Chapter 2
Partial Asymptotic Stability

Abstract A class of abstract dynamical systems with multivalued flows of
solutions in a metric space is introduced in this chapter. For this class of systems,
the property of partial asymptotic stability with respect to a continuous functional is
studied. In order to characterize the limit set of a trajectory of a multivalued system,
a modification of the invariance principle is proposed. This result is applied to derive
sufficient conditions for partial asymptotic stability of an equilibrium by using a
continuous Lyapunov functional. Such conditions are also formulated for particular
classes of systems governed by differential inclusions, ordinary differential equa-
tions, and nonlinear semigroups in a Banach space. For further applications of these
results to the partial stability analysis of nonlinear abstract differential equations,
conditions for the relative compactness of trajectories are derived by considering
nonlinear perturbations of dissipative operators. The partial stabilization problem is
studied by using differentiable Lyapunov functions for control affine systems in a
finite-dimensional space. This treatment is illustrated by examples of the attitude
stabilization of a satellite controlled by thrust jets or flywheels.

2.1 Partial Stability of Multivalued Dynamical Systems

Let X be a metric space endowed with the distance p : X x X — RY,
R* = [0, +00). The evolution of abstract dynamical processes on X will be de-
scribed by functions x(¢) € X defined for + € R™. We denote by « the set of all
functions

x:RT > X,

the set of all subsets of « is denoted by 2. To introduce the notion of a multivalued
dynamical system, we associate a set 7 (x%) C k witheachx® € X .

Definition 2.1 [1] A map & : X — 2 is called a multivalued D-system on X if:

(Ap) w(x%) # @ forall x° € X;
(A2) x(0) = x° for each x(-) € w(xY);
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14 2 Partial Asymptotic Stability

(A3) foranyx? € X,s e RT,x(-) € w(x°), and z(-) € m(x(s)), the following con-
ditions are satisfied: u(-) € mw(x(s)) and v(-) € w(x?), where u(r) = x(t + s)
and

(1) = [x(t), t<s,

z(t —s), t > 5;

(A4) given NMeX,e>0,and T > 0, there is a 6(x0, e, T) > 0 such that

p(E%x% <8, i) en@® = inf sup p(X(1), x(1)) | < e;
x(Der(x%) \ tef0,T]

(As) for any e X, T>0anda sequence {xn(-)}fl":1 c 7w (x9), there exists an
x(+) € m(x°) such that

lim inf( sup p(x, (1), x(t))) =0.

=00 \ rel0,T]

We will refer to an element x(¢) of m(x°) as to a solution of the initial value
problem x(0) = x° for m. When considering an autonomous system of differential
equations, the above 7 (x”) represents the set of all solutions for the Cauchy problem
on R*. Assumptions A and A, state the global existence property, while A3 means
that the translation of a solution is a solution. Conditions in A4 and As provide extra
regularity properties without assuming the uniqueness of solutions.

Definition 2.2 Let x(-) € m(x?). An element ¢ € X is said to be a (positive) limit
point of x if there is a sequence f, — +oo such that x(#,) — g as n — oo. The set
of all such limit points is denoted by £2(x) and called the (positive) limit set of x.

Definition 2.3 A set F C X is said to be semi-invariant for w if, for every x° € F,
there exists at least one x(-) € m(x?) such that x(r) € F forall t € RY.

Definition 2.4 We say that x(-) € 7 (x0) is precompact if U,Zo{x (t)} is contained
in a (sequentially) compact subset of X.

An important property of the limit sets of the autonomous differential equations
is that they are invariant (cf. [2, App. III]). The following lemma extends this well-
known result for the class of multivalued D-systems on a metric space.

Lemma 2.1 Let w be a multivalued D-system and let x(-) € m(x°). If the trajectory
X is precompact then $2(x) is nonempty and semi-invariant.

Proof The precompactness of {x(f)|t+ > 0} implies that, for any sequence
t, — o0, the sequence {x(tn)};;o:1 has a limit point, therefore, £2(x) # @.

Let us show that, for each ' > 0 and x;j € £2(x), there is a function £(-) € 7 (x})
satisfying the condition £(¢) € §2(x) for all r+ € [0, T]. Since x(’)" € £2(x), there
exists a sequence t, — 400 such that x(#,) — x; as n — oo. Define the sequence
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{pn (DI, C ki Ppu(t) = x(ty + 1), t € RT. Then ¢,(-) € m(x(t,)) because
of Asz. Let {d)n(k)(-)},fil be a subsequence of {q&n(-)}flo:1 satisfying the condition
P(@nx)(0), x5) < 8k, where the numbers 8, = 8(xg, 1/k, T) > 0 are chosen as in
Ay. By assumption A4, there is a sequence {¥,(-)}72, C m(x{) such that

1
sup  p(nr) (1), ¥ (1)) < o k=1,2,... 2.1)
1€[0,T]

Then As implies that there exist §(-) € 7 (xy) and a subsequence {¥ ) ()}o_;:

lim { sup p(¥i(,5(0) )=0.
”Hoo(ze[o,r] km) )

The above formula together with (2.1) imply

lim ( SupT]P(¢n(k(m))’ f(f))) =0.

m—00\ ¢/0,

Since each ¢, (-) is the translation of x(-), each value of £(r) (0 <t < T) belongs
to £2(x).

To conclude the proof, we apply the above construction infinitely many times at the
points x;" =& _1(T), where &y(-) = &(-). As aresult, we get the system of functions
() € m(&_1(T)) such that &(t) € 2(x) forallt € [0,T],i = 1,2,... Then
A3 implies that the function x*(¢) = &,,7({t/T}T) is an element of m (x§), where
[t/T] and {t/T} denote the integer and the fractional parts of 7/ T, respectively.
Moreover, x*(¢) € 2(x) forall t € RT. ]

The limit sets of a dynamical system can be characterized in the terms of a Lya-
punov function. A powerful machinery in this area is given by the invariance principle
that is valid for the abstract systems on a Fréchet space [3]. We prove here a similar
proposition for the D-systems in the sense of Definition2.1.

