
Chapter 2
Cognitive Modeling for Automating Learning
in Visually-Guided Manipulative Tasks

Hendry Ferreira Chame and Philippe Martinet

Abstract Robotmanipulators, as general-purposemachines, can be used to perform
various tasks. Though, adaptations to specific scenarios require of some technical
efforts. In particular, the descriptions of the task result in a robot program which
must be modified whenever changes are introduced. Another source of variations are
undesired changes due to the entropic properties of systems; in effect, robots must be
re-calibrated with certain frequency to produce the desired results. To ensure adapt-
ability, cognitive robotists aim to design systems capable of learning and decision
making. Moreover, control techniques such as visual-servoing allow robust control
under inaccuracies in the estimates of the system’s parameters. This paper reports the
design of a platform called CRR, which combines the computational cognition par-
adigm for decision making and learning, with the visual-servoing control technique
for the automation of manipulative tasks.

Keywords Cognitive robotics · Computational cognition · Artificial intelligence ·
Visual servoing.

2.1 Introduction

In the last decades, with the venue of fields of study such as cybernetics, artificial
intelligence, neuroscience and psychology; remarkable progresses have been made
in the understanding of what is required to create artificial life evolving in real-world
environments [1]. Still, one of the remaining challenges is to create new cognitive
models that would replicate high-level capabilities; such as, perception and informa-
tion processing, reasoning, planning, learning, and adaptation to new situations.

H.F. Chame (B) · P. Martinet
Robotics Team, Institut de Recherche en Communications et Cybernétique
de Nantes (IRCCyN), Nantes, France
e-mail: hendry.ferreira-chame@irccyn.ec-nantes.fr

P. Martinet
e-mail: philippe.martinet@irccyn.ec-nantes.fr

© Springer International Publishing Switzerland 2015
J.-L. Ferrier et al. (eds.), Informatics in Control, Automation and Robotics,
Lecture Notes in Electrical Engineering 325, DOI 10.1007/978-3-319-10891-9_2

37

38 H.F. Chame and P. Martinet

The study of knowledge representation and thinking has led to the proposal of
the concept of Cognitive Architecture (CA). A CA can be conceived as a broadly-
scoped, domain-generic computational cognitive model, which captures essential
structures and processes of the mind, to be used for a broad, multiple-level, multiple-
domain analysis of cognition and behavior [2]. For cognitive science (i.e., in relation
to understanding the human mind) it provides a concrete mechaniscist framework
for more detailed modeling of cognitive phenomena; through specifying essential
structures, divisions of modules, relations between modules, and so on [3].

A robot that employs a CA to select its next action, is derived from integrated
models of the cognition of humans or animals. Its control system is designed using the
architecture and is structurally coupled to its underlying mechanisms [4]. However,
there are challenges associated with using these architectures in real environments;
notably, for performing efficient low-level processing [5]. It can be hard, thus, to gen-
erate meaningful and trustful symbols from potentially noisy sensor measurements,
or to exert control over actuators using the representation of knowledge employed
by the CA.

In practice, implementations of cognitivemodels usually require wide expertise in
many other fields (i.e., probabilistic navigation, planning, speech recognition; among
others). Moreover, cognitive models are derived from a large spectrum of compu-
tational paradigms that are not necessarily compatible when considering software
architecture requirements. Scientists in cognition research, and actually higher-level
robotic applications, develop their programs, models and experiments in a language
grounded in an ontology based on general principles [6]. Hence, they expect reason-
able and scalable performance for general domains and problem spaces.

On the side of cognitive roboticists, it would not be reasonable to replace already
existing robust mechanisms ensuring sensory-motor control by less efficient ones.
Such is the case of the servo-vision control technique (or visual servoing) which uses
computer vision data to control the motion of the robot’s effector [7]. This approach
has the advantage of allowing the control of the robot from the error directlymeasured
on the effector’s interaction with the environment; making it robust to inaccuracies
in estimates of the system parameters [8].

This research seeks to contribute to the debate standing from the point of view
of cognitive roboticists. It can be conceived as an effort to assess to what extent it is
feasible to build cognitive systems making use of the benefits of a psychologically-
oriented CA; without leaving behind efficient control strategies such as visual servo-
ing. The aim is to verify the potential benefits of creating an interactive platformunder
these technologies; and to analyze the resulting flexibility in automating manipula-
tive tasks.

