
Chapter 2
Black Holes and Thermodynamics:
The First Half Century

Daniel Grumiller, Robert McNees and Jakob Salzer

Abstract Blackhole thermodynamics emerged from the classical general relativistic
laws of black hole mechanics, summarized by Bardeen–Carter–Hawking, together
with the physical insights by Bekenstein about black hole entropy and the semi-
classical derivationbyHawkingof blackhole evaporation.Theblackhole entropy law
inspired the formulation of the holographic principle by ’t Hooft and Susskind, which
is famously realized in the gauge/gravity correspondence by Maldacena, Gubser–
Klebanov–Polaykov and Witten within string theory. Moreover, the microscopic
derivation of black hole entropy, pioneered by Strominger–Vafa within string theory,
often serves as a consistency check for putative theories of quantum gravity. In this
book chapter we review these developments over five decades, starting in the 1960s.
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2.1 Introduction and Prehistory

Introductory remarks. The history of black hole thermodynamics is intertwined
with the history of quantum gravity. In the absence of experimental data capable of
probing Planck scale physics the best we can do is to subject putative theories of
quantum gravity to stringent consistency checks. Black hole thermodynamics pro-
vides a number of highly non-trivial consistency checks. Perhaps most famously, any
theory of quantum gravity that fails to reproduce the Bekenstein–Hawking relation
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SBH = kB c3Ah

4�G
(2.1)

between the black hole entropy SBH, the area of the event horizon Ah , and Newton’s
constant G would be regarded with a great amount of skepticism (see e.g [1]).

In addition to providing a template for the falsification of speculative models of
quantum gravity, black hole thermodynamics has also sparked essential develop-
ments in the field of quantum gravity and remains a vital source of insight and new
ideas. Discussions about information loss, the holographic principle, themicroscopic
origin of black hole entropy, gravity as an emergent phenomenon, and themore recent
firewall paradox all have roots in black hole thermodynamics. Furthermore, it is an
interesting subject in its own right, with unusual behavior of specific heat, a rich
phenomenology, and remarkable phase transitions between different spacetimes.

In this review we summarize the development of black hole thermodynamics
chronologically, except when the narrative demands deviations from a strictly his-
torical account. While we have tried to be comprehensive, our coverage is limited
by a number of factors, not the least of which is our own knowledge of the literature
on the subject. Each of the following five sections describes a decade, beginning
with the discovery of the Kerr solution in 1963 [2]. In our concluding section we
look forward to future developments. But before starting we comment on some early
insights that had the potential to impact the way we view the result (2.1).

Prehistory. If the history of black hole thermodynamics begins with the papers of
Bekenstein [3] and Bardeen et al. [4], then the prehistory of the subject stretches back
nearly forty additional years to the work of Tolman, Oppenheimer, and Volkoff in
the 1930s [5–7]. These authors considered the conditions for a ‘star’—a spherically
symmetric, self-gravitating object composed of a perfect fluid with a linear equation
of state—to be in hydrostatic equilibrium. Later, in the 1960s, Zel’dovich showed that
linear equations of state besides the familiar p = 0 (dust) and p = ρ/3 (radiation)
are consistent with relativity [8]. He established the bound p ≤ ρ, with p = ρ

representing a causal limit where the fluid’s speed of sound is equal to the speed of
light. A few years after that, Bondi considered massive spheres composed of such
fluids and included the case p = ρ in his analysis [9].

The self-gravitating, spherically symmetric perfect fluids considered by these
and other authors possess interesting thermodynamic properties. In particular, the
entropy of such objects (which are always outside their Schwarzschild radius) is not
extensive in the usual sense. For example, a configuration composed of radiation has
an entropy that scales with the size of the system as S(R) ∼ R3/2, and a configuration
with the ultra-relativistic equation of state p = ρ has an entropy S(R) ∼ R2 that
scales like the area. But these results do not appear in the early literature (at least, not
prominently) because there was no compelling reason to scrutinize the relationship
between the entropy and size of a gravitating system before the 1970s. It was not until
the 1980s, well after the initial work of Bekenstein and Hawking, that Wald, Sorkin,
and Zhang studied the entropy of self-gravitating perfect fluids with p = ρ/3 [10].
They showed that the conditions for hydrostatic equilibrium—the same conditions
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set out by Tolman, Oppenheimer, and Volkoff—give at least local extrema of the
entropy. With reasonable physical assumptions these objects quite easily satisfy the
Bekenstein bound, S ≤ 2πkBRE/(�c), where R and E are the object’s size and
energy, respectively.

The area law (2.1) is often presented as a surprising deviation from the volume
scaling of the entropy in a non-gravitating system.But the earlywork described above
suggests, without invoking anything as extreme as a black hole, that this is something
we should expect from General Relativity. Even a somewhat mundane system like
a sufficiently massive ball of radiation has an entropy that is not proportional to
its volume. The surprising thing about the area law is not that the entropy of the
system grows much more slowly than a volume. Rather, it is that the entropy of a
black hole seems to saturate, at least parametrically, an upper bound on the growth
of entropy with the size of a gravitating system. Such a bound, which follows from
causality, could have been conjectured several years before the work of Bekenstein
and Hawking.

2.2 1963–1973

Black hole solutions and the uniqueness theorem. After the first black hole solu-
tionswere found in immediate consequence to the publication ofEinstein’s equations,
it took almost 50 years for the next exact black hole solution to be discovered. The
Kerr solution [2] describes a rotating black hole of mass M and angular momentum
J = aM

ds2 = −
(
1 − 2Mr

ρ2

)
dt2 − 4Mra sin2θ

ρ2
dt dφ +

(
r2 + a2 + 2Mra2 sin2θ

ρ2

)
sin2θ dφ2

+ ρ2

r2 − 2Mr + a2
dr2 + ρ2 dθ2 with ρ2 := r2 + a2 cos2θ . (2.2)

Only 2 years later this solution was extended to include charged rotating black holes
[11]. These black hole solutions exhibit the remarkable property that they are para-
meterized in terms of only three quantities as measured from infinity: mass, angular
momentum, charge. It was therefore natural to ask whether this was the case for all
black hole solutions.

Buildingon earlierwork concerning thepersistenceof the horizonunder asymmet-
ric perturbations [12, 13], Israel proved that—assuming some regularity conditions—
the Schwarzschild solution is the only static, asymptotically flat vacuum spacetime
that exhibits a regular horizon [14]. Later, this proof was generalized to static asymp-
totically flat electrovac spacetimes, now with the Reissner–Nordström black hole as
the only admissible spacetime [15]. In the case of axisymmetric stationary black
holes Carter was later able to show that these spacetimes fall into discrete sets of
continuous families, each of them depending on one or two independent parameters,
with the Kerr solutions as the unique family to allow vanishing angular momentum
[16]. The key point of Carter’s proof is the observation that Einstein’s equations for
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an axisymmetric spacetime can be reduced to a two-dimensional boundary value
problem. Building on this, Robinson showed that in fact only the Kerr family exists,
thus establishing the uniqueness of the Kerr black hole [17]. Similar results concern-
ing the classification and uniqueness of charged axisymmetric stationary black holes
were worked out independently by Mazur [18], Bunting [19] and more recently by
Chrusciel andCosta [20].However, due to different initial hypotheses in the statement
of the theorem and some technical gaps, the uniqueness theorem is still extensively
studied (cf. [21] for a review).

Referring to these results, John Wheeler coined the expression “black holes have
no hair” [22], i.e. black holes can be described entirely by a small amount of quan-
tities measured from infinity. The no-hair conjecture thus suggests a resemblance of
black holes to systems in thermodynamic equilibrium, whose macroscopic state is
parameterized by a small number of macroscopic variables.

Penrose process and superradiant scattering. Another similarity between black
holes and thermodynamical systems was revealed with Penrose’s suggestion that
energy can be extracted from a rotating black hole [23]. The Penrose process relies
on the presence of an ergosphere in Kerr spacetime. In this region the Killing field
ξa that asymptotically corresponds to time translation is spacelike. Consequently,
the energy E = −paξa of a particle of 4-momentum pa need not be positive. In
the Penrose process a particle with positive energy E0 is released from infinity. In
the ergosphere the particle breaks up in such a way that one fragment has negative
energy E1 whereas the other has positive energy E2 = E0 − E1 > E0. If the latter
returns back to infinity on a geodesic one has effectively gained the energy |E1|. The
negative energy particle falls into the black hole and therefore reduces its mass. Thus,
energy is indeed extracted from the black hole. Angular momentum ja

2 and energy
of the particle falling into the black hole have to obey the inequality ja ≤ E2/ΩH ,
where ΩH is the angular velocity of the black hole. Therefore, the change in the
black hole’s mass and angular momentum δM and δ J , respectively, are related by
δM ≥ ΩH δ J . This equation can be rewritten in a form that bears a clear resemblance
to the second law of thermodynamics [24]

δMirr ≥ 0, (2.3)

where M2
irr = 1

2

(
M2 + √

M4 − J 2
)
is the irreducible mass. Expressed in terms of

irreducible mass and angular momentum, the mass of the black hole reads

M2 = M2
irr + J 2

4M2
irr

≥ M2
irr . (2.4)

The maximum amount of energy that can be extracted from a black hole with initial
mass M0 and angular momentum J0 is therefore ΔM = M0 − Mirr (M0, J0), which
is maximized for an extremal black hole, i.e. J0 = M2

0 , with an efficiency of 0.29.
A generalization to charged rotating black holes yields the Christodoulou–Ruffini
mass formula
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M2 =
(

