
Chapter 2
Partial Asymptotic Stability

Abstract A class of abstract dynamical systems with multivalued flows of
solutions in a metric space is introduced in this chapter. For this class of systems,
the property of partial asymptotic stability with respect to a continuous functional is
studied. In order to characterize the limit set of a trajectory of a multivalued system,
a modification of the invariance principle is proposed. This result is applied to derive
sufficient conditions for partial asymptotic stability of an equilibrium by using a
continuous Lyapunov functional. Such conditions are also formulated for particular
classes of systems governed by differential inclusions, ordinary differential equa-
tions, and nonlinear semigroups in a Banach space. For further applications of these
results to the partial stability analysis of nonlinear abstract differential equations,
conditions for the relative compactness of trajectories are derived by considering
nonlinear perturbations of dissipative operators. The partial stabilization problem is
studied by using differentiable Lyapunov functions for control affine systems in a
finite-dimensional space. This treatment is illustrated by examples of the attitude
stabilization of a satellite controlled by thrust jets or flywheels.

2.1 Partial Stability of Multivalued Dynamical Systems

Let X be a metric space endowed with the distance ρ : X × X → R
+,

R
+ = [0,+∞). The evolution of abstract dynamical processes on X will be de-

scribed by functions x(t) ∈ X defined for t ∈ R
+. We denote by κ the set of all

functions
x : R

+ → X,

the set of all subsets of κ is denoted by 2κ . To introduce the notion of a multivalued
dynamical system, we associate a set π(x0) ⊂ κ with each x0 ∈ X .

Definition 2.1 [1] A map π : X → 2κ is called a multivalued D-system on X if:

(A1) π(x0) �= ∅ for all x0 ∈ X ;
(A2) x(0) = x0 for each x(·) ∈ π(x0);
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14 2 Partial Asymptotic Stability

(A3) for any x0 ∈ X , s ∈ R
+, x(·) ∈ π(x0), and z(·) ∈ π(x(s)), the following con-

ditions are satisfied: u(·) ∈ π(x(s)) and v(·) ∈ π(x0), where u(t) = x(t + s)
and

v(t) =
{

x(t), t ≤ s,
z(t − s), t > s;

(A4) given x0 ∈ X , ε > 0, and T > 0, there is a δ(x0, ε, T ) > 0 such that

ρ(x̃0, x0) < δ, x̃(·) ∈ π(x̃0) ⇒ inf
x(·)∈π(x0)

(
sup

t∈[0,T ]
ρ(x̃(t), x(t))

)
< ε;

(A5) for any x0 ∈ X , T > 0, and a sequence {xn(·)}∞n=1 ⊂ π(x0), there exists an
x(·) ∈ π(x0) such that

lim inf
n→∞

(
sup

t∈[0,T ]
ρ(xn(t), x(t))

)
= 0.

We will refer to an element x(t) of π(x0) as to a solution of the initial value
problem x(0) = x0 for π . When considering an autonomous system of differential
equations, the above π(x0) represents the set of all solutions for the Cauchy problem
on R

+. Assumptions A1 and A2 state the global existence property, while A3 means
that the translation of a solution is a solution. Conditions in A4 and A5 provide extra
regularity properties without assuming the uniqueness of solutions.

Definition 2.2 Let x(·) ∈ π(x0). An element q ∈ X is said to be a (positive) limit
point of x if there is a sequence tn → +∞ such that x(tn) → q as n → ∞. The set
of all such limit points is denoted by Ω(x) and called the (positive) limit set of x .

Definition 2.3 A set F ⊂ X is said to be semi-invariant for π if, for every x0 ∈ F ,
there exists at least one x(·) ∈ π(x0) such that x(t) ∈ F for all t ∈ R

+.

Definition 2.4 We say that x(·) ∈ π(x0) is precompact if
⋃

t≥0{x(t)} is contained
in a (sequentially) compact subset of X .

An important property of the limit sets of the autonomous differential equations
is that they are invariant (cf. [2, App. III]). The following lemma extends this well-
known result for the class of multivalued D-systems on a metric space.

Lemma 2.1 Let π be a multivalued D-system and let x(·) ∈ π(x0). If the trajectory
x is precompact then Ω(x) is nonempty and semi-invariant.

Proof The precompactness of {x(t) | t ≥ 0} implies that, for any sequence
tn → +∞, the sequence {x(tn)}∞n=1 has a limit point, therefore, Ω(x) �= ∅.

Let us show that, for each T > 0 and x∗
0 ∈ Ω(x), there is a function ξ(·) ∈ π(x∗

0 )

satisfying the condition ξ(t) ∈ Ω(x) for all t ∈ [0, T ]. Since x∗
0 ∈ Ω(x), there

exists a sequence tn → +∞ such that x(tn) → x∗
0 as n → ∞. Define the sequence
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{φn(·)}∞n=1 ⊂ κ: φn(t) = x(tn + t), t ∈ R
+. Then φn(·) ∈ π(x(tn)) because

of A3. Let {φn(k)(·)}∞k=1 be a subsequence of {φn(·)}∞n=1 satisfying the condition
ρ(φn(k)(0), x∗

0 ) < δk , where the numbers δk = δ(x∗
0 , 1/k, T ) > 0 are chosen as in

A4. By assumption A4, there is a sequence {ψk(·)}∞k=1 ⊂ π(x∗
0 ) such that

sup
t∈[0,T ]

ρ(φn(k)(t),ψk(t)) <
1

k
, k = 1, 2, . . . (2.1)

Then A5 implies that there exist ξ(·) ∈ π(x∗
0 ) and a subsequence {ψk(m)(·)}∞m=1:

lim
m→∞

(
sup

t∈[0,T ]
ρ(ψk(m), ξ(t))

)
= 0.

The above formula together with (2.1) imply

lim
m→∞

(
sup

t∈[0,T ]
ρ(φn(k(m)), ξ(t))

)
= 0.

Since each φn(·) is the translation of x(·), each value of ξ(t) (0 ≤ t ≤ T ) belongs
to Ω(x).

To conclude the proof,we apply the above construction infinitelymany times at the
points x∗

i = ξi−1(T ), where ξ0(·) = ξ(·). As a result, we get the system of functions
ξi (·) ∈ π(ξi−1(T )) such that ξi (t) ∈ Ω(x) for all t ∈ [0, T ], i = 1, 2, . . . Then
A3 implies that the function x∗(t) = ξ[t/T ]({t/T }T ) is an element of π(x∗

0 ), where[t/T ] and {t/T } denote the integer and the fractional parts of t/T , respectively.
Moreover, x∗(t) ∈ Ω(x) for all t ∈ R

+. �

The limit sets of a dynamical system can be characterized in the terms of a Lya-
punov function.A powerfulmachinery in this area is given by the invariance principle
that is valid for the abstract systems on a Fréchet space [3]. We prove here a similar
proposition for the D-systems in the sense of Definition2.1.