Lemma 2.2 Let w be a multivalued D-system, x(-) € 7 (xY). Suppose that there
exists a continuous map 'V : X — R such that &y € X and £(-) € n (&) imply
V(&(1)) is non-increasing on RY. If x () is precompact, then

Q) C{peX|V(E®F) =c for some £(-) € m(p), t € RT} 2.2)

for some constant c.

Proof Precompactness of Utzo{x(t)} and continuity of V imply that £2(x) # @ and
V (x(1)) is bounded on RT. Since V (x(¢)) is non-increasing, there exists the limit

lim V(x(1) = ¢ # —o0.
t—+00
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As V is continuous, V (x*) = ¢ for any x* € £2(x). It means that £2(x) is a subset of
{p € X|V(p) = c}. But as £2(x) is semi-invariant (Lemma?2.1), for any p € £2(x)
there should be a £(-) € w(p) such that £(¢) € £2(x). It implies V (&(¢)) = c for all
t e R, O

Our goal is to apply the invariance principle for the analysis of partial asymptotic
stability in abstract spaces. To introduce this notion, let us call x* € X an equilibrium
of m if the function x(¢) = x0 belongs to 7 (xY).

Definition 2.5 Let & be a multivalued D-system on X, and let u© : X — R7T. The
equilibrium x© of 7 is said to be asymptotically stable with respect to p if

(i) Givene > 0 there exists 8(e) > 0 such that p(°, x°) < & implies u(3(1)) < €
for all ¥(-) € w(¥°) and all r € RT.
(ii) There existsa A > 0 such that p(i°, x%) < A implies

Aim p (X)) = 0. (2.3)

Remark 2.1 The notion of stability with respect to two metrics was introduced by
Mov¢an in the paper [4]. Our approach differs from Movcan’s work as we consider
the partial stability for multivalued processes here.

To formulate stability results, we introduce the standard class .~ of comparison
functions that consists of all continuous strictly increasing functions o : Rt — RT
such that «(0) = 0. Then we prove the following theorem on sufficient conditions
of partial asymptotic stability in terms of a continuous Lyapunov functional V on X.

Theorem 2.1 Let m be a multivalued D-system on a metric space X, and let x° be its
equilibrium. Assume that there is a pair of continuous functionals u, V : X — RT
satisfying the following conditions.

Cy. There exist ai(-), ar(-) € # such that
a(nx)) < Vx) < az(p(xo,x)) for all x € X. 2.4)

Cy. Forany 30 € X, %(-) € m(x°), the function V (X (1)) is non-increasing on R*.

Cs. There exists a A > 0 such that p(i°, x°) < A and ¥(-) € (") imply
precompactness of X (-).

Cy4. The set

M, = {p € X| V(X(t)) is constant on R™
for some x(-) € m(p)} (2.5)
is contained in

Keru = {p € X| u(p) = 0}.

0

Then the equilibrium x" is asymptotically stable with respect to L.
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Proof First we prove the property (i) from Definition2.5 by generalizing Rumyant-
sev’s theorem [5, Theorem 5.1], [6] on partial stability with respect to a part of the
variables. Then we apply Lemma 2.2 to show the property (ii).

Condition C, implies V (X (1)) < V(%) forall i € X,%(-) € n(¥°),andr € R*.
By combining this inequality with (2.4), we get

nGE®) = ™" (a2 (0 (¥0.5°))). (2.6)

where the function oy ! (7) exists and increases at least for small enough 7 > 0,
since a(-) € . Therefore, the function

y(©®) =17 (@28)
is continuous, nonnegative, and strictly increasing on some interval [0, §%),0 < §* <
+oo0. It means that for arbitrary & > 0 there exists § € (0, §*) such that y(§) < e.
Hence, if p(3°, x°) < & then (2.6) implies
pGE®) <y G, x%)
forall ¥(-) € w (%) and all t € R™.

To conclude the proof, it suffices to establish the limit existence for (2.3). Let A
be chosen as in C3, and let p()EO, xo) < A. Therefore, for any x(-) € 79, the set
£2(x) # @ is included in (2.5) because of Lemma?2.2. Condition C4 implies

£2(x) C Ker pu. 2.7

To show (2.3), let us assume the contrary: there are some € > 0 and f,, — 400 as
n — oo such that

() >e, n=172,... (2.8)

Since X(-) is precompact, there exists a subsequence {,,x)}7=; such that X (t,x)) —
x* € £2(X) as k — 00. By (2.7), u(x*) = 0. Continuity of u implies

| (F (tn k) — (x| = w(X(tawy))) — 0, ask — oo.

But the above contradicts to (2.8). Therefore,
lim wux@) =0
t—+00

for all #(-) € m(¥°) provided that p(i°, x°) < A. O



18 2 Partial Asymptotic Stability

2.2 Application to Differential Inclusions and Ordinary
Differential Equations

An important application of the concept of partial stability for systems with multi-
valued flow comes from differential inclusions and Filippov’s approach to ordinary
differential equations with discontinuous right-hand sides.

2.2.1 Differential Equations with Discontinuous Right-Hand Sides

Consider a system of ordinary differential equations
()= f(x(), x(t)eX R, (2.9)

where the function f : X — R” is assumed to be bounded on each compact subset D
of domain X. In the sequel, we assume that 0 € X and f(0) = 0, so that system (2.9)
admits the trivial solution x () = 0.

Itis a well-known fact [ 7] that classical solutions of system (2.9) may not exist if f
is a discontinuous function. To ensure the existence and extendability of solutions to
system (2.9), one should use a generalized notion of solutions which is applicable for
differential equations with discontinuous right-hand sides. We use here the following
definition of solutions due to Filippov.

Definition 2.6 A solution of system (2.9) is an absolutely continuous function x (¢) €
X, defined for —oo < T~ <t < TT < +00, that satisfies the following differential
inclusion

X(t) € coH(x(1)), (2.10)

almost everywhere ont € (T, TT). For each x € X, the set H(x) C R” contains
f(x) and the set of all limit points of f(y) as y — x. Here co H(x) is the convex
hull of H (x).