2.2 Cognitive Architectures

According to [9], two key design properties that underlie the development of any
CA are memory and learning. Various types of memory serve as a repository for
background knowledge about theworld, the current episode, the activity, and oneself;

2 Cognitive Modeling for Automating Learning … 39

while learning is themain process that shapes this knowledge.Based on these two fea-
tures, different approaches can be gathered in three groups: symbolic, non-symbolic,
and hybrid models.

A symbolic CA has the ability to input, output, store and alter symbolic entities;
executing appropriate actions in order to reach goals [2]. The majority of these archi-
tectures employ a centralized control over the information flow from sensory inputs,
throughmemory; tomotor outputs. This approach stresses theworkingmemory exec-
utive functions, with an access to semantic memory; where knowledge generally has
a graph-based representation. Rule-based representations of perceptions/actions in
the procedural memory, embody the logical reasoning of human experts.

Inspired by connectionist ideas, a sub-symbolic CA is composed by a network of
processing nodes [3]. These nodes interact with each other in specific ways chang-
ing the internal state of the system. As a result, interesting emergent properties are
revealed. There are two complementary approaches to memory organization, global-
ist and localist. In these architectures, the generalization of learned responses to novel
stimuli is usually good, but learning new items may lead to problematic interference
with existent knowledge [10].

A hybrid CA combines the relative strengths of the first two paradigms [9]. In this
sense, symbolic systems are good approaches to process and executing high-level
cognitive tasks; such as, planning and deliberative reasoning, resembling human
expertise. But they are not the best approach to represent low-level information. Sub-
symbolic systems are better suited for capturing the context-specificity and handling
low-level information and uncertainties. Yet, their main shortcoming are difficulties
for representing and handling higher-order cognitive tasks.

2.3 Visual Servoing

The task in visual servoing (VS) is to use visual features, extracted from an image,
to control the pose of the robot’s end-effector in relation to a target. The camera
may be carried by the end-effector (a configuration known by eye-in-hand) or fixed
in (eye-to-hand) [7]. The aim of all vision-based control schemes is to minimize an
error e(t), which is typically defined by

e(t) = s(m(t), a) − s∗. (2.1)

The vector m(t) is a set of image measurements used to compute a vector of
k visual features s(m(t), a), based on a set of parameters a representing potential
additional knowledge about the system (i.e., the camera intrinsic parameters, or a
3-D model of the target). The vector s∗ contains the desired values of the features.

Depending on the characteristics of the task, a fixed goal can be considered where
changes in s depend only on the camera’s motion. A more general situation can also
be modeled, where the target is moving and the resulting image depends both on the
camera’s and the target’s motion. In any case, VS schemes mainly differ in the way

40 H.F. Chame and P. Martinet

s is designed. For image-based visual servo control (IBVS), s consists of a set of
features that are immediately available in the image data. For position-based visual
servo control (PBVS), s consists of a set of 3D parameters, which must be estimated
from image measurements. Once s is selected, a velocity controller relating its time
variation to the camera velocity is given by

ṡ = LsVc. (2.2)

The spatial velocity of the camera is denoted by Vc = (vc, ωc), with vc the instan-
taneous linear velocity of the origin of the camera frame and ωc the instantaneous
angular velocity of the camera frame. Ls ∈ R6×k is named the interaction matrix
related to s. Using (2.1) and (2.2), the relation between the camera velocity and the
time variation of e can be defined by

ė = LeVc. (2.3)

Considering Vc as the input to the controller, if an exponential decoupled decrease
of e is desired, from (2.3) the velocity of the camera can be expressed by

Vc = −λLe
+e, (2.4)

where L+ ∈ R6×k is chosen as the Moore-Penrose pseudoinverse of Le, that is
Le

+ = (Le
tLe)

−1Le
t when Le is of full rank 6. In case k = 6 and det(Le) �= 0, it

is possible to invert Le such as Vc = −λLe
−1e.