Lemma 2.2 Let π be a multivalued D-system, x(·) ∈ π(x0). Suppose that there
exists a continuous map V : X → R

+ such that ξ0 ∈ X and ξ(·) ∈ π(ξ0) imply
V (ξ(t)) is non-increasing on R

+. If x(·) is precompact, then

Ω(x) ⊂ {p ∈ X | V (ξ(t)) = c for some ξ(·) ∈ π(p), t ∈ R
+} (2.2)

for some constant c.

Proof Precompactness of
⋃

t≥0{x(t)} and continuity of V imply that Ω(x) �= ∅ and
V (x(t)) is bounded on R

+. Since V (x(t)) is non-increasing, there exists the limit

lim
t→+∞ V (x(t)) = c �= −∞.
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As V is continuous, V (x∗) = c for any x∗ ∈ Ω(x). It means that Ω(x) is a subset of
{p ∈ X | V (p) = c}. But as Ω(x) is semi-invariant (Lemma2.1), for any p ∈ Ω(x)

there should be a ξ(·) ∈ π(p) such that ξ(t) ∈ Ω(x). It implies V (ξ(t)) = c for all
t ∈ R

+. �

Our goal is to apply the invariance principle for the analysis of partial asymptotic
stability in abstract spaces. To introduce this notion, let us call x0 ∈ X an equilibrium
of π if the function x(t) ≡ x0 belongs to π(x0).

Definition 2.5 Let π be a multivalued D-system on X , and let μ : X → R
+. The

equilibrium x0 of π is said to be asymptotically stable with respect to μ if

(i) Given ε > 0 there exists δ(ε) > 0 such that ρ(x̃0, x0) < δ impliesμ(x̃(t)) < ε

for all x̃(·) ∈ π(x̃0) and all t ∈ R
+.

(ii) There exists a Δ > 0 such that ρ(x̃0, x0) < Δ implies

lim
t→∞ μ(x̃(t)) = 0. (2.3)

Remark 2.1 The notion of stability with respect to two metrics was introduced by
Movčan in the paper [4]. Our approach differs from Movčan’s work as we consider
the partial stability for multivalued processes here.

To formulate stability results, we introduce the standard class K of comparison
functions that consists of all continuous strictly increasing functions α : R

+ → R
+

such that α(0) = 0. Then we prove the following theorem on sufficient conditions
of partial asymptotic stability in terms of a continuous Lyapunov functional V on X .

Theorem 2.1 Let π be a multivalued D-system on a metric space X, and let x0 be its
equilibrium. Assume that there is a pair of continuous functionals μ, V : X → R

+
satisfying the following conditions.

C1. There exist α1(·), α2(·) ∈ K such that

α1(μ(x)) ≤ V (x) ≤ α2(ρ(x0, x)) for all x ∈ X. (2.4)

C2. For any x̃0 ∈ X, x̃(·) ∈ π(x̃0), the function V (x̃(t)) is non-increasing on R
+.

C3. There exists a Δ > 0 such that ρ(x̃0, x0) < Δ and x̃(·) ∈ π(x̃0) imply
precompactness of x̃(·).

C4. The set

M1 = {p ∈ X | V (x̃(t)) is constant on R
+

for some x̃(·) ∈ π(p)} (2.5)

is contained in

Kerμ = {p ∈ X | μ(p) = 0}.

Then the equilibrium x0 is asymptotically stable with respect to μ.
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Proof First we prove the property (i) from Definition2.5 by generalizing Rumyant-
sev’s theorem [5, Theorem 5.1], [6] on partial stability with respect to a part of the
variables. Then we apply Lemma2.2 to show the property (ii).

ConditionC2 implies V (x̃(t)) ≤ V (x̃0) for all x̃0 ∈ X , x̃(·) ∈ π(x̃0), and t ∈ R
+.

By combining this inequality with (2.4), we get

μ(x̃(t)) ≤ α1
−1

(
α2

(
ρ

(
x̃0, x0

)))
, (2.6)

where the function α1
−1(τ ) exists and increases at least for small enough τ > 0,

since α(·) ∈ K . Therefore, the function

γ (δ) = α1
−1 (α2(δ))

is continuous, nonnegative, and strictly increasing on some interval [0, δ∗), 0 < δ∗ ≤
+∞. It means that for arbitrary ε > 0 there exists δ ∈ (0, δ∗) such that γ (δ) ≤ ε.
Hence, if ρ(x̃0, x0) < ε then (2.6) implies

μ(x̃(t)) ≤ γ (ρ(x̃0, x0))

for all x̃(·) ∈ π(x̃0) and all t ∈ R
+.

To conclude the proof, it suffices to establish the limit existence for (2.3). Let Δ
be chosen as in C3, and let ρ(x̃0, x0) < Δ. Therefore, for any x̃(·) ∈ x̃0, the set
Ω(x̃) �= ∅ is included in (2.5) because of Lemma2.2. Condition C4 implies

Ω(x̃) ⊂ Kerμ. (2.7)

To show (2.3), let us assume the contrary: there are some ε > 0 and tn → +∞ as
n → ∞ such that

μ(x̃(tn)) > ε, n = 1, 2, . . . (2.8)

Since x̃(·) is precompact, there exists a subsequence {tn(k)}∞k=1 such that x̃(tn(k)) →
x∗ ∈ Ω(x̃) as k → ∞. By (2.7), μ(x∗) = 0. Continuity of μ implies

|μ(x̃(tn(k))) − μ(x∗)| = μ(x̃(tn(k))) → 0, as k → ∞.

But the above contradicts to (2.8). Therefore,

lim
t→+∞ μ(x̃(t)) = 0

for all x̃(·) ∈ π(x̃0) provided that ρ(x̃0, x0) < Δ. �
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2.2 Application to Differential Inclusions and Ordinary
Differential Equations

An important application of the concept of partial stability for systems with multi-
valued flow comes from differential inclusions and Filippov’s approach to ordinary
differential equations with discontinuous right-hand sides.

2.2.1 Differential Equations with Discontinuous Right-Hand Sides

Consider a system of ordinary differential equations

ẋ(t) = f (x(t)), x(t) ∈ X ⊆ R
n, (2.9)

where the function f : X → R
n is assumed to be bounded on each compact subset D

of domain X . In the sequel, we assume that 0 ∈ X and f (0) = 0, so that system (2.9)
admits the trivial solution x(t) ≡ 0.

It is a well-known fact [7] that classical solutions of system (2.9)may not exist if f
is a discontinuous function. To ensure the existence and extendability of solutions to
system (2.9), one should use a generalized notion of solutions which is applicable for
differential equations with discontinuous right-hand sides.We use here the following
definition of solutions due to Filippov.

Definition 2.6 A solution of system (2.9) is an absolutely continuous function x(t) ∈
X , defined for −∞ ≤ T − < t < T + ≤ +∞, that satisfies the following differential
inclusion

ẋ(t) ∈ co H(x(t)), (2.10)

almost everywhere on t ∈ (T −, T +). For each x ∈ X , the set H(x) ⊂ R
n contains

f (x) and the set of all limit points of f (y) as y → x . Here co H(x) is the convex
hull of H(x).

