scales from micrometer to nanometer not only is a
fundamental problem in fluid mechanics, but also plays a paramount role in modern
fluidic devices [1]. These micro- or nanofluidic devices can be found in wide range
of applications and in many different fields. Examples include the development of
inkjet printheads for xerography, lab-on-a-chip technology, and manipulation and
separation of bio-molecules. Compared to macroscopic systems, microscopic fluids
have a larger surface-to-volume ratio, therefore boundary conditions become crucial
in determining the hydrodynamic properties. The most well-known boundary
condition is the no-slip boundary condition, i.e., the fluid velocity vanishes at a
fluid/solid interface. No-slip boundary condition has been successfully applied to
wide ranges of macroscopic phenomena, but it has no microscopic justification
and its validity in small length scales is questionable. A more general boundary
condition is the Navier boundary condition, which is described in the following.

Assume that a fluid/solid interface lies in the xOy plane and the fluid occupies
z > 0 half-space (Fig. 1). Let us consider the case of a laminar Couette flow in
the y-direction, with a slip velocity vs at z D 0. The tangential force per unit area
(component of the shear stress �yz), to the first-order approximation, is proportional
to the slip velocity vs ,

�yz D 
svs; (1)

where 
s is the surface friction coefficient. For Newtonian fluids, the shear stress
can also be written as

�yz D 	
@vy
@z
; (2)

where 	 is the shear viscosity of the fluid. Combining Eqs. (1) and (2), one arrives
the Navier boundary condition [2]

vs D 	


s

@vy
@z

D b
@vy
@z
: (3)

Fig. 1 Schematic
representation of Navier
boundary condition on a flat
surface and the slip length



Application of Tunable-Slip Boundary Conditions in Particle-Based Simulations 21

The degree of slippage at the surface is quantified in terms of the Navier slip length
b D 	=
s. No-slip boundary condition is recovered for b D 0, while for ideal
frictionless surface we have b ! 1. The physical meaning of the slip length is the
distance within the solid at which the flow velocity extrapolates to zero.

2 Implementation

The main question we try to address in this contribution is the implementation
of Navier boundary condition with tunable slip length in particle-based computer
simulations. Any models of a solid surface require at least two components: (a)
an excluded interaction to prevent fluid particles penetrating the hard surface;
and (b) an effective interaction due to the surface friction. In the following, we
shall use Dissipative Particle Dynamics (DPD) [3–5] to demonstrate the tunable-
slip method, although the basic idea is quite general and can be applied to other
simulation techniques. In the following we only give a brief description and
introduce parameters for late discussions. For a more detailed description, please
consult the origin reference [6].

We model the impermeable surface using a pure repulsive interaction of the
Weeks-Chandler-Andersen form [7],

V.z/ D
(
4"Œ. �z /

12 � . �z /6 C 1
4
�; z < 6

p
2�

0; z � 6
p
2�

(4)

where z is the distance between the fluid particle and the wall. The WCA parameters
also set the unit system (" for the energy, � for the length, and m for the particle
mass).

The interactions between the surface and fluid can be very complicated and
depend on the chemical details. But in the mesoscale, the main effect of the surface
is to provide friction. Inspired by the form of Eq. (1), we model the fluid/surface
friction by a dissipative force to the fluid, which depends on the relative velocity
between the fluid particle and the wall,

FD
i D ��L!L.z/.vi � vwall/: (5)

The friction constant �L is an adjustable parameter that characterizes the strength
of the wall friction, and it can be used to vary the slip length. The position-
dependent function!L.z/ is a monotonically decreasing function of the wall-particle
separation, and vanishes at certain cutoff zc to mimic the finite range of the
wall interaction. Additionally, a random force obeying the fluctuation-dissipation
theorem is required to ensure the correct equilibrium statistics,

FR
i D p

2kBT �L!L.z/�i ; (6)
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Fig. 2 Relation between the slip length b and the wall friction parameter �L. The inset shows an
enlarged portion of the region where the slip length is zero. No-slip boundary condition can be
implemented by using �L D 5:26

p
m"=� . Dashed curves show analytical prediction Eq. (7)

where kB is the Boltzmann constant, T the temperature, and � i a vector whose
component is a Gaussian distributed random variable with zero mean and unit
variance.