Mirr + Q2

4Mirr

)2

+ J 2

4M2
irr

, (2.5)

which pushes the efficiency of the Penrose process up to 0.5 [25].
The fact that a Penrose process cannot reduce the irreducible mass of a black hole

is a particular consequence of Hawking’s area theorem, discussed below.
The Penrose process has a corresponding phenomenon in wave scattering on

a stationary axisymmetric black hole background known as superradiant scattering
[26–28]. Similar effects were already studied in [29, 30] where scalar waves incident
on a rotating cylinder were examined. For a qualitative understanding of superradiant
scattering consider the scalar wave equation ∇a∇aΦ = 0 on a Kerr background. It
was shown in [31] by studying the Hamilton–Jacobi equation for a test particle that
this equation is separable, therefore Φ can be written as: Φ = ei(mφ−ωt) R(r)P(θ)

where P(θ) is a spheroidal harmonic. The solutions for R(r) were studied in detail
in [32]. Suitable boundary conditions for Φ read

Φ(r) =
{
e−i(ω−mΩ)r∗ r → r+
Aout (ω)eiωr∗ + Ain(ω)e−iωr∗ r → ∞ (2.6)

where r∗ denotes the tortoise coordinate for the Kerr spacetime. The choice of bound-
ary condition at the horizon r → r+ is motivated by the requirement that physical
observers at the horizon should see exclusively ingoing waves. TheWronskian deter-
minant for this solution and its complex conjugate evaluated in both limits leads to

|R|2 = 1 −
(
1 − mΩH

ω

)
|T |2. (2.7)

Therefore, superradiance is observed for ω < mΩH . Interestingly, the amplifica-
tion of the incoming amplitude depends on the spin of the incident wave [33, 34]:
0.003 for a scalar wave, 0.044 for an electromagnetic field and 1.38 for gravitational
waves. Half-integer fields do not appear, as fermions show no superradiant scattering
behavior. This can be understood from the exclusion principle which allows only one
particle in each outgoing mode and thus prevents an enhancement of the scattered
wave [35, 36].

The occurrence of superradiant scattering in quantum mechanics is well known
from the Klein paradox [37–39]. The Klein paradox describes the quantum effect
that a wave incident on a step potential is reflected with a coefficient |R| > 1
for a particular relation between potential height and energy of the incident wave.
This effect is attributed to pair creation in the strong electric field near the potential
step. Therefore, the presence of superradiant scattering in a black hole background
suggests the occurrence of particle creation as was already noted in [28–30, 33] and
later famously shown by Hawking [40] (cf. next section).

The area theorem. The above mechanisms of energy extraction are closely related
to the important area theorem. The area theorem and the four laws of black hole



32 D. Grumiller et al.

mechanics rely on a couple of earlier theorems, which are described in the following
with no intention of mathematical rigor (cf. the standard reference [41] for details).

The rigidity theorem shows under suitable assumptions that the event horizon
of a stationary black hole is a Killing horizon. This result can be proven in two
independent ways. Carter showed that the horizon of a static black hole is normal to
the static Killing vector ξa , and the horizon of a stationary black hole is normal to the
linear combination χa = ξa + ΩH φa under the assumption of t − φ orthogonality
[42]. Here ΩH denotes the angular velocity of the horizon and φa is the Killing
vector generating the axial symmetry. In the second proof, Einstein’s equations are
assumed in order to show that the event horizon of every stationary black hole in
vacuum or electrovacuum is a Killing horizon [41].

The Penrose theorem proven in [43] states that the null geodesics generating the
horizon may have past end points but no end points in the future. In particular, no
caustics of the generators can occur when extended into the future. A consequence
of this theorem is that black holes cannot bifurcate or vanish [41].

The focusing theorem follows from the Raychaudhuri equation for lightlike con-
gruences. It states that, given a positive convergence at any point of the congruence,
the cross-section of the beam vanishes in a finite distance provided the weak energy
condition and Einstein’s equations hold.

The area theorem follows from the two latter statements: If the lightlike generators
of the horizon had a positive convergence at any point, a caustic would occur in finite
distance which is forbidden by Penrose’s theorem. Therefore, the area of the horizon
cannot decrease [44, 45]. The only possibility to evade this conclusion is the presence
of a naked singularity, i.e. a singularity not shielded by a horizon. Thus, the presence
of such singularities must be excluded by adopting the cosmic censorship conjecture
[23]. In summary, the prerequisites of the area theorem put strong restrictions on both
causal structure (cosmic censorship conjecture) and matter (weak energy condition)
in spacetime. In particular, the latter is in general not met when quantum theory is
taken into account [46].

The area theorem provides an explanation for the bound on the Penrose process
(2.3), since Mirr is proportional to the area of the Kerr black hole [44, 45]. Similarly,
the need for superradiant scattering of waves as described above and the existence of
a spin-spin interaction between a Kerr black hole and a spinning particle can both be
seen just from the area law [46, 47]. The argument for superradiant scattering from
the area theorem breaks down for fermions since the respective energy-momentum
tensor does not obey the weak energy condition [35, 36].

The four laws of black hole mechanics. The work of this decade culminated in
the famous four laws of black hole mechanics by Bardeen et al. [4]. These laws,
which show a remarkable similarity to the laws of thermodynamics, are stated in the
following.

• The zeroth law of black hole mechanics states that the surface gravity κ is constant
on the horizon of a black hole. The proof of this result as given in [4] requires
the dominant energy condition to hold and the use of Einstein’s equations. Similar
results were already obtained in [16, 45]. Another proof was given in [42] by using
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the assumption of t − φ orthogonality [42]. The zeroth law suggests a similarity
between κ and the temperature of a body in thermal equilibrium.

• The first law establishes a relation between changes in the mass M , horizon area
A, angular momentum JH , and charge Q H if the black hole is perturbed.

δM = κ

8π
δA + ΩH δ JH + ΦH δQ (2.8)

In [4] the first law was derived from a generalized version of the Smarr mass
formula [48]. The first law bears a clear resemblance to the first law of thermody-
namics with κ as temperature, the horizon area A taking the place of entropy, and
the mass M taking the role of energy. As pointed out in [49], in fact two different
versions of the first law exist: an equilibrium version, wherein one compares the
parameters of neighboring equilibrium solutions, and a physical process version
in which the parameters of the black hole are changed, e.g. by dropping in matter,
and analyzing the change in the parameters after the black hole has settled down.
These two independent versions yield the same result.

• The second law of black hole mechanics is Hawking’s area theorem:

δA ≥ 0. (2.9)

Here, the analogy between horizon area A and entropy becomes evident.
• The third law states that the surface gravity of a black hole cannot be reduced
to zero in a finite number of processes. This formulation is an analogue of the
Nernst unattainability principle [50]. The Planck formulation of the third law of
thermodynamics does not hold in black hole mechanics, as the horizon area of
an extremal black hole is finite despite vanishing surface gravity. It follows from
the third law that non-extremal black holes cannot be made extremal in a finite
number of steps. A proof for the third law was presented later in [51].

The close mathematical and physical analogy between the four laws of black hole
mechanics and the laws of thermodynamics is remarkable. Nonetheless, it appears
to be a mere analogy in classical general relativity. Classical black holes do not have
temperature since they cannot radiate, and entropy is a dimensionless quantity in
contrast to the horizon area that has a dimension of length squared. It is only when
quantum theory is taken into account that the analogy becomes an identity.

2.3 1973–1983

Bekenstein–Hawking entropy. In 1971, when Wheeler proposed the now famous
gedankenexperiment of pouring a hot cup of tea into a black hole, he was questioning
whether black holes violate the second law of thermodynamics. Another possible
violation of the second law of thermodynamics by classical black holes was put
forward by Geroch: A box of matter with mass m is lowered close to the horizon
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of a black hole from infinity where its energy (as measured from infinity) is nearly
zero, thus providing an amount m of work. At the horizon the box radiates away an
amount δm of its mass and is hauled back to infinity, requiring an amount m − δm of
work. In this process an amount δm of heat is transformed entirely into work thereby
violating the second law of thermodynamics.

These evident violations of the second lawof thermodynamics andHawking’s area
theorem led Bekenstein to propose an entropy for black holes that is proportional to
horizon areameasured in units of Planck areawith a coefficient η of order one [3, 52]:

SB H = η
kBc3A

�G
. (2.10)

The second law of thermodynamics is then replaced by a generalized second law of
thermodynamics which states that the change in the sum of matter entropy and black
hole entropy is strictly nonnegative. Bekenstein showed that this generalized second
law resolves the problems associated with the Geroch process [52]. Furthermore, he
tested the law for the cases of a harmonic oscillator enclosed in a spherical box and
infalling radiation.

Hawking radiation. The relation between black hole entropy and horizon area
together with the first law of black hole mechanics indicates that black holes do
have a temperature that should be proportional to κ . If the black hole is immersed
in black body radiation of lower temperature then the generalized second law is
violated, unless the black hole also emits radiation. Therefore, spontaneous particle
creation is needed to prevent a violation of the generalized second law. Eventually,
Hawking showed that black holes spontaneously emit radiation characteristic of a
black body at temperature

TH = �κ

2πckB
, (2.11)

thus establishing also further evidence for the validity of the generalized second
law [36, 40]. The coefficient η in (2.10) is fixed to η = 1

4 as can be seen from the
first law of black hole mechanics (2.8). Consequently, black holes can be treated as
thermodynamic systems, and the four laws of black hole mechanics cease to be mere
analogies, but describe black holes as thermodynamic systems.

In the original derivation of Hawking radiation a massless scalar field is studied in
the background metric of gravitational collapse. The scalar field yields a decompo-
sition in terms of a complete set of solutions both on lightlike past infinite,I −, and
on the union of the horizon and lightlike future infinity, I +. Both sets of solutions
contain positive frequencymodeswith respect to the appropriate affine parameters on
I + and I −. The different decompositions of the field induce a Bogoliubov trans-
formation on the two sets of creation and annihilation operators on I + and I −.
Therefore, the vacuum state with respect to the operators for the ingoing particles
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yields a nonzero expectation value for the number operator for an observer inI +.1
This is the Hawking radiation. The particle number measured at I + of a particular
mode is given by [36]

〈n J 〉 = ΓJ

exp [(2πω̄J )/κ] ± 1
, (2.12)

where the index J denotes collectively frequencyω, angular momentum l, azimuthal
quantum number m, sign of the charge, and spin. The upper sign is for fermions and
the lower sign for bosons. Here the quantity ω̄ is defined as ω̄J = ωJ − m jΩH −
qΦH , and ΓJ denotes the fraction of the incident radiation that enters the collapsing
body, i.e. ΓJ = 1 − |RJ |2. Expression (2.12) is precisely the result expected for
a black body with temperature κ/(2π) and greybody factor ΓJ . In fact, Hawking
radiation is completely identical to black body radiation, since the density matrices
for Hawking radiation and black body radiation coincide [54–56]. Furthermore, it
was shown that black holes behave like black bodies even in the presence of incoming
radiation. Expressions for the probability of emission of k particles when m particles
have arrived, P(k|m), and theEinstein coefficients for induced emission, spontaneous
emission and absorptions were obtained in [57, 58]. The derivation of Hawking was
repeated subsequently in various approaches and generalizations (cf. [59–63]).