Definition2.6 corresponds to the simplest convex definition according to
[7, Sect. 4] (see also Proposition 1 in [8, Chap.2]). It is obvious that each clas-
sical solution of (2.9) is also a solution in the sense of Filippov. Definition2.6 is
equivalent to the classical definition of solutions if the function f : X — R" is
continuous.

For a given x° € X, a solution x(r) to the Cauchy problem for differential inclu-
sion (2.10) with initial data

x(0)=x"eXx 2.11)

may not be unique. For further analysis, we will make an extra assumption.

Assumption 2.1 If x(7) is a solution of differential inclusion (2.10) on ¢ € I then
either I D [0, +00) or x(#) may be extended to some interval t € I D [0, +00).
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Under this assumption, we introduce the following set-valued map on X:

20 n(xo) = {x(-) | x(¢) is a solution to the Cauchy problem (2.10), (2.11) on ¢ > 0}.

(2.12)
By exploiting regularity results from [7], we show that the above defined map = is
a multivalued D-system.

Lemma 2.3 Let the Assumption2.1 be satisfied. Then the set-valued map x°
7 (xY), given by (2.12), is a multivalued D-system on X in the sense of Definition?2.1.

Proof As the function f (x) is bounded on each compact subset of X, the set-valued
function F(x) = co H(x), introduced in Definition 2.6, is upper semicontinuous by
Lemma 1 of [7, Sect. 6]. Hence, F(x) satisfies the basic conditions of [7, Sect. 7],
i.e. the set F'(x) is nonempty, bounded, and closed for all x € X, and F'(x) is upper
semicontinuous in x. Then, for each x € X, there is a solution x(¢), t € [0, TT)
of the Cauchy problem (2.10), (2.11) according to Theorem 1 of [7, Sect. 7], and
T+ = 400 by Assumption2.1. This implies that the set-valued map  (x”), defined
by (2.12), satisfies conditions (A1) and (A>) of Definition2.1. Condition (A3) also
holds as f(x) and F'(x) do not depend on ¢. Condition (A4) is a consequence of The-
orem 1 from [7, Sect. 8] on the dependence of solutions on the initial data. Condition
(As) follows from the fact that the limit of a uniformly convergent sequence of solu-
tions {x,(¢)} of differential inclusion (2.10) is a solution of (2.10) (see Corollary 1
of [7, Sect. 7]). Thus, all the conditions (A1)—(As) of Definition 2.1 are satisfied, and
the set-valued map 7 (x?), introduced in (2.12), is a multivalued D-system on X in
the sense of Definition2.1.

To present a finite-dimensional version of Theorem 2.1, we write the state vector
x of system (2.9) as

x=(y1,-~,yn17117--',zn2), y=(y1,~-7Yn1) eRnla Z2(117"'92}12) ERn2’
ni +ny =n. (2.13)

We also assume that X is a domain of form
X={xeR"zeR", |yl <N} (2.14)

where || - || is the standard Euclidean norm of a vector and N is a positive constant.
For a Filippov solution x (¢) of system (2.9), we will refer to its y- and z-components
as y(t) and z(t), respectively.

Let us recall the following definition of asymptotic stability with respect to a part
of variables in the sense of Lyapunov [9] and Rumyantsev [5].

Definition 2.7 [5, 6] The solution x = 0 of system (2.9) is asymptotically y-stable
if, for any & > 0, there exists a § > 0 such that any solution x(¢) of (2.9) with
lx(0)|| < & is defined on RY, ||y(t)|| < & forallt > 0, and ||y(s)|| — O as
t — +o00.
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If we treat solutions of system (2.9) in the sense of A.F. Filippov, then it is easy
to see that Definition2.7 is equivalent to Definition2.5 with

wx) =1yl
provided that the set-valued map x° € X > m(x?) is defined by (2.12).

Remark 2.2 The concepts of weak and strong stability of solutions are usually ad-
dressed in the theory of differential inclusions [10]. Definition2.7 is related to the
strong partial stability, so that ||y(¢#)|| < e and y(t) — O for each solution x(t)
whenever || x(0)| < §.

For a differentiable function V (x) in X, its upper time derivative along the tra-
jectories of differential inclusion (2.10) is

V¥x)= sup (VV(x),p),
peco H(x)

where VV (x) is the gradient of V (x) and (-, -) is the scalar product in R".
As a corollary of Theorem 2.1, we obtain the following result.

Theorem 2.2 Assume that, for some A > 0, each Filippov solution x(r) of sys-
tem (2.9) is bounded for t > 0 provided that |x(0)|| < A. Let V. € C'(X) be a
function such that V(0) = 0 and the following conditions hold:

(1) V(x) = a(lyl) for some o € H';

(2) V*(x) <Oforallx € X;

(3) the set M = {x | y = 0} is invariant for (2.10) with t > 0O;

(4) the set {x|V*(x) = ON\M does not contain any weakly invariant subset
for (2.10) with t > 0.

Then the solution x = 0 of system (2.9) is asymptotically y-stable.

Proof Let x(t), t € I be a Filippov solution of (2.9) with [|x(0)|] < A. Without
loss of generality we assume that I O [0, +00), otherwise, as each solution is
bounded, x(f) may be extended to some interval I> [0, +00) by Theorem 2 of
[7, Sect. 7]. Thus, the Filippov solutions of system (2.9) correspond to a multivalued
D-system x* — m(x%) on X by Lemma2.3. The boundedness of the solutions
implies that condition C3 of Theorem?2.1 holds as each bounded subset of a finite
dimensional space is precompact. Let us show that condition C; of Theorem2.1
holds with «; = @ € £ given in condition (1) and

az(p) = sup  V(x).

Ixli<p, xeX
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The above defined «; is a function of class % because V(0) = 0 and V(x) is
continuous. If x(¢) is a solution of differential inclusion (2.10) then

V(x(t+h)— V()
h

1
= lim i {(VV(x @), x(t + 1) —x(®)) + o(lx( + k) —x(@®) D}

= lim [{(VV(x(1), P)pecorixy +0(1D)} < VF(x (1)) <0

d .
EV(X(I)) = f}lg})

almost everywhere on ¢ € [0, +00). This implies that V (x(#)) is a non-increasing
function of + > 0, so that condition C; of Theorem 2.1 holds.