Following (2.4), the six components of Vc are given as input to the controller. The
control scheme may be expressed in the joint space by

q̇ = −λ(Je
+e + Pees) − Je

+ ∂e

∂t
, (2.5)

where Je is the feature Jacobian matrix associated with the primary task e, Pe =
(I6 − ̂Je

+
̂Je) is the gradient projection on the null space of the primary task to

accomplish a secondary task es, and
̂∂e
∂t models the motion of the target. An example

of VS is presented in Fig. 2.1.

2.4 The CRR Proposal

The Cognitive Reaching Robot (CRR) is a system designed to perform interac-
tive manipulative tasks. When compared to non-cognitive approaches, CRR has the
advantage of being adaptive to variations of the task; since the reinforcement learning
(RL) mechanism reduces the need for explicitly reprogramming the behavior of the
robot. Furthermore, CRR is robust to changes in the robotic system due to wear. It is

2 Cognitive Modeling for Automating Learning … 41

Fig. 2.1 Comparison between three IBVS (Image-base visual servoing) control schemes [8].
a Initial and final position of the target on the camera image, and the trajectory followed by each
point and the center of the virtual polygon. b Evolution of Vc. From left to right the plots corre-
spond to different calculations of the interaction matrix: Le

+ (at each iteration), Le
+ = Le∗ + (at

equilibrium), and Le
+ = (Le

+ + Le∗ +)/2.

Cognitive
Module

Auditory
Module

Visuomotor
Module

SoarVoce Library ViSP / OpenCV

AUS VIC/PRC

VIS/PRSAUC

Fig. 2.2 The CRR architecture. The boxes represent modules and the ovals indicate the libraries
wrapped inside the modules. The links between modules indicate topics. AUS Auditory sensory,
PRS proprioceptive sensory, VIS visual sensory, AUC auditory command, VIC visual command,
PRC proprioceptive command

tolerant to calibration errors by employing visual servoing; where modeling errors
are compensated in the control loop (the camera directly measures the task errors).

The platform presents a modular organization (as shown in Fig. 2.2) and is com-
posed by three modules. The cognitive module is responsible for symbolic decision
making and learning. The auditory module processes speech recognition. The visuo-
motor module is in charge of applying the VS control. To enable inter-modular
communication, six topics were defined. Topics are named buses over which mod-
ules exchange messages. According to the sensory modalities that compose CRR,
auditory, proprioceptive and visual topics were defined. The aim of these topics is
sending sensory information to the cognitivemodule. Similarly, the cognitivemodule
sends commands to the auditory, visual and proprioceptive modules.

42 H.F. Chame and P. Martinet

Hardware Components. The design of CRR aimed to praise the reusability
of equipments, so its hardware components were chosen according to a criteria of
accessibility in the robotic lab. The project considered a Stäubli TX-40 serial robot
manipulator, an AVT MARLIN F-131C camera, and a DELL Vostro 1,500 laptop
(Intel Core 2 Duo 1.8 GHz, 800 MHz front-side bus, 4.0 GB DDR2 667 MHz RAM
memory, 256 MB NVIDIA GeForce 8,600 M GT graphic card).

Software Components. Three criteria grounded the choice for software technolo-
gies: source availability, efficiency and continuity of the development community.
The sole exception was the use of SYMORO+ [11], a proprietary automatic sym-
bolic modeling tool for robots. CRR was developed under Ubuntu Oneiric Ocelot
and relied on Voce Library V0.9.1, ViSP V2.6.2, the symbolic CA Soar V9.3.2, and
ROS Electric. Eclipse Juno V4.2 was used for cording and testing the algorithms.

2.5 Case Study

The experimental situation designed, consisted in a reaching, grasping, and releasing
task, involving reinforcement learning. From the inputs received, and based on the
rewards or punishments obtained, the robot must learn the optimal sequence policy
π : S → A to execute the task, and thus, to maximize the reward obtained.

2.5.1 Task Definition

The experimenter is positioned in front of the robot for every trial and presents it
an object accompanied by a verbal auditory cue (“wait” or “go”). The robot has to
choose between sleeping or reaching the object. If the object is reached after a “wait”
or the robot goes sleeping after a “go”, the experimenter sends an auditory verbal cue
representing punishment (“stop”) and the trial ends. On the contrary, if the robot goes
sleeping after getting a “wait” or follows the object after a “go”, it receives an auditory
verbal cue representing reward (“great”). After being rewarded for following the
object, the experiment enters the releasing phase. If the robot alternated the location
for dropping the object it is rewarded, otherwise it is punished. Figure 2.3 presents
the reinforcement algorithm.