Definition2.6 corresponds to the simplest convex definition according to
[7, Sect. 4] (see also Proposition 1 in [8, Chap. 2]). It is obvious that each clas-
sical solution of (2.9) is also a solution in the sense of Filippov. Definition2.6 is
equivalent to the classical definition of solutions if the function f : X → R

n is
continuous.

For a given x0 ∈ X , a solution x(t) to the Cauchy problem for differential inclu-
sion (2.10) with initial data

x(0) = x0 ∈ X (2.11)

may not be unique. For further analysis, we will make an extra assumption.

Assumption 2.1 If x(t) is a solution of differential inclusion (2.10) on t ∈ I then
either I ⊃ [0,+∞) or x(t) may be extended to some interval t ∈ Ĩ ⊃ [0,+∞).
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Under this assumption, we introduce the following set-valued map on X :

x0 �→ π(x0) = {x(·) | x(t) is a solution to the Cauchy problem (2.10), (2.11) on t ≥ 0}.
(2.12)

By exploiting regularity results from [7], we show that the above defined map π is
a multivalued D-system.

Lemma 2.3 Let the Assumption2.1 be satisfied. Then the set-valued map x0 �→
π(x0), given by (2.12), is a multivalued D-system on X in the sense of Definition2.1.

Proof As the function f (x) is bounded on each compact subset of X , the set-valued
function F(x) = co H(x), introduced in Definition2.6, is upper semicontinuous by
Lemma1 of [7, Sect. 6]. Hence, F(x) satisfies the basic conditions of [7, Sect. 7],
i.e. the set F(x) is nonempty, bounded, and closed for all x ∈ X , and F(x) is upper
semicontinuous in x . Then, for each x0 ∈ X , there is a solution x(t), t ∈ [0, T +)

of the Cauchy problem (2.10), (2.11) according to Theorem 1 of [7, Sect. 7], and
T + = +∞ by Assumption2.1. This implies that the set-valued map π(x0), defined
by (2.12), satisfies conditions (A1) and (A2) of Definition2.1. Condition (A3) also
holds as f (x) and F(x) do not depend on t . Condition (A4) is a consequence of The-
orem 1 from [7, Sect. 8] on the dependence of solutions on the initial data. Condition
(A5) follows from the fact that the limit of a uniformly convergent sequence of solu-
tions {xn(t)} of differential inclusion (2.10) is a solution of (2.10) (see Corollary 1
of [7, Sect. 7]). Thus, all the conditions (A1)–(A5) of Definition2.1 are satisfied, and
the set-valued map π(x0), introduced in (2.12), is a multivalued D-system on X in
the sense of Definition2.1.

To present a finite-dimensional version of Theorem2.1, we write the state vector
x of system (2.9) as

x = (y1, .., yn1 , z1, . . . , zn2), y = (y1, . . . , yn1) ∈ R
n1, z = (z1, . . . , zn2) ∈ R

n2 ,

n1 + n2 = n. (2.13)

We also assume that X is a domain of form

X = {x ∈ R
n | z ∈ R

n2 , ‖y‖ < N } (2.14)

where ‖ · ‖ is the standard Euclidean norm of a vector and N is a positive constant.
For a Filippov solution x(t) of system (2.9), we will refer to its y- and z-components
as y(t) and z(t), respectively.

Let us recall the following definition of asymptotic stability with respect to a part
of variables in the sense of Lyapunov [9] and Rumyantsev [5].

Definition 2.7 [5, 6] The solution x = 0 of system (2.9) is asymptotically y-stable
if, for any ε > 0, there exists a δ > 0 such that any solution x(t) of (2.9) with
‖x(0)‖ < δ is defined on R

+, ‖y(t)‖ < ε for all t ≥ 0, and ‖y(t)‖ → 0 as
t → +∞.
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If we treat solutions of system (2.9) in the sense of A.F. Filippov, then it is easy
to see that Definition2.7 is equivalent to Definition2.5 with

μ(x) = ‖y‖,

provided that the set-valued map x0 ∈ X �→ π(x0) is defined by (2.12).

Remark 2.2 The concepts of weak and strong stability of solutions are usually ad-
dressed in the theory of differential inclusions [10]. Definition2.7 is related to the
strong partial stability, so that ‖y(t)‖ < ε and y(t) → 0 for each solution x(t)
whenever ‖x(0)‖ < δ.

For a differentiable function V (x) in X , its upper time derivative along the tra-
jectories of differential inclusion (2.10) is

V̇ ∗(x) = sup
p∈co H(x)

〈∇V (x), p〉,

where ∇V (x) is the gradient of V (x) and 〈·, ·〉 is the scalar product in R
n .

As a corollary of Theorem2.1, we obtain the following result.

Theorem 2.2 Assume that, for some Δ > 0, each Filippov solution x(t) of sys-
tem (2.9) is bounded for t ≥ 0 provided that ‖x(0)‖ < Δ. Let V ∈ C1(X) be a
function such that V (0) = 0 and the following conditions hold:

(1) V (x) ≥ α(‖y‖) for some α ∈ K ;
(2) V̇ ∗(x) ≤ 0 for all x ∈ X;
(3) the set M = {x | y = 0} is invariant for (2.10) with t ≥ 0;
(4) the set {x | V̇ ∗(x) = 0}\M does not contain any weakly invariant subset

for (2.10) with t ≥ 0.

Then the solution x = 0 of system (2.9) is asymptotically y-stable.

Proof Let x(t), t ∈ I be a Filippov solution of (2.9) with ‖x(0)‖ < Δ. Without
loss of generality we assume that I ⊃ [0,+∞), otherwise, as each solution is
bounded, x(t) may be extended to some interval Ĩ ⊃ [0,+∞) by Theorem 2 of
[7, Sect. 7]. Thus, the Filippov solutions of system (2.9) correspond to a multivalued
D-system x0 �→ π(x0) on X by Lemma2.3. The boundedness of the solutions
implies that condition C3 of Theorem2.1 holds as each bounded subset of a finite
dimensional space is precompact. Let us show that condition C1 of Theorem2.1
holds with α1 = α ∈ K given in condition (1) and

α2(ρ) = sup
‖x‖≤ρ, x∈X

V (x).
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The above defined α2 is a function of class K because V (0) = 0 and V (x) is
continuous. If x(t) is a solution of differential inclusion (2.10) then

d

dt
V (x(t)) = lim

h→0

V (x(t + h)) − V (t)

h

= lim
h→0

1

h
{〈∇V (x(t)), x(t + h) − x(t)〉 + o(‖x(t + h) − x(t)‖)}

= lim
h→0

{〈∇V (x(t)), p〉p∈coH(x(t)) + o(1)
} ≤ V̇ ∗(x(t)) ≤ 0

almost everywhere on t ∈ [0,+∞). This implies that V (x(t)) is a non-increasing
function of t ≥ 0, so that condition C2 of Theorem2.1 holds.

