
Chapter 2
First-Species Model

Here we present the full first-species model for a 2k-tone equal temperament. In
particular, we explain what a counterpoint dichotomy and a contrapuntal symmetry
is, how the rules of counterpoint are deduced from these concepts, and how to do
the relevant calculations.

2.1 Dichotomies

A significant part of [57] proves that modules are appropriate mathematical objects
for the aim of capturing essential features of musical objects; we will also take
them as the natural ambient of our theory. The reader can consult the mathematical
appendix, Section A.4, for a summary about elementary module theory. In what
follows, we will always suppose that the module M is defined over a commutative
ring R.

Definition 2.1. Let M be R-module. A marked dichotomy X is a subset of M such
that

∣∣∣X∣∣∣ =
∣∣∣Xc

∣∣∣.
We denote with MiD(M) the set of all marked dichotomies of M. Note that when

M is finite, its cardinality must be an even number for our definition to make sense.
We shall also use this definition in case M is any set since the module structure does
not really matter.

Example 2.1. In the Z-module Z, the set of even integers is a marked dichotomy.
If Z2 is the field of two elements, then X = {(0,0), (0,1)} is a dichotomy in the Z2-
module Z2

2.

Remember that the Z-module Z2k parametrizes pitch classes in the equally tem-
pered 2k-chromatic scale. We are interested in the intervals between pitch classes,
i.e., the differences x− y of pitch classes x and y in Z2k. Mathematically speaking,
the result x− y is again an element of Z2k, but in musical terms it is understood as

5



6 2 First-Species Model

an interval. To make this subtlety more evident, we consider the module ε.Z2k of
intervals in Z2k, whose elements are intervals in the pitch class module Z2k. The
choice of the notation will become clear soon.

Definition 2.2. A marked dichotomy of intervals is a marked dichotomy of the Z-
module ε.Z2k.

A marked interval dichotomy is sometimes denoted by (X/Xc), in order to make
explicit the complement.

As we mentioned in the first chapter, we will regard some transformations of a
given dichotomy X as essentially equivalent to the original. This idea is captured by
the notion of a group acting on a set: in short, this means we have a set X endowed
with a group of symmetries G that transform X. The orbit of an element k ∈ X with
respect to the action of G is the set of all possible outcomes of a symmetry ap-
plied to k (more formal definitions can be found in Section A.3 of the mathematical
appendix).

The first of these transformations for marked interval dichotomies that we will
consider is the simple act of switching from the one part of a dichotomy to its com-
plement, which defines the following action of Z2 over MiD(M):

?c : Z2×MiD(M) −→ MiD(M),

(i,X) 7−→ Xic;

here Xic stands for the operation of taking i times the complement of X.
The process of reversing the roles of consonance and dissonance is not foreign

to musical practice. On a small scale, we have seen in the first chapter this change
specifically for the interval of a fourth and in the recent idea of dissonant counter-
point [20, p. 35].

Another kind of transformation comes from the action of the general affine group
−−→
GL(Z2k), which is the group that consists of these bijective functions

T u · v : Z2k −→ Z2k,

x 7−→ T u · v(x) = u + v(x),

where u ∈ Z2k defines a shifting or transposition, and v ∈GL(Z2k) is a linear isomor-
phism on Z2k. Please note that we are doing a slight abuse of notation, writing v(x)
for the multiplication v.x by the invertible element v ∈ Z2k

×. It is worthwhile to state
that for the twelve-tone scale there are four invertible elements—1, 5, 7 and 11—as
is well known from pitch class theory.

Another way of understanding
−−→
GL(Z2k) is as the set Z2k ×Z2k

× with the group
operation

(u1,v1)∗ (u2,v2) = (u1 + v1u2,v1v2).

Thus the composition of T u1 ·v1 and T u2 ·v2 can be expressed in the following form

T u1 · v1 ◦T u2 · v2 = T u1+v1u2 · v1v2.
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The subgroup
−→
SL(Z2k) of

−−→
GL(Z2k), consisting of the elements T u · ±1, is very

familiar to musicians, for it consists of the (musical) transpositions and inversions,
or combinations of both. The action of the supergroup

−−→
GL(Z2k) perhaps is not as in-

tuitive, unless we abandon a one-dimensional view of the intervals and we visualize
them over the surface of a torus, at least for the classical case of Z12.

This is possible for the following reason: The main theorem for finitely generated
abelian groups (see the mathematical appendix, Section A.3) implies that we have
an isomorphism

τ : Z12→ Z3×Z4

because of the prime decomposition 12 = 3 · 22. In particular, we choose the iso-
morphism x 7→ τ(x) = (x mod 3,−x mod 4), whose inverse is given by (x3, x4) 7→
4x3 + 3x4. Under τ, the major third is mapped to (1,0), while the minor third is sent
to (0,1). The graph with Z3 ×Z4 as vertices and edges joining any two vertices that
differ in exactly one minor third or one major third is a toroidal1 graph, which we
call the torus of thirds (Figure 2.1).
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Fig. 2.1 The torus of thirds.

The periodicity of the octave can be readily captured by the group of complex
numbers of unit module (the circle S 1) or the clock arithmetic. Since the underlying
set of a torus is S 1 ×S 1, now we can see a double periodicity of the intervals: One
cycle goes in steps of minor thirds, the other in steps of major thirds. With this
picture in mind, we may visualize the multiplication by 5 as a reflection along the
equatorial plane of the torus; by 7 as a reflection along a plane perpendicular to the
toroidal plane; by 11, as a combination of the previous two. Translations can be seen
to act as rotations in the toroidal or poloidal directions.

