
Chapter 2
Radiation

In this chapter, we discuss the basic principles of electromagnetic radiation due to
simple and distributed sources.

2.1 General Considerations

An antenna is a device used to propagate or to capture electromagnetic waves. When
an antenna is used for transmission (propagation) of radio waves, electric currents
are made to oscillate over the antenna. Energy from this oscillating charge is emitted
into space as electromagnetic radio waves. When an antenna is used for reception,
thesewaves induce aweak electric current in the antenna. This current is amplified by
the radio receiver. An antenna can generally be used for reception and transmission
on the same wavelength.

Electric energy is fed to an antenna by means of a transmission line, or a coaxial
cable. In reflector antennas, microwave energy is reflected from ametallic paraboloid
that shapes it into a narrow beam.

The dimensions of an antenna usually depend on the wavelength, or frequency, of
the radio wave for which the antenna is designed. The length of an antenna must be
such that it resonates electrically at the desired wavelength. The basic antenna length
must be at least half the wavelength of the radio waves it is designed to transmit
or receive. It can also be an integral multiple of the one-half wavelength. Antennas
with such dimensions are called resonant antennas. A resonant antenna is an efficient
propagator and receptor of electromagnetic energy at its design wavelength.

Let a source distribution (J, ρ) be confined in a region V in free space. We have
seen that the Hertz vector potential at r due to J satisfies

∇2π + k20π = − J
jωε0

(2.1)

© Springer International Publishing Switzerland 2015
K. Barkeshli, Advanced Electromagnetics and Scattering Theory,
DOI 10.1007/978-3-319-11547-4_2

57



58 2 Radiation

so that

π(r) = −j
Z0

k0

∫

V

J(r′) e−jk0|r−r′|

4π |r − r′|dv′ (2.2)

where k0 is the free space wavenumber. The electromagnetic fields are then given
by

E = ∇∇ · π + k20π (2.3)

H = jωε0∇ × π (2.4)

We begin our discussion of the radiating systems by elementary sources, and then
extend the concepts to distributed sources.

2.2 Elementary Sources

In this section, we are concerned with simple sources which are small in extent. For
these sources, the maximum dimension of the source is much less than free space
wavelength. We shall assume that the point of observation or the field point P is
located at a large distance from the source. This implies that

k0r′ � λ (2.5)

r′ � r (2.6)

Note that no restriction is placed on the order of magnitude of r in comparison with
the wavelength. Later on, we define various field regions based on the magnitude of
r with respect to the wavelength.

We now modify (2.2) on the basis of the approximations represented by (2.5) and
(2.6). Referring to Fig. 2.1, we have

Fig. 2.1 An elementary
current source radiating in
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|r − r′| = R � r − r′ cos γ (2.7)

where γ is the included angle between r and r′. That is

cos γ = r̂ · r̂′ (2.8)

Also, since k0r′ cos γ � 1, we have

e−jk0|r−r′| � e−jk0r(1 + jk0r′ cos γ ) (2.9)

and

1

|r − r′| � 1

r
(1 + r′

r
cos γ ) (2.10)

Using the above, (2.2) can now be written as

π(r) � −j
Z0

k0

e−jk0r

4πr

∫

V

J(r′)[1 + (jk0 + 1

r
)r′ cos γ ]dv′ (2.11)

Note that although the second term within the bracket is small compared with unity,

we have retained it in (2.11), because in some cases the integral
∫

V
J(r′)dv′ is zero in

which case
∫

V
J(r′)(jk0 + 1

r
r′ cos γ dv′) would be the leading term. If

∫
V

J(r′)dv′

is not zero, then we generally neglect the term involving r′ in (2.11).

2.2.1 The Short Electric Dipole

Consider a small linear current element of length � carrying a constant current I0
(actually I0ejωt), and oriented along the ẑ direction (Fig. 2.2). For such a current
element
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Fig. 2.2 ẑ-directed dipoles located at the origin a a short Hertzian dipole, b an Abraham dipole
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I (z) = I0, |z| ≤ �/2 (2.12)

We define the total current moment as

pi =
∫

v

J(r′)dv′ = ẑ

�/2∫

−�/2

I (z′)dz′ = I0� ẑ (2.13)

Consider now two time-varying charges ±q separated by a distance � and placed
along the z-axis. For small �, this represents a time varying dipole with moment p
defined as

p = q� ẑ (2.14)