To prove condition C4, let us assume the contrary: let x(t), t ≥ 0 be a solution of
differential inclusion (2.10) such that V (x(t)) ≡ 0 and y(τ ) �= 0 for some τ ≥ 0.
The property V (x(t)) ≡ 0 together with condition V̇ ∗(x) ≤ 0 imply that x(t) ∈ M0
for all t ≥ 0, where

M0 = {x ∈ X | V̇ ∗(x) = 0}.

As the set M = {x | y = 0} is invariant [condition (3)], then y(t) �= 0 for all
t ≥ 0 under our assumptions. This implies that x(t) ∈ M0\M for all t ≥ 0 which
contradicts condition (4). This contradiction shows that the assumptionC4 is satisfied,
so that the equilibrium x = 0 of system (2.9) is asymptotically stable with respect
to μ(x) = ‖y‖ by Theorem2.1.

Remark 2.3 In order to formulate sufficient conditions of partial stability, it is natural
to assume that the solutions are z-extendable [5, 6], i.e. if x(t) is a solution of (2.10)
for T − < t < T + < +∞ and z(t) → ∞ as t → T + then ‖y(t)‖ → N as t → T +.
In Theorem2.2, such z-extendability assumption follows from the boundedness of
the solutions.

Remark 2.4 If the right-hand side of system (2.9) is of classC1(X), thenTheorem2.2
is equivalent to the Risito–Rumyantsev theorem [11], [5, Theorems 19.1–19.2]. Fur-
ther on, if n1 = n so that y = x and μ(x) = ‖x‖, then Theorem2.2 is reduced to
the Barbashin–Krasovskii theorem [12] on asymptotic stability of the equilibrium
x = 0.

For a given function V (x) such that V̇ (x) ≤ 0 along the trajectories of sys-
tem (2.9), the vector of variables y satisfying the property that the solution x = 0
of system (2.9) is y-asymptotically stable (in the sense of Definition2.7) may be
defined by using the method of the paper [13].

Remark 2.5 As Theorem2.2 follows from Theorem2.1, a part of its proof is actually
based on the invariance principle (Lemma2.2) with a differentiable Lyapunov func-
tion V (x). A modification of the invariance principle with a non-smooth Lyapunov
function was used for the stability analysis of differential inclusions in the paper [14].
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2.3 Stabilization of Finite-Dimensional Systems
with Respect to a Part of Variables

Let us consider a control system:

ẋ = f0(x) +
m∑

i=1

ui fi (x), x ∈ X ⊂ R
n, u = (u1, . . . , um) ∈ R

m, (2.15)

where x is the state vector and u is the control. We assume that X is a domain of
form (2.14), fi ∈ C(X) and f0(0) = 0, so that system (2.15) admits the trivial
solution x(t) ≡ 0 with u = 0.

Let us remark, that if system (2.15) has an integral then it is neither controllable
nor stabilizable. In this case, only partial stabilization may be possible (see, e.g., [6]).

The goal of this section is to develop an effective strategy for partial stabilization
of system (2.15) based on Theorem2.2.

2.3.1 Theorem on Partial Stabilization

According to notations (2.13), system (2.15) may be written as

ẏ = f01(y, z) +
m∑

i=1

ui fi1(y, z), ż = f02(y, z) +
m∑

i=1

ui fi2(y, z). (2.16)

The functions fi j (y, z) are considered in the domain X . By an admissible feedback
for system (2.16) we treat any function k(x) ∈ C(X) such that k(0) = 0. We use the
following definition.

Definition 2.8 Control system (2.16) is said to be y-stabilizable if there exists an
admissible feedback law u = k(x) such that the trivial solution of the corresponding
closed-loop system is asymptotically y-stable.

The consideration of continuous feedback laws simplifies the stability analysis
with Theorem2.2 as the sets of classical and Filippov’s solutions of the closed-loop
system coincide. However, the multivalued framework of Sect. 2.2 is important for
our study as systems with merely continuous right-hand sides may not exhibit the
uniqueness of solutions.

Let V (x) be a function of class C1(X). The time derivative of V (x) along the
trajectories of system (2.16) is:

V̇ = a(x) + 〈u, b(x)〉,
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where

a(x) = 〈∇V (x), f0(x)〉, bi (x) = 〈∇V (x), fi (x)〉, i = 1, 2, . . . , m,

b(x) = (b1(x), b2(x), . . . , bm(x)) . (2.17)

The basic result we shall prove in this section is the following.

Theorem 2.3 Let V ∈ C1(X) be a function such that V (0) = 0 and the following
conditions hold:

(1) V (x) ≥ α(‖y‖) for some α ∈ K ;
(2) the equation a(x) + 〈u0(x), b(x)〉 = 0 has a solution u0 ∈ C(X) for which the

set

M1 = {x | b(x) = 0, y �= 0}

does not contain any trajectory {x(t) | t ≥ 0} of system (2.16) with the control
u = u0(x);

(3) there exist a positive number Δ > 0 and a function h ∈ C(X), h(x) > 0 such
that each solution x(t) of system (2.16) with the initial condition ‖x(0)‖ < Δ

and the feedback control

u = u0(x) − h(x)b(x) (2.18)

has bounded coordinates z j (t), 1 ≤ j ≤ n2, for all t ≥ 0.

Then the solution x = 0 of the closed-loop system (2.16)with (2.18) is asymptotically
y-stable (i.e. system (2.16) is y-stabilizable).

Proof By substituting (2.18) into (2.16) and computing V̇ , we get

V̇ = −h ‖b(x)‖2 ≤ 0.

The time-derivative V̇ vanishes on the following set:

M = {x | b(x) = 0}.

It is easy to see that u(x) = u0(x) for each x ∈ M if the feedback is given by
formula (2.18). Therefore, condition (2) implies that the set M \{x : y = 0} does not
contain any positive semitrajectory for the closed-loop system (2.16) with (2.18).

Condition (3) together with the inequality V̇ ≤ 0 guarantees the boundedness of
the solutions starting from Δ-neighborhood of the origin.

Thus, all the conditions of Theorem2.2 hold for the closed-loop system (2.16)
with (2.18).