The slip length b can be computed analytically as a function of a dimensionless
parameter ˛ D z2c�L�=	, where � is the fluid number density [6]. For a linear
function !L.z/ D 1 � z=zc , the relation is

b

zc
D 2

˛
� 7

15
� 19

1800
˛ C � � � (7)

This formula works quite well for large values of b, but shows deviation near the no-
slip region (b=� � 1). The slip length can also be measured by short simulations of
Poiseuille and Couette flow in a thin channel geometry. Figure 2 shows the relation
between the slip length b and the wall friction parameter �L. One can then choose a
suitable value of �L based on the requirement of the slip length.

To demonstrate the validity and versatility of our method, we investigate two
model systems: the flow past a patterned surface with alternating no-slip/partial-slip
stripes (Sect. 3) and free diffusion of a slipping colloidal particle (Sect. 4).

3 Striped Surfaces

Patterned surfaces play a major role in micro- and nanofluidics. One important
example is the superhydrophobic Cassie surfaces, where no-slip and partial-slip area
arrange in a striped pattern (see Fig. 3a). The no-slip region consists of fluid/solid
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Fig. 3 Sketch of the striped surface: � D 0 to longitudinal stripes, � D �=2 corresponds to
transverse stripes (a), and of the liquid interface in the Cassie state (b)

interface, while the partial-slip region consists of trapped gas which is stabilized
by a rough wall texture. These superhydrophobic surfaces exhibit very low friction,
and the drag reduction is associated with the large slip length over the fluid/gas
interfaces.

We simulate the superhydrophobic Cassie surface using the “gas-cushion model”
[8]. Instead of modeling the physically corrugated surface, we use a flat surface with
alternating no-slip and partial-slip boundary conditions. The value of the slip length
b over the gas sector is related to the thickness of the gas region e by

b ' 	

	g
e; (8)

where 	 and 	g are shear viscosities of a gas and a liquid (see Fig. 3b). We consider
a striped pattern with a periodicityL. The area fractions of the solid and gas sectors
are �1 and �2, respectively. For inhomogeneous surfaces, the effective slip length
depends on the flow direction � and is in general a tensorial quantity beff. For the
special case of striped surfaces, the eigenvalues of the slip length tensor correspond
to the flow direction parallel to the stripes (maximum slip bk

eff) and perpendicular to
the stripes (minimum slip b?

eff).
We compare our simulation results with the numerical solution to the Stokes

equations and some analytical formulas. The results for the perfect-slip gas sector
(b � L) are well-known [9, 10]

b
k
eff

L
D 2b?

eff

L
' 1

�
ln

�
sec

�
��2

2

�	
: (9)
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Fig. 4 Effective downstream
slip length, beff.�/ as a
function of tilt angle � for a
pattern with b=L D 1:0 and
�2 D 0:5. Symbols with error
bars are simulation data.
Curves are theoretical values
calculated using Eq. (12) with
eigenvalues obtained by a
numerical method (solid) and
by Eqs. (10 and 11)
(dot-dashed)
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For arbitrary value of b, Belyaev and Vinogradova suggested approximate expres-
sions [11],

b
k
eff

L
' 1

�

ln

�
sec

�
��2

2

�	

1C L

�b
ln

�
sec

�
��2

2

�
C tan

�
��2

2

�	 ; (10)

b?
eff

L
' 1

2�

ln

�
sec

�
��2

2

�	

1C L

2�b
ln

�
sec

�
��2

2

�
C tan

�
��2

2

�	 : (11)

These formulas are accurate over wide range of the parameters and recover to Eq. (9)
at large b value.

