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Abstract Our goal was to realize a truly hybrid simulation system, which allows
the simultaneous use of discreet event simulation and continuous 3D-simulation on
a unified database. The key component is an active real-time simulation database,
which is an object-oriented, self-reflecting graph database, with a powerful meta-
information system. We achieve this by using State Oriented Modeling, which
combines the ideas of object-oriented Petri-nets and supervisory control (using
discreet event simulation as a control component). The object-oriented Petri-nets
are formally described in the State Oriented Modeling Language, which is itself an
extension scheme of the simulation database.

Keywords Hybrid simulation � Meta data system � Supervisory control � State
oriented modeling language

1 Introduction

State Oriented Modeling [15] combines the ideas of supervisory control introduced
by [11] and object-oriented Petri-nets (OPN) [3]. It has already been used for a large
variety of different applications in the field of simulation (e.g. to simulate robot
programs as described in [2]), but also for the real-time control of physical systems
using simulation technology as described in [14]. To realize these applications,
Supervisory Control provides the methods necessary to link the control algorithms
with simulations or physical devices. To implement the controllers, Petri-nets are
known to be able to map almost all of the most important state oriented description
languages and even modern programming paradigms, to model complex scenarios.
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Figure 1 illustrates the integration of Supervisory Control concepts, Petri-Nets
and 3D simulation used so far. Here the simulation system and the supervisory
control are separate entities, working on disjoint sets of data. Communication
between these two sets has to be established via a mediator.

With this concept as a starting point, our goal was to realize a truly hybrid
simulation system, which allows the simultaneous use of discreet event simulation
and continuous 3D simulation on a unified database. It is then up to the simulation
developer how to use these paradigms in parallel to realize convincing
simulation applications in a wide range of application areas from “classical”
simulation applications (driving simulators, virtual production, etc.), to new
application areas like user interface design or Virtual Testbeds providing simula-
tion-based development frameworks for complex systems, a key technology in the
emerging field of eRobotics [12].

This contribution will detail the progress we have made in making State Ori-
ented Modeling not only an add-on to a 3D simulation system, but incorporating the
principles directly into our real time simulation system database.

The key component is an active real-time simulation database, which is an
object-oriented, self-reflecting graph database. To reach the integration goal out-
lined above, the database has to fulfill the following demands:

• The database must support the integration of data (e.g. 3D simulation data) and
algorithms (e.g. Petri Nets) in one single—now active simulation—database,
supporting interface definition and providing means for state oriented as well as
event based communication.
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Fig. 1 A scene graph based simulation system with an exterior supervisory control
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• The database must be able to flexibly adopt new data schemata (e.g. for the
representation of various kinds of OPN) for its internal database, without
additional alteration to the core programming.

• For the (real-time) simulation performance it is important how the data can be
accessed and manipulated by the simulation algorithms (e.g. to implement even
complex controllers using OPN). Ideally, database management itself should be
time efficient, thus leaving computing power available to the simulation
routines.

• In addition to this, it must be possible to easily add new simulation algorithms or
enhance existing methods, while guaranteeing stability and performance of the
overall system.

• The database itself must be independent from the type of simulation, to be able
to incorporate quasi continuous as well as discrete event simulation paradigms
into one single integrated simulation framework as depicted in Fig. 2.

2 The Real-Time Simulation Database

To fulfill the requirements mentioned in the introduction, and to eliminate
unnecessary dependencies and provide a sustainable basis for various and diverse
simulation applications, we developed a new architecture for 3D simulation
systems, which is based on a small (micro-) kernel. This kernel is the Versatile
Simulation Database (VSD), a real-time database containing all the data and
algorithms needed for simulation applications. Fully implemented in C++, it
provides the central building blocks for data management, meta-information,

3D Simulation

versatile simulation database
Fig. 2 A simulation system
based on an active database
with integrated supervisory
control
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communication, persistence and user interface. The design of the simulation system
as shown in on the left of Fig. 3 is inspired by the Object Management Group
(OMG) meta model hierarchy [8].