The actions of the complement and
−−→
GL(Z2k) can be considered simultane-

ously since they commute. This means we have an action of the direct product
Z2×

−−→
GL(Z2k) on ε.Z2k. The orbits of this joint action are called dichotomy classes.

1 This means that the graph can be embedded in the surface of a torus.
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Definition 2.3. A marked dichotomy of intervals X is autocomplementary if its
complement belongs to its orbit or, in other words, if its dichotomy class coincides
with its marked dichotomy class. The dichotomy X is said to be rigid if the only
symmetry that leaves it invariant is the identity, and if it is both autocomplementary
and rigid it is called strong.

If X is a member of a strong dichotomy class and p is such that p(X) = Xc, then
p is unique. Let q be another symmetry such that q(X) = Xc. Then

p−1(q(X)
)

= p−1(Xc) = X

which means that p−1q = T 0 · 1, where T 0 · 1 is the identity of
−−→
GL(Z2k), and thus

p = q pre-multiplying both sides by p. Note also that from this equality we conclude
that p is an involution, i.e., p2 = T 0 · 1. Being unique, p is called the polarity of
(X/Xc).

Example 2.2. In Z12, the marked dichotomy X1 =
(
{0,1,3,6,8,11}/{2,4,5,7,9,10}

)
is not autocomplementary. On the other hand, X2 =

(
{0,1,3,7,8,11}/{2,4,5,6,9,10}

)
is autocomplementary, because

T 9 ·7(X2) = {7 ·0 + 9,7 ·1 + 9,7 ·3 + 9,7 ·7 + 9,7 ·8 + 9,7 ·11 + 9}
= {9,4,6,10,5,2} = X2

c.

The set X2, nevertheless, is not strong because the symmetry T 8 · 5 leaves it in-
variant. The dichotomy K = {0,3,4,7,8,9} is strong, because

T 2 ·5(K) = {5 ·0 + 2,5 ·3 + 2,5 ·4 + 2,5 ·7 + 2,5 ·8 + 2,5 ·9 + 2}
= {2,5,10,1,6,11} = Kc

and it is laborious, but direct, to check that apart from T 0 · 1 no other symmetry
leaves K invariant. Thus p = T 2 ·5 is the polarity of K. This last example is of capital
importance for this book, since K is the set of intervals from the tonic (within an oc-
tave) of the classical Renaissance consonances: prime (or unison), minor third, ma-
jor third, perfect fifth, minor sixth and major sixth. The rest of the intervals (again,
within a octave) are (of course) dissonances and are related to the consonances, via
the polarity, in the following respective order: major second, perfect fourth, minor
seventh, minor second, tritone, major seventh.

Problem 2.1. Verify in detail the claims of Example 2.2 (by the use of a computer,
if possible).

It is not obvious that autocomplementary, rigid, or strong dichotomies exist in
Z2k. But, whenever we have an involutary element p of

−−→
GL(Z2k) without fixed

points, we can easily construct an autocomplementary dichotomy. Indeed, we first
pick an arbitrary element x1 ∈ Z2k, next we choose x2 ∈ Z2k distinct from x1 and
p(x1). Then we take x j different from the elements
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x1, . . . x j−1, p(x1), . . . p(x j−1)

until we reach j = k. Thus X =
(
{x1, . . . xk}/{p(x1), . . . p(xk)}

)
is an autocomplemen-

tary marked dichotomy.

Lemma 2.1. For any integer k and 0 ≤ s ≤ 2k odd, the automorphism T s · −1 ∈
−−→
GL(Z2k) is involutary and has no fixed points.

Proof. Since
(T s · −1)◦ (T s · −1) = T s ◦T−s ·1 = T 0 ·1 = 1

the involutarity is settled. If T s · −1(x) = s− x = x for some x, then 2x− s = 0. This
means that 2x− s is divisible by 2k, which contradicts that 2x− s is odd. Conse-
quently, T s · −1 does not have fixed points. ut

For Z2 it is obvious that
(
{1}/{0}

)
and

(
{0}/{1}

)
are its only strong marked interval

dichotomies. For Z4, there are no strong dichotomies. It suffices to check this for

X1 =
(
{0,1}/{2,3}

)
,X2 =

(
{0,2}/{1,3}

)
,X3 =

(
{0,3}/{1,2}

)
,

since all of them are autocomplementary. Nevertheless, T 1 · −1(X1) = X1, −1(X2) =

X2 and T−1 · −1(X3) = X3, so none of them are rigid.
Now we can show that there exists at least one strong interval dichotomy in Z2k

for k ≥ 3. We should keep in mind that the invertible elements of Z2k are odd because
they are coprime with 2k.

Proposition 2.1. Let k ≥ 3. The dichotomy

(X/Y) =
(
{−1,2k−2,2k−4, . . .4,2}/{0,1,3, . . .2k−5,2k−3}

)
in Z2k (which is obtained from the automorphism T−1 · −1) is strong.