Substituting I0 = jωq, we have

p = I0�

jω
ẑ (2.15)

which indicates that the current moment is related to the dipole moment by

pi = jωp (2.16)

Wepreviously defined the polarization vectorP in connectionwith theHertz potential
as

P = J
jω

(2.17)

Thus
∫

v

P(r′)dv′ = 1

jω

∫
J(r′)dv′ = I0�

jω
ẑ = p (2.18)

Hence, P is indeed related to the dipole concept. The time varying dipole is referred
to as the Hertzian dipole. For an elementary current source having the distribution

I (z) = I0(1 − 2

�
|z|), |z| ≤ �/2 (2.19)

the current moment is

pi = I0�

2
ẑ (2.20)
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which is half the current moment of a Hertzian dipole of the same length. This is
called the Abraham dipole.

Using the approximation similar to (2.11), it can be shown that the potential for
a Hertzian dipole of moment pi = jωp is

π(r) � e−jk0r

jω4πε0r
pi = p

e−jk0r

4πε0r
(2.21)

The magnetic field is given by

H = jωε0∇ × π

= jω

4π
[ 1
r2

+ jk0
r

]e−jk0r(p × r̂ ) (2.22)

where r̂ is the unit vector in the direction of the field point. The electric field E can
be obtained from

E = ∇∇ · π + k20π

= e−jk0r

4πε0
[( 1

r3
+ jk0

r2
){3(p · r̂ )̂r − p} − k20

r
{ r̂ × ( r̂ × p)}] (2.23)

In the far zone (k0r � 1), only the terms depending on 1/r dominate, and we
have

E = − k20
4πε0

e−jk0r

r
[ r̂ × ( r̂ × p)] (2.24)

H = ωk0
4π

e−jk0r

r
( r̂ × p) (2.25)

For a current element I0d�, the above expressions can be used provided that p is
replaced by I0d�/jω.

The above expressions for the electromagnetic fields are valid for any orientation
of the dipole. For a ẑ-oriented dipole, we have

p = p cos θ r̂ − p sin θ θ̂ (2.26)

The spherical components of the electromagnetic fields are, therefore, given by

Er = p
e−jk0r

2πε0
[ 1
r3

+ jk0
r2

] cos θ

Eθ = p
e−jk0r

4πε0
[ 1
r3

+ jk0
r2

− k20
r

] sin θ (2.27)

Hφ = jωp
e−jk0r

2π
[ 1
r2

+ jk0
r

]
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while

Eφ = Hr = Hθ = 0 (2.28)

The radiation fields of a ẑ-directed Hertzian dipole located at the origin are given
in component form as

Eθ = j
k20

4πωε0
I0dz

e−jk0r

r
sin θ (2.29)

Hφ = j
k0
4π

I0dz
e−jk0r

r
sin θ

with Er = Eφ = Hr = Hθ = 0. Note that in the far field, the ratio of the transverse
field components is

|Eθ |
|Hφ | = k0

ωε0
= Z0 (2.30)

where Z0 is the free space intrinsic impedance. The radiation fields of an electric
dipole behave as a transverse electromagnetic (TEM) wave with their amplitude
decreasing as 1/r. Also, the Poynting vector is given by

S = 1

2
E × H� = p2ωk30

32π2ε0r2
sin2 θ r̂ (2.31)

representing a real power flow density in the r̂-direction.
If a ẑ-directed dipole of current I (z) is located at a position r′ as shown in Fig. 2.3,

then the far fields are given by

Fig. 2.3 A short ẑ-directed
Hertzian dipole positioned
at r′
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Eθ = j
k20

4πωε0
sin θ

e−jk0(r−r′· r̂ )

r
I (z)dz (2.32)

Hφ = j
k0
4π

sin θ
e−jk0(r−r′· r̂ )

r
I (z)dz (2.33)

2.2.2 The Small Magnetic Dipole

The half-wavelength dimensional rule applies to all antennas except wire loop anten-
nas. Small loop antennas used in transistor radios are resonant at the long, 300m
wavelengths of the broadcast (AM) band because they contain a core of magnetic
material called ferrite. Ferrite loop antennas are used in ultracompact transistor
radios.