The robot has two main goals in the experiment. It is required to learn when
reaching or sleeping in the presence of the object; and if the object is grasped,
to learn to drop it alternatively in one of two containers. Summarizing, the robot
is required of perceptive abilities (recognizing the object and speech), visuomotor
coordination, and decision making (while remembering events).

2 Cognitive Modeling for Automating Learning … 43

Initial
Object
location

Speech
recognition

Go to sleep

Reward Punishment
Object
grasping

Reach
the object

Punishment

Where
to

release?
Reward Punishment

wait

go go

wait

alternates
location

repeats
location

Fig. 2.3 Task reinforcement algorithm

2.5.2 Perception

Object Recognition. The recognition of the object was accomplished using the
OpenCV library. The partition of the image intomeaningful regionswas achievement
in two steps. The classification steps includes a decision process applied to each pixel
assigning it to one of C ∈ {0 . . . C − 1} classes. For CRR a particular case using
C = 2 known as binarization [12] was used. Formally, it is conceived as a monadic
operation taking an image of size I W×H as input, and producing an image OW×H

as output; such as

O[u, v] = f (I [u, v]), ∀(u, v) ∈ I. (2.6)

The color image I is processed in HSV color space, and the f function used was

f (I [u, v]) =
{

1 if εi < I [u, v] < εf
0 otherwise

. (2.7)

The choice of f was based on simplicity and ease of implementation; however,
it assumes constant illumination conditions throughout the experiment (which is the
case since the environment is illuminated artificially). The thresholds ε were set to
recognize red objects.

In the description phase the represented sets S are characterized in terms of scalar
or vector-valued features such as size, location and shape. A particularly useful class
of image features are moments [7], which are easy to compute and can be used to
find the location of an object (centroid). For a binary image B[x, y] the (p + q)th
order moment is defined by

44 H.F. Chame and P. Martinet

m pq =
ymax
∑

y=0

xmax
∑

x=0

x p yq B(x, y). (2.8)

Moments can be given a physical interpretation by regarding the image function
as a mass distribution. Thus m00 is the total mass of the region, and the centroid of
the region is given by

xc = m10

m00
, yc = m01

m00
. (2.9)

After the centroid is obtained, the last step consisted in proportionally defining
two points beside it, forming an imaginary line of −45◦ slope. These two points are
the output of the object recognition algorithm, later entered to ViSP to define 2D
features and performing the VS control.

Speech Recognition. CRR used the Voce Library to process speech. It required
no additional efforts than changing the grammar configuration file to include the
vocabulary to be recognized.

2.5.3 Visuomotor Control

In order to performvisuomotor coordination to reach the object, an IBVS strategywas
chosen given its robustness to modeling uncertainties [8]. The camera was located in
the effector of the robot (eye-in-hand), thus the Je component of (2.5) is defined by

Je = Le
cVn

n J (q). (2.10)

Two visuomotor subtasks were defined: reaching the object and avoiding joint limits.
Primary task. The subtask e consisted in positioning the end-effector in front

of the object for grasping it. The final orientation of the effector was not important
(assuming a spherical object), therefore, only 3 DOF were required to perform the
task. Two 2D point features were used given its simplicity, each of them allowing to
control 2 DOF. The resulting interaction matrix Lei was defined by

Lei =
[−1/Zei 0 xei /Zei xei yei −(1 + x2ei

) yei

0 −1/Zei yei /Zei (1 + y2ei
) −xei yei −xei

]

. (2.11)

The error vector for the primary task can be expressed by

ei = [

(xsi − xsi
∗) (ysi − ysi

∗)
] t. (2.12)

Since two points are tracked, the resulting components dimension were L4×6
e and

e4×1.