Proof. In general, the proposed dichotomy is clearly autocomplementary, with iso-
morphism T−1 · −1. In order to prove its rigidity, we will show that for any auto-
morphism T u ·w, except the identity, at least one element of the marked interval di-
chotomy is mapped to an element in the complement. If u = 0, then w(−1) =−w,−1
is odd and therefore w(−1) ∈ Xc. If u , 0 is even, then X 3 −w−1u , 0 is even
and T u ·w(−w−1u) = u− u = 0 ∈ Xc. If u is odd, T u ·w(2) = u + 2w is odd. If it be-
longs to Xc, we are done. Otherwise, T u ·w(2) = u + 2w = −1. It is impossible that
T u ·w(4) = u + w = −1, for it would imply that 2w = 0 and 2 = 0, contradicting that
k ≥ 3. ut

It is worthwhile to emphasize that strong dichotomies exist for any even car-
dinality except 4. This means that, in terms of this model, we cannot formulate a
counterpoint theory for the 4-tone equally tempered scale. This scale can be inter-
preted as the tones of a diminished 7th chord in a twelve-tone equally tempered
scale.
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Remark 2.1. The dichotomy(
{11,10,8,6,4,2}/{0,1,3,5,7,9}

)
,

constructed for k = 6 in Proposition 2.1, belongs to the dichotomy class of

∆78 =
(
{0,1,2,4,6,10}/{3,5,7,8,9,11}

)
in Mazzola’s list [57, appendix L].

2.2 Counterpoint Dichotomies

Now we need to extend the module of intervals so we can capture the idea of cantus
firmus and discantus. In order to do so, we consider the ring of dual numbers

Z2k[ε] =
{
a +ε.b : a,b ∈ Z2k, ε

2 = 0
}
,

and two dual numbers a + ε.b,c + ε.d are equal if and only if a = c and b = d. We
define the sum and multiplication of dual numbers by

(a +ε.b) + (c +ε.d) = (a + c) +ε.(b + d),

(a +ε.b)(c +ε.d) = ac +ε.ad +ε.bc +ε2.bd

= ac +ε.(ad + bc).

Within the dual number interpretation of counterpoint, a contrapuntal interval is
a dual number b + ε.b, where the first component b, represents the cantus firmus,
while the second one, b, represents the distance between the cantus firmus and the
discantus. This justifies our election of the notation ε.Z2k for the set of intervals:
They are just the ε-components of contrapuntal intervals.

Example 2.3. In the twelve-tone scale, 2 + ε.7 ∈ Z2k[ε] represents a fifth over D.
Thus the cantus firmus has the note D and the discantus has the note A, for 7 = 9−2
or, equivalently, 9 = 2 + 7. Observe that this interpretation of the discantus as being
the sum of the two components of the interval 2 + ε.7 defines what is called the
“sweeping” counterpoint in literature. For the hanging interpretation, namely that
the discantus would be 2−7 = 2+5 = 7, we refer to Section 2.2.1 where the relations
between sweeping and hanging counterpoint are discussed.

As with Z2k, we have the general affine group

−−→
GL(Z2k[ε]) =

{
T a+ε.b · (c +ε.d) : c +ε.d ∈ Z2k[ε]×

}
that acts on Z2k[ε]. Note that the set Z2k

×[ε] of invertible dual numbers consists of
the dual numbers a +ε.b with a ∈ Z2k

×.
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Since Z2k[ε] has an even number of elements, dichotomies make sense for this
ring, and thus we can talk about marked counterpoint dichotomies and counterpoint
dichotomy classes.

Example 2.4. To each marked interval dichotomy (X/Y), we can associate a marked
counterpoint dichotomy (X[ε]/Y[ε]) called the induced counterpoint dichotomy by
X, where

X[ε] =
{
a +ε.b : a ∈ Z2k,b ∈ X

}
:= Z2k +ε.X.

Indeed

X[ε]c =
{
a +ε.b : a ∈ Z2k,b < X

}
=

{
a +ε.b : a ∈ Z2k,b ∈ Xc = Y

}
= Z2k +ε.Y = Y[ε].

If (X/Y) is a marked strong dichotomy, the induced counterpoint dichotomy
(X[ε]/Y[ε]) is autocomplementary but not necessarily strong.

Problem 2.2. Provide an example of a marked strong dichotomy such that X[ε] is
not strong.

Problem 2.3. Check that if T u · v is an autocomplementary symmetry of X, then
T ε.u · v is an autocomplementary symmetry of the induced counterpoint dichotomy
X[ε].

The following proposition will prove to be fundamental for the computational
aspects of counterpoint.

Proposition 2.2. Let X be a marked strong dichotomy with polarity p = T u · v, and
let x ∈ Z2k be a cantus firmus. There exists exactly one symmetry px[ε] ∈

−−→
GL(Z2k)

(which will be called the induced polarity of X[ε]) such that

1. it is an autocomplementary function of X[ε],
2. leaves x + ε.Z2k (the set of all the counterpoint intervals with cantus firmus x)

invariant.

It is given by
px[ε] = T x(1−v)+ε.u · v (2.1)

and satisfies the following translational formula

px+y[ε] = T x ◦ py[ε]◦T−x. (2.2)

Proof. It is straightforward to check that (2.1) satisfies the three requirements, so
we only need to prove its unicity. Let z ∈ X. We are looking for some u1 + ε.v1 and
u2 +ε.v2 such that the symmetry

px[ε] = T u1+ε.v1 · (u2 +ε.v2)
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satisfies
px[ε](x +ε.z) = x +ε.w.