We start with varying � for patterns that has equal areas of no-slip and partial-
slip regions (�2 D 0:5) and the slip length is in the intermediate region b=L D 1:0.
Figure 4 shows the results for the effective downstream slip lengths, beff.�/, and
the theoretical curve

beff.�/ D b
k
eff cos2 � C b?

eff sin2 �: (12)

The simulation data are in good agreement with theoretical predictions, confirming
the anisotropy of the flow and the validity of the concept of a tensorial slip for striped
surfaces.

Next we examine the effect of varying the fraction of gas/liquid interface, �2.
Figure 5a shows the effective slip lengths bk

eff and b?
eff as a function of �2. The striped

pattern again has b=L D 1:0. The results clearly demonstrate that the gas fraction�2
is the main factor in determining the value of effective slip; the slip length increases
significantly when the gas fraction increases to unity.
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Fig. 5 (a) Effective slip
lengths (symbols) as a
function of gas-sector fraction
�2 for b=L D 1:0. (b)
Effective slip lengths as a
function of local slip length b
for �2 D 0:5. The numerical
results are shown as solid
curves. Also shown are
analytic expressions Eqs. (10
and 11) (dot-dashed), and
asymptotic formulas Eq. (9)
(dashed lines, for (b) only)
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Finally, we present the effective slip lengths as a function of the local slip length
b at gas/liquid interface in Fig. 5b. The pattern has equal fractions of solid and
gas, �1 D �2 D 0:5. The analytic formulas Eqs. (10) and (11) are shown in dot-
dashed lines, which are accurate over wide range of b value. The effective slip
lengths reach the asymptotic values predicted by Eq. (9) at large values of b=L.
The excellent agreement between the simulation data and theoretic predictions
promotes studies of more complex systems and applications, such as thin channels
with symmetric stripes [12], anisotropic flow over weakly slipping stripes [13],
trapezoidal grooves [14], electroosmotic flows [15], polyelectrolyte electrophoresis
[16, 17], and separation of chiral particles [18].
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4 Colloidal Particle

Colloidal dispersions have numerous applications in different fields such as chem-
istry, biology, medicine, and engineering [19, 20]. Better understanding of the
dynamics of colloidal particles can provide insights to improve the material
properties. Molecular simulations can shed light on the dynamic phenomena of
colloidal particles in a well-defined model system. Due to the size difference
between the colloids and solvent molecules, it is difficult to simulate the system
on the smaller length scale (the solvent), and one has to rely on coarse-graining
technique to reach meaningful time scales. The general idea is to couple the solute
with a mesoscopic model for Navier-Stokes fluids. One of the examples is the
coupling scheme developed by Ahlrichs and Dünweg [21], which combines a
Lattice-Boltzmann approach for the fluid and a continuum Molecular Dynamics
model for the polymer chains. The method has been extended to colloidal particles
[22, 23]. We shall discuss a similar colloid model based on DPD.

The interactions between the colloid and fluid can be separated into two
components, similar to the case of flat surface presented in Sect. 2. One component
is the hard-core interaction to prevent the fluid entering the colloid. We use a pure
repulsive potential of WCA form (Eq. (4)). The other one is the friction between
the colloid surface and the fluid, which can be modeled by a pair of dissipative and
random forces (cf. Eqs. (5) and (6)). The complication arises for colloidal particles
which have a curved surface. There are two possible solutions. The first is to treat
the surface as a continuous two-dimensional object and replace z in the friction
force pair by the shortest distance between the fluid particle and the curved surface.
This can be easily implemented for simple geometry such as spheres, but becomes
complicated for colloids with irregular shape. The second solution is to discretize
the surface by many interaction sites, whose positions are fixed in the local frame
of the colloid. These sites interact with the solvent through the DPD dissipative
and stochastic interactions, with a friction coefficient �L (Eqs. (5) and (6) but with
z replaced by bead separation r). Boundary conditions on the colloid surface can
be tuned by vary the value of �L. In this work, we opt to the second option for
better extensibility. Figure 6 shows a representative snapshot of a colloidal particle
decorated by many surface sites.