In the sequel, we apply Theorem2.3 for studying a couple of examples of single-
axis stabilization [15].
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2.3.2 Partial Stabilization of a Rigid Body

Consider a model that describes the rotation of a satellite around its center of mass
under the action of attitude control thrust jets (Fig. 2.1). We treat the satellite as a
rigid body rotating around its center of mass (fixed point O). Let Oe1e2e3 be a basis
associated with the rigid body, and let v be a unit vector which is fixed in the inertial
frame. The equations of motion we can be written in the Euler–Poisson form as
follows [16]:

ω̇1 = A2 − A3

A1
ω2ω3 + u1, ω̇2 = A3 − A1

A2
ω1ω3 + u2, ω̇3 = A1 − A2

A3
ω1ω2,

(2.19)

v̇1 = ω3v2 − ω2v3, v̇2 = ω1v3 − ω3v1, v̇3 = ω2v1 − ω1v2. (2.20)

Here ω = ω1e1 + ω2e2 + ω3e3 is the angular velocity vector of the rigid body,
v = v1e1 + v2e2 + v3e3, and Ai is the moment inertia of the rigid body with respect
to the axis defined by ei , i = 1, 2, 3. We also assume that the directions of ei are
principal axes of inertia of the body. The action of jet torques is described by control
parameters u1 and u2.

System (2.19) and (2.20) admits the following particular solution with u1 = 0
and u2 = 0:

ω1 = ω2 = ω3 = 0, v1 = v2 = 0, v3 = 1. (2.21)

Fig. 2.1 Satellite with
attitude control thrust jets

O

e1

e2

e3

u1

u2
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This solution corresponds to the equilibrium for which vectors e3 and v coincide. Let
us remark that solution (2.21) of system (2.19) and (2.20) cannot be made asymp-
totically stable (with respect all state variables) due to the geometric integral:

v21 + v22 + v23 = const. (2.22)

Stabilizability of the Euler equations of form (2.19) has been studied by many au-
thors (see, e.g., [16–18] and references therein). Our investigation is based on the
application of Theorem2.3 in order to stabilize solution (2.21) with respect to the
following variables:

(ω1, ω2, v1, v2). (2.23)

This choice of variables correspond to the stabilization of the third principal axis
of inertia (e3) around the fixed direction v. So, v1 and v2 and their derivatives are
required to be “small” and tending to zero as t → +∞, while the other ones are
required to be merely bounded.

We define a Lyapunov function candidate as follows:

2V = A1ω
2
1 + A2ω

2
2 + κ(v21 + v22), κ > 0.

A straightforward application of formulas (2.17) yields

a(x) = (A2 − A1)ω1ω2ω3 + κv3(ω1v2 − ω2v1),

b1(x) = A1ω1, b2(x) = A2ω2. (2.24)

A particular solution of the equation a(x) + 〈u0, b(x)〉 = 0 can be taken in the form

u0
1(x) = ω2ω3 − κ

A 1
v2v3, u0

2(x) = −ω1ω3 + κ

A 2
v1v3. (2.25)

It is easy to check that all trajectories of system (2.19) and (2.20) with control (2.25)
satisfy the condition v1 = v2 = 0 on the set

M1 : A1ω1 = A2ω2 = 0,

provided that the initial value is taken in some neighborhood of solution (2.21). This
proves that condition (2) of Theorem2.3 holds.

All solutions of system (2.19) and (2.20) are bounded with respect to vi because
of integral (2.22). So, it suffices to ensure the boundedness of the solutions with
respect to ω3. In order to prove the boundedness, we apply Theorem 39.1 from the
monograph [5] with the following function:

2W = A1ω
2
1 + A2ω

2
2 + A3ω

2
3 + κ(v21 + v22).
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The time-derivative of W (x) along the trajectories of the closed-loop system with
the feedback of form (2.18) is

Ẇ (x) = (A1 − A2)ω1ω2ω3 − h(x) (A2
1ω

2
1 + A2

2ω
2
2).

According to [5, Theorem 39.1], it is sufficient to show that

h(x) (A2
1ω

2
1 + A2

2ω
2
2) ≥ (A1 − A2)ω1ω2ω3, (h(x) > 0). (2.26)

By using the inequality

2A1A2|ω1ω2| ≤ A2
1ω

2
1 + A2

2ω
2
2,

we define h(x) in the following manner:

h(x) =
∣∣∣ A1 − A2

2A1A2
ω3

∣∣∣ + ε, (2.27)

where ε is an arbitrary positive constant. Then condition (2.26) holds.
Finally, by taking into account (2.24), (2.25), (2.27), expression (2.18) takes the

form:

u1 = ω2ω3 − κ

A1
v2v3 − { |A1 − A2|

2A2
|ω3| + εA1

}
ω1,

u2 = −ω1ω3 + κ

A2
v1v3 − { |A1 − A2|

2A1
|ω3| + εA2

}
ω2, (κ > 0, ε > 0). (2.28)

Let us remark that the feedback law (2.28) not only stabilizes the solution (2.21) of
system (2.19) and (2.20) with respect to variables (2.23), but also ensures Lyapunov
stability of the solution (2.21) due to the inequality Ẇ ≤ 0 (see Fig. 2.2).

Figure2.2 illustrates the solution of the closed-loop system (2.19), (2.20), (2.28)
for the following parameters1:

A1 = 1, A2 = 3/2, A3 = 2, κ = 1, ε = 1/10,

and initial conditions

ω(0) = 0, v1(0) = 1/
√
3, v2(0) = v3(0) = 0.

Wesee in Fig. 2.2 that the componentsω1(t),ω2(t), v1(t), and v2(t) of this solution
of the closed-loop system tend to zero for large t .We also note that the limit motion of
the satellite corresponds to uniform rotations around v with constant angular velocity
ω3 �= 0.

1 To simplify notations, we assume that all state variables and parameters are dimensionless in this
section.
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Fig. 2.2 Solution of the closed-loop system (2.19), (2.20) with control (2.28)

2.3.3 A Satellite with Moving Masses

Let us consider a system describing the rotation of a satellite with a pair of flywheels
(see Fig. 2.3):

(A1 − I1)ω̇1 = (A2 − A3)ω2ω3 + I2Ω2ω3 − u1,

(A2 − I2)ω̇2 = (A3 − A1)ω1ω3 − I1Ω1ω3 − u2,

A3ω̇3 = (A1 − A2)ω1ω2 + I1Ω1ω2 − I2Ω2ω1,

I1(Ω̇1 + ω̇1) = u1, I2(Ω̇2 + ω̇2) = u2,

v̇1 = ω3v2 − ω2v3, v̇2 = ω1v3 − ω3v1, v̇3 = ω2v1 − ω1v2. (2.29)
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Fig. 2.3 Satellite controlled
by a pair of flywheels
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As in the previous example, the dynamics of the carrier body is characterized by the
angular velocity vector ω = ω1e1 + ω2e2 + ω2e2 and coordinates of the fixed unit
vector v = v1e1 + v2e2 + v3e3 (see, e.g., [16]). We assume that the i th flywheel
rotates around the direction of ei with relative angular velocity Ωi under the action
of control torque ui , and the moment of inertia of the i th flywheels is denoted by Ii ,
i = 1, 2 [15]. The control torques u1 and u2 are implemented by electric motors.
We denote by Ai the moment of inertia of the whole system (i.e. the carrier body
and flywheels) with respect to the ei axis, i = 1, 2, 3. We assume that the motion
of flywheels does not change the mass distribution in the system, and that Ai are
principal moments of inertia.