2 Cognitive Modeling for Automating Learning … 45

Secondary Task. The remaining 3 DOF were used to perform the secondary task
of avoiding joint limits. The strategy adopted was activation thresholds [13]. The
secondary task is required only if one (or several) joint is in the vicinity of a joint
limit. Thus, thresholds can be defined by

q̃imin = qimin + ρ(qimax − qimin), (2.13)

and

q̃imax = qimax − ρ(qimax − qimin), (2.14)

with 0 < ρ < 1/2.
The vector es had 6 components, each defined by

esi =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

β(qi −q̃imax)

qimax−qimin
if qi > q̃imax

β(qi −q̃imin)

qimax−qimin
if qi < q̃imin

0 otherwise

, (2.15)

with the scalar constant β regulating the amplitude of the control law due to the
secondary task.

2.5.4 Decision Making

Markov Decision Process (MDP) provided the mathematical framework for model-
ing decision making. The task space was represented by a set of S = {S0, . . . , S10}
states, A = {a0, . . . , a8} actions and Pa(s, s′) = {α0, . . . , α14} action-transition
probabilities. The simplified MDP representation of the agent is given in Fig. 2.4.

Procedural Knowledge Modeling. Cognitive models in Soar 9.3.2 are stored in
long-term production memory as productions. A production has a set of conditions
and actions. If the conditions match the current state of working memory (WM), the
production fires and the actions are performed. Some attributes of the state are defined
by Soar (i.e., io, input-link and name) ensuring the operation of the architecture. The
modeler has the choice to define custom attributes, which derives in a great control
over the state.

The procedural knowledge implementation in Soar can be conceived as amapping
between an input to an output semantic structure. To develop the case study, it was
necessary to define three types of productions: maintenance, MDP and RL rules. The
first category includes rules that process inputs and outputs to maintain a consistent
state in the WM; a typical task is clearing or putting data into the slots in order to
access the modules functionalities. The second category includes rules related to the
agent’s task, such as, managing the MDP state transitions. The last group involves
rules that guarantee the correct functioning of RL; it includes tasks like maintaining

46 H.F. Chame and P. Martinet

S0

init
S1

locate
S2

reach
S3

sleep
S4

restart
grasp

S5

rLoc1

think

rLoc2

S8

rLoc1

rLoc2

S9

restart

S10

restart

S7

restart

S6

restart

∗ ∗ ∗

∗∗

∗

∗

∗

∗∗
∗

∗

∗
∗

∗

Fig. 2.4 The MDP task model. ∗ = (α, ρ), where α is the transition probability from s to s′ when
taking the action, and ρ is the reward associated with the state. From all actions there is a link to
S0 (omitted for clarity) modeling errors on the process with probability 1 − α. The states are: S0
Started, S1 initialized, S2 object located, S3 object reached, S4 sleeping, S5 object grasped, S6 object
released in location 1, S7 object released in location 2, S8 thinking, S9 object released in location 1
after thinking, S10 object released in location 2 after thinking. The action a0 initializes the system,
a1 signals the localization of the object, a2 signals the robot to reach the object, a3 puts the robot
in sleeping mode, a4 signals the robot to close the gripper, a5 explores past events, a6 and a7 signal
the robot to release the object at location 1 or 2 respectively, and a8 restarts the system. If a state
receives a negative feedback from the user ρi = −4 (punishment). In case of positive feedback,
ρi = 2 (reward)

Procedural
memory

RL rulesM rules MDP rules

Fig. 2.5 Procedural memory. M maintenance, RL reinforcement learning, MDP mark of
decision process

the operators’ Q-values, or registering rewards and punishments. Figure 2.5 presents
a qualitative view of the contents of the procedural memory. For modeling the case
study, a total of 57 productions were defined.

Remembrance of Events. Functionalities in Soar are accessed through testing
the current semantic structure of the WM. The same principle applies for querying
data in the long term memory. In order to access the episodic or semantic mem-
ory, the programmer must define rules placing the query attributes and values on
the attribute epmem (for episodic retrieval) or smem (for semantic retrieval). After
each decision cycle, Soar checks the epmem.command node to match conditions for

2 Cognitive Modeling for Automating Learning … 47

stimulus

modality name valence

A V P - 0 +

Fig. 2.6 Stimulus semantic knowledge. A auditory, V visual, P proprioceptive

Start Input Analysis

How
does it
feel
like?

Output

Reflection

End

+/-

0

Fig. 2.7 Stimulus processing and reinforcement

episodic retrieval. A copy of the most recent match (if found) will be available on
the epmem.result for the next decision cycle.