This last equality states that px[ε] sends an interval with cantus firmus x to an-
other interval with the same cantus firmus. If we perform the calculations

px[ε](x +ε.z) = T u1+ε.v1 · (u2 +ε.v2)(x +ε.z)
= (u1 +ε.v1) + (u2 +ε.v2)(x +ε.z)
= (u1 +ε.v1) + (u2x +ε.(u2z + v2x))
= (u1 + u2x) +ε.(v1 + u2z + v2x).

then we deduce, by comparing the first components of the dual numbers, that we
must have

u1 + u2x = x,

and thus
u1 = x−u2x = x(1−u2).

On the other hand, by the autocomplementarity, we must have w ∈ Y . This means
that, for any t

v1 + u2z + v2t = u2z + (v1 + v2t) = T v1+v2t ·u2(z) ∈ Y,

and the strength of X implies that u2 = v and v1 + v2t = u. Since t is arbitrary, the
last equality holds for t = 0, so v1 = u. Now, if t = 1, then u + v2 = u, which implies
v2 = 0, and we are done. ut

2.2.1 Musical Meaning of the Operations with Counterpoint
Intervals

Sums and multiplications of counterpoint intervals may seem of questionable musi-
cal significance. To prove that it is not so, let us exemplify the situation with Z12[ε]
and its group of affine symmetries

−−→
GL(Z12[ε]) =

{
T a+ε.b · (u +ε.v) : u = 1,5,7,11

}
.

Lemma 2.2. Let u ∈ Z12
×. The following identity holds

(u +ε.v) = u(1 +ε.1)s

for every v ∈ Z12, where s is any integer within the class of uv.

Proof. Since u2 = 1 in Z12, then u = u−1 and (u+ε.v) = u(1+ε.uv), so we only have
to prove that 1+ε.uv = (1+ε)s with s ∈Z in the class of uv. In fact, 1+ε.w = (1+ε)s′ ,
with s′ in the class of w. For w = 0, we have the calculation 1 +ε.0 = 1 = (1 +ε.0)0.
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If this is true for w, then

(1 +ε)s′+1 = (1 +ε.1)s′ (1 +ε.1)
= (1 +ε.w)(1 +ε.1)
= 1 +ε.w +ε.1 = 1 +ε.(w + 1),

and it is clear that s′+1 belongs to the class of w+1, and we are done by induction.
ut

By Lemma 2.2, we may write

T a+ε.b · (u +ε.v) = T aT ε.b ·u(1 +ε.1)s

for an element
−−→
GL(Z12[ε]). Thus, to understand the effects of interval multiplication,

it suffices to examine the four symmetries

s1 = T a, s2 = T ε.b, s3 = T 0 ·u, s4 = T 0 · (1 +ε.1).

1. For s1, the identity T a · (x +ε.y) = (x + a) +ε.y expresses that the whole interval
is transposed by a.

2. For s2, according to T ε.b · (x +ε.y) = x + ε.(y + b), it causes the interval y to be
transposed by b, leaving the cantus firmus unchanged. This kind of operation is
common in double counterpoint.

3. When it comes to s3, we have to consider three cases apart from the identity.
Perhaps u = 11 = −1 is the most natural because it inverts the interval; it also
reflects the cantus firmus with respect the tonic, but it can be restored later via
a translation T x. This operation is also common in double counterpoint. The
remaining cases u = 5,7 are not as natural unless we resort again to the torus of
thirds as described in Section 2.1.

4. The symmetry obtained from s4 suggests an interesting transformation, since

(1 +ε.1)(a +ε.b) = a +ε.a + b,

which means that the discantus is transposed by the same interval between the
tonic and the cantus firmus, but without moving the cantus firmus itself. This
operation can be iterated, generating a cycle of counterpoint intervals that return
to the original one, because the underlying ring is cyclic with respect to addition.

Another reason for the importance of the symmetry 1 + ε.1 is that it allows us
to handle voice crossings. For a counterpoint interval x + ε.y, we may define an
orientation, which can be hanging or sweeping, that indicates how to obtain the
discantus tone. If it is sweeping, the discantus is x + y, while if it is hanging, it is
x− y. A little more formally, we have the mappings

α+ : Z12[ε] −→ Z12,

x +ε.y 7−→ x + y,
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and

α− : Z12[ε] −→ Z12,

x +ε.y 7−→ x− y.

Observe that −α+ ◦T 0 · (1 +ε.1)−2 = α−, since

−α+

(
(1 +ε.1)−2(x +ε.y)

)
= −α+

(
(1 +ε.(−2)(x +ε.y)

)
= −α+(x +ε.y−2x)
= −(y− x) = x− y = α−(x +ε.y).

Thus, if we have a hanging counterpoint interval a +ε.b, we may write

α−(a +ε.b) = −α+

(
(1 +ε.1)−2(a +ε.b)

)
= α+

(
−(1 +ε.1)−2(a +ε.b)

)
,

which means that the sweeping counterpoint interval

−(1 +ε.1)−2(a +ε.b) = −(a +ε.b−2a) = −a +ε.(2a−b)

can be regarded as equivalent to the original one.

2.3 Counterpoint Symmetries

We have arrived at the crux of the model. As we have discussed in Section 1.3, we
can generate tension in the confrontation of a consonance against another by the
deformation of consonances into dissonances and dissonances into consonances.
We can now make this precise, saying that for a symmetry g, the marked interval
dichotomy (gX[ε]/gY[ε]) is a deformation of the original dichotomy (X[ε]/Y[ε]).
Thus, if we can interpret a consonant interval ξ ∈ X[ε] as a deformed dissonance, i.e.,
ξ ∈ gY[ε], we can “resolve” it in a deformed consonance that is also a consonance,
i.e., a member η of gX[ε]∩X[ε].