Consider a small loop of area � carrying a current I0 as shown in Fig. 2.4. Such
a current loop is called a magnetic dipole. For this loop, we note that

∫

V

J(r′)dv′ =
∮

C

I0d� = I0

∮

C

d� = 0 (2.34)

However, this does not imply that the current moment is zero.We define themagnetic
dipole moment as

m = 1

2

∫

V

r̂′ × Jdv′ (2.35)

Applying this definition to the present case, we have

m = 1

2

∮

C

r̂′ × I0d�′ = I0

∮

C

1

2
(r̂′ × d�′) (2.36)

Fig. 2.4 A small magnetic
dipole

I0

dl’

r’

ds



64 2 Radiation

Therefore,

m = n̂I0

∫

S

ds′ = n̂I0� (2.37)

which is clearly independent of the shape of the loop. In order to find the Hertz
potential, we invoke (2.11). Thus

π(r) � −j
Z0

k0

e−jk0r

4πr

∫

V

J(r′)(jk0 + 1

r
)r′ cos γ dv′

= −j
Z0

k0

e−jk0r

4πr
(jk0 + 1

r
)

∫

V

J(r′)r′r̂′ · r̂dv′

= −j
Z0

k0

e−jk0r

4πr
(jk0 + 1

r
)I0

∮

C

r′ · r
r

d�′ (2.38)

Employing the vector theorem

∮

C

ψd�′ = −
∫

S

∇′ψ × n̂ds′ (2.39)

we obtain

π(r) = j
Z0 I0

k

e−jk0r

4πr
(jk0 + 1

r
)

∫

S

∇′(r′ · r) × n̂ds′

r

= j
Z0 I0
k0

e−jk0r

4πr
(jk0 + 1

r
)

∫

S

r̂ × n̂ds′ (2.40)

Substituting for the magnetic current moment m, we have

π(r) = −j
Z0

k0

e−jk0r

4πr
(m × r̂ )(jk0 + 1

r
) (2.41)

and if the loop is oriented so that n̂ = ẑ, we find

π(r) = −j
Z0

k0

e−jk0r

4πr
m(jk0 + 1

r
) sin θφ̂ (2.42)

It is noted that the Hertz potential is directed entirely in the φ̂ direction, regardless
of the size of the loop. Using (2.22) and (2.23), it can be shown that the complete
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electromagnetic fields for a ẑ oriented magnetic dipole are given by

E = m
e−jk0r

4π
k20 Z0

(
− jk0

r2
+ 1

r

)
sin θφ̂ (2.43)

H = m
e−jk0r

4π
[2

(
1

r3
+ jk0

r2

)
cos θ r̂ +

(
1

r3
+ jk0

r2
− k20

r

)
sin θ θ̂] (2.44)

For such a magnetic dipole, Er = Eθ = hφ ≡ 0.
In the far zone, as r goes to infinity, we obtain from the above

E � m
e−jk0r

4πr
k20 Z0 sin θφ̂

(2.45)

H � −m
e−jk0r

4πr
k20 sin θ θ̂

Also, the Poynting vector is given by

S = 1

2
E × H� = m2k40 Z0

32π2r2
sin2 θ r̂ (2.46)

again representing real power flow in the radial direction.

2.3 Wire Antennas

Consider a straight wire antenna driven by a current distribution	e[I (z)ejωt] similar
to half of what is shown in Fig. 2.5. Using expressions (2.32) and (2.33), we may
find the fields due to a wire antenna by the superposition integral. Thus, the electric
field is given by

Eθ � jk20
4πωε0

sin θ
e−jk0r

r

∫
I (z′)ejk0r′ ·̂rdz′ (2.47)

We may write the above expression as

Eθ � jk20�

4πωε0

e−jk0r

r
I0ejφ0ψ(θ) (2.48)

where ψ is defined as
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Fig. 2.5 A center-fed wire
antenna of length 2L

ψ(θ) ≡ sin θ

�

�/2∫

−�/2

I (z′)ejk0r′ ·̂rdz′ (2.49)

and � is the length of the antenna. The quantityψ is dimensionless and is independent
of I0 and φ0. It displays the angular dependence of the radiated field and is some-
times referred to as the field radiation pattern. In order to evaluate ψ , the current
distribution should be known.