The Hawking effect is often described heuristically as Schwinger pair creation
in the gravitational field of a black hole, where the negative energy particle drops
into the black hole and the other particle escapes to infinity [36]. A derivation of
the Hawking effect that closely resembles this picture of a tunneling process was
presented in [64].

Hawking radiation from anomalies. Particularly striking is the connection between
Hawking radiation and anomalies of the stress-energy tensor. If restricted to the
s-wave sector, Hawking radiation can be studied in an effectively two dimensional
spacetime. In this geometry, Hawking radiation can be shown to arise from the trace
anomaly of the energy-momentum tensor for a massless field, by requiring finiteness
ofTμν at the horizon for a geodesic observer [65] (cf. e.g. [66] for a general discussion,
and [67]).

More recently, it was shown that Hawking radiation is necessary for the cancel-
lation of gravitational anomalies [68]—i.e. non-conservation of Tμν—in Schwarz-
schild spacetimes of any dimension. A gravitational anomaly occurs if one assumes
that modes propagating along the horizon can be integrated out, so that Tμν is reg-
ular on the horizon. Thus, the resulting theory is effectively chiral near the horizon
and acquires a gravitational anomaly, which is removed by Hawking radiation. This
method can be generalized to charged and rotating black holes [69, 70].

Euclidean path integral. Due to its intimate connection with the partition func-
tion, the Euclidean path integral formalism of quantum gravity is widely used when
studying black hole thermodynamics.

1 In quantum information language the vacuum quantum state in a black hole space-time for each
mode is a two-mode squeezed vacuum, similar to what happens for primordial density fluctuations
in cosmology [53].
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The singularities encountered in black hole spacetimes can be avoided by a Wick
rotation into the Euclidean sector. This requires a periodic Euclidean time with peri-
odicity of inverse temperature. In general, the Euclidean path integral does not con-
verge due to the presence of the conformal mode [71]. However, in the semi-classical
approximation to the partition function, i.e. expanding the path integral around solu-
tions of the classical equations of motion, the above results for entropy and temper-
ature of black holes are recovered [72, 73].

In the case of flat spacetime at non-zero temperature studied in [74], a sum over
the Schwarzschild instanton in the path integral leads to a non-zero probability for
the decay of flat space into a black hole. Gravitational instantons and their thermo-
dynamic properties were studied and classified in [75–77].

Modes of black hole decay. It is seen from (2.12) that the emission of particles with
charge of the same sign as the charge of the black hole is enhanced. Thus, the charge
of the black hole is radiated away [78–82]. The resulting current is proportional to
the particle number (2.12) times the charge of the emitted particle. An estimation
of the discharge rate yields that the timescale over which the discharge occurs is
in general much shorter than the relevant timescale for formation of the black hole
[79], provided that Q/M ≥ Mm2

e/e. Thus, only very large black holes show a
significant charge Q. All other black holes show only random charge fluctuations of
order (�c)1/2 after sufficiently long time [81, 82].

For fixed angular momentum l the emission of particles with positive azimuthal
quantum number m is enhanced, and the black hole loses angular momentum. When
radiation of massless particles only is considered, the black hole loses angular
momentum considerably faster than mass [83]. Curiously, the emission of neutrinos
shows parity violation: antineutrinos are emitted preferentially parallel to angular
momentum whereas more neutrinos are emitted in the opposite direction [84–86].

Radiation of the black hole mass occurs over a timescale τ ∝ G2M3
0/(�c4),

which exceeds the age of the present universe unless the black hole is sufficiently
light, M0 ≤ 5× 1011 kg. The species of the emitted particles changes with the mass
of the black hole: black holes emit massless particles only as long as M ≥ 1014 kg
at which point electron-positron emission starts; the onset for emission of heavier
particles lies at M ≈ 1011 kg [81–83]. Consequences of black hole evaporation for
unitarity are discussed below.

Unruh effect. The Unruh effect describes the detection of vacuum fluctuations of the
Minkowski vacuum as thermal radiation by a constantly accelerated observer, i.e. an
observer in Rindler spacetime [61, 87–89]. The Minkowski vacuum—the vacuum
for an observer measuring time along the Killing vector ∂t—can be represented as
the sum

|0〉 =
∑

n

exp (−2πa−1ωn)|n〉L × |n〉R . (2.13)

where |n〉L(|n〉R) are states with energy ωn measured by an observer moving with
acceleration a along the respective Killing vectors in the left (right) wedge of Rindler
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spacetime [89, 90].2 The Minkowski vacuum thus contains correlations between
states in different wedges of Rindler spacetime and is regarded as a thermal bath of
temperature

TU = �a

2πckB
(2.14)

by the accelerating observer. Although the original derivation was given for free
fields, the validity of theUnruh effect for interacting fields is a consequence of general
results obtained in axiomatic quantum field theory [91, 92], as first recognized in
[93]. The Unruh effect indicates that already in flat spacetime the notion of particles
is observer dependent. Other seemingly paradoxical aspects of the Unruh effect are
covered in [94]. Recent developments and issues regarding experimental detection
are reviewed in [95].

The Unruh effect is also invoked to prevent a violation of the generalized second
law in the following form: A box with given energy and entropy is released from
infinity and its content dropped into the black hole. The energy gain of the black
hole can be made arbitrarily small by dropping the box from a point close to the
horizon. The horizon area might not increase enough to compensate the loss of
entropy, thus violating the generalized second law. In [96], a universal upper bound
on the ratio entropy to energy was proposed, which would prevent such violations
of the generalized second law. On the other hand, it was argued that the box would
feel an effective buoyancy force near the black hole originating from the acceleration
radiation. This buoyancy force guarantees a lower bound on the energy gain of the
black hole, thus saving the generalized second law without the need for an entropy
bound [97, 98].

The similarities between Hawking and Unruh effect are due to the similar hori-
zon structure: any non-extremal Killing horizon looks like a Rindler horizon in the
near-horizon approximation. Depending on the choice of boundary conditions dif-
ferent vacua exist, which are suitable for different physical applications. The Unruh
vacuum fixes boundary conditions on the past horizon H− and I − [88]. This state
is analogous to the original treatment of black hole evaporation by Hawking. For the
Hartle–Hawking vacuum one defines boundary conditions on both future and past
horizon H+ and H− [99, 100], which describes a black hole in equilibrium with
incoming radiation, and is therefore the relevant state for the curved spacetime gen-
eralization of the Unruh effect. This state does not exist for Kerr black holes [101].
The Boulware vacuum sets boundary condition onI + andI − and describes a state
with no radiation [59], but is singular on past and future horizon and therefore of
little physical significance.

The transplanckian problem and black hole analogue systems. Since the direct
experimental verification of black hole thermodynamics effects is (and most likely
will remain) out of reach, analog systems have been proposed in which the Hawking
effect could be studied. One of the first proposed systems concerns sound waves

2 The sum should be regarded as formal since the quantum theory constructions of the two observers
are unitarily inequivalent [49].
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in a convergent fluid flow [102]. The linearized equations of motion correspond to
the equations for a massless scalar field in a background metric that can be brought
in a Schwarzschild-like form, thus producing a sonic black hole with the speed
of light replaced by the speed of sound. Quantization of the scalar field in this
background leads to the emission of sound waves in a thermal spectrum at the sonic
horizon, the temperature of which is given by a quantity analogous to the Hawking
temperature. Albeit very small, this quantity should be measurable in principle. The
field of analogue gravity has grown rapidly in the last decades; the interested reader
is referred to [103, 104] and references therein.

Black hole analogue systems play an important role in the study of the trans-
planckian puzzle. A Hawking mode of frequency ω measured at infinity that was
emitted a time t after formation of the black hole stems from a fluctuation of
frequencyω exp (κt). Thismeans thatmodes emitted a sufficiently long time after the
formation of the black hole originated from modes beyond the Planck energy, where
the theory can no longer be trusted. This raises the question if the Hawking effect
depends on the details of a transplanckian theory. Certainly, Lorentz invariancewould
guarantee the validity of the derivation, but it is a logical possibility (though one that
is highly-constrained by observations from the Fermi Large Area Telescope [105])
that Lorentz invariance is broken at arbitrarily high energies, see [106] for a discus-
sion. A viable option, at least for analogue systems, is the study of Hawking radiation
with a modified dispersion relation at high frequencies. Since this situation is similar
to the study of black hole analog systems in fluid mechanics, where the theory breaks
down at wavelengths comparable to the atomic scale, these systems are used in the
study of the transplanckian problem. A particular example was presented in [107],
where it was shown that Hawking radiation occurs despite a change in the dispersion
relation at high frequencies.

The transplanckian problemwas far from being settled in that decade, but it seems
that Hawking radiation is robust enough to persist, even if the theory is modified at
ultrahigh energies like in analogue systems [108–113].