Remembrance of Facts. Facts about the world can be modeled through semantic
structures. For the case study, the agent must know what are the stimuli received, or
at least, how it feels like in relation to them. Thus, semantic information concerning
stimuli was added to the system. The resulting graph was equivalent to a tree of
height two (Fig. 2.6). A stimulus has a name, a sensory modality (visual, auditory or
proprioceptive) and a valence (positive, negative or neutral).

Reinforcement Learning. The learning by reinforcement can be considered as
equivalent to mapping situations to actions, so as to maximize a numerical reward
signal [14]. The learner is not told which actions to take, but instead it must discover
which actions yield the most reward by trying them. The RLmodule of Soar is based
on the Q-learning algorithm [14]. In the case study a reward is applied whenever
the state is not neutral. Figure 2.7 illustrates the processing of the stimuli. When an
input arrives, procedural rules query the semantic memory to determine the valence
associated with the stimulus. Following an analogy with respect to humans, the agent
continues to work if it doesn’t feel happy or sad about what it has done; if so, it stops
to think about it.

48 H.F. Chame and P. Martinet

0 50 100 150 200

20

40

Iteration

T
im

e
in

m
s

Modes execution Time

VS VSL VSI VSIL

Fig. 2.8 Visuomotor module computing time

2.6 Results

The implementation of the functionalities ofCRR took place incrementally.Given the
independence between the different modules, each component could be developed
and tested individually. The modules were connected to the platform through ROS
Etectric; a comprehensive simulationwas done, and the results obtained are presented
below.

2.6.1 System Performance

The performance of the visuomotor module is quite acceptable for real-time control
applications. The module was designed to operate in four different modalities. In the
VS mode, only visual servoing is available. In the VSI mode, it is possible to have a
real-time view of the camera. In theVSL mode, the system generates log files for joint
positions and velocities, feature errors, and camera velocities. Finally, a combination
of the last three is allowed in the VSIL mode. As it can be seen in Fig. 2.8, a Freq.
near to 66 Hz (approx. 15 ms per iteration) can be reached. If the camera view is
displayed (which can be useful for debugging but has no importance for execution)
the Freq. drops to 20 Hz.

2 Cognitive Modeling for Automating Learning … 49

Fig. 2.9 Robot configuration for testing joint limits avoidance. a Joint positions in deg: q1 = 0,
q2 = 90, q3 = −90, q4 = 0, q5 = 0, q6 = 0. b Simulated view, dots are the current feature
locations and crosses are the desired locations

2.6.2 Joint Limit Avoidance

In order to test the joint limit avoidance property of the system, a simple simulation
was designed. The robot was positioned in the configuration displayed in Fig. 2.9a.
An object is assumed to be presented to the robot, rotated −10◦ around the z-axis of
the camera frame. The simulated camera view is shown in Fig. 2.9b.

The primary task (moving the robot to the desired view of the features) can be
solved in infinite ways given the current singularity between joint frames 4 and 6. For
testing the limit avoidance control law, limits of q6min = −5◦ and q6max = 5◦ were
set to joint 6. As it is shown in Fig. 2.10, if just the primary task is performed, the
control law generated will mostly operate q6 and the task will fall in local minima,
since q6min will be reached. On the contrary, as shown in Fig. 2.11, setting a threshold
ρ = 0.5 (which means it will be active when q6 < −2.5◦ or q6 > 2.5◦) solves the
problem and the joint limit is avoided.

2.6.3 Learning Task

The task designed to run over CRR had two learning phases. In order to assess the
correctness of the cognitive model and the learning algorithm; two experimental sets
were defined. In the experimental set one (ES1), the objective was to teach the robot
to identify when reaching the target. The ES1 evaluation consisted of five test cases
varying the order of presentation of the clues “wait” and “go”. In all conditions the
robot started without prior knowledge (the RL module was reset). The comparison

50 H.F. Chame and P. Martinet

0 1,000 2,000 3,000 4,000

−4

−2

0

Time in ms

V
el
oc
ity

in
de
g/
se
c

q̇1 q̇2 q̇3 q̇4 q̇5 q̇6

Evolution of joints velocities for task 1

Fig. 2.10 Simulation of VS primary task

0 1,000 2,000 3,000 4,000

−4

−2

0

Time in ms

V
el
oc
ity

in
de
g/
se
c

Evolution of joints velocities for task 1 and 2.