Example 2.1 Let the current distribution on a center-fed wire antenna of length 2L
shown in Fig. 2.5 be given by

I (z) = Im
sin k0(L − |z|)

sin(k0L)

Using (2.49), we obtain

ψ(θ) = sin θ

2L

L∫

−L

sin k0(L − |z′|)
sin(k0L)

ejk0z′ cos θ dz′

Evaluating the integral, we find that

ψ(θ) = 1

k0L sin(k0L)

[
cos(k0L) − cos(k0L cos θ)

sin θ

]

The radiated electric field is given by (2.48). �
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2.4 Field Regions

The vector potential at a point P due to a source distribution J in free space is given
by (2.2). Depending on the location of the observation point, the maximum linear
dimension of the source and the wavelength, various approximations are made to
evaluate (2.2), and hence the fields.

We consider point sources and extended sources separately.

2.4.1 Point Sources

If the maximum linear dimension of the source is small compared to the wavelength,
that is, r′ � λ or kr′ � 1, then the exponential term in the integrand of (2.2) may
be approximated by the first two terms of its Taylor series expansion. This will yield
(2.11) applicable for point or small sources. For such cases, the nature of the fields
produced are different for kr � 1 and kr � 1, with the source assumed to be located
at the origin. The two regions, so defined, are called the (reactive) near field and
(radiating) far field regions of the source (Fig. 2.6). The common boundary of these
two regions are arbitrarily chosen to be at kr = 1 or, equivalently, r = λ/2π .

2r

1 kr 1

Fig. 2.6 Field regions for point sources in the near field region, the reactive energy is dominant,
while in the far field, the radiating energy is dominant
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2.4.2 Extended Sources

In many cases, the maximum dimension of the source may be much larger than λ.
Due to the extended nature of the source, the far field region can no longer be assumed
to start at λ

2π .
Under the assumption

r � r′, k0r � 1 (2.50)

we may write

|r − r′| � r − ( r̂ · r′) + 1

2r
[r′2 − ( r̂ · r′)2] + O

(
r′

r

)3

(2.51)

when making phase calculations and

|r − r′| � r (2.52)

for amplitude considerations. Under these assumptions, (2.2) reduces to

π(r) � −j
Z0

k0

e−jk0r

4πr

∫

V

J(r′)e
jk0[( r̂ · r′) + ( r̂ · r′)2

2r
− r′2

2r
]
dv′ (2.53)

According to the IEEEStandard, the far field region, also known as theFraunhofer
region starts at a distance r where

r′2
max

2r
= λ/16 (2.54)

that is

r = 8r′2
max/λ (2.55)

Assuming D to be the maximum linear dimension of the source, r′
max = D/2, and

we obtain the far field region definition as

r ≥ 2D2/λ (2.56)

Under this condition, only the ( r̂ · r′) term in the exponential integrand of (2.53) is
retained.

π(r) � −j
Z0

k0

e−jk0r

4πr

∫

V

J(r′)ejk0r′· r̂dv′ (2.57)
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Fig. 2.7 Field regions for extended sources. In the Fresnel region, the angular field distribution
depends on the distance from the antenna, while in the Franuhofer region, it is independent of the
distance

This is the usual approximation used when determining the radiation fields of anten-
nas. The neglect of lower order terms introduces a maximum phase error of k0r′2/2r
implying an error of π/8 at the far field boundary r = 2D2/λ. For larger distances,
the error will be less.

The far field region is dominated by radiating energy and is very important in
antenna analysis and design.

The region in which the second order term k0r′2/2r must be retained for field
calculations is referred to as the Fresnel region. This is also known as the quasi-far
field or the radiating near field region. There is no clearly marked boundary for the
specification of the Fresnel region. However, for electrically large sources (D � λ),
the region may be defined as

D2/4λ ≤ r < 2D2/λ (2.58)

as shown in Fig. 2.7.
The near field region extends from the source up to the lower boundary of the

Fresnel region. For this region in which the reactive energy dominates, no general
approximation is made in the evaluation of the potential and the fields.