Black hole evaporation and information loss. As pointed out above, black holes
evaporate due to Hawking radiation on a timescale τ ∝ G2M3

0/(�c4), which is of
order 1070s for a solar mass black hole. Although this amount of time is enormous
already for solar mass black holes, the very fact that black holes evaporate reveals
the deep conceptual problem of information loss, first raised in [56]. At the classical
level, the no-hair theorem implies that the large amount of data needed to describe
the precollapse geometry is reduced to a small number of quantities that describe the
black hole. The remaining information of the precollapse geometry is not accessible
to the outside observer, but in principle can be thought of as residing in the black
hole. The real paradox rears its head when Hawking radiation is taken into account.
Consider an initial pure state that describes an object falling into the black hole. The
Hawking radiation emitted by the black hole is in a mixed state due to correlations
between states outside the horizon and states inside the black hole, but after some time
the black hole has evaporated completely, and one is left only with the mixed state
of Hawking radiation. The evolution from the initial pure state to perfectly thermal
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Hawking radiation is therefore not unitary and information appears to be lost in the
process. This is in contrast to ordinary physical systems like a star or a burning lump
of coal, where the emissions contain correlations that would in principle allow one
to reconstruct the initial state. It was not clear at the time if this might also be a viable
explanation for an evaporating black hole, mostly due to the lack of a sufficiently
detailed theory of quantum gravity.

2.4 1983–1993

The results of the previous decade revealed several problems—the information para-
dox, the universality of the area law, and the nature of the states underlying the
Bekenstein-Hawking entropy—that became the focus of research during the period
1983–1993.Many researchers turned their attention towards lower-dimensionalmod-
els, where theories are more tractable but still suffer from conceptual issues such as
the information paradox. At the same time, investigations into a diverse array of
gravitational theories revealed certain universal features of black hole thermody-
namics and led to the first early successes in a state-counting approach to explaining
black hole entropy. Before delving into lower-dimensional gravity we state some of
the main conclusions that were reached from its study.

What to do with information loss? The information loss problem is of conceptual
rather than technical nature. Like other conceptual issues in classical and quantum
gravity, it arises independently from the spacetime dimension. Therefore, a use-
ful strategy is to consider lower-dimensional models of gravity where the technical
problems become more manageable, conceptual issues can be addressed and, ide-
ally, resolved. See [114] for a textbook on lower-dimensional gravity from 1988.
Particularly the CGHS model of string-inspired 2-dimensional dilaton gravity with
matter [115] (see below) inspired numerous investigations of evaporating black holes
in two dimensions, such as the one by Russo et al. [116]. Exact solubility (even in
the presence of quantum effects) is a key feature of the RST model, which allows to
address the endpoint of Hawking evaporation. Depending on the energy flux of the
infalling matter either no horizon forms or an apparent horizon does form and even-
tually evaporates to a naked singularity, which requires the imposition of suitable
boundary conditions, for which a natural choice exists in this model. Most impor-
tantly, the whole process is described in a unitary way, so that all information is
recovered in this case.

Black hole complementarity. Based on studies of 2-dimensional dilaton gravity
models, Susskind, Thorlacius and Uglum advocated the “black hole complementar-
ity” principle [117] (which was formulated independently in [118]). The essence of
this principle is captured by four postulates (three of which were spelled out explic-
itly in [117], which we quote verbatim): 1. The process of formation and evaporation
of a black hole, as viewed by a distant observer, can be described entirely within the
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context of standard quantum theory. In particular, there exists a unitary S-matrix
which describes the evolution from infalling matter to outgoing Hawking-like radi-
ation. 2. Outside the stretched horizon3 of a massive black hole, physics can be
described to good approximation by a set of semi-classical field equations. 3. To a
distant observer, a black hole appears to be a quantum system with discrete energy
levels. The dimension of the subspace of states describing a black hole of mass
M is the exponential of the Bekenstein entropy (2.1). 4. A freely falling observer
experiences nothing extraordinary when entering the black hole.

The attribute “complementarity” refers to the fact that the outside observer detects
a membrane-like structure near the black hole horizon where information is stored,
while the infalling observer sees no membrane at the horizon. The reason why these
mutually exclusive viewpoints do not necessarily generate a contradiction is because
there should not exist any “super-observer” that simultaneously has access to both
viewpoints.

Lower-dimensional gravity. The lowest spacetime dimension that makes sense to
consider is 1 + 1, since this is the lowest dimension where the notions of black
holes, causal structure and curvature exist. If additionally the existence of graviton
excitations (at least off-shell) is required then the lowest dimension one can consider
is 2+1, since this is the lowest dimensionwhere linearized perturbations of themetric
hμν have a transverse-traceless part, hμν = hTT

μν+∇(μξν)+ 1
3 h gμν .Moreover, 2+1 is

the lowest dimension where the notion of the area of the event horizon is meaningful
(in 1+ 1 dimensions this ‘area’ is just a point). For these reasons, the main focus in
lower-dimensional gravity is on 1+ 1 and 2+ 1 dimensional models, depending on
the scope of the model.

Dilaton gravity in two dimensions. In two dimensions there are various ways to
motivate which kind of gravitymodel one should consider. The theory not to consider
is Einstein gravity, since there are no meaningful Einstein equations in two dimen-
sions (the 2-dimensional Einstein tensor vanishes trivially for any metric). Instead,
there are (at least) five different ways to end upwith the same class ofmodels, namely
2-dimensional dilaton gravity. Its bulk action

I = 1

16πG

∫
d2x

√−g
(
XR − U(X)(∂ X)2 − 2V (X)

)
(2.15)

depends on two free functions,U (X) and V (X), of the dilaton field X .We summarize
briefly five different ways to end up with an action of type (2.15).

1. Gravity as gauge theory. Jackiw [120] and Teitelboim [121] considered a
2-dimensional gravity model with constant curvature, which can be formulated
as a non-abelian BF-theory with gauge group SO(2, 1) [122, 123]. The gener-
ators Pa and J are interpreted as translation and boost generators, respectively.
They obey the algebra [Pa, Pb] = Λεab J and [Pa, J ] = εa

b Pb, where Λ is a

3 The stretched horizon (or the earlier “brick wall” [119]) is also discussed in these papers and
captures the membrane description of a black hole suitable for a distant observer.
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parameter that sets the scale of curvature (one could call it ‘cosmological con-
stant’). The so(2, 1) connection A = ea Pa + ωJ decomposes into zweibein ea

and (dualized) connection ω = 1
2 ωabεab. Its non-abelian field strength F is then

coupled linearly to co-adjoint scalars in the BF-action, which reads explicitly

I ∼
∫ (

Xa(dea + εa
bωeb) + X dω + εab ea ∧ eb ΛX

)
. (2.16)

Integrating out the auxiliary field Xa establishes the constraint of vanishing tor-
sion, which allows to eliminate also the spin-connection ω and to convert the
first order action (2.16) into the second order action (2.15) with U (X) = 0 and
V (X) = ΛX . A similar BF-type of construction was provided by Cangemi and
Jackiw [124] for a string inspired model discussed below. The gauge theoretic
formulation for arbitrary dilaton gravity theorieswas provided by Ikeda and Izawa
[125, 126] and by Schaller and Strobl [127], dubbed “Poisson-σ model”.

2. Dimensional reduction. Assuming spherical symmetry in D spacetime dimen-
sions leads to a line-element in adapted coordinates that depends on a
2-dimensional metric and a scalar field, ds2 = gαβ dxα dxβ + X1/(D−2) dΩ2

SD−2 ,

where dΩ2
SD−2 denotes the line-element of the round (D − 2)-sphere [128–132].

Inserting this ansatz into the D-dimensional Einstein–Hilbert action permits
to integrate out all angular coordinates and eventually establishes an effec-
tive 2-dimensional model whose bulk action is precisely (2.15), with U (X) =
−(D−3)/[(D−2)X ] andV (X) ∝ X (D−4)/(D−2). Curiously, in the limit D → ∞
the model derived from bosonic string theory is recovered (with 2-dimensional
target space, see below) [67, 133, 134].

3. Limiting case of Einstein–Hilbert in 2 + ε dimensions. Weinberg’s idea of
asymptotic safety in gravity emerged from his consideration of gravity in 2 + ε

dimensions, in the limit of small ε [135]. As we mentioned above, taking ε → 0
leads to trivial equations ofmotion.However, if simultaneouslyNewton’s constant
scales to zero appropriately, then the limiting action can be non-trivial. In fact,
Mann and Ross argued that the action obtained in this way is a 2-dimensional
dilaton gravity action (2.15) with U(X) = const. and V(X) = 0 [136]. A more
recent analysis confirms the result for U(X), but finds V(X) ∝ e−2X [137].4 Such
an action describes Liouville gravity, see [138, 139] for reviews.

4. Higher power curvature theories.Models that are non-linear in curvature and/or
torsion are viable in two dimensions. In particular, the Katanaev–Volovich model
describes 2-dimensional Poincaré gauge theory, i.e., a model with Lagrange den-
sity R2 + T 2, where R is curvature and T torsion [140]. The Katanaev–Volovich
model is classically equivalent to dilaton gravity (2.16) with U(X) = const. and
V(X) ∝ X2, see [126, 141, 142]. Similarly, generic theories with non-linear
Lagrangians in curvature and torsion are equivalent to generic dilaton gravity,
provided the potentials U(X) and V(X) are chosen appropriately [143].

4 The derivation in [137] exploits a spherically symmetric ansatz in 2+ ε dimensions, dualizes to a
different action for which the limit ε → 0 is well-defined and dualizes back after taking the limit.
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5. Strings in two dimensions. Conformal invariance of the sigma model action for
the closed bosonic string,

I (σ ) = 1

4πα′

∫
d2z

√−h
(
gμνhi j∂i Xμ∂ j Xν + α′ Φ R

)
(2.17)

requires that the trace of the world-sheet energy-momentum tensor vanishes

T i
i ∝ βΦR + βg

μνhi j∂i Xμ∂ j Xν = 0 . (2.18)

The parameter α′ is the string tension, hi j is the world-sheet metric, R its Ricci
scalar, Xμ are the target space coordinates, and Φ is the dilaton field. Thus, for
consistency the β-functions appearing in (2.18) have to vanish [144].