To prove condition C4, let us assume the contrary: let x(¢), ¢ > 0 be a solution of
differential inclusion (2.10) such that V(x(¢)) = 0 and y(t) # 0 for some t > 0.
The property V (x(¢)) = 0 together with condition V*(x) <0 imply that x (1) € My
for all + > 0, where

Mo={x e X|V*x)=0}.

As the set M = {x| y = 0} is invariant [condition (3)], then y(¢) # O for all
t > 0 under our assumptions. This implies that x(r) € Mo\M for all + > 0 which
contradicts condition (4). This contradiction shows that the assumption Cy is satisfied,
so that the equilibrium x = 0 of system (2.9) is asymptotically stable with respect
to w(x) = ||y|| by Theorem2.1.

Remark 2.3 Inorder to formulate sufficient conditions of partial stability, it is natural
to assume that the solutions are z-extendable [5, 6], i.e. if x(¢) is a solution of (2.10)
forT- <t <T% < +ooandz(t) - ooast — T then||y(t)| > Nast — TT.
In Theorem 2.2, such z-extendability assumption follows from the boundedness of
the solutions.

Remark 2.4 If the right-hand side of system (2.9) is of class C(X), then Theorem 2.2
is equivalent to the Risito-Rumyantsev theorem [11], [5, Theorems 19.1-19.2]. Fur-
ther on, if n;1 = n so that y = x and u(x) = ||x||, then Theorem 2.2 is reduced to
the Barbashin—Krasovskii theorem [12] on asymptotic stability of the equilibrium
x = 0.

For a given function V (x) such that V(x) < 0 along the trajectories of sys-
tem (2.9), the vector of variables y satisfying the property that the solution x = 0
of system (2.9) is y-asymptotically stable (in the sense of Definition2.7) may be
defined by using the method of the paper [13].

Remark 2.5 As Theorem2.2 follows from Theorem 2.1, a part of its proof is actually
based on the invariance principle (Lemma?2.2) with a differentiable Lyapunov func-
tion V (x). A modification of the invariance principle with a non-smooth Lyapunov
function was used for the stability analysis of differential inclusions in the paper [14].
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2.3 Stabilization of Finite-Dimensional Systems
with Respect to a Part of Variables

Let us consider a control system:

i=fo)+ D uifix), xe X CR", u=(ui,...,un) eR", (215

i=1

where x is the state vector and u is the control. We assume that X is a domain of
form (2.14), fi € C(X) and fp(0) = 0, so that system (2.15) admits the trivial
solution x (1) = 0 with u = 0.
Let us remark, that if system (2.15) has an integral then it is neither controllable
nor stabilizable. In this case, only partial stabilization may be possible (see, e.g., [6]).
The goal of this section is to develop an effective strategy for partial stabilization
of system (2.15) based on Theorem2.2.

2.3.1 Theorem on Partial Stabilization

According to notations (2.13), system (2.15) may be written as

V= fo(n D+ D uifn(y, 2, E= foln )+ D uifin(y..  (2.16)

i=1 i=1

The functions f;;(y, z) are considered in the domain X. By an admissible feedback
for system (2.16) we treat any function k(x) € C(X) such that k£(0) = 0. We use the
following definition.

Definition 2.8 Control system (2.16) is said to be y-stabilizable if there exists an
admissible feedback law u = k(x) such that the trivial solution of the corresponding
closed-loop system is asymptotically y-stable.

The consideration of continuous feedback laws simplifies the stability analysis
with Theorem 2.2 as the sets of classical and Filippov’s solutions of the closed-loop
system coincide. However, the multivalued framework of Sect.2.2 is important for
our study as systems with merely continuous right-hand sides may not exhibit the
uniqueness of solutions.

Let V (x) be a function of class C'(X). The time derivative of V (x) along the
trajectories of system (2.16) is:

V =a(x) + (u, b(x)),
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where

a(x) = (VV(x), fo(x)), bi(x) =(VV(x), fi(x)), i=12,....m,
b(x) = (b1(x), b2(x), ..., bp(x)). (2.17)

The basic result we shall prove in this section is the following.

Theorem 2.3 Let V € C'(X) be a function such that V (0) = 0 and the following
conditions hold:

(1) Vx) = a(lyl) for some a € H;
(2) the equation a(x) + (uo(x), b(x)) = 0 has a solution u% e Cc(X) for which the
set

My ={x|b(x) =0,y #0}

does not contain any trajectory {x(t) |t > 0} of system (2.16) with the control
u = ul(x);

(3) there exist a positive number A > 0 and a function h € C(X), h(x) > 0 such
that each solution x(t) of system (2.16) with the initial condition ||x(0)]] < A
and the feedback control

u=u’(x) —h(x)b(x) (2.18)

has bounded coordinates z(t), 1 < j < na, forallt > 0.

Then the solution x = 0 of the closed-loop system (2.16) with (2.18) is asymptotically
y-stable (i.e. system (2.16) is y-stabilizable).

Proof By substituting (2.18) into (2.16) and computing V, we get
V= —h|b)]? <0.

The time-derivative V vanishes on the following set:
M = {x|b(x) =0}.

It is easy to see that u(x) = u%(x) for each x € M if the feedback is given by
formula (2.18). Therefore, condition (2) implies that the set M \ {x : y = 0} does not
contain any positive semitrajectory for the closed-loop system (2.16) with (2.18).
Condition (3) together with the inequality V < 0 guarantees the boundedness of
the solutions starting from A-neighborhood of the origin.
Thus, all the conditions of Theorem?2.2 hold for the closed-loop system (2.16)
with (2.18).