2.5 Far Field Calculation for General Antennas

The far field expression (2.57) for the Hertz potential may be written as

π(r) = −j
Z0

k0

e−jk0r

4πr
N(θ, φ) (2.59)
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where

N =
∫

V

J(r′)ejk0r′· r̂dv′ (2.60)

The magnetic field is given by

H(r) = jωε0∇ × π(r) (2.61)

Since we are interested in the far fields, we wish to express the result only retaining
those terms behaving like e−jk0r/r as r → ∞. Carrying out the differentiation, we
have

∇ × {e−jk0r

r
N(θ, φ)} = ∇(

e−jk0r

r
) × N + e−jk0r

r
∇ × N

= −(
jk0
r

+ 1

r2
)e−jk0r( r̂ × N) + e−jk0r

r
∇ × N

= (1 + j

k0r
)
e−jk0r

r
(−jk0) r̂ × N + e−jk0r

r
∇ × N

(2.62)

Note that the curl of the vector N in the above equation is

∇ × N = O(1/r) (2.63)

Therefore

∇ × {e−jk0r

r
N(θ, φ)} � e−jk0r

r
(−jk0)( r̂ × N) + O(

1

r2
) (2.64)

Hence, the operation (∇×) can be replaced by (−jk0̂r×) in the far field calculations.
We may, therefore, write

H(r) = −jk0
e−jk0r

4πr
( r̂ × N) + O(

1

r2
) (2.65)

Noting that r̂ × N = r̂ × Nt , we have

H(r) = −jk0
e−jk0r

4πr
( r̂ × Nt) (2.66)

where

Nt = N − r̂Nr = −̂r × r̂ × N (2.67)
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is referred to as the radiationvector of the current distribution1 and the termsneglected
are of the order 1/k0r2. The radiation vector has the dimension of [A.m]. We may
write

Nt = Iîh(θ, φ) (2.68)

where Ii is a reference current, usually taken as the input current to the antenna. Then
ĥ(θ, φ) is called the vector effective height function.

The electric field in the region away from the sources is given by

E(r) = 1

jωε0
∇ × H(r) (2.69)

Thus, we have

E(r) = 1

jωε0
(−jk0̂r ) × H(r)

= jk0Z0
e−jk0r

4πr
[ r̂ × ( r̂ × Nt)] (2.70)

Therefore, the transverse components of the fields dominate in the far field.
Summarizing the above results, we use the following procedure to find the far

fields of any antenna.

N =
∫

V

J(r′)ejk0r′ ·̂rdv′

Nt = Nθ θ̂ + Nφφ̂

= −̂r × r̂ × N (2.71)

E = Eθ θ̂ + Eφφ̂

= −jk0Z0
e−jk0r

4πr
Nt

H = 1

Z0
r̂ × E

It is noted that the direction of the Poynting vector is that of Nt × ( r̂ × Nt), that
is r̂ and E, H and r̂ form a right handed perpendicular system of vectors.

The above prescription is widely used to obtain the far fields of various antennas,
provided the current distribution is known.

1 This vector is due to Schelkunoff.
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2.6 Antenna Parameters

In this section, we discuss various antenna parameters. Some of these parameters
such as the radiation intensity and the directive gain pertain to the far field behavior
of the antenna, while the others like the antenna impedance are near field quantities.

2.6.1 Antenna Patterns and Radiation Intensity

A plot of |E|with constant r as a function of (θ, φ) is called the field radiation pattern
of the antenna.

The power radiated from an antenna per unit solid angle is called the radiation
intensity of the antenna. If S is the Poynting vector, then

U = r2Sr(θ, φ) (2.72)

is the radiation intensity in Watts per unit solid angle. In the far field, the Poynting
vector is given by S = 1

2Z0
|E|2̂r and

U (θ, φ) = r2

2Z0
|E|2 (2.73)

A plot of U as function of (θ, φ) is called the antenna power pattern. These patterns
are usually plotted in the far-field and are directly related to the magnitude of the
vector effective height function. The normalized power pattern is defined as

Un(θ, φ) = U (θ, φ)

U (θ, φ)max
(2.74)

For a short electric dipole, The normalized field radiation and power patterns are
shown in Fig. 2.8.

θ θ

z
z(a) (b)

Fig. 2.8 The normalized a field radiation pattern, and b power pattern pf a short Hertzian dipole
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2.6.2 Directive Gain

The directive gain of an antenna in a given direction is the ratio of the radiation
intensity in that direction to the radiation intensity of an equivalent isotropic antenna
radiating the same total average power. Thus

Dg = U

U0
= U

Prad/4π
(2.75)

where Prad can be written in terms of the radiated power density Sr

Prad =
∮

S

r2Srd� (2.76)

where d� is the element of solid angle. Thus, using the above expression and (2.72),
the directive gain (2.75) can also be expressed as