Definition 2.4. Let {ξ,η} be a pair of counterpoint intervals from the dichotomy
(X[ε]/Y[ε]). If there exists at least one symmetry g ∈

−−→
GL(Z2k[ε]) such that ξ ∈ g.Y[ε]

and η ∈ g.X[ε], then we say that {ξ,η} is g-polarized.

Theorem 2.1. Let (X[ε]/Y[ε]) a dichotomy and ξ and η two different intervals. Then
there exists one symmetry g ∈

−−→
GL(Z2k[ε]) such that {ξ,η} is g-polarized.

Proof. If already ξ and η belong to the complementary sets defined by (X[ε]/Y[ε]),
the identity T 1 ·1 does the job. Suppose first that ξ = u1 +ε.v1 and η = u2 +ε.v2 with
v1 , v2. We claim that there exists m such that the symmetry T ε.m · 1 polarizes the
pair. If it were not the case, then for any m we would have
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v1 + m,v2 + m ∈ X.

In particular, if we choose an arbitrary a and set m = a− v1, then a,v2 − v1 + a ∈
X. Thus T v2−v1 · 1 leaves X[ε] invariant, which forces v2 − v1 = 0 and v2 = v1, a
contradiction.

It remains to examine the case u1 , u2. Now we claim that there exists an m
such that T ε.m · (1 +ε.1) polarizes the pair. Otherwise, v1 + u1 + m,v2 + u2 + m ∈ X,
and we may choose an arbitrary a to define m = a− u1 − v2, rendering T u2−u1 · 1 an
automorphism of X. Thus u2 = u1 and we have a contradiction again. This completes
the proof. ut

Definition 2.5. Let (X[ε]/Y[ε]) be a dichotomy and ξ ∈ X[ε] a counterpoint interval.
A symmetry g ∈

−−→
GL(Z2k[ε]) is contrapuntal if

1. the interval ξ does not belong to g(X[ε]),
2. the symmetry px[ε] is a polarity of (g(X[ε])/g(Y[ε])),
3. the cardinality of g(X[ε])∩ X[ε] is maximal among the symmetries with the

previous two properties.

Definition 2.6. Given a dichotomy (X[ε]/Y[ε]) and an interval ξ ∈ X[ε], we say η
is an admitted successor if ξ is contained in g(X[ε])/X[ε] for some contrapuntal
symmetry g.

Example 2.5. Consider the dichotomy

(K/D) =
(
{0,3,4,7,8,9}/{1,2,5,6,10,11}

)
in Z12 from Example 2.2, the interval ξ = ε.9 (a major sixth over the tonic) and
the symmetry g = T ε.8 · (5 +ε.4). The cantus firmus is x = 0, and by Proposition 2.2
we know that a polarity of (K[ε]/D[ε]) is p0[ε] = T ε.2 · 5. Let us verify that g is a
counterpoint symmetry for ξ. First,

g(K[ε]) = (1−ε.4)Z2k +ε.T 8 ·5K

= (1−ε.4)Z2k +ε.T 6T 2 ·5K

= (1−ε.4)Z2k +ε.T 6D,

which means that the elements of gK[ε] are of the form

w +ε.T 6−4w · y

for some y ∈ D. This means ξ < gK[ε], since 9 < T 6D = {0,4,5,7,8,11}. Second,

p0[ε](gK[ε]) = T ε.2 ·5
(
(1 +ε.−4)Z2kε.T 6D

)
= (1−ε.4)5Z2k +ε.T 8 ·5K

= (1−ε.4)Z2k +ε.T 6T 2 ·5K

= (1−ε.4)Z2k +ε.T 6K = gD[ε]
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which precisely means that p0[ε] is a polarity of (K[ε]/D[ε]). It is not difficult to
calculate that ∣∣∣(gK[ε])∩K[ε]

∣∣∣ = 56

and that this is the maximum possible. Thus, g is a counterpoint symmetry.

Take again the dichotomy (K/D). The consonances with cantus firmus w are

Kw := w +ε.K,

and the action of p0[ε] over them is given by

p0[ε](Kw) = T ε.2 ·5(w +ε.K) = 5w +ε.T 2 ·5K = 5w +ε.D,

which means that this polarity of counterpoint intervals is equivalent to applying the
translation T 4w to the cantus firmus, and the marked interval polarity to the interval.
In this sense, p0[ε] is global, since for any consonances with fixed cantus firmus, w
acts in the same manner.

This is different for “deformed” consonances by the symmetry g with cantus
firmus w:

gKw := (wε.Z2k)∩gK[ε]

For instance, if g is the counterpoint symmetry of the last example, we have

gKw = w +ε.T 8−4w ·5K

and p0[ε] does not act by translating gKw with T 4w and applying the polarity to the
interval. Instead

p0[ε](gKw) = (5w +ε.Z2k)∩ (5w +ε.T 6−4wK),

thus the way p0[ε] “distorts” the consonances depends on the value of the can-
tus firmus. In this sense, p0[ε] is a local symmetry for the deformed dichotomy
(gX[ε]/gY[ε]).