The total force exerted on the colloid is given by the sum over all forces on the
surface sites, plus the conservative excluded volume interaction,

FC D
NX
iD1



FD
i .ri /C FR

i .ri /
�C FWCA: (13)
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Fig. 6 Snapshot of a
colloidal particle in solution.
The surface sites are
represented by the dark
beads, and the light beads are
fluid particles. Only selective
solvent beads are shown here
for clarity

Here ri denotes the position of i -th surface sites and there areN of them. Similarly,
the torque exerted on the colloid can be written as

TC D
NX
iD1



FD
i .ri /C FR

i .ri /
� � .ri � rcm/; (14)

where rcm is the position of the colloid’s center-of-mass. Note that the excluded
volume interaction does not contribute to the torque because the associated force
points towards the center for spherical colloids, but this is in general not true for
irregular shape. The total force and torque are then used to update the position and
velocity (both translational and rotational) of the colloid at the next time step.

The diffusion constant of the colloid can be calculated from the velocity
autocorrelation function using the Green-Kubo relation or by a linear fit to the
mean-square displacement. Due to the periodic boundary condition implemented
in simulations, the diffusion constant for a single colloid in a finite simulation box
depends on the box size. Figure 7a demonstrates the finite-size effect by plotting the
mean-square displacement as a function of time for two different simulation boxes
L D 10 � and L D 30 � .

The diffusion constant increases with increasing box size. For small simulation
box, the long-wavelength hydrodynamic modes are suppressed due to the coupling
between the colloid and its periodic images. The diffusion constant can be written
in terms of an expansion of 1=L, the reciprocal of the box size [24]

D D kBT

6�	

�
1

R
� 2:837

L
C 4:19R2

L3
C � � �

�
: (15)

In Fig. 7b, simulation results of the diffusion constant are plotted in terms of 1=L.
The simulation results and the hydrodynamic theory show reasonable agreement.

Most of the studies on colloid dynamics have been focus on the no-slip boundary
condition. We have investigated the response of charged colloids under alternating
electric fields [25–28]. No-slip is valid for large colloids, but may be questionable
for nanometer-sized or hydrophobic particles. Furthermore, one can adjust the
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Fig. 7 (a) Mean-square displacement of a spherical colloid with radius R D 3:0 � for two
different sizes of simulation box, L D 10 � and L D 30 � . (b) Diffusion constant D for a
spherical colloid of radius R D 3:0 � as a function of the reciprocal of the box size 1=L. The curve
is the prediction from Eq. (15). Different symbols correspond to simulation runs with different
initialization

boundary condition by modifying the surface properties. One advantage of our
colloid model is the ability to adjust the boundary condition from no-slip to full-
slip by changing the friction coefficient �L. Figure 8 illustrates the change of the
diffusion constant by varying �L in a simulation box L D 30 � . This freedom
provides opportunities to study the effect of hydrodynamic slip on the colloid
dynamics [29, 30].



Application of Tunable-Slip Boundary Conditions in Particle-Based Simulations 29

0.008

0.010

0.012

0.014

0.016

 0.1 1  10

D
 [σ

(ε
/m

)1/
2 ]

γL [(mε)1/2/σ]

Fig. 8 Diffusion constant D for a spherical colloid of radius R D 3:0 � as a function of the
surface-fluid DPD friction coefficient �L. The simulation box has a size of L D 30 � . No-slip is
realized for �L > 10

p
m"=�

5 Summary

We have presented a coarse-grained method to implement Navier boundary condi-
tion with arbitrary slip length in particle-based simulations. We have validated our
method by simulating a flat homogeneous surface and proposed an analytical rela-
tion between the slip length and simulation parameters. To illustrate the versatility
of the method, we extend the method to inhomogeneous surfaces by investigating
Newtonian flow over superhydrophobic striped surface, and to curved surfaces by
studying the dynamics of single spherical colloid. Our method provides a general
tool to exam the slip-dependent phenomena in particle-based simulations and should
be suitable to study more complex system, for example, flow over structured surface
or channel and dynamics of aspherical colloids.
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