q̇1 q̇2 q̇3 q̇4 q̇5 q̇6

Fig. 2.11 Simulation of VS avoiding joint limits

between a RL and a random police is given in Table 2.1; as it can be seen, the
robot was able to learn the task. The experimental set two (ES2) assumes ES1 was
accomplished, so the agent properly grasped the object and must now learn where
to drop it. The ES2 evaluation showed the agent was able to quickly learn the task
using RL, and the resulting Q-values are presented in Table 2.2. For each test case
of both ES1 and ES2, the first 20 responses of the robot were registered.

2 Cognitive Modeling for Automating Learning … 51

Table 2.1 ES1 evaluation results

Test RL-S RL-C R-S R-C

C1 17 0.85 8 0.40

C2 18 0.90 11 0.55

C3 17 0.85 12 0.60

C4 18 0.90 9 0.45

C5 18 0.90 10 0.50

RL-S Number of successes applying a RL policy, RL-C RL-S/attempts, R-S number of successes
applying a random policy, R-C R-S/attempts

Table 2.2 ES2 evaluation results

Action Frequency Reward

think-Remember 15 4.9302

think-release-loc-2-A 1 −2.2800

think-release-loc-2-B 7 6.9741

think-release-loc-1-A 7 6.9741

think-release-loc-1-B 0 0.0000

release-loc-2 2 0.6840

release-loc-1 3 0.4332

The robot attempted to release the object without remembering 5 times (taking the release-loc-1 and
release-loc-2 actions). However, it learned to maximize the reward by tacking the think-Remember
action, which was selected 15 times. Finally, after recalling the last location, the agent learned to
alternate between the think-release-loc-2-B and think-release-loc-1-A actions

2.7 Discussion

Starting from the definition of a platform for executing visually guided tasks, a
case study based on reinforcement learning was designed and required of perceptive
abilities (such as, recognizing the object and speech), visuomotor coordination, and
decision making (while remembering events). Different sections of the paper were
devoted to detail the design criteria and the development of these components in the
CRR platform.

In the contemplated scenario, the recognition of stimuli was accomplished with
relative ease. For the case of visual recognition, the OpenCV library proved to be
a useful tool by offering a comprehensive set of procedures, thus facilitating the
attainment of complex tasks with a reduced number of function calls. For speech
recognition, no further effort was required than specifying the vocabulary to be
recognized.

In order to ensure visuomotor coordination, the technique of IBVS was chosen
with the configuration eye-in-hand to avoid occlusions in the scene. ThreeDOFof the
robot where assigned to the tracking task, while the remaining were assigned to the
secondary task of joint limits avoidance. It was observed that both tasks efficiently
fulfilled their role in the system. The ViSP library showed to be a valuable tool for

52 H.F. Chame and P. Martinet

implementing real-time visual servoing control laws. The encapsulation of tracking
algorithms abstracts the designer from the robust handling of image processing,
which led to shorter development times.

The development of cognitive models in Soar presented a slow learning curve.
However, the available documentation and resources included in the distribution
(specially the Soar Debugger) are sufficient and allowed to identify the errors; and
gradually, to understand the concepts behind the architecture.

The MDP framework showed to be a valuable tool for treating RL-based exper-
iments. The integration of the MDP formalism to Soar was a relatively simple task
to do, given that the architecture implements the Q-learning algorithm. This algo-
rithm requires of the definition of rules that generate Q-values for each state-action
pairs. Soar provides mechanisms for generating these rules, even for problemswhose
dimensions are not known ahead of time.

The Soar syntax to encode production rules is simple. However, the procedural
memory contains more than translations from English of the productions relative
to the task (also modeled using the MDP formalism). That is, the cognitive model
requires of the procedural knowledge extracted through the methodology of knowl-
edge engineering. But it also requires of rules whose purpose is to manage the WM
contents, thus, ensuring coherence during the execution of the agent while accessing
the architecture’s functionalities (i.e., events and facts remembrance, or RL).

In favor of alleviating the implementation efforts for the MDP representation in
the case of similar task spaces; the proposed approach could be extended with the
benefits of an ontology-based methodology. Thus, the system could be enhanced
with a new component in charge of translating (or mapping) the content represented
by the ontology, to the set of production rules that will be executed on the CRR
platform.