2.4 The Counterpoint Theorem

In terms of raw computational power, from this point on we can simply take any
interval in a counterpoint dichotomy and test all the available transformations, look-
ing for its counterpoint symmetries, and then we can make a list of its admitted
successors to realize the counterpoint theory in an equally tempered Z2k-tone scale.
Nevertheless, it is important to study the matter more carefully in order to optimize
this naive algorithm and derive further properties of the model.
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2.4.1 Some Preliminary Calculations

Lemma 2.3. Let (X/Y) be a strong dichotomy and (X[ε]/Y[ε]) its induced counter-
point dichotomy. The symmetries that leave X[ε] invariant are of the form

TZ2k :=
{
T w : w ∈ Z2k

}
.

Proof. Every element of TZ2k is a symmetry of X[ε], since

T w(y +ε.x) = (x + w) +ε.x ∈ X[ε].

With this in mind, it is clear that T z+ε.w · (u +ε.v) is a symmetry if and only if
T ε.w · (u +ε.v) is a symmetry. In particular, we would need that

w + vy + ux ∈ X

for every y ∈ Z2k and x ∈ X. Since X is strong, we have u = 1 and w + vy = 0. In
particular, for y = 0, we have x + w ∈ X for every w, and strength implies that w = 0.
Thus vx = 0, which is also valid when y = 1, and therefore v = 0. ut

For the following, we define the group

H := T ε.Z2k GL(Z2k[ε]) =
{
T ε.t · (u +ε.v) : u +ε.v ∈ Z2k

×}.
Lemma 2.4. For g = T ε.t · (u +ε.v) and z ∈ Z2k, define

g(z) = gT ε.u−2vz ∈ H.

Then (
g(z1))(z2)

= g(z1+z2) (2.3)

and
T zgX[ε] = g(−z)X[ε]. (2.4)

Proof. The first equality is direct:(
g(z1))(z2)

=
(
g(z1))T ε.u−2vz2

=
(
gT ε.u−2vz1

)
T ε.u−2vz2

= g
(
T ε.u−2vz1T ε.u−2vz2

)
= gT ε.u−2v(z1+z2)

= g(z1+z2).

The second equality is a little more involved. First
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T zg = T z · (u +ε.v) = T ε.t · (u +ε.v)T z(u−1−ε.u−2v)

= g(−z)T zu−1

and thus
T zgX[ε] = g(−z)T zu−1

X[ε] = g(−z)X[ε]

using Lemma 2.3. ut

Corollary 2.1. For every g ∈
−−→
GL(Z2k[ε]), there exists a symmetry h ∈ H such that

gX[ε] = hX[ε].

Proof. Given g = T u1+ε.v1 · (u2 +ε.v2), define

f = T ε.v1 · (u2 +ε.v2).

Then g = T u1 f , and by Lemma 2.4

gX[ε] = T u1 f X[ε] = f (−z)X[ε],

hence h = f (−z) is the required symmetry. ut

Lemma 2.5. Let ξ = x +ε.k, g ∈
−−→
GL(Z2k[ε]) and y ∈ Z2k. If

ξ < gX[ε] and px[ε] : gX[ε]→ gY[ε]

where px[ε] is the induced polarity of X[ε], then

T zξ < T zgX[ε] and pz+x[ε] : T zgX[ε]→ T zgY[ε].

Furthermore,
(T zgX[ε])∩X[ε] = T z · (gX[ε]∩X[ε]).

Proof. It is clear that T zξ < T zgX[ε], since T z ∈ TZ2k is bijective. Using the transla-
tion formula (2.2), we can write

pz+x[ε]T zgX[ε] = px+z[ε]T zgX[ε]
= T z px[ε]T−zT zgX[ε]
= T z px[ε]gX[ε]
= T zgY[ε].

For the last part of this lemma, we invoke Lemma 2.3,

(T zg[ε])∩X[ε] = (T zg[ε])∩ (T zX[ε]) = T z(gX[ε]∩X[ε]),

since g(η1) = η2 = T−zT zη2 for some η1 and η2 if and only if T z ·
(
g(η1)

)
= T z · (η2).

ut
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Now we have all the necessary ingredients to prove a key theorem simplifying
the algorithm for the calculation of contrapuntal symmetries; it says the intervals
with respect to the tonic are the essential ones.

Theorem 2.2. If ξ = x + ε.k ∈ X[ε] is a consonant interval and g is one of its coun-
terpoint symmetries, then there is a symmetry h ∈ H such that we can verify it is
contrapuntal using the set hX[ε] = gX[ε]. Furthermore, to check the required prop-
erties, we can restrict ourselves to the interval ε.k, the symmetry h(x) ∈ H, and the
polarity p0[ε]. Last, but not least, the set of admitted successors (hX[ε])∩X[ε] co-
incides with the set

T x · (h(x)X[ε])∩X[ε]).

In sum: to calculate the admitted successors of x + ε.k, we may first calculate
those of 0 + ε.k with the smaller group of candidates H and translate the results
accordingly once finished.

Proof. The first replacement of g is justified by Lemma 2.1. For the second replace-
ment, by Lemma 2.4 we have

T−xhX[ε] = h(x)X[ε]

and using Lemma 2.5 with z = −x, we may verify that h is contrapuntal examining
h(x) with the interval T−xξ = ε.k and the polarity p−x+x[ε] = p0[ε]. From Lemma 2.5
we also have

h(x)X[ε]∩X[ε] = T−xhX[ε]∩X[ε] = T−x(hX[ε]∩X[ε])

and thus
hX[ε]∩X[ε] = T x ·

(
(h(x)X[ε])∩X[ε]

)
as claimed. ut

The next lemma from additive combinatorics is useful to prove a weak version
of the so-called counterpoint theorem.