2.1 Meta Information

The uppermost layer (labeled M2 in Fig. 3) is the meta-information system. It is
essential for the flexibility, as well as the developer and end user friendliness of the
database and the simulation system. The meta-information system is the basis for
persistence, user interface, parallel and distributed simulation, scripting and com-
munication. It mainly consists of the following classes:

• MetaTypeVal. Describes all data types that can be used as values (e.g. int,
double, string, simple structs, enumerations, flags).

• MetaProperty. Describes a property (see Sect. 2.3) with its getter and setter
functions, its data type and a number of additional flags. These flags describe the
behavior of the property as exposed to the user (editable, savable, etc.) as well as
the properties ability to be used in parallel and distributed simulation.

• MetaMethod. Describes a method (member function) of an instance.
• MetaInstance. Describes an instance including its class hierarchy. Each non-

abstract meta-instance is able to create corresponding instances. Each meta-
instance holds a list of the corresponding meta-methods and meta-properties,
and furthermore provides a central entry point for executing member functions.

Fig. 3 The meta model hierarchy and the core database class hierarchy
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In addition to “build-in” classes, it is also possible to generate meta-instances
with the corresponding meta-properties and meta-methods during runtime (for
example for object oriented scripting or new data models). Such “run-time meta-
instances” are treated in exactly the same way as the build in meta-instances, with
no performance overhead in the data management.

2.2 Instances

The middle layer (labeled M1 in Fig. 3) describes the data model of the simulation.
In order to be able to retain semantic information and integrate data and algorithms
into one single database, the VSD data model is an object oriented graph database
[6], whose structure is detailed in this section. A simplified class hierarchy of the
VSD core is shown on the right of Fig. 3.

All nodes in the graph database, the database itself and even the simulation
environment are derived from a single base class called “Instance”. This base class
provides mechanisms for inter-instance communication, as well as access to the
meta-information system, which allows introspection of class hierarchy, properties
and methods (see Sect. 2.1).

The simulation model (labeled M0 in Fig. 3) is an instantiation of the data model.

2.3 Properties

Derived form the instance class is the “SimStateInstance”. Besides providing a
reference to its simulation state (see Sect. 2.4) it may contain so called “Properties”
and encapsulates the access to them. Properties are standardized getter and setter
functions that encapsulate the data itself. All data in the simulation system is stored
as properties. Properties can encapsulate any single value or value containers (lists,
vectors, etc.), whose data types are known to the meta-information system. Prop-
erties can also hold references or lists of references. References come in two different
varieties, composite aggregation (with reference counting as described in [9]), and
shared aggregation. All parent child relations within the database are implemented as
composite aggregation references. Shared aggregation references do not change the
reference counter of the instance, but are informed if the instance gets deleted.

2.4 Database Structure

As shown on the left of Fig. 3 all nodes in the graph database, as well as the
database itself are derived from the instance base class.

• Environment and Simulation States. The complete simulation is described by
an “Environment”, which contains at least one “Simulation State” (SimState).
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Simulation states provide mechanisms for copying content from one state to
another and are thus the basis for data partitioning in distributed or parallel
simulation. For this, a simulation state can keep a list of all transactions, which
can then be used to apply all bundled state changes to another simulation state
on the same or on other computers. For example, when streaming data from an
external database a separate thread with its own simulation state does handle the
database interface. When the data has been loaded it will be transferred into the
main simulation state.

• Container and Element Index. The database graph itself is kept by a “Con-
tainer” class, a collection of graph nodes. A special container is the “Database”
class, which acts as the spanning tree of the database. Other containers can be
constructed, offering a different “View” onto the database, by rearranging all
nodes or a subset thereof in different order. An example for this is the spatial
view, which shows nodes in their spatial arrangements and gets updated when
objects are grabbed or moved by other objects.
Furthermore the database offers convenience access to specific instance types
via the “ElementIndex” class, which for every meta-instance provides a list of
all instances of that type. By this mechanism it is possible to view the graph
database in a traditional table based manner without performance restrictions.