System (2.29) admits the following equilibria for u1 = u2 = 0:

ω = 0, Ω1 = const,Ω2 = const, v1 = v2 = 0, v3 = 1. (2.30)

The equilibrium (2.30) cannot be stabilized with respect to all variables, since sys-
tem (2.29) admits the following integrals:

Φ1 = (A1ω1 + I1Ω1)
2 + (A2ω2 + I2Ω2)

2 + (A3ω3)
2 = const;

Φ2 = (A1ω1 + I1Ω1)v1 + (A2ω2 + I2Ω2)v2 + A3ω3v3 = const;
Φ3 = v21 + v22 + v23 = const.
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In order to stabilize solution (2.30) of system (2.29) with respect to variables
y = (ω1, ω2, v1, v2), we apply Theorem2.3 with the following Lyapunov function:

2V (x) = (A1 − I1)ω
2
1 + (A2 − I2)ω

2
2 + κ(v21 + v22), κ > 0.

Then

a(x) = (A2 − A1)ω1ω2ω3 + (I2Ω2ω1 − I1Ω1ω2)ω3 + κv3(ω1v2 − ω2v1),

b1(x) = −ω1, b2(x) = −ω2.

The functionu0(x) fromcondition (2) of Theorem2.3 is a solution of the following
algebraic equation:

{
(A2ω2 + I2Ω2)ω3 + κv2v3 − u0

1

}
ω1 − {

(A1ω1 + I1Ω1)ω3 + κv1v3 + u0
2

}
ω2 = 0.

To satisfy this equation, we assume

u0
1 = κv2v3 + (A2ω2 + I2Ω2)ω3, u0

2 = −κv1v3 − (A1ω1 + I1Ω1)ω3. (2.31)

It can be seen that the set

M1 = {(ω1, ω2, ω3,Ω1,Ω2, v1, v2, v3) | ω1 = ω2 = 0, v21 + v22 �= 0}

does not contain any positive semi-trajectory of system (2.29) with the feedback law
u = u0(x) in a neighborhood of (2.30).

Let us assume h(x) = ε = const and show that the feedback law

u1 = κv2v3 + (A2ω2 + I2Ω2)ω3 + εω1,

u2 = −κv1v3 − (A1ω1 + I1Ω1)ω3 + εω2. (2.32)

satisfied condition (3) of Theorem2.3 for anyκ > 0 and ε > 0. Indeed, the bounded-
ness of the solutionswith respect to variables (ω3,Ω1,Ω2, v3) follows from integrals
Φ1 and Φ3 of system (2.29).

Thus, the solution (2.30) of system (2.29) is stabilizable with respect to vari-
ables (2.23) by means of the feedback law (2.32) by Theorem2.3.

In order to illustrate the proposed stabilization scheme, we perform a numerical
integration of the closed-loop system (2.29), (2.32) with the following parameters:

A1 = 2, A2 = 3, A3 = 4, I1 = I2 = 1, ε = 1/10, κ = 1.

Time-plots of the solution of the closed loop-system are shown in Figs. 2.4 and 2.5
for the initial conditions

ω(0) = 0, Ω1(0) = Ω2(0) = 0, v1(0) = v3(0) = 0, v2(0) = −1.
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Fig. 2.4 Solution components of the closed-loop system (2.29) with control (2.32)

Ωi(t)

t

Fig. 2.5 Time plots of Ω1(t) and Ω2(2)

Figures2.4 and 2.5 confirm that the feedback law (2.32) stabilizes the system with
respect to variables (2.23). We also observe that the limit position of the carrier body
approximately corresponds to its equilibriumwith e3 = v, and the flywheels perform
rotations with decaying angular velocities Ω1(t) and Ω2(t).
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2.4 Partial Asymptotic Stability of Nonlinear Semigroups

In Sect. 2.1, we have obtained a general result on partial asymptotic stability without
assuming the uniqueness of solutions as well as the differentiability of a Lya-
punov functional. To derive more convenient stability conditions for the analysis of
distributed parameter systems, let us consider a class of dynamical systems governed
by differential equations in a Banach space.

Let E be a Banach space with the norm ‖ · ‖, and let X be its closed subset
containing some ball BR = {x ∈ E | ‖x‖ ≤ R} of radius R > 0. Then X is a metric
space with respect to the distance ρ(a, b) = ‖a −b‖. Let F be a (nonlinear) operator
from D(F) ⊂ X into E , F is supposed to be closed and densely defined on X . Given
x0 ∈ X consider the abstract Cauchy problem (cf. [19, Chap.4], [20, Sect. 5.2]) for
F with initial data x0:

dx(t)

dt
= Fx(t), t ∈ R

+, x(0) = x0. (2.33)

We assume that the operator F generates a nonlinear continuous semigroup on X in
the sense of Definition1.9.

As F is the infinitesimal generator of a continuous semigroup {S(t)}, the Cauchy
problem (2.33) is well-posed, and any mild solution of (2.33) is given by

x(t) = S(t)x0, t ∈ R
+, x0 ∈ X.

In that case, at each x0 we may associate the singleton π(x0) = {S(·)x0}. It is easy
to check that the above defined π : X → 2κ is a multivalued D-system in the sense
of Definition2.1. (Assumption A5 is satisfied by uniqueness of the solutions and A4
is a consequence of continuity of the map (t, x) �→ S(t)x .)

Let V : E → R be a differentiable functional, then V (S(t)x0) is differentiable
along any classical solution of (2.33). The time-derivative of V along the trajectories
of (2.33) at x ∈ X is defined as

V̇ (x) = lim
t→+0

V (S(t)x) − V (x)

t
.

The above expression can also be written in the terms of vector fields for x ∈ D(F) :

V̇ (x) = (DV (x), Fx), (2.34)

where (·, ·) : E∗ × E → R is the duality pairing of E and E∗, i.e. (DV (x), ξ) is
the value of a linear functional DV (x) ∈ E∗ at ξ ∈ E . When E is a Hilbert space,
(2.34) takes the form

V̇ (x0) = 〈∇V (x), Fx〉.

Here 〈·, ·〉 is the scalar product in E , ∇ denotes the gradient.
As a consequence of Theorem2.1 and the regularity of V , we have

http://dx.doi.org/10.1007/978-3-319-11532-0_1
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Theorem 2.4 Let F be the infinitesimal generator of a nonlinear continuous semi-
group {S(t)} on X, F(0) = 0, and let μ : X → R

+ be a continuous functional.
Assume that there exists a differentiable functional V : E → R satisfying the fol-
lowing conditions.

(i) There exist α1(·), α2(·) ∈ K such that

α1(μ(x)) ≤ V (x) ≤ α2(‖x‖) for all x ∈ X.