Lemma 2.6. Let S be a finite subset of a cyclic group Zn and u ∈ Zn
×. Then∑

x∈Zn

∣∣∣T x ·u(S )∩S
∣∣∣ =

∣∣∣S ∣∣∣2.
Proof. This is a straightforward consequence of the associativity and commutativity
of the sum:
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x∈Zn

∣∣∣T x ·u(S )∩S
∣∣∣ =

∑
x∈Zn

∑
y∈S

∑
z∈S

[uz + x = y]

=
∑
y∈S

∑
z∈S

∑
x∈Zn

[uz + x = y]

=
∑
y∈S

∑
z∈S

∑
x′∈Zn

[x′ = y]

=
∑
y∈S

∑
z∈S

1

=
∑
y∈S

∣∣∣S ∣∣∣
=

∣∣∣S ∣∣∣2.
The third equality follows from the fact that Zn being a cyclic group with respect

to addition, it is generated by any of its elements. ut

2.4.2 Hichert’s Algorithm

We are ready now to examine the final details regarding Hichert’s algorithm for a
more efficient calculation of contrapuntal symmetries. Let ∆ = (X/Y) be a strong
dichotomy, ξ = ε.k with k ∈ X, and the symmetry g = T ε.t · (u +ε.uv) ∈ H; without
loss of generality, we may choose uv in the linear part of the symmetry because u is
invertible. Let us restate the conditions for contrapuntal character of these settings.
To begin with, we have

gX[ε] =
⋃

x∈Z2k

g(x +ε.X)

=
⋃

x∈Z2k

(ux +ε.(uvx + t) +ε.uX)

=
⋃

y∈Z2k

(y +ε.(vy + t) +ε.uX) =
⋃

y∈Z2k

(
y +ε.T vy+tu(X)

)
.

Letting f (y) = T vy+tu, we rewrite the latter as

gX[ε] =
⋃

y∈Z2k

(
y +ε. f (y)(X)

)
(2.5)

and
(gX[ε])∩X[ε] =

⋃
y∈Z2k

(
y +ε.( f (y)(X)∩X)

)
. (2.6)

Thus, from (2.5) it follows that the first condition for contrapuntality reduces to
k < f (0)X. In other words, k ∈ f (0)Y = f (0)p(X), which means that
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k = f (0)p(s) = t + up(s)

for some s ∈ X. Hence
t ∈

{
k−up(s) : s ∈ X

}
. (2.7)

And thus there exists s ∈ X such that

gX[ε] =
⋃

y∈Z2k

(
y +ε.

(
T vy+k−up(s) ·u(X)

))
and therefore ∣∣∣(gX[ε])∩X[ε]

∣∣∣ =
∑

y∈Z2k

∣∣∣T vy+k−up(s) ·u(X)∩X
∣∣∣. (2.8)

This expression for the cardinality of the intersection of deformed consonances
and consonances is of great help for the estimation of its size.

Lemma 2.7. Let g = T ε.t ·(u +ε.v) ∈H. Then the fact that p0[ε] is a polarity of gX[ε]

p0[ε]gX[ε] = gp0[ε]X[ε] = gY[ε]

is equivalent to the commutativity condition

p0[ε]g = gp0[ε].

Proof. The sufficiency is obvious. For the necessity, let α+ε.β be any interval with
β ∈ X. By hypothesis, there exists a γ+ε.δ with δ ∈ X such that

p0[ε]g(α+ε.β) = gp0[ε](γ+ε.δ).

Writing p = T rw, we calculate

p0[ε]g(α+ε.β) = T ε.r ·w
(
uα+ε.(vα+ uβ+ t)

)
= uwα+ε.(vwα+ uwβ+ wt + r) (2.9)

and

gp0[ε](γ+ε.δ) = T ε.t(u +ε.v)(wγ+ε.(wδ+ r)
)

= uwγ+ε.(uwδ+ vwγ+ ur + t).

We are led to the system

uwα = uwγ,

vwα+ uwβ+ wt + r = uwδ+ vwγ+ ur + t. (2.10)

That allows us to deduce, using the invertibility of u and w, that
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γ = α,

δ = β+ ut(1−w) + wr(u−1) ∈ X.

Since ∆ is strong, we must have ut(1−w)+wr(u−1) = 0, since the second equality
holds for an arbitrary β ∈ X. Hence δ = β and p0[ε]g = gp0[ε]. ut

Remark 2.2. It is important to stress that the previous lemma is false if g < H. For
example, take g = T 1 ·1 and the induce polarity p0

(K/D)[ε] = T ε.2 ·5 for the dichotomy
(K/D) from Example 2.2. It is clear that p0

(K/D)[ε] is a polarity of (gK[ε]/gD[ε]) =

(K[ε]/D[ε]). Nevertheless

g◦ p0
(K/D)[ε] = T 1 ·1◦T ε.2 ·5

= T 1+ε.2 ·5

, T 5+ε.2 ·5

= T ε.2 ·5◦T 1 ·1 = p0
(K/D)[ε]◦g.