βΦ = − α′

4π2

( 26−D
12α′ + (∂Φ)2 − 4∇μ∂μΦ − 1

4 R
) = 0 (2.19)

βg
μν = Rμν + 2∇μ∂νΦ = 0 (2.20)

Here D is the dimension of the target space, Rμν its Ricci tensor and ∇μ the
associated covariant derivative. The conditions of conformal invariance, βΦ =
β

g
μν = 0, follow as equations of motion from a target space action, which for

D = 2 turns out to be equivalent to dilaton gravity (2.15) with U(X) = −1/X
and V(X) = 2λ2X , upon identifying X = e−2Φ . See [145–148] for some early
literature on black holes in 2-dimensional string theory and [138, 149] for some
reviews. The model by Callan, Giddings, Harvey and Strominger (CGHS) uses
the same target space action as derived from string theory and adds matter fields
to describe evaporating black holes [115]; the CGHS model engendered a lot of
further research in 2-dimensional dilaton gravity with and without matter, see
[67, 150, 151] for reviews.

Thermodynamics of 2-dimensional dilaton gravity models (2.15) was discussed
assumingU(X) = 0 by Gegenberg et al. [152]. A comprehensive discussion of quasi-
local thermodynamics for generic models (2.15) was provided using the Euclidean
path integral approach more than a decade later [153].

Taken together, the body of results that these diverse two-dimensional models
have in common suggests that certain features of black hole thermodynamics are
universal. This is an important observation in its own right, independent of insights
into the information paradox and other problems. In particular, with appropriate
normalizations the ‘classical’ contribution to the entropy always takes the form

S = 2π Xh (2.21)

where Xh is the value of the dilaton at the horizon. This result encapsulates inherently
two-dimensional models, as well as the s-wave reduction down to two dimensions
of the area law for higher dimensional theories. The robust nature of black hole
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entropy was made apparent in the work of Wald, who gave a succinct geometric
characterization of the entropy for any diffeomorphism-invariant theory of gravity
[154, 155].

Quasi-local thermodynamics and Hawking–Page phase transition. A simple cal-
culation shows that the Schwarzschild black hole has a negative specific heat, and
therefore cannot be treated as an equilibrium thermodynamic system. York addressed
the issue of negative specific heat by putting the black hole inside a cavity of some
finite radius that provides a heat bath of fixed temperature [156]. For a sufficiently
small cavity the specificheat is positive, leading to awell-defined canonical ensemble.
Itwas shown later that some spacetimes, in particular asymptoticallyAdS spacetimes,
naturally provide a covariant version of such a cavity. In all these examples the exis-
tence of a well-defined canonical ensemble means that interesting phase structures
can be unraveled. Probably the most famous example is the Hawking-Page phase
transition between “hot AdS”—anti-de Sitter space with periodic euclidean time
τ ∼ τ + T −1—and an asymptotically AdS black hole [157]. For sufficiently small
temperatures the minimum of the free energy is hot AdS, while at high temperatures
the ensemble is dominated by the black hole.

Gravity in three dimensions and a connection with conformal field theory.
During the same period there was a great deal of pioneering work in 3-dimensional
gravity. Deser, Jackiw and Templeton constructed topologically massive gauge
theories by adding a Chern–Simons term to the action [158–160]. In the case of
gravity this leads to topologically massive gravity, a 3-dimensional theory of gravity
that has a local (massive) gravitational degree of freedom. Its bulk action reads

16πG I TMG =
∫

d3x
√−g

(
R − 2Λ

) + 1

2μ

∫
d3x εμνλ Γ α

μβ

(
∂νΓ β

λα + 2
3 Γ β

νγ Γ γ
λα

)

(2.22)
Without the gravitational Chern–Simons term, μ → ∞, Einstein gravity becomes
locally trivial [161], but globally it can be non-trivial. In particular, in a seminal paper
Brown and Henneaux found that the Hilbert space of any 3-dimensional theory of
quantum gravity with AdS boundary conditions falls into representations of two
copies of the Virasoro algebra, with central charges for Einstein gravity given by
[162]

c = c̄ = 3�

2G
where Λ = − 1

�2
. (2.23)

This unexpected set of symmetries suggested that such theories might be amenable
to an analysis using conformal field theory (CFT) techniques. The Brown–Henneaux
results were an important precursor of the AdS/CFT correspondence found a decade
later.

Black holes in three dimensions. Another crucial development was the discovery,
by Bañados, Teitelboim and Zanelli (BTZ), of black hole solutions of 3-dimensional
Einstein gravity with negative cosmological constant [163]. As discussed in [164],
the BTZ black holes are locally AdS, but globally differ from AdS. In fact, they are
certain orbifolds of AdS such that the ensuing solutions are locally AdS and remain
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regular on and outside the event horizon. The line-element in ‘Boyer–Lindquist’ type
coordinates (ϕ ∼ ϕ + 2π ),

ds2BTZ = − (r2 − r2+)(r2 − r2−)

r2�2
dt2+ r2�2

(r2 − r2+)(r2 − r2−)
dr2+r2

(
dϕ+ r+r−

�r2
dt

)2

(2.24)
makes the similarity to rotating black holes in higher dimensions manifest: there
is an ergosphere at r = (r2+ + r2−)1/2, an outer horizon (with rotation) at r = r+,
an inner horizon at r = r−, and a singularity behind the inner horizon. Moreover,
there is a conserved mass, M = (r2+ + r2−)/(8G�2), and angular momentum, J =
r+r−/(4G�). The presence of rotating black holes makes 3-dimensional AdS gravity
a particularly interesting toy model to address classical and quantum aspects of black
holes and their thermodynamical properties. In particular, the entropy is given by the
Bekenstein–Hawking result (2.1)

SBTZ = 2πr+
4G

. (2.25)

Cardy formula. The existence of the BTZ solution and the results of Brown and
Henneaux led to the first attempt to explain black hole entropy by counting micro-
scopic states. Since the Hilbert space of the theory is organized according to the sym-
metries of a two-dimensional CFT, one can carry out the state counting by exploiting
a result of Cardy [165, 166]. Namely, given some assumptions there is a universal
formula for the asymptotic density of states in a CFT2. The log of the density of
states leads to the Cardy formula for entropy

SCardy = 2π

√
ch

6
+ 2π

√
c̄h̄

6
, (2.26)

where c, c̄ are the central charges and h, h̄ are the Virasoro zero-mode charges.
Evaluating the Cardy formula (2.26) for the Brown–Henneaux central charges (2.23)
and the zero-mode charges h = (�M + J )/2, h̄ = (�M − J )/2 of the BTZ black hole
(2.24) gives precisely the Bekenstein–Hawking entropy (2.25). This observation was
the basis for the near horizon microstate counting pioneered by Strominger and Vafa
a decade later [167, 168].

The explanation of (2.25) via microscopic state counting was a significant insight
into the nature of black hole entropy. But it also left many important questions unan-
swered. In particular, the Cardy formula provides information about the asymptotic
density of states but it gives no insight into the states themselves. An explanation of
black hole entropy that proceeds from the identification of microscopic states would
not be achieved until the following decade.

Towards holography. Counting black hole microstates through a CFT calculation
is a remarkable manifestation of an idea that began to emerge at the end of the third
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decade. In an essay dedicated to Abdus Salam, ‘t Hooft postulated that there is no
information loss, i.e., the evolution describing collapse and quantum evaporation of a
black hole should only incorporate processes that are not at odds with unitarity [169].
From this postulate and the observation that the Bekenstein–Hawking entropy (2.1)
scales like the area, ‘t Hooft then argued that there could be an equivalent description
of the system in terms of an ordinary quantum field theory in one dimension lower.5

A year later Susskind first coined the expression “holographic principle” and pointed
out that string theory could be a candidate for a theory of quantum gravity realizing
the holographic principle. But this part of the story already belongs to the next decade.

2.5 1993–2003

Asdescribed in theprevious section,Cardy’s formula relates theBekenstein-Hawking
entropy of the BTZ black hole to the central charge of a two-dimensional CFT. This
result foreshadows three major developments during the period 1993–2003: a com-
plete accounting in string theory of microscopic states responsible for the entropy of
certain black holes, the emergence of ‘t Hooft and Susskind’s holographic principle,
and the development of the AdS/CFT correspondence as a fully-fledged example of
holography.

Counting black hole microstates in string theory. String theory is a consistent
theory of quantum gravity and is therefore a natural framework for investigating the
microscopic origin of black hole entropy. As early as 1993, it was suggested that
the density of states in perturbative string theory might be sufficient to explain the
Bekenstein-Hawking entropy [170–172]. The main development during this period
(and arguably one of the most significant accomplishments of string theory in any
period) was Strominger and Vafa’s calculation of the density of states for certain
supersymmetric black holes [173].

String theory contains both bosonic and fermionic degrees of freedom, with the
bosonic sector including multiple p-form gauge fields under which black holes may
be charged. In the case of supersymmetric black holes these charges completely char-
acterize the horizon, which has an area that is independent of moduli like the string
coupling or compactification volumes. The simplest such black holes involve either
one or two charges, but such configurations possess either singular horizons or hori-
zons with zero area. The Bekenstein-Hawking entropy is relevant for non-singular
horizons with macroscopic area, which requires at least three charges. Strominger
and Vafa considered these sorts of black holes in string theory compactified on the
five dimensional product spaces S1×T 4 and S1×K3. Their construction involves q1
D1-branes wrapping the circle, q5 D5-branes wrapping all five compact dimensions,
and massless strings stretched between the branes carrying n units of momentum

5 ‘t Hooft also provided as an example a realization of the holographic principle in terms of some
cellular automaton model.
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around the S1. At weak coupling this system is described by a supersymmetric field
theory on the worldvolume of the branes, and it is possible to enumerate the states
with given charges. The resulting density of states is approximately

ρ ≈ exp
(
2π

√
q1 q5 n

)
. (2.27)

As the gravitational (string) coupling is increased the picture changes, and at strong
coupling the appropriate description of the system is a black hole. The horizon of
this black hole has area

AH = 8πG
√

q1 q5 n , (2.28)

where each of the charges must be large to suppress various types of corrections.
Although the descriptions at weak and strong coupling are radically different, the
state counting is protected by supersymmetry. So even though the density of states
(2.27) was derived at weak coupling, it still applies in the limit where the system is
described by the black hole. To leading order the log of the density of states exactly
reproduces the area law

S = log ρ = 2π
√

q1 q5 n = AH

4G
. (2.29)

Thus, this result of Strominger and Vafa provides the first derivation of the
Bekenstein–Hawking entropy that identifies and counts a specific set of microscopic
states associated with the parameters describing the macroscopic black hole. Similar
calculations have been carried out for supersymmetric black holes in four dimen-
sions [174], near-extremal black holes [175, 176], and even certain extremal black
holes with broken supersymmetry [177]. Comprehensive reviews can be found in
[178, 179].