In the sequel, we apply Theorem 2.3 for studying a couple of examples of single-
axis stabilization [15].
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2.3.2 Partial Stabilization of a Rigid Body

Consider a model that describes the rotation of a satellite around its center of mass
under the action of attitude control thrust jets (Fig.2.1). We treat the satellite as a
rigid body rotating around its center of mass (fixed point O). Let Oejeze3 be a basis
associated with the rigid body, and let v be a unit vector which is fixed in the inertial
frame. The equations of motion we can be written in the Euler—Poisson form as
follows [16]:

) Ay — A3 . Az — Ay . Al — A
W = ————ww3 + U, W = ——ww3 + U2, ®3 = ————0|W2,
Aq As A3
(2.19)
VI = w3V) — waV3, V) = W|V3 — W3V], V3 = WaV] — WV2. (2.20)

Here w = wie; + waez + wses is the angular velocity vector of the rigid body,
v = vie] + vaez + vies, and A; is the moment inertia of the rigid body with respect
to the axis defined by ¢;, i = 1, 2, 3. We also assume that the directions of e; are
principal axes of inertia of the body. The action of jet torques is described by control
parameters u] and u;.

System (2.19) and (2.20) admits the following particular solution with u; = 0
and u; = 0:

o=y =w3=0,vi=v,=0,v3=1. (2.21)

Fig. 2.1 Satellite with
attitude control thrust jets
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This solution corresponds to the equilibrium for which vectors e3 and v coincide. Let
us remark that solution (2.21) of system (2.19) and (2.20) cannot be made asymp-
totically stable (with respect all state variables) due to the geometric integral:

vi +v3 +v3 = const. (2.22)

Stabilizability of the Euler equations of form (2.19) has been studied by many au-
thors (see, e.g., [16—18] and references therein). Our investigation is based on the
application of Theorem?2.3 in order to stabilize solution (2.21) with respect to the
following variables:

(w1, w2, Vv1, v2). (2.23)

This choice of variables correspond to the stabilization of the third principal axis
of inertia (e3) around the fixed direction v. So, v; and v, and their derivatives are
required to be “small” and tending to zero as t — oo, while the other ones are
required to be merely bounded.

We define a Lyapunov function candidate as follows:

2V = A1w12 + Azw% + %(v% + V%), x> 0.
A straightforward application of formulas (2.17) yields

a(x) = (Ay — ApDwiwrws + »xv3(w1va — wavy),
b1(x) = A1w1, by(x) = Arw;. (2.24)

A particular solution of the equation a(x)+ (u: y b(x)) = 0 can be taken in the form
O( ) V4 0( ) » ( )
Ui(x) =wawz — — vz, Uy(x) = —wiw3z + — vivs. 2.25

1 23 . 2V 2 13 1V3

It is easy to check that all trajectories of system (2.19) and (2.20) with control (2.25)
satisfy the condition vi = vy = 0 on the set

M;: Aol = Arwy =0,

provided that the initial value is taken in some neighborhood of solution (2.21). This
proves that condition (2) of Theorem 2.3 holds.

All solutions of system (2.19) and (2.20) are bounded with respect to v; because
of integral (2.22). So, it suffices to ensure the boundedness of the solutions with
respect to w3. In order to prove the boundedness, we apply Theorem 39.1 from the
monograph [5] with the following function:

2W = Alw% + Azw% + A3a)§ + %(v% + V%).
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The time-derivative of W (x) along the trajectories of the closed-loop system with
the feedback of form (2.18) is

W(x) = (A] — Ap)wimws — h(x) (Ao} + A303).
According to [5, Theorem 39.1], it is sufficient to show that
h(x) (Ala)1 20)2) > (A] — A))wiwawsz, (h(x) > 0). (2.26)
By using the inequality
2A1A2|w | < Alwl + Aza)z,

we define /(x) in the following manner:

A=A 227
) 2A.A, w3‘+€ (2.27)

where ¢ is an arbitrary positive constant. Then condition (2.26) holds.
Finally, by taking into account (2.24), (2.25), (2.27), expression (2.18) takes the
form:

|
.- -4 A ,
a2 { A lws| + €A1}
A1 — Az]
T|w3|+€A2}w2, (x>0, e >0). (2.28)
1

» 1 — Az
U| = wrw3 — —Vyv3 —
A
uy = —wjw3 + —vivz — {
A

Let us remark that the feedback law (2.28) not only stabilizes the solution (2.21) of
system (2.19) and (2.20) with respect to variables (2.23), but also ensures Lyapunov
stability of the solution (2.21) due to the inequality W < 0 (see Fig.2.2).

Figure 2.2 illustrates the solution of the closed-loop system (2.19), (2.20), (2.28)
for the following parameters':

Al =1, Ay =3/2, A3 =2, =1, ¢ =1/10,
and initial conditions
w(0) =0, v1(0) = 1/+/3, 12(0) = v3(0) = 0.
We see in Fig. 2.2 that the components w1 (¢), wz(t), v1 (), and v (¢) of this solution

of the closed-loop system tend to zero for large . We also note that the limit motion of
the satellite corresponds to uniform rotations around v with constant angular velocity

w3 # 0.

! To simplify notations, we assume that all state variables and parameters are dimensionless in this
section.
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Fig. 2.2 Solution of the closed-loop system (2.19), (2.20) with control (2.28)

2.3.3 A Satellite with Moving Masses

Let us consider a system describing the rotation of a satellite with a pair of flywheels
(see Fig.2.3):

(A1 — IDw1 = (A2 — Az)wrw3 + 1§03 — uy,
(A2 — D)an = (A3 — ApDwiwz — 112103 — uz,
(A] — A)wiwy + 118210y — DS wy,

Azw3
(21 + @)

Vi

ur, L2+ an) = uo,

w3V) — wyv3, Vo = wiv3 — w3V, V3 = wav] —wiva.  (2.29)
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Fig. 2.3 Satellite controlled v
by a pair of flywheels

€3

As in the previous example, the dynamics of the carrier body is characterized by the
angular velocity vector w = wie; + waez + wper and coordinates of the fixed unit
vector v = viey + vaex + vies (see, e.g., [16]). We assume that the ith flywheel
rotates around the direction of e; with relative angular velocity £2; under the action
of control torque u;, and the moment of inertia of the ith flywheels is denoted by /;,
i = 1,2 [15]. The control torques u| and u; are implemented by electric motors.
We denote by A; the moment of inertia of the whole system (i.e. the carrier body
and flywheels) with respect to the ¢; axis, i = 1,2, 3. We assume that the motion
of flywheels does not change the mass distribution in the system, and that A; are
principal moments of inertia.
System (2.29) admits the following equilibria for uy = uy = 0:

w =0, 21 = const, £ =const,v; = vy =0, v3 = 1. (2.30)