• NamedModelInstances. This derivation from SimStateInstance provides a
name property, as well as a list of extensions.

• Nodes. Most commonly used is the “Node” class, which adds a child reference
list property to the “NamedModelInstances” class.

• Extensions. “Extensions” are used to add data and functionality to a variety of
nodes. Extensions can not only be attached to nodes, but also to other
extensions.

2.5 Active Database

As mentioned above the VSD is not only a static data container but also contains the
simulation algorithms itself. The environment, as well as all containers and element
indexes actively inform interested listeners about new instance creation or deletion,
as well as property modifications. Furthermore each instance sends a signal when
one of its properties has been changed. Thus interested parts of the simulation
systems can be informed about state changes in the simulation, eliminating the need
to continuously poll the database content. With the active messaging system and the
availability of element index lists we have minimized the need for data polling and
tree traversal. By creating derived classes (like “Actuator”, “Sensor”, “Robot”, etc.)
from the Node or Extension base class, the simulation algorithms (actuator control,
sensor simulation, robot controller, etc.) itself are integrated into VSD. Simulation
algorithms that need a complete overview over the simulation state (like rigid body
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simulations) are integrated on the database level but still manage their data on the
node and extensions level as illustrated before.

That’s why we call the VSD active. To achieve a complete decoupling of the
different system components with well defined interfaces (introspectable using the
meta-information system), methods are provided for event and state based com-
munication. These methods can be used to let the components exchange informa-
tion as defined by the algorithm developer or the simulation expert.

2.6 3D Simulation

As already stated above, even the 3D simulation capabilities are an extension of the
core database. An excerpt of class hierarchy for these classes is shown in Fig. 4.

The data for 3D simulation may be interpreted by a collision detection system, a
kinematic animation system, the physics simulation, the renderer or other appli-
cation specific simulation algorithms. The most important classes are:

• 3D Node. A node which contains a frame property describing its position and
orientation relative to the parent node.

• Hull Node. A 3D node that holds a reference to geometry. It also has a reference
list of map nodes and an associated material node.

• Geometries. This instance holds all data necessary to describe a geometry.
Properties include vertex, facet and texture coordinate lists. It can be referenced
(shared) from many hulls.

Fig. 4 Add-ons to the core database: components for 3d simulation (light gray) and state oriented
modeling (dark gray)
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• Maps and Materials. A map is a node with an url to a texture. Furthermore the
function of the texture is given (for example: color map, normal map or diffuse
map). A material node describes physical properties of a geometry, like color or
electric conductivity. Maps and material are not only used for rendering. For
example it is possible to attach a radar reflection intensity map to a hull node, in
order to enable a more realistic radar simulation.

2.7 Simulation System

For real-world applications the database must be extended by new data schemes and
simulation algorithms like 3D simulation (VSD3D, see Sect. 2.6) or State Oriented
Modeling (VSDNet, see Sect. 3). Further functionality like rendering, data pro-
cessing, file loading, hardware interfaces or simulation scheduling, is handled by
plugins, which may also add database enhancements like kinematics, dynamics
(detailed in [7]), process simulation or GIS (Geo Information Systems, see [10]).

3 State Oriented Modeling Language

In this section we introduce the features of the “State Oriented Modeling language”
(SOML++) and show how object oriented Petri-nets are integrated into our simu-
lation system. As mentioned before, the goal was to make State Oriented Modeling
and Petri-nets an integral part of the simulation system.

3.1 Supervisory Control

This basic concept to integrate Petri-nets with 3D simulation systems is based on
the Supervisory Control approach. The idea of Supervisory Control describes a
technique to regard a control component (Supervisor) as a discrete-event simulation
(DES), with its own state space and transitions caused by events that reflect changes
at observed outputs of the controlled system (Plant). Figure 5 shows the basic
structure of Supervisory Control: selected, re-fed state transitions σ of the plant
generate events, which trigger further state transitions in the supervisor. Based on
those state transitions, the supervisor can react, in order to adjust the plant with
control commands γ.