(ii) V̇ (x) ≤ 0, for all x ∈ D(F).
(iii) There exists Δ > 0 such that ⋃

t≥0

{S(t)x0}

is precompact in X provided that ‖x0‖ < Δ.
(iv) Kerμ = {x ∈ X | μ(x) = 0} is invariant for (2.33), i.e. μ(S(τ )x0) = 0 and

τ ≥ 0 imply μ(S(t)x0) = 0 for all t ∈ R
+.

(v) The set

M = {x ∈ D(F) | V̇ (x) = 0} \ Kerμ

does not contain any semitrajectory of (2.33) defined for t ∈ R
+.

Then the equilibrium x0 = 0 of (2.33) is asymptotically stable with respect to μ.

Proof As F(0) = 0, the solution x(t) ≡ 0 is an equilibrium of the multivalued
D-system defined by x0 ∈ X �→ π(x0) = {S(·)x0}. It is easy to see that (i) and (iii)
imply C1 and C3 in conditions of Theorem2.1.

Let us prove that condition (ii) implies that V (x(t)) is non-increasing on any
mild solution of (2.33) with x0 ∈ X , t ∈ R

+. If x0 ∈ D(F) then x(t) = S(t)x0

is a classical solution, and V̇ (x(t)) given by formula (2.34) exists for all t ≥ 0.
As V (x(t)) is continuous and V̇ (x(t)) ≤ 0 on R

+, the function V (x(t)) is non-
increasing on R

+. For arbitrary x0 ∈ X \ D(F) and T > 0, the mild solution S(t)x0

(0 ≤ t ≤ T ) can be approximated by classical ones in the L∞ ([0, T ]; E) norm (it
is a consequence of assumption A4). Therefore, as V is non-increasing along any
classical solution and V is continuous, V (S(t)x0) is non-increasing on R

+ for each
x0 ∈ X .

To finish the proof, let us show that C4 holds under our assumptions. If p ∈ M1
in (2.5) then d

dt V (S(t)p) = 0 for all t ∈ R
+. Therefore,

M1 ⊂ M0 = {x ∈ D(F) | V̇ (x) = 0}.

(The closure in M0 is taken because (2.34) defines V̇ on D(F) only, but F is densely
defined.) On the other hand, as M1 is semi-invariant,

M1 ⊂ {x ∈ M0 | S(t)x ∈ M0 for all t ∈ R
+}. (2.35)
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Suppose that x be an element of the right-hand side of (2.35). The kernel invari-
ance (iv) implies either S(t)x ∈ Kerμ or S(t)x /∈ Kerμ for all t ∈ R

+. But the
last case is impossible because of (v). Therefore, any x ∈ M1 belongs to Kerμ that
proves C4. �
Remark 2.6 The above theorem can be applied for studying strong asymptotic
stability when μ(x) = ‖x‖. If F is linear then Definition1.9 is equivalent to
that of C0-semigroups of linear bounded operators. Therefore, the assumption of
Theorem2.4 regarding the semigroup {S(t)} can be checked via the Hille–Yosida or
the Lumer–Phillips theorems for linear operators F (cf. [19, Chap. 1]). In more gen-
eral case, there is a close relationship between quasicontractive semigroups (which
are jointly continuous) and ω-accretive operators F [21]. If ω = 0 then the generator
of {S(t)} is dissipative (cf. [22, Sect. 2.9]). The compactness assumption (iii) can be
checked by the method of [23] for a class of monotone operators. We extend this
approach for the case of bounded perturbations of C0-semigroups in the next section.

2.5 Relative Compactness of Trajectories in a Banach Space

In order to apply Theorem2.4, it is necessary to check the relative compactness of
trajectories for a differential equation in a Banach space. One could observe that the
accretivity condition (monotonicity), which is a crucial assumption of the paper [23],
is violated for some important classes of flexible systems. In particular, the infini-
tesimal generator of the nonlinear system considered in [24] is not monotone. This
fact stimulates the development of new tools for the analysis of the compactness for
trajectories of distributed parameter systems. This section provides some compact-
ness results based on a priori estimates of perturbations for a differential equation in
a Banach space.

Let E be a real Banach space, and let A : D(A) → E be a closed linear operator
with the domain of definition of D(A) ⊂ E . Consider the abstract Cauchy problem
for t ∈ [0,+∞):

ẋ(t) = Ax(t), x(0) = x0 ∈ E . (2.36)

We assume that the domain D(A) is dense in E , and that A is the infinitesimal
generator of a C0-semigroup of linear operators {et A}t≥0 in E . So, the Cauchy prob-
lem (2.36) is well posed for t ∈ [0,+∞), and its mild solution can be represented
in the form

x(t) = et Ax0, t ≥ 0. (2.37)

In order to study a wider class of equations (including the one with non-monotone
operators), we introduce the perturbed Cauchy problem for t ≥ 0 as follows:

ẋ = Ax + f (t)R(x, t), x(0) = x0 ∈ E, (2.38)

where f : [0,+∞) → R and R : E × [0,+∞) → E are continuous mappings.

http://dx.doi.org/10.1007/978-3-319-11532-0_1


34 2 Partial Asymptotic Stability

We prove that the compactness property is preserved by passing from Eqs. (2.36)–
(2.38) under some additional assumptions on the function f and themapping R. This
resultwill be applied to derive sufficient conditions for the compactness of trajectories
of an autonomous differential equation in a Banach space.

2.5.1 Compactness Lemmas

Assume that the Banach space E has a basis {ei } (i = 1, 2, . . .). We denote by
{ f j } ⊂ E∗ ( j = 1, 2, . . .) the conjugate system of bounded linear functionals, i.e.
f j (ei ) = δi j , where δi j is the Kronecker delta. Then, for each x ∈ E , n ∈ N, we
define the linear projection operators:

Sn(x) =
n∑

i=1

fi (x)ei , Pn(x) = x − Sn(x).

As {ei } is a basis then the operators Sn : E → E are uniformly bounded:

‖Sn‖ ≤ M < ∞, n = 1, 2, . . .

To describe the compact subsets of E , we formulate two auxiliary results.

Lemma 2.4 Let {ei } be a basis of E. A bounded subset C ⊂ E is relatively compact
in E iff

lim
n→∞ sup

x∈C
‖Pn x‖ = 0. (2.39)

Proof If C is precompact then the Hausdorff compactness criterion implies that, for
any ε > 0, there exists a finite ε

2M -net {x ( j)}, j = 1, 2, . . . , m(ε) [25]. It means that,
for each x ∈ C , there is a j ≤ m(ε) such that ‖x − x ( j)‖ < ε

2M , i.e.

‖Pn x‖ = ‖Pn(x−x ( j))+Pn x ( j)‖ ≤ ‖Pn‖ ε

2M
+‖Pn x ( j)‖ <

ε

2
+‖Pn x ( j)‖. (2.40)

We now show that, for sufficiently large n, the inequality ‖Pn x ( j)‖ < ε
2 holds for

each j = 1, 2, . . . , m(ε). In fact, since {ei } is a basis, each element of the net is
represented by a convergent series:

x ( j) =
∞∑

i=1

c( j)
i ei . (2.41)

According to the definition of Pn ,
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‖Pn x ( j)‖ = ‖
∞∑

i=n+1

c( j)
i ei‖.