The equilibrium (2.30) cannot be stabilized with respect to all variables, since sys-
tem (2.29) admits the following integrals:

@1 = (A1) + 11921)° + (Agwa + 1$22)? + (A3w3)* = const;
Dy = (Ar1w1 + 11821)v1 + (Arwz + 1§22)v2 + Azw3vs = const;

D3 = v% + v% + v% = const.
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In order to stabilize solution (2.30) of system (2.29) with respect to variables
y = (w1, w2, v1, v2), we apply Theorem 2.3 with the following Lyapunov function:

2V(x) = (A1 — I} + (Ag — D)oy + 20 +13), x> 0.
Then

a(x) = (A2 — ADwiwyws + (128201 — 11 21w2)w3 + 2ev3(w1v2 — wavy),

b1(x) = —w1, ba(x) = —ws.

The function u° (x) from condition (2) of Theorem 2.3 is a solution of the following
algebraic equation:

{(Aza)z + 1h827)w3 + vz — u(l)}a)l — {(Ala)l + 11821 w3 + »vivz + ug}a)z =0.
To satisfy this equation, we assume
ud = 30003 4 (Aswn + L2 w3, u) = —sviv3 — (A1 + [121)w3.  (2.31)
It can be seen that the set
M = {(01, w2, w3, 21, 22,1, v2,v3) | @1 = w2 = 0, v} +v3 # 0}
does not contain any positive semi-trajectory of system (2.29) with the feedback law

u = u’(x) in a neighborhood of (2.30).
Let us assume 4 (x) = & = const and show that the feedback law

up = »xvovi + (Arwr + L $27)ws + ewq,
ur = —uvivy — (A1o1 + 1121 w3 + ewo. (2.32)

satisfied condition (3) of Theorem 2.3 for any »r > O and ¢ > 0. Indeed, the bounded-
ness of the solutions with respect to variables (w3, §21, §22, v3) follows from integrals
@1 and @3 of system (2.29).

Thus, the solution (2.30) of system (2.29) is stabilizable with respect to vari-
ables (2.23) by means of the feedback law (2.32) by Theorem 2.3.

In order to illustrate the proposed stabilization scheme, we perform a numerical
integration of the closed-loop system (2.29), (2.32) with the following parameters:

Al =2, Ay =3, A3=4 5L =h=1 e=1/10, »x=1.

Time-plots of the solution of the closed loop-system are shown in Figs. 2.4 and 2.5
for the initial conditions

w(0) =0, £21(0) = £22(0) =0, vi(0) =v3(0) =0, v2(0) = —1.
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Fig. 2.4 Solution components of the closed-loop system (2.29) with control (2.32)
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Fig. 2.5 Time plots of £2;(¢) and §2,(2)

Figures 2.4 and 2.5 confirm that the feedback law (2.32) stabilizes the system with
respect to variables (2.23). We also observe that the limit position of the carrier body
approximately corresponds to its equilibrium with e3 = v, and the flywheels perform
rotations with decaying angular velocities £21(¢) and §2,(¢).
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2.4 Partial Asymptotic Stability of Nonlinear Semigroups

In Sect. 2.1, we have obtained a general result on partial asymptotic stability without
assuming the uniqueness of solutions as well as the differentiability of a Lya-
punov functional. To derive more convenient stability conditions for the analysis of
distributed parameter systems, let us consider a class of dynamical systems governed
by differential equations in a Banach space.

Let E be a Banach space with the norm || - ||, and let X be its closed subset
containing some ball Bg = {x € E | ||x|| < R} of radius R > 0. Then X is a metric
space with respect to the distance p(a, b) = ||a —b||. Let F be a (nonlinear) operator
from D(F) C X into E, F is supposed to be closed and densely defined on X. Given
x¥ € X consider the abstract Cauchy problem (cf. [19, Chap. 4], [20, Sect.5.2]) for
F with initial data x°:

dx (1)

o= Fx(1), teR", x©0)=x" (2.33)

We assume that the operator F' generates a nonlinear continuous semigroup on X in
the sense of Definition 1.9.

As F is the infinitesimal generator of a continuous semigroup {S(#)}, the Cauchy
problem (2.33) is well-posed, and any mild solution of (2.33) is given by

x(t)=SH)x°, reRT, X0 ex.

In that case, at each x° we may associate the singleton x(x%) = {S()x%). It is easy
to check that the above defined & : X — 2* is a multivalued D-system in the sense
of Definition 2.1. (Assumption As is satisfied by uniqueness of the solutions and A4
is a consequence of continuity of the map (¢, x) — S()x.)

Let V : E — R be a differentiable functional, then V (S(r)x°) is differentiable
along any classical solution of (2.33). The time-derivative of V along the trajectories
of (2.33) at x € X is defined as

V(St)x) — V(x)

V(x)= li
)=l =

The above expression can also be written in the terms of vector fields for x € D(F) :
V(x) = (DV(x), Fx), (2.34)
where (-, ) : E* x E — R is the duality pairing of E and E*, i.e. (DV (x), &) is
the value of a linear functional DV (x) € E* at & € E. When E is a Hilbert space,
(2.34) takes the form ]
V(") = (VV(x), Fx).

Here (-, -) is the scalar product in E, V denotes the gradient.
As a consequence of Theorem 2.1 and the regularity of V', we have
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Theorem 2.4 Let F be the infinitesimal generator of a nonlinear continuous semi-
group {S(t)} on X, F(0) = 0, and let ;1 : X — RT be a continuous functional.
Assume that there exists a differentiable functional V : E — R satisfying the fol-
lowing conditions.

(i) There exist a1 (-), ax(-) € A such that
ap(u(x)) < V(x) < ax(llx]]) forall x € X.