Dg(θ, φ) = 4π Sr(θ, φ)∫
4π Sr(θ, φ)d�

(2.77)

If the direction is not specified, it is implied that Dg is specified in the direction
of maximum gain. This is referred to as directivity. Directivity is denoted by D0 and
is given by

D0 = Umax

Prad/4π
= 4π∫

4π Un(θ, φ)d�
(2.78)

The directive gain can be expressed in terms of the directivity and the normalized
power pattern as

D(θ, φ) = D0Un(θ, φ) (2.79)

Example 2.2 A short Hertzian dipole transmits or receives most of its energy at
right angles to the wire; little energy is transferred along the length of the wire. Such
directivity is one of the most important electric qualities of an antenna. It allows
transmission or reception to be beamed in a particular direction, to the exclusion of
signals in other directions.

The complex Poynting vector for a short electric dipole is given by (2.31)

Sr = p2ωk3

32π2ε0r2
sin2 θ

The directive gain is expressed as
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Dg(θ) = sin2 θ
1
2

∫ π

0 sin3 θdθ
= 3

2
sin2 θ

and the directivity is D0 = 3/2. �
The directive gain may also be written in terms of the vector effective height

function ĥ(θ, φ) as

Dg = |̂h(θ, φ)|2
1
4π

∫
�

|̂h(θ, φ)|2d�
(2.80)

2.6.3 Gain

The gain of an antenna in a specified direction is defined as the ratio of the power
density radiated by the antenna, Sr(θ, φ), to the power density radiated by a lossless
isotropic antenna, Sri, provided both antennas are supplied with the same amount of
power, Pt

G(θ, φ) = Sr(θ, φ)

Sri
(2.81)

The total power radiated by the antenna is given by

Prad =
∮

S

Sr(θ, φ)ds (2.82)

while the total power radiated by the lossless isotropic antenna is given by

Pi
rad = 4πr2Sri (2.83)

This is equal to the total power delivered to the antenna Pt . However, due to the
losses in the antenna system, part of the power is dissipated in the antenna structure.
Designating this power loss as P�, the radiation efficiency is defined as

η� = Prad

Pt
(2.84)

Combining (2.82) to (2.84), we find that

Sri = 1

4πη�

∫

4π

Sr(θ, φ)d� (2.85)

and substituting in (2.81), we obtain
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G(θ, φ) = 4πη�Sr(θ, φ)∫
4π Sr(θ, φ)d�

(2.86)

In view of (2.77), the gain can be written in terms of the directive gain as

G(θ, φ) = η� D(θ, φ) (2.87)

The antenna gain accounts for ohmic losses in the antenna structure.

2.6.4 Effective Aperture

The ability of an antenna to capture energy from an incident wave and to convert
it to an intercepted power for delivering to a matched load is characterized by the
effective aperture Ae. If the incident power density at the position of the receiving
antenna is Si, then the intercepted power is given by

Pint = AeSi (2.88)

The effective aperture is also known as effective area and receiving cross section.
The effective aperture can be written in terms of directivity of the antenna as

Ae = λ2D0

4π
(2.89)

2.6.5 Antenna Impedance

Consider the antenna shown in Fig. 2.9. Enclose the antenna by a closed surface S
consisting of three surfaces: Surface Sa in the far-field region, surface Sb enclosing
the antenna and the generator, and surface Sc a tube-shaped surface connecting Sa

and Sb. Thus, we may write S = Sa + Sb + Sc. We now write the Poynting theorem
for the surface S enclosing the volume V

− 1

2

∮

S

S · dS = j2ω
∫

V

1

4
[μ0|H|2 − ε0|E|2]dV +

∫

V

1

2
E · JadV (2.90)

We may reduce the diameter of the tube Sc as far as we are pleased. Therefore,
the contribution of the surface integral Sc is negligible. Hence, we have
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Fig. 2.9 The Poynting
theorem for radiating
antennas

Sa

Sb

Sc

shield

−
∮

Sa

1

2

|E|2
Z0

dS −
∮

Sb

1

2
(E × H�) · dS = j2ω

∫

V

1

4
[μ0|H|2 − ε0|E|2]dV (2.91)

where we used the expression for S in the far-field region. We now give an interpre-
tation for the second integral on the left. If, in accordance with the concepts of circuit
theory, we ignore the displacement current and magnetic induction effects, we may
write