With respect to the focus of this contribution, the integration of Petri-Nets and
3D Simulation, Petri Nets are used to implement the control component (Super-
visor) as a DES supervising and controlling the 3D simulation (Plant).
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3.2 Language Features

SOML++ is a language that describes objects that can contain Petri-nets (see [3]). In
an object-oriented fashion these objects can be derived from other objects and can
encapsulate data. In the global name-space all the language constructs described
below are allowed.

• Object-classes. An object-class must be instantiated as an object in order to be
used. It is possible to subclass any object-class, regardless whether it has been
defined in the SOML++ code or is a build-in class like VSD3D::Node.

• Objects. An object can be created from scratch or it can be derived from any
object-class. Objects can be constructed with arguments, which will get passed
to the constructor function.

An object or object-class may contain any number of further objects or object-
classes. Additional language elements and the building blocks of Petri-nets for use
within objects or object-classes are:

• Properties. A value of all data types, that are known to the meta-information
system of the simulation. Properties can also hold references to SOML++
objects.

• Functions. A block of code to be executed. Like in C++, a function has any
number of arguments and a defined return type. Functions can be called from
other functions or transitions anywhere within the SOML++ script.

• Places. A place as defined for a traditional Petri-net. Places and transitions are
special objects, thus it is possible to define properties or functions within them.

• Transitions. Transitions may contain conditions and actions. If the conditions
are met a marker may pass the transition and the actions are executed. Both,
conditions and actions, are defined by user defined code which may in turn call
other functions.

• Arrows. Link places to transitions and transitions to places.
• Start-place. Declares the object containing this statement to be a token, which

moves through the Petri-net as defined by places, arrows and transitions.

This short summary outlines only a few language elements. In addition to this,
the Petri-net implementation of State Oriented Modeling provides arrow conditions,
different arrow types (normal, inhibitor, communication), Petri-net substitution and
invocation hierarchy with arguments and return values, to name only the most
important features.

Fig. 5 The basic structure of supervisory control, where one DES (supervisor) commands another
DES (plant)
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3.3 Interpreting and Executing SOML++ Code

For the representation of the SOML++ code within the simulation database, a new
data schema “VSDNet” as described in Fig. 4 has been developed, providing
classes for all SOML++ language elements.

When a piece of SOML++ code is loaded by the simulation system, equivalent
VSDNet “SourceComponent”-instances are created for classes, objects, arrows, etc.
After that, the source representation in the simulation database is traversed and
meta-instances (see Sect. 2.1) are generated for each object-class and each object.
Properties are mirrored as meta-properties and functions as meta-methods. After-
wards new instances (see Sect. 2.2) are created from this meta-data and added to the
database. Contained places and transitions are sub nodes of the object nodes, arrows
are modeled as sub nodes of the originating place and transition nodes.

Since every SOML++ object has now become a “normal” database node, net
functions can use all the functionality provided by the database or the meta-
information system, respectively. Net functions can interact with the rest of the
database by creating new instances (using not only those defined in the SOML++
code, but all classes known to the simulation system), obtain references to other
database nodes and call functions of these nodes.

Of course other database nodes can interact in the same way with the net objects,
for example signals are sent when a net object is created or a property within this
object has changed. There is no additional interface layer between the core database
and the Petri-nets—the Petri-nets are an integral part of the simulation database.

3.4 Realizing Supervisory Control

At this point, all components necessary for realizing Supervisory Control with State
Oriented Modeling technique in 3D simulation systems are available. Using the
same concepts, Petri-nets can observe any simulation state. State changes cause
transitions to “fire” (representing events σ) which produce control commands γ.