(i) V(x) <0, forall x € D(F).
(iii) There exists A > 0 such that

GINGES!

>0

is precompact in X provided that ||x°|| < A.

(iv) Kerpu = {x € X | u(x) = 0} is invariant for (2.33), i.e. /L(S(‘L’)xo) = 0 and
T > 0imply u(S(t)x%) =0 forall t € R,

(v) The set

M = {x € D(F)|V(x) =0} \ Ker

does not contain any semitrajectory of (2.33) defined fort € RT.

Then the equilibrium x° = 0 of (2.33) is asymptotically stable with respect to .

Proof As F(0) = 0, the solution x(¢) = 0 is an equilibrium of the multivalued
D-system defined by x0e X n(x0 = {S()x0). Itis easy to see that (i) and (iii)
imply C; and C3 in conditions of Theorem2.1.

Let us prove that condition (ii) implies that V (x(¢)) is non-increasing on any
mild solution of (2.33) with x* € X, € R*. If xX € D(F) then x(t) = S(t)x°
is a classical solution, and V(x (1)) given by formula (2.34) exists for all # > O.
As V(x()) is continuous and V (x(f)) < 0 on R, the function V (x(¢)) is non-
increasing on R™. For arbitrary x% e X\ D(F)and T > 0, the mild solution S(¢)x°
(0 <t < T) can be approximated by classical ones in the L* ([0, T']; E) norm (it
is a consequence of assumption A4). Therefore, as V is non-increasing along any
classical solution and V is continuous, V (S(1)x°) is non-increasing on R* for each
x0eX.

To finish the proof, let us show that C4 holds under our assumptions. If p € M;
in (2.5) then %V(S(t)p) = 0 for all t € R*. Therefore,

M; C My ={x € D(F)|V(x) =0}.

(The closure in M) is taken because (2.34) defines V on D(F) only, but F is densely
defined.) On the other hand, as M is semi-invariant,

M C {x € My|S(t)x € My for all r € R"}. (2.35)
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Suppose that x be an element of the right-hand side of (2.35). The kernel invari-
ance (iv) implies either S(¢)x € Ker i or S(t)x ¢ Kerp for all t € RT. But the
last case is impossible because of (v). Therefore, any x € M| belongs to Ker p that
proves Cjy. (]

Remark 2.6 The above theorem can be applied for studying strong asymptotic
stability when w(x) = |x||. If F is linear then Definition 1.9 is equivalent to
that of Cyp-semigroups of linear bounded operators. Therefore, the assumption of
Theorem 2.4 regarding the semigroup {S(#)} can be checked via the Hille-Yosida or
the Lumer—Phillips theorems for linear operators F (cf. [19, Chap. 1]). In more gen-
eral case, there is a close relationship between quasicontractive semigroups (which
are jointly continuous) and w-accretive operators F [21]. If w = 0 then the generator
of {§(¢)} is dissipative (cf. [22, Sect.2.9]). The compactness assumption (iii) can be
checked by the method of [23] for a class of monotone operators. We extend this
approach for the case of bounded perturbations of Cy-semigroups in the next section.

2.5 Relative Compactness of Trajectories in a Banach Space

In order to apply Theorem?2.4, it is necessary to check the relative compactness of
trajectories for a differential equation in a Banach space. One could observe that the
accretivity condition (monotonicity), which is a crucial assumption of the paper [23],
is violated for some important classes of flexible systems. In particular, the infini-
tesimal generator of the nonlinear system considered in [24] is not monotone. This
fact stimulates the development of new tools for the analysis of the compactness for
trajectories of distributed parameter systems. This section provides some compact-
ness results based on a priori estimates of perturbations for a differential equation in
a Banach space.

Let E be a real Banach space, and let A : D(A) — E be a closed linear operator
with the domain of definition of D(A) C E. Consider the abstract Cauchy problem
fort € [0, +00):

x(t) = Ax(t), x(0) =x0 € E. (2.36)

We assume that the domain D(A) is dense in E, and that A is the infinitesimal
generator of a Co-semigroup of linear operators {¢/4},~ in E. So, the Cauchy prob-
lem (2.36) is well posed for ¢ € [0, +00), and its mild solution can be represented
in the form

x(1) = e"xp, 1 > 0. (2.37)

In order to study a wider class of equations (including the one with non-monotone
operators), we introduce the perturbed Cauchy problem for r > 0 as follows:

X =Ax+ f(®R(x,1), x(0) =x € E, (2.38)

where f : [0, +00) - Rand R : E x [0, +00) — E are continuous mappings.


http://dx.doi.org/10.1007/978-3-319-11532-0_1

34 2 Partial Asymptotic Stability

We prove that the compactness property is preserved by passing from Eqgs. (2.36)—
(2.38) under some additional assumptions on the function f and the mapping R. This
result will be applied to derive sufficient conditions for the compactness of trajectories
of an autonomous differential equation in a Banach space.

2.5.1 Compactness Lemmas

Assume that the Banach space E has a basis {¢;} (i = 1,2,...). We denote by
{fj} C E* (j =1,2,...) the conjugate system of bounded linear functionals, i.e.
fi(e;) = &;j, where §;; is the Kronecker delta. Then, for each x € E, n € N, we
define the linear projection operators:

Su(x) =D~ filv)ei, Pu(x) =x — Sp(x).

i=1
As {e;} is a basis then the operators S, : E — E are uniformly bounded:
[Sull <M <00, n=1,2,...

To describe the compact subsets of E, we formulate two auxiliary results.

Lemma 2.4 Let {¢;} be a basis of E. A bounded subset C C E is relatively compact
in E iff
lim sup || P,x]| = 0. (2.39)
n— o0

xeC

Proof 1f C is precompact then the Hausdorff compactness criterion implies that, for
any € > 0, there exists a finite ﬁ-net {x(f)}, j=1,2,...,m(e) [25]. It means that,
13

for each x € C, thereis a j < m(e) such that ||x — x| < 537 1-€-

. . & . & :
[ Pux |l = | Py (x —x )4+ Px | < ||Pn||w+nan<”|| < 5+||an(f>||. (2.40)

We now show that, for sufficiently large n, the inequality || P.xW| < % holds for
each j = 1,2,...,m(e). In fact, since {e;} is a basis, each element of the net is
represented by a convergent series:

o0
W) = ch‘mei' (2.41)
i=1

According to the definition of P,
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o
i ()
1P =1 D i ell.
i=n+1

The last expression does not exceed £, starting with some index n = n(e), since the
series in (2.41) is convergent in the norm of E. Thus, (2.40) implies || P,x| < & for
n > n(e), which proves (2.39).