This lemma yields a quick criterion to check if gX[ε] is polarized by p0[ε]. Note
that from (2.10) we know that the condition

wt + r = ur + t (2.11)

must hold, because α = γ and β = δ.
To finish the description of Hichert’s algorithm, we need to analyze more care-

fully (2.8). If ρ = gcd(v,2k), then

∣∣∣gX[ε]∩X[ε]
∣∣∣ = ρ

2k
ρ −1∑
j=0

∣∣∣(T jρ+k−up(s) ·u(X)
)
∩X

∣∣∣.
When ρ = 1, this reduces to∣∣∣gX[ε]∩X[ε]

∣∣∣ =
∑

y∈Z2k

∣∣∣T y ·u.X∩X
∣∣∣ =

∣∣∣X∣∣∣2 = k2. (2.12)

by Lemma 2.6.
Now observe that the cardinality of T y−up(s) ·uX∩X cannot exceed k−1, because

(X/Y) is strong and y− p(s) , 0, since p is the polarity. Therefore,

2k
∣∣∣T y−up(s) ·u(X)∩X

∣∣∣ ≤ 2k(k−1).

The equation jρ+y− p(s) = 0 has at most one solution in the interval 0≤ j< 2k/ρ.
This means that
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ρ

2k/ρ−1∑
j=0

∣∣∣T jρ+y−up(s) ·u(X)∩X
∣∣∣ ≤ ρ[(2k

ρ
−1

)
(k−1) + k

]
= ρ+ 2k(k−1)

≤ k + 2k(k−1) = 2k2− k.

Summarizing, we have the following result.

Theorem 2.3 (Kleiner Kontrapunktsatz, Mazzola [53], Agustín-Aquino [4]).
Let ∆ = (X/Y) be a strong interval dichotomy, and let ξ ∈ X[ε]. The number N of
admitted successors of ξ satisfies

k2 ≤ N ≤ 2k2− k.

Remark 2.3. Both bounds are tight: The dichotomy

W =
(
{0,1,3}/{2,4,5}

)
in Z6 is strong,2 and the number of admitted successors of ε.1 is exactly 15 = 2 ·
32 − 3. Its unique contrapuntal symmetry is g = T ε.3 · (1 +ε.3). On the other hand,
the dichotomy

X =
(
{1,4,5,6,7,8,14,15}/{0,2,3,9,10,11,12,13}

)
in Z16 is such that the number of admitted successors of ε.6 is 64 = 82, and has the
impressive number of 105 contrapuntal symmetries (considering that H in this case
consist of 128 symmetries).

Example 2.6. The case of Z6 is an interesting illustration of the generalization from
12 to 2k, because it represents the whole-tone scale. On the one hand, the restriction
of the (K/D) dichotomy to whole-tone intervals yields the sets

K = {0,4,8}, D = {2,6,10}.

The set K contains the prime, the major third, and the minor sixth, while the
major second, the tritone, and the minor seventh belong to D. In the whole-tone
scale, this corresponds to the dichotomy(

{0,2,4}/{1,3,5}
)
,

which, unfortunately, is not strong (T 3 · 1 is a non-trivial automorphism). On the
other hand, the major second is “consonant” in the aforementioned dichotomy W,
and the set of admitted successors for the interval ε.1 (ascending major second over
C), is

2 It is essentially the only strong dichotomy in Z6, except for affine isomorphic images.
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S = gX[ε]∩X[ε] = {ε.0, ε.3,1 +ε.0,1 +ε.1,1 +ε.3,
2 +ε.0,2 +ε.3,3 +ε.0,3 +ε.1,3 +ε.3,

4 +ε.0,4 +ε.3,5 +ε.0,5 +ε.1,5 +ε.3},

with the claimed 15 elements. In fact, the only “forbidden” successors (apart from
the interval itself) are 2+ε.1 (the major second over E) and 4+ε.1 (the major second
over A[). In other words, parallel major second progressions producing a “mi contra
fa” cross relation are not allowed: C-D going to E-F] and C-D going to A[-B[.

All of the components of Hichert’s algorithm are finally ready.
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Algorithm 2.1 (J. Hichert, 1993, [38]). We calculate the contrapuntal symmetries
within H for the intervals ε.k ∈ X[ε]. Here χ(x,y) is a function that outputs the
cardinality of the set

(
T x · y(X)

)
∩X.

Require: The strong dichotomy ∆ = (X/Y) in Z2n and its polarity T r ·w.
Ensure: The set of counterpoint symmetries Σk ⊆ H for each ε.k ∈ X[ε].

1 foreach k ∈ X {
2 M← 0,Σk← ∅;
3 foreach u ∈ GL(Z2n) {
4 foreach s ∈ X {
5 foreach v ∈ Z2n {
6 t← k−u(ws + r);
7 if wt + r = ur + t {
8 if v = 0 {
9 S ← 2nχ(t,u);

10 }
11 else if v ∈ GL(Z2n) {
12 S ← n2;
13 }
14 else {
15 ρ← gcd(v,2n);

16 S ← ρ
∑ 2n

ρ −1
j=0 χ( jρ+ t,u);

17 }
18 if S > M {
19 Σk← {T ε.t · (u +ε.uv)};
20 M← S ;
21 }
22 else if S = M {
23 Σk← Σk ∪{T ε.t · (u +ε.uv)};
24 }
25 }
26 }
27 }
28 }
29 return (Σk);
30 }

Proof. The election of t in line 6 is justified by (2.7). In line 7 we check that the
symmetry polarizes (gX/gY) using (2.11). The lines from 8 to 17 calculate the car-
dinality of gX ∩ X according to (2.12). Afterwards, from line 18 to 21, we update
the set of contrapuntal symmetries S k in a standard way. Since there are a finite
number of symmetries to analyze, the algorithm terminates and Σk contains all the
contrapuntal symmetries within H. ut
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