The last expression does not exceed ε
2 , starting with some index n = n(ε), since the

series in (2.41) is convergent in the norm of E . Thus, (2.40) implies ‖Pn x‖ < ε for
n ≥ n(ε), which proves (2.39).

Conversely, if the set C is bounded, then all finite-dimensional projection

Cn = {Sn x | x ∈ C}, n = 1, 2, . . .

are precompact. Relation (2.39) implies that, for each ε > 0, any finite ε-net of the
set Cn can be used to cover C for sufficiently large n.

We will call a C0-semigroup of linear operators {et A}t≥0 in E uniformly bounded
if [19]:

‖et A‖ ≤ N , ∀t ≥ 0,

with some constant N < ∞.

Lemma 2.5 Assume that {ei } is a basis in E, C is a compact subset of E, and
{et A}t≥0 is a uniformly bounded C0-semigroup of linear operators in E, for which
the trajectory γ (x0) = {et Ax0 | t ≥ 0} is precompact for any x0 ∈ C. Then

lim
n→∞

(
sup

t≥0,x∈C
‖Pnet Ax‖

)
= 0. (2.42)

Proof According to Lemma2.4, to prove (2.42) is suffices to establish that the set

K = {et A | x ∈ C, t ≥ 0}.

is precompact. Let {yn} be a sequence of elements of K , i.e. yn = etn Axn for some
{tn} ⊂ [0,+∞), {xn} ⊂ C , n = 1, 2, . . . The compactness of C implies the ex-
istence of a convergent subsequence xn(k) → x∗ ∈ C as k → ∞. As γ (x∗) is
precompact then there exists a convergent subsequence etn(k(m)) Ax∗ → y∗ ∈ E as
m → ∞. By using the uniformly bounded semigroup {et A}t≥0, we conclude that
etn(k(m)) Axn(k(m)) → y∗ as m → ∞.

2.5.2 Trajectories of the Perturbed System

Let us recall that a mild solution of the inhomogeneous problem (2.38) on 0 ≤
t < T ≤ +∞ is a continuous function x : [0, T ) → E that satisfies the integral
equation [19]:
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x(t) = et Ax0 +
t∫

0

e(t−s)A f (s)R(x(s), s) ds. (2.43)

The integral in formula (2.43) in treated the sense of Bochner. We formulate the
following sufficient condition for the precompactness of trajectories to the perturbed
differential equation.

Theorem 2.5 Let E be a Banach space with a basis, A be the infinitesimal gen-
erator of a uniformly bounded C0-semigroup of linear operators {et A}t≥0 in E,
f ∈ L1[0,+∞), R(x, t) ∈ K for all x ∈ E, t ≥ 0, and K is a compact set. Assume
that the set {et A y | t ≥ 0} is precompact for all y ∈ K ∪ {x0}.

Then each mild trajectory {x(t) | t ≥ 0} of (2.38) is contained in a compact
subset of E.

Proof Let x(t) be a mild solution of (2.38) on the semi-interval t ≥ 0. Then the
integral equation (2.43) implies the compactness of {et Ax0 | t ≥ 0}, and condition
f ∈ L1[0,+∞) together with R ∈ K provides the boundedness of x(t). According
to Lemma2.4, to prove the precompactness of {x(t) | t ≥ 0} is suffices to choose a
basis {ei } in E and establish the existence of the limit

lim
n→∞ sup

t≥0
‖Pn x(t)‖ = 0.

Applying the projection operator to (2.43), we get

‖Pn x(t)‖ ≤ ‖Pnet Ax0‖ +
∥∥∥∥∥∥

t∫
0

f (s)Pn

(
e(t−s)A R(x(s), s)

)
ds

∥∥∥∥∥∥
≤ ‖Pnet Ax0‖ + ‖ f ‖L1 · sup

s∈[0,t],y∈K
‖Pnes A y‖.

The proof is completed by applying Lemmas2.4 and 2.5.

A certain class of autonomous differential equations with nonlinear infinitesimal
generators can be transformed to the form (2.38) with an appropriate assumption on
the function f (t). We state the main result in this direction for the following abstract
Cauchy problem:

ẋ(t) = Ax(t) + h(x(t))B(x(t)), x(0) = x0 ∈ E, (2.44)

where h : E → R and B : E → E are locally Lipschitz mappings. Recall that the
mappings h(x) and B(x) are called locally Lipschitz if, for every r ≥ 0, there exists
a constant L(r) such that

|h(x) − h(y)| ≤ L(r)‖x − y‖, ‖B(x) − B(y)‖ ≤ L(r)‖x − y‖
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for all ‖x‖ ≤ r , ‖y‖ ≤ r . If w : E → R is a Fréchet differentiable functional, then
the function of time w(x(t)) is differentiable along each classical solution x(t) to the
problem (2.44). Then, for any x ∈ D(A) ⊂ E , the time-derivative of w along the
trajectories of (2.44) can be written as

ẇ(x) = (Ax + B(x)h(x),∇x w),

where (·, ·) : E × E∗ → R is the duality pairing of E and E∗, i.e. (ξ,∇x w) is the
value of the linear functional ∇x w ∈ E∗ at ξ ∈ E .

Theorem 2.6 Assume that E is a Banach space with a basis, A is the infinitesimal
generator of a uniformly bounded C0-semigroup of linear operators {et A}t≥0 in E,
the set {et A y | t ≥ 0} is precompact for all y ∈ E, and B : E → E is a compact
operator. Assume, moreover, that w : E → R is a Fréchet differentiable functional
that satisfies the following conditions:

(1) the set Mc = {x | w(x) ≤ c} is bounded for each c ∈ R;
(2) inf‖x‖≤r w(x) > −∞ for all r > 0;
(3) there exists a constant k1 > 0 such that

ẇ(x) ≤ k1h(x) ≤ 0, ∀x ∈ D(A).

Then, for each x0 ∈ E, the Cauchy problem (2.44) has the unique solution x(t) on
[0,+∞), and {x(t) | t ≥ 0} is precompact in E.

Proof According to Theorem1.4 [19], for each x0 ∈ E , there exists a unique max-
imal mild solution x(t) of the problem (2.44), t ∈ [0, tmax ). Conditions (1) and (3)
imply that x(t) is bounded, hence, tmax = +∞. Let us consider equation (2.38)
with R(x, t) = B(x) and f (t) = h(x(t)). Then conditions (2) and (3) yield the
property f ∈ L1[0,+∞). Thus, the trajectory {x(t) | t ≥ 0} is precompact in E by
Theorem2.5.

Note that, since the set Mc is forward invariant under the condition ẇ(x) ≤ 0,
then Theorem2.6 admits a local formulation on the subset of E located between level
surfaces of the functional w.
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