Despite the success of this program, there is still no explicit construction of the
microstates of non-supersymmetric, non-extremal black holes like the Schwarzschild
or Kerr solutions (though, in the latter case progress has been made for the extremal
solution [180]). It is also important to point out that while the counting of states
is protected by supersymmetry, the states in the strong coupling regime bear no
resemblance to the states atweak coupling. In this sense, it is not clearwhat constitutes
the “states of the black hole”. Indeed, given a generic state in the weakly coupled
regime it is not clear what happens as the coupling is increased. It is possible (and
with hindsight also plausible) that the states in the strongly coupled regime are free
of horizons. This idea has motivated a tremendous amount of work—the so-called
microstate and fuzzball programs—which will be discussed in the next section.

Holographic principle. Around the same time that a stringy origin for the black hole
density of states was first being considered, ‘t Hooft put forth a radical suggestion:
that gravitational physics in 3+ 1 dimensions must effectively become 2+ 1 dimen-
sional at Planckian scales [169]. Susskind, building off his own work on the role
of string theory in explaining the Bekenstein–Hawking entropy, explored the conse-
quences of this idea and dubbed it the “holographic principle” [181]. This principle
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is often regarded as synonymous with the Bekenstein–Hawking area law for black
hole entropy, but it is in fact a much deeper statement about locality, unitarity, and
the nature of quantum gravitational physics.

In its earliest form, the holographic principle was interpreted as a bound on the
number of degrees of freedomneeded to describe physics in a spatial region.Quantum
field theory suggests that any such region contains an infinite number of degrees of
freedom associated with the infinite number of harmonic oscillator states possible
at each of the infinite number of points in the region. Including gravity changes this
counting, since exciting too many of these states would provide enough energy to
form a black hole. A better estimate would ‘coarse grain’ space on lengths of order
the Planck scale and, at the very least, place an upper limit on the energy contained in
any Planck volume to avoid creating a black hole. With these restrictions the number
of degrees of freedom scales like the volume V of the region. But this must be a
gross over-counting, since black holes could still form on larger scales even if the
energy bound on each Planck volume was not saturated. And since the largest black
hole that ‘fits’ in the region has an entropy given by A/4, it must be that the number
of accessible degrees of freedom in a region scales like the area bounding the region
rather than its volume.

The conclusion described above forces a choice between locality and unitarity. If
all the degrees of freedom predicted by local physics were available in a region of
volume V , then it would not be possible to accommodate all possible states of the
system with the dramatically reduced number of states after gravitational collapse.
To preserve unitarity, it must be that physics in any region bounded by a surface of
area A is described by no more than A/4 degrees of freedom, even in the absence of
a black hole.

This early form of the holographic principle depends crucially on the idea that the
entropy in a spatial region V is limited by the area of the surface B = ∂V bounding
the region

S[V ] ≤ c3

4 G �
A(B) . (2.30)

But it was soon realized that this spacelike form of the entropy bound can fail
[182, 183], leading researchers to attempt a reformulation of the bound in terms of
light cones. This program culminated with Bousso’s Covariant Entropy Conjecture
[184], a covariant generalization of the original bound which replaces the spacelike
region V with a null hypersurface. Specifically, given some surface B with area A(B)

the light sheet L(B) is the null hypersurface generated by following light rays from
B until they begin to expand. The entropy on any light sheet of a surface is then
bounded according to

S[L(B)] ≤ c3

4 G �
A(B) . (2.31)

A comprehensive review of the Covariant Entropy Conjecture and the holographic
principle in general is given in [185].



48 D. Grumiller et al.

Like other entropy bounds, there is no formal derivation of (2.31). Rather, it is
a conjecture for which there is strong circumstantial evidence and a lack of coun-
terexamples. Since any derivation of this result would require a complete theory of
quantum gravity, it is hoped that the holographic principle will instead provide some
guidance as to what such a theory might be. It is tempting, given the form of the
bounds (2.30) and (2.31), to assume that the physics interior to a region is some-
how encoded on its boundary. The holographic principle offers little direct insight
as to whether this is the case, or how it might be accomplished 6. Nevertheless, this
assumption, combinedwith calculations inspired by thework of Strominger andVafa,
leads to a fully realized form of the holographic principle in Maldacena’s AdS/CFT
correspondence.

AdS/CFT correspondence. The work of Strominger–Vafa showed how the entropy
of certain supersymmetric black holes may be understood via a calculation in a
field theory on the world volume of a D-brane bound state. The entropy is not the
only quantity that can be explained this way. For instance, absorption cross sections
calculated using both the gravity and field theory descriptions are found to agree.
This observation inspired similar comparisons for a stack of D3-branes in type IIB
string theory [186–188]. The agreement between the gravity and field theory calcu-
lations for the D3-brane system gives the first pieces of evidence for the AdS/CFT
correspondence.

Given a stack of N parallel D3-branes, low energy excitations on theworldvolume
are described by a four-dimensionalU(N ) gauge theorywithN = 4 supersymmetry
[189] and a coupling constant related to the string coupling by g2

Y M ∼ gs . For N
large and g2

Y M N � 1 the theory is well-described by perturbation theory with non-
planar diagrams suppressed by factors of 1/N . On the other hand, the near-horizon
geometry of the stack of branes looks like a product space of the form AdS5 × S5,
with both factors having a radius of curvature � that satisfies

� 4 = 4πgs N (α′)2 . (2.32)

The description of the system in terms of gravitational physics requires curvatures to
be much smaller than the string scale, � � √

α′, which implies gs N � 1. In other
words, the gravitational description can be trusted precisely when the worldvolume
field theory is strongly coupled. Maldacena conjectured that these descriptions are
in fact the same; two sides of a strong-weak coupling duality [190]. In this picture
the conformal symmetries of the field theory are realized by the SO(4, 2) isometries
of AdS5, while the R-symmetries are encoded in the SO(6) symmetries of the S5.

The strongest form of Maldacena’s conjecture asserts that type IIB string theory
with AdS5 × S5 boundary conditions is completely equivalent to four-dimensional
Super Yang-Mills for all values of the parameters gs and N . This is the most tantaliz-
ing and least tested form of the correspondence. When N → ∞ at fixed g2

Y M N the
duality relates classical string theory to Super Yang-Mills with finite coupling, and

6 Such an encoding results in an entropy that scales like the area, which suggests a local and
non-gravitational description on the boundary.
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many consequences of this form of the conjecture have been tested using unexpected
integrability properties of the planar sector of SYM [191]. The weakest and most
thoroughly examined form of the conjecture follows from letting g2

Y M N → ∞. In
that case the gravitational side of the duality reduces simply to type IIB supergravity
on AdS5 ×S5, which is equivalent to the strong-coupling limit of SYM. All forms of
the duality are manifestly holographic, in the sense that the gravitational physics of
a d + 1 dimensional asymptotically AdS spacetime is encoded in a local field theory
on the spacetime’s d dimensional conformal boundary.

Maldacena’s original conjecture, which includes a number of other brane config-
urations with low-energy descriptions in terms of various supergravities, has been
extended, deformed, and modified in various ways. It has primarily been used to
extract useful statements about strongly coupled gauge theories. For instance, cor-
relation functions of operators in the gauge theory can be calculated from the string
theory partition function, which in the standard (weak) form of the correspondence
is dominated by contributions from saddle points of the supergravity action. The
on-shell action can be expressed as a functional of ‘boundary data’ φ0 for the fields
φ that play the role of sources J for operators O in the dual field theory

Z sugra

[
φ0 = φ|∂AdS

] = ZCFT

[
φ0 = J

] ∼ 〈exp ( ∫
Oφ0

)〉CFT . (2.33)

The full impact of AdS/CFT on the study of strongly coupled gauge theories is
beyond both the purpose and scope of this review. But the duality does offer several
useful insights into black hole thermodynamics, which we will focus on for the rest
of this section.

Not long after the AdS/CFT correspondence was first proposed, Witten showed
how the thermodynamics of an AdS black hole can be understood in terms of the
(large N ) thermodynamics of the dual gauge theory [192]. In particular, the usual
Hawking–Page transition from AdS-Schwarzschild to “hot AdS” corresponds to a
confining/deconfining phase transition in the dual field theory 7. This can be seen
from the free energy of the two bulk configurations, which when expressed in terms
of field theory quantities scales as F ∼ O(1) and F ∼ O(N 2), respectively, in the
confined and deconfined phases.

The AdS/CFT correspondence also illuminates calculations of the entropy of the
BTZ black hole, raising Brown and Henneaux’s result [162] from an analogy to an
actual counting of states in a dual CFT [167, 193]. This is especially important for a
number of black holes that arise in string theory, which typically have near-horizon
geometries of the formBTZ×Y for some space (or product of spaces) Y . The entropy
of these black holes can then be explained via a similar state counting without having
to work out the full details in the worldvolume theory. For a review, see [178, 179].