Conversely, if the set C is bounded, then all finite-dimensional projection
Ch={Sux|xeC}, n=12,...

are precompact. Relation (2.39) implies that, for each & > 0, any finite e-net of the
set C,, can be used to cover C for sufficiently large n.

We will call a Co-semigroup of linear operators {e!4 }t>0 in E uniformly bounded
if [19]:

e’ < N, Vt>0,

with some constant N < o0.

Lemma 2.5 Assume that {e;} is a basis in E, C is a compact subset of E, and
{€'Y1=0 is a uniformly bounded Cy-semigroup of linear operators in E, for which
the trajectory y (xg) = {€'4xq |t > 0} is precompact for any xo € C. Then

lim { sup [[P.e“x| )=0. (2.42)
>0\ 1>0,xeC
Proof According to Lemma?2.4, to prove (2.42) is suffices to establish that the set
K={xeC,t>0).

is precompact. Let {y,} be a sequence of elements of K, i.e. y, = e"“x, for some
{t.} C [0, 4+00), {x,} € C,n = 1,2,... The compactness of C implies the ex-
istence of a convergent subsequence x,4) — x* € C as k — o00. As y(x¥) is
precompact then there exists a convergent subsequence e’¢mAx* — y* e E as
m — 00. By using the uniformly bounded semigroup {e’4},;~¢, we conclude that
e Ax, my) — Y* asm — oo.

2.5.2 Trajectories of the Perturbed System

Let us recall that a mild solution of the inhomogeneous problem (2.38) on 0 <
t < T < +oois a continuous function x : [0, T) — E that satisfies the integral
equation [19]:
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t

x(1) = e'xg + / "I F($)R(x(s), s) ds. (2.43)
0

The integral in formula (2.43) in treated the sense of Bochner. We formulate the
following sufficient condition for the precompactness of trajectories to the perturbed
differential equation.

Theorem 2.5 Let E be a Banach space with a basis, A be the infinitesimal gen-
erator of a uniformly bounded Co-semigroup of linear operators {e’A}tZo in E,
f e LI[O, 400), R(x,t) € K forallx € E, t > 0, and K is a compact set. Assume
that the set {e'Ay |t > 0} is precompact for all y € K U {xo).

Then each mild trajectory {x(t) |t > 0} of (2.38) is contained in a compact
subset of E.

Proof Let x(t) be a mild solution of (2.38) on the semi-interval + > 0. Then the
integral equation (2.43) implies the compactness of {¢/4x ¢ > 0}, and condition
f € L'[0, +00) together with R € K provides the boundedness of x(¢). According
to Lemma 2.4, to prove the precompactness of {x(¢) | > 0} is suffices to choose a
basis {e;} in E and establish the existence of the limit

lim sup || P,x(¢)] = 0.
n—00 ;=

Applying the projection operator to (2.43), we get

t
23O < 1 Pse ol + | [ 7P (= R0x(5).9) ds
0
< IPue xoll + I fllp - sup [Pyl
sel0,t],yeK

The proof is completed by applying Lemmas 2.4 and 2.5.

A certain class of autonomous differential equations with nonlinear infinitesimal
generators can be transformed to the form (2.38) with an appropriate assumption on
the function f (). We state the main result in this direction for the following abstract
Cauchy problem:

x(@) =Ax(t) + h(x(@®))B(x(t)), x(0)=x0 € E, (2.44)
where h : E — Rand B : E — E are locally Lipschitz mappings. Recall that the

mappings i (x) and B(x) are called locally Lipschitz if, for every r > 0, there exists
a constant L(r) such that

lh(x) = (| = LO)llx = yll. 1B(x) = BWI = L@)|lx =yl
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for all |x|| <r, |yl <r.Ifw: E — Ris a Fréchet differentiable functional, then
the function of time w(x (¢)) is differentiable along each classical solution x (¢) to the
problem (2.44). Then, for any x € D(A) C E, the time-derivative of w along the
trajectories of (2.44) can be written as

w(x) = (Ax + B(x)h(x), Vyw),

where (-, -) : E x E* — R is the duality pairing of E and E*, i.e. (§, V,w) is the
value of the linear functional V,w € E* at§ € E.

Theorem 2.6 Assume that E is a Banach space with a basis, A is the infinitesimal
generator of a uniformly bounded Cy-semigroup of linear operators {etA}tzo in E,
the set {'Ay |t > 0} is precompact for all y € E, and B : E — E is a compact
operator. Assume, moreover, that w : E — R is a Fréchet differentiable functional
that satisfies the following conditions:

(1) the set M, = {x | w(x) < c} is bounded for each c € R;
(2) inf )y <, w(x) > —oo forallr > 0;
(3) there exists a constant ki > 0 such that

w(x) < kih(x) <0, Vx e D(A).

Then, for each xog € E, the Cauchy problem (2.44) has the unique solution x(t) on
[0, +00), and {x(t) |t > 0} is precompact in E.

Proof According to Theorem 1.4 [19], for each x¢ € E, there exists a unique max-
imal mild solution x (¢) of the problem (2.44), t € [0, t,,4x). Conditions (1) and (3)
imply that x(¢) is bounded, hence, t,,,, = +00. Let us consider equation (2.38)
with R(x,7) = B(x) and f(t) = h(x(¢)). Then conditions (2) and (3) yield the
property f € L'[0, +-00). Thus, the trajectory {x(t) |t > 0} is precompact in E by
Theorem?2.5.

Note that, since the set M, is forward invariant under the condition w(x) < 0,
then Theorem 2.6 admits a local formulation on the subset of E located between level
surfaces of the functional w.
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