2.8 Conclusions

Thiswork started from the interest in developing cognitive robotic systems for execut-
ing manipulative tasks. To this purpose, an approach emphasizing multidisciplinary
theoretical and technical formulations was adopted. A methodological proposal for
integrating a psychologically-oriented cognitive architecture to the visual servoing
control technique has been presented; and resulted in the development of a modular
system capable of auditory and visual perception, decision making, learning and
visuomotor coordination. The evaluation of the case study, showed that CRR is a
system whose operation is adequate for real-time interactive manipulative applica-
tions.

Acknowledgments This researchwas accomplished thanks to the founding of theNational Agency
of Research through the EQUIPEX ROBOTEX project (ANR-10-EQX-44), of the European Union
through the FEDER ROBOTEX project 2011-2015, and of the Ecole Centrale of Nantes.

2 Cognitive Modeling for Automating Learning … 53

References

1. Arbib, M.A., Metta, G., van der Smagt, P.P.: Neurorobotics: from vision to action. In: Springer
Handbook of Robotics, pp. 1453–1480 (2008)

2. Newell, A.: Unified Theories of Cognition. William James Lectures, Harvard University Press
(1994)

3. Duch, W., Oentaryo, R.J., Pasquier, M.: Cognitive architectures: where do we go from here?
In: Proceedings of the IROS workshop on current software frameworks in cognitive robotics
integrating different computational paradigms, pp. 122–136, Nice, France 22 Sept 2008

4. Sun, R.: Multi-agent Systems for Society. Springer-Verlag, Berlin (2009)
5. Hanford, S., Long, L.: A cognitive robotic system based on the Soar cognitive architecture for

mobile robot navigation, search, andmappingmissions. In: PhD thesis, AerospaceEngineering,
University Park, Pa, USA (2011)

6. Huelse, M., Hild, M.: A brief introduction to current software frameworks in cognitive robotics
integrating different computational paradigms. In: Proceedings of the IROS workshop on cur-
rent software frameworks in cognitive robotics integrating different computational paradigms.
Nice, France, 22 Sept 2008

7. Corke, P.I.: Robotics, Vision & Control: Fundamental Algorithms in Matlab. Springer, Berlin
(2011)

8. Chaumette, F., Hutchinson, S.: Visual servo control, part I: basic approaches. IEEE Robot.
Autom. Mag. 13, 82–90 (2006)

9. Kelley, T.D.: Symbolic and sub-symbolic representations in computational models of human
cognition: what can be learned from biology? Theor. Psychol. 13(6), 847–860 (2003)

10. O’Reilly, R., Munakata, Y.: Computational Explorations in Cognitive Neuroscience: Under-
standing the Mind by Simulating the Brain. Bradford Books, MIT Press, Cambridge (2000)

11. Khalil, W., Creusot, D.: Symoro+: a system for the symbolic modelling of robots. Robotica
15(2), 153–161 (1997)

12. Pratt, W.: Digital Image Processing: PIKS Scientific Inside. Wiley-Interscience publication,
Wiley (2007)

13. Marchand, E., Chaumette, F., Rizzo, A.: Using the task function approach to avoid robot joint
limits and kinematic singularities in visual servoing. In: IEEE/RSJ international conference on
intelligent robots and systems, IROS’96. vol. 3, Osaka, Japan, pp. 1083–1090 (Nov 1996)

14. Kaelbling, L., Littman, M., Moore, A.: Reinforcement learning: a survey. J. Artif. Intell. Res.
4, 237–285 (1996)

http://www.springer.com/978-3-319-10890-2

	2 Cognitive Modeling for Automating Learning in Visually-Guided Manipulative Tasks
	2.1 Introduction
	2.2 Cognitive Architectures
	2.3 Visual Servoing
	2.4 The CRR Proposal
	2.5 Case Study
	2.5.1 Task Definition
	2.5.2 Perception
	2.5.3 Visuomotor Control
	2.5.4 Decision Making

	2.6 Results
	2.6.1 System Performance
	2.6.2 Joint Limit Avoidance
	2.6.3 Learning Task

	2.7 Discussion
	2.8 Conclusions
	References