Perhaps the most important consequence of AdS/CFT for black hole thermo-
dynamics is the idea that a gravitational theory, which presumably includes black

7 The dual field theory at finite temperature is defined on S3×S1 and therefore has compact volume.
Nevertheless, a phase transition is possible because the theory is considered in the large N limit.
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holes, is equivalent to a theory that is unitary. There are many ways to interpret
such a statement in the context of the information paradox. Since the duality applies
to the dynamics of both theories it is tempting to ‘resolve’ the paradox by point-
ing out that any process on the gravity side—including the formation and eventual
evaporation of a black hole—is encoded in unitary physics on the field theory side.
But this is far from a complete argument. In particular, the unitary evaporation of a
AdS-Schwarzschild black hole still forces one to either abandon local Hamiltonian
evolution (in the bulk) in a setting where it is expected to be a good description,
accept the formation of some sort of macroscopic remnant that remains entangled
with the Hawking radiation, or else revisit assumptions about the formation of black
holes in string theory [194]. One possible resolution is that the weakly coupled
D-brane states that are counted in, for example, the Strominger–Vafa calculation do
not form horizons as the gravitational coupling is increased. Instead, such states pos-
sess significant structure on horizon scales, and the traditional black hole is viewed
as a coarse-grained description of the actual states. This possibility, which was men-
tioned earlier, is the basis for the microstate and fuzzball programs described in the
next section.

The AdS/CFT correspondence is, at present, the most fully realized implementa-
tion of the holographic principle. It therefore owes its existence, at least in part, to the
comparatively humble idea that the entropy of a black hole scales like the horizon area
(2.1). In turn, AdS/CFT has inspired a number of generalizations, extensions, and
applications which may be considered descendants of black hole thermodynamics.
Some early examples during the period 1993–2003 include duals of confining field
theories with N = 1 supersymmetry [195], the dS/CFT correspondence relating
quantum gravity on de Sitter space to a Euclidean CFT [196, 197], proposed duals of
O(N ) vector models in terms of higher spin gauge theories [198], and even applica-
tions of gauge/gravity duality techniques to calculations in inflationary cosmology
[199–201].

The topics discussed in this section represent major achievements during the
period 1993–2003, but they were certainly not the only interesting developments
during that time. For instance, in 1995 Jacobson was able to extract, under certain
assumptions, the Einstein equations from horizon thermodynamics [202]. This result
inspired a fair amount of subsequent work, especially in recent years [203, 204].

2.6 2003–2013

The previous decade saw great progress in microscopic state counting, and the emer-
gence of holography as an important and perhaps fundamental property of quantum
gravity. In recent years there has been a focus on applications and generalizations of
AdS/CFT, efforts to identify the gravitational states associated with a black hole, and
attempts to comprehensively resolve the information paradox. Some new problems
have arisen, but developments that touch on two or more of these issues suggest
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a convergence towards a deeper understanding of quantum gravity and black hole
thermodynamics.

Tests and applications of AdS/CFT? Early tests of AdS/CFT spawned a number
of further checks that probed different regimes of the correspondence. For instance,
methods known from integrable systems, such as the thermodynamic Bethe Ansatz,
allowed to check aspects of AdS/CFT beyond perturbation theory (in particular,
for arbitrary values of the ‘t Hooft coupling constant λ); see [191] for a review.
As the correspondence matured a number of new applications were uncovered. An
emblematic example is the prediction of the ratio of shear viscosity η to entropy
density s in the infinite coupling limit [205, 206].

η

s
= �

4πkB
(2.34)

In relativistic heavy ion collisions the same order of magnitude was observed for
η/s (see [207]), which inspired both phenomenologists and theoreticians to apply
AdS/CFT methods to the description of relativistic plasmas, see e.g. [208–211] for
reviews. The key feature of the η/s story is that a complicated calculation on the
field theory side—determining the shear viscosity for a strongly coupled plasma—is
mapped to a problem on the gravity side that is suitable for a bright PhD student.
Indeed, Damour provided a comparable calculation in his PhD thesis already in 1979
[212].

Gauge/gravity correspondences. The past decade has seen numerous further
attempts to phenomenologically apply ideas from the AdS/CFT correspondence to
more general settings. These ‘gauge/gravity’ correspondences began with defor-
mations of AdS/CFT, but were soon extended to conjectured dualities between
theories that bear little resemblance to asymptotically AdS gravity or N = 4
Super-Yang–Mills. As above, the idea is to map complicated (strong coupling) prob-
lems on the gauge theory side to fairly simple problems on the gravity side. Examples
include condensed matter applications such as cold atoms [213–215], Lifshitz fixed
points with non-relativistic scaling symmetries [216], superfluids/superconductors
[217–219], non-Fermi liquids/strange metals [220–223] and the gravity/fluid corre-
spondence [224–228] (based on the membrane paradigm [229]). Some applications
of proposed gauge/gravity dualities to condensed matter systems are reviewed in
[230–235].

Limits of holography. We discuss now in a bit more detail some extensions of the
AdS/CFT correspondence that are more in line with the main topic of our review.
An interesting theoretically motivated question to ask is, how general is holography?
Originally, the holographic principle was motivated by avoidance of information
loss and preservation of unitarity, but the way the AdS/CFT correspondence works
makes it plausible that it could also apply to systems that are non-unitary. Moreover,
if the holographic principle is a true statement about Nature then it should be realized
in settings other than AdS, such as asymptotically flat or accelerating Friedmann–
Lemaitre–Robertson–Walker spacetimes.
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Finally, it is interesting to ask whether there are theories apart from string theory
that permit a holographic description. A conclusive answer to this question would
be an important achievement. If affirmative, then such theories might provide novel
playgrounds for theoretical considerations about holography as well as new appli-
cations along the lines of AdS/CFT. If negative, we would have established a direct
link between holography and string theory, i.e., holography would necessarily imply
string theory.

Non-unitary holography. Partly for simplicity and partly because there were many
developments in the past decade, we restrict ourselves mostly to 3-dimensional
theories of gravity in order to address the issues raised in the previous paragraph.
Let us start with the question to what extent holography could apply to non-unitary
theories. This question is somewhat delicate, because non-unitarity is often associ-
ated with some sickness of the theory. However, there are also systems that exhibit
non-unitarity in a ‘controlled’ way. This includes, for instance, open quantum sys-
tems and systems with quenched disorder. In a story with several interesting twists,
it appears that TMG (2.22) at the critical point μ� = 1 corresponds to a log CFT,
as suggested first in [236]. Log CFTs are specific non-unitary CFTs where two or
more operators have degenerate scaling dimensions and the Hamiltonian acquires a
Jordan block structure [237–239]. They are used, for example, in the description of
systems with quenched disorder. A key element on the gravity side is the emergence
of log modes [236]

ψ
log

αβ = lim
ε→0

ψ M
αβ − ψ L

αβ

ε
= −2(i t + ln cosh ρ)ψ L

αβ (2.35)

as linearized perturbation on the AdS background. The middle equation indicates
the degeneration of the massive graviton modes ψ M with the ‘left-moving boundary
graviton’ modes ψ L (specific Einstein-gravity modes at linearized level). The latter
are eigenstates of the Hamiltonian, Hψ L = i∂tψ

L = hψ L , while the former are
not: Hψ log = i∂tψ

log = hψ log +2ψ L . These two equations make manifest the Jordan
block structure of the Hamiltonian H when acting on the pair ψ log, ψ L . See [240]
for a full account of various checks, generalizations and possible applications of
the AdS/log CFT correspondence. Thus, it seems that it is possible to extend the
holographic principle to theories that exhibit non-unitarity in a controlled way.

Flat space holography. There was some progress on extracting features of the flat
space S-matrix from AdS/CFT correlators, see e.g. [241–245], but it is still fair to
say that efforts at flat-space holography have not met with a great deal of success
in dimension four and above. In three dimensions one can essentially repeat the
Brown–Henneaux construction, whichwas done byBarnich andCompere [246]. The
asymptotic symmetry algebra was found to be the Bondi–van der Burg–Metzner–
Sachs (BMS) algebra [247, 248] in three dimensions, which arises also as the ultra-
relativistic contraction (or large AdS radius limit) of the two-dimensional conformal
algebra. These algebras are also known as Galilean conformal algebras [249, 250],
which led to the notion of a ‘BMS/GCA correspondence’ [251]. A specific proposal
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for a flat space/CFT correspondence is flat space chiral gravity (TMG (2.22) in
the limit � → ∞ and G → ∞, with μG kept finite), which is conjectured to be
dual to a chiral half of a CFT [252]. In particular, for central charge c = 24 the
conjectured CFT is a chiral half of the monster CFT (proposed originally by Witten
in the context of Einstein gravity [253]), exactly like in the chiral gravity proposal
by Li et al. [254]. Its partition function is given by the J -function [253, 255] and due
to chirality depends solely on the ‘left-moving’ modular parameter q.

Z(q) = J (q) = 1

q
+ 196884 q + O(q2) (2.36)

The number 196884 is interpreted as one Virasoro descendant of the vacuum plus
196883 primary fields corresponding to flat space cosmology horizon microstates
(see below). The flat space chiral gravity quantum entropy S = ln 196883 ≈ 12.2
differs only by about 3 % from the semi-classical Bekenstein–Hawking result SBH =
4π ≈ 12.6 (in suitable units). For quantum gravity applications the (flat space)
chiral gravity situation seems optimal: there are quantum corrections that are not
completely negligible (of the order of a few percent), but the theory is not “ultra-
quantum” so that geometric notions associated with the semi-classical limit, like
black hole horizons, can still be discussed meaningfully. Flat space cosmologies
[256, 257] are the flat space analog of BTZ black holes (2.24) and permit amicrostate
counting similar to AdS (2.26), see [258, 259]. They are subject to a Hawking–Page
like phase transition [260] so that at least in three dimensions cosmic evolution can
be generated by heating (and gently stirring) flat space. For further aspects of flat
space holography see e.g. [261–269].