4 Applications

The hybrid simulation approach presented in this contribution greatly simplifies the
realization of new 3D simulation applications. Nearly all the applications realized
so far benefit this approach. They use quasi continuous simulation technology to
simulate kinematics, physics, actuators, sensors, various processes, etc. and State
Oriented Modeling for supervisor and controller implementation, interfaces, user
interaction, and supervisory control of the overall simulation. In this section we will
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focus on two application areas illustrating the application range of the concept
presented above.1

4.1 Virtual Testbeds

Using the concepts illustrated above we are now able to simulate complex systems
with all relevant system components and their interdependencies. The result is a
comprehensive development and testing environment based on simulation tech-
nology, a Virtual Testbed (see Fig. 6).

The Virtual Testbed concept is a key technology in the emerging field of
eRobotics, because Virtual Testbeds can act as a central focal point in multi-
disciplinary development projects. For this reason, the first application areas of
Virtual Testbeds are in the field of robotics, i.e. for the development of exploration
robots, production plants or other complex systems.

4.2 Simulation Based Control

The use of supervisory control and state oriented modeling is not confined to the
virtual world. The very same concept can also be applied to control real hardware

Fig. 6 A virtual testbed. (spaceclimber model—copyright DFKI bremen)

1 More examples can be found at http://www.youtube.com/user/VEROSIMSimulations, all of
which are based on the VSD and most of them use supervisory control.
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with the same software. We are using simulation technology to directly control
physical systems, which we call “Simulation-Based Control” [13]. This way, the
same simulation and algorithms which were prototyped in a Virtual Testbed,
control the actual hardware afterwards. An example is the control system of the
multi-robot workcell consisting of two redundant 8-axis robots (linear axis plus a 7-
axis robot).

For robot control the database of our simulation system is extended with new
types of node extensions, able to model and control kinematic chains and kinematic
trees. The extension supports rotary and prismatic joints, as well as universal joints
and joints directly defined via their Denavit-Hartenberg parameters.

The control concept of the multi robot system is based on the Intelligent Robot
Control System (IRCS) structure, developed and introduced in the 1990s by [5].
The IRCS addresses the main aspects of multi robot control by breaking up given
tasks into smaller, manageable pieces in a “divide and conquer” fashion, delegating
control over several layers of abstraction and responsibility. Figure 7 shows a
simplified structure for the robot controller.

Here, the 3D simulation control (named “Multi Robot Control”) acts as a coor-
dinator of the vendor specific robot control units by implementing the simulation-
based control concept. To communicate with the physical devices, the Ethernet
based Fast-Research-Interface (FRI) is used for the KUKA Light-Weight-Robots
[4], while a Profibus-Interface is used for the linear axes. The user interaction via a
“User Interface” and the real-time robot coordination “Multi Robot Control” is
performed on different computers, both running the same simulation system, though
with different configurations on different operating systems (Windows and QNX).
Both simulations use the same model, which is kept in sync between the computers
by distribution methods provided by the core database.

Fig. 7 The intelligent robot control system
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The “Meta Control” layer (action generation and distributed planning using
algorithms from the field of artificial intelligence), as well as the “Multi Robot
Control” layer are Supervisory Controls implemented in SOML++.

5 Conclusions and Future Work

In this contribution we presented a new structure for an object oriented graph
database for versatile 3D simulation systems. Due to their meta-information man-
agement, such systems can adapt to new data schemes even at run-time of the
simulation, without the need for further programming. This approach allows us to
integrate Petri-net objects as modeled in the State Oriented Modeling language.
These Petri-net objects become an integral part of the simulation database and have
full access to the 3D simulation data and algorithms, which enables supervisory
control of quasi continuous simulation applications using discrete event simula-
tions. The result is a hybrid simulation system which has proven its applicability in
large variety of applications, “classical” simulation applications like driving or
production simulators, but also new fields of applications like GUI modeling or
Virtual Testbeds.

Although performance of the interpreted SOML++ code segments never was a
problem so far, we plan to introduce a compiler, which will transfer the generated
meta-instances into native C++ code. In addition to this we plan the integration of
further Petri-net approaches like hybrid and continuous petri nets [1] to widen the
methodical base of the overall concept.
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