Higher spin holography. Remarkably, AdS spacetimes permit interacting massless
particles with spin greater than two [270–273]. These ‘higher spin’ theories could be
relevant for the holographic description of certain sectors of large N gauge theories.
In particular, Klebanov and Polyakov proposed that a particular Vasiliev-type higher
spin theory on AdS4 might be exactly dual to the O(N ) vector model (at large N )
in three dimensions. This conjecture triggered an intensive study of the subject with
impressive achievements [274–277]. An interesting technical aspect of higher spin
holography is that it provides a weak/weak duality and therefore allows to test holog-
raphy with high precision (the other side of the coin is that higher spin holography
is of less practical use than AdS/CFT, since strong/weak dualities can map hard
calculations to simple ones). Coming back to three bulk dimensions, Henneaux and
Rey (and independently Campoleoni, Fredenhagen, Pfenninger and Theisen) gen-
eralized the Brown–Henneaux analysis to higher spin theories with AdS boundary
conditions [281, 282], and a few months later Gaberdiel and Gopakumar proposed a
correspondence between Vasiliev-type higher spin gravity and minimal model CFTs
[278–280]. Some selected papers and reviews are [283–292]. Recently, the topics
of flat space and higher spin holography were combined [293, 294], in the spirit
of non-AdS holography for three dimensional higher spin gravity [295]. The main
observation is that unlike the spin-2 case, higher spin theories allow formanydifferent



54 D. Grumiller et al.

backgrounds, including Lobachevsky, Lifshitz, Schrödinger andwarpedAdS besides
more common backgrounds such as AdS or flat space, without the addition of matter
fields.

Holographic entanglement entropy. Entanglement entropy is an entanglement
measure for bipartite pure states |Ψ 〉 and is defined as the von Neumann entropy

SA = −trρA ln ρA = − lim
n→1

d

dn
trρn

A (2.37)

associated with the reduced density matrix ρA = trB |Ψ 〉〈Ψ | of a subsystem A,
where the total system is divided into two subsystems A and B, see e.g. [296]. For
the present context one can think of A(B) as the exterior (interior) of a black hole.
Then SA can be thought of as the entropy for an observer who has access only to
the black hole exterior. The fact that entanglement entropy obeys an area law led to
the suggestion [297–299] that Bekenstein–Hawking entropy could be interpreted as
entanglement entropy (see [300] for a review).

Entanglement entropy has found many applications in quantum systems, see
e.g. [301–304], but is not easy to calculate in interacting quantum field theories
in dimension greater than two [sometimes the so-called replica trick can be used,
which exploits the second equality in (2.37)]. The holographic entanglement entropy
proposal by Ryu and Takayanagi [305, 306] applies holographic ideas to map the
difficult calculation of entanglement entropy on the field theory side to an elementary
calculation of minimal surfaces on the gravity side. This proposal has passed sev-
eral tests by successfully reproducing the entanglement entropy in well-understood
cases, see [307] for a review. Taking the proposal for granted it can then be applied
to situations in which no other method exists (currently) to determine entanglement
entropy. Thus, holographic entanglement entropy, which provides a link between
black hole thermodynamics and quantum information,8 is another example of the
utility of weak/strong dualities like AdS/CFT.

Geometry of black hole thermodynamics and cosmological constant as state
parameter. Over the last decade most of the work inspired by black hole thermo-
dynamics focused on holography, AdS/CFT, and related issues. But there were also
some interesting purely thermodynamical developments. For example, the geometry
of black hole thermodynamics was investigated in numerous papers, see for instance
[310–316]. The basic idea goes back toRuppeiner [317–319], namely to associate the
Hessian of the entropy (with respect to some state space variables xi ) with a metric,
gi j = −∂i∂ j S(xk), whose geometric properties are related to the thermodynamics
of the system.

Another example is the recent revival of the idea to treat the cosmological constant
as a state parameter. This concept goes back to the germinal work of [320, 321]. In
order to treat the cosmological constant as a state variable, Λ is introduced as a

8 We mention in the conclusions that this link is likely to grow stronger in the future. Besides
the numerous recent papers on holographic entanglement entropy, some selected papers that also
provide such links are [308, 309] and references therein.



2 Black Holes and Thermodynamics … 55

constant of integration by coupling a four form field strength to gravity. The value
of the cosmological constant can change by spontaneous nucleation of membranes
that act as sources for the four form [322–324], or by thermal decay together with
the creation of a black hole [325]. These results motivate the study of black hole
thermodynamics in AdS, in a phase space extended by Λ and its conjugate variable
�, the negative of which turns out to be a suitable “thermodynamic” definition for
the volume of a black hole [326–333]. See [334] for a review.

Kerr/CFT. The counting of black hole microstates pioneered by Strominger and
Vafa in the previous decade initially was restricted to simple but astrophysically
irrelevant black holes. In the decade discussed in this section a similar counting was
applied to Kerr black holes, which established the ‘Kerr/CFT’ correspondence, see
e.g. [335–345]. Particularly the early papers were based on the near horizon extremal
Kerr (NHEK) metric constructed by Bardeen and Horowitz [346].

ds2NHEK = M2(1+cos2θ)
(− dt̂2 + dr̂2

r̂2
+ 4 sin2θ

(1 + cos2θ)2

(
dφ̂+ dt̂

r̂

)2+dθ2
)

(2.38)

The line-element (2.38) is obtained from the Kerr geometry (2.2) by rescaling t̂ =
λt
2M , r̂ = λM

r−M , φ̂ = φ − t
2M and taking the limit λ → 0 while keeping t̂, r̂ , φ̂, θ

fixed. The entropy counted by CFT methods then matches the Bekenstein–Hawking
result (2.1).

SCFT = 2πJ

�
= Ah

4G
= SBH (2.39)

While astrophysical black holes are never exactly extremal (the Thorne bound on
the dimensionless Kerr parameter is a < 0.998 [347]), some of them come very
close to this bound. A possible example is GRS1915+105 whose dimensionless Kerr
parameter appears to exceed a � 0.98 [348, 349] (however, see [350]).

Fuzzballs. The various successes of counting black hole microstates all failed to
answer an important question: what do the corresponding microstate geometries
look like? The fuzzball proposal [351] addresses this question in the context of
string theory, stating that there should be O(eS) horizonless and regular solutions
that asymptote to the geometry of a given black hole, but differ from this geometry at
the scale of the horizon, see also [352, 353], and [354–357] for reviews. The fuzzball
proposal is motivated by the AdS/CFT correspondence as follows: for every state in
theCFTcountedby theCardy formula there is a corresponding regular asymptotically
AdS geometry. Each of these geometries encodes the vacuum expectation values of
gauge invariant operators in that state through the standard AdS/CFT dictionary.
These solutions can be stringy in the interior, though large classes of solutions have
been identified that are well-described by the supergravity approximation.

One of the main achievements claimed by proponents of the fuzzball program is
a resolution of the information paradox. This can be traced back to a key property of
the proposal, which is that quantum gravity effects in string theory can take place on
scales much larger than the Planck scale due to ‘fractionation’ [194]. This results in
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significantmodifications ofHawking radiation atwavelengths of orderG M , allowing
information to escape the ‘hole’ and be recovered (in principle) by external observers.
On the other hand, if the system is probedwith someobject of sufficiently high energy,
E � T (where T is the Hawking temperature), then collective modes of the fuzzball
are excited, which is well-approximated by a description in terms of an ensemble
average over all fuzzballs. The latter reproduces the black hole geometry, so that the
dynamics of sufficiently energetic objects over short timescales (like an astronaut
falling into a black hole) are essentially the same as one would expect in a classical
black hole geometry.

Firewalls. The information loss problem has resurfaced in the past few years through
an ingenious gedankenexperiment set up by Almheiri, Marolf, Polchinski and Sully
(AMPS) that highlighted their difficulty of reconciling black hole complementarity
with the equivalence principle [358]. AMPS and several other authors argued that
a possible resolution of this incompatibility results in an infalling observer encoun-
tering a ‘firewall’ close to the horizon, see [359, 360] and references therein. The
AMPS gedankenexperiment has engendered a lot of discussion and is an excellent
demonstration that, at least collectively, the days of confusion regarding black hole
thermodynamics and information loss are not over yet. There is of course a simple
resolution of the apparent firewall paradox, but the margin is too small to include it
here.

2.7 Conclusions and Future

Log corrections to entropy. We started our journey through the past 50 years of
black hole thermodynamics with the Bekenstein–Hawking relation (2.1) and the
statement that black hole thermodynamics provides non-trivial consistency checks
for quantum gravity. We will end our review on a similar note, by going one step
further than Bekenstein and Hawking. Namely, in the semi-classical approximation
the area law obtains quantum corrections, which can be organized in an expansion in
terms of 1/SBH (the same kind of correction is obtained from subleading contributions
to the Cardy formula [361]).

S = SBH + γ1 ln SBH + γ2 + O(1/SBH) (2.40)

While the subleading terms and the O(1) term depend on the specific quantum
gravity theory, the leading and first subleading term depend only on the classical
limit of that theory and the validity of the semi-classical approximation. In other
words, any theory of quantum gravity that is supposed to be equivalent to Einstein
gravity in its semi-classical limit must not only reproduce the Bekenstein–Hawking
law (2.1), but also the same result for the numerical coefficient γ1 in front of the
logarithmic correction term as obtained from perturbative (1-loop) quantization of
Einstein gravity (with a given set of matter degrees of freedom—the precise coef-
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ficient depends on the specific matter content). A recent summary of logarithmic
corrections to Schwarzschild and other non-extremal black holes was provided by
Sen [362]. He found that string theory calculations, whenever available, agree pre-
cisely with the semi-classical result. Interestingly, the simplest of all black holes, the
Schwarzschild black hole, still presents a challenge: currently, string theory does not
provide a prediction for γ1 of the Schwarzschild black hole.9

Future developments. Predictions of future developments often serve as a source
of amusement for future generations [365], but we will venture one as our closing
statement. While a lot of our current understanding of black hole thermodynamics
and quantum gravity was achieved through consistently applying Feynman’s dictum
“everything is particle”—most prominently epitomized by the Hawking effect—we
predict that most of our future understanding will be achieved through consistently
applying Wheeler’s dictum “everything is information” [366], like in the recent
slogan “ER = EPR” [367] that emerged from the firewall discussions.
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