E = −∇� (2.92)

so that

−
∮

Sb

1

2
(E × H�) · dS = −

∮

Sb

1

2
(−∇� × H�) · dS (2.93)

Using the vector identity

∇ × (�H�) ≡ ∇� × H� + �∇ × H� (2.94)

we have

−
∮

Sb

1

2
(E × H�) · dS = 1

2

∮

Sb

∇ × (�H�) · dS − 1

2

∮

Sb

(�∇ × H�) · dS (2.95)

But since ∇ × H = J,
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−
∮

Sb

1

2
(E × H�) · dS = −1

2

∮

Sb

�J� · dS (2.96)

Clearly, the right hand side of the above equation is the power generated by the
source

−
∮

Sb

1

2
(E × H�) · dS = 1

2
�i I

�
i (2.97)

The complex voltage of the antenna is proportional to the complex terminal cur-
rent

� = Zant I (2.98)

where Zant is the antenna impedance. The real part of the antenna can be defined as

	eZant ≡ Rrad = 1

Z0

∮
S

|E|2
|I0|2 dS (2.99)

where Rrad is the radiation resistance and the imaginary part is related to the
reactive power supplied to the antenna


mZant = ω
∫

V (μ0|H|2 − ε0|E|2)dV

|I0|2 (2.100)

Example 2.3 The radiation resistance of a short electric dipole of length � can be
found by the total power radiated by the dipole in the far-field

P =
∮

S

S · ds

where S is the Poynting vector. Using (2.96), we have

P =
2π∫

0

π∫

0

(I0�)
2 k20 Z0

2(4π)2
sin2 θds

= (I0�)
2 k20 Z0

12π
= (

I0�

λ0
)2

π

3
Z0

The radiation resistance is given by
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Rrad = 2P/I 20

Thus

Rrad = Z0(
2π

3
)(�/λ0)

2

This expression is valid for short dipoles (� � λ0), but it is a good approximation
for dipoles of length � ≤ λ0/4. �

2.6.6 Friis Transmission Formula

Consider a transmitting and a receiving antenna positioned in the direction of their
maximum gain in free space separated by a distance R, as shown in Fig. 2.10 . If the
power transmitted by the transmitting antenna is Pt , the power density at the receiver
is given by

Sr = Gt
Pt

4π R2 (2.101)

where Gt is the gain of the transmitting antenna. The intercepted power at the
receiving antenna is expressed as

Pint = Ar Sr = ArGt
Pt

4π R2 (2.102)

where Ar is the effective aperture of the receiving antenna. The received power can
be written in terms of the intercepted power as

Prec = ηr Pint (2.103)

where ηr is the receiving antenna efficiency. Substituting from (2.102), we get

Prec = ηr ArGt
Pt

4π R2 = GtGr Pt

(
λ

4π R

)2

(2.104)

Fig. 2.10 The configuration
for the derivation of the Friis
transmission formula

Transmitter Receiver

R
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where use has been made of (2.89). The power transfer ratio is given by

Prec

Pt
= GtGr

(
λ

4π R

)2

(2.105)

If the antennas are positioned arbitrarily, then this ratio is given by

Prec

Pt
= GtGr

(
λ

4π R

)2

Ut(θt, φt)Ur(θr, φr) (2.106)

which is known as Friis transmission formula.

Exercises

2.1: If F = Af (r) where A is a constant vector, f is a function of r only, and
r = r̂r = x̂x + ŷy + ẑz is the position vector,
(a) show

∇ × F = r̂ × A
df

dr

(b) In particular, if f (r) = e−jkr

r , show that for kr � 1 (corresponding to the far field)

∇ × F � −jk̂r × F

(c) More generally, if F = F(r, θ, φ) = A e−jkr

r where A is any vector independent
of r but not necessarily constant, show that in the far field

∇ × F � −jk̂r × F

∇ × ∇ × F � −k2̂r × ( r̂ F)

In other words, in the far field the operator ∇(.) is equivalent to −jk̂r × (.). Thus,
given a Hertz vector, the resulting E and H in the far field region can be obtained
without any differentiation.

2.2: A straight wire of length L carrying the current ẑ I0e−jβz lies on the z-axis
(0 ≤ z ≤ L). With β a real constant, this represents a travelling wave antenna.
(a) State the Hertz vector(s) associated with this source.
(b) If the point of observation r is such that r � L , show that

|r − r′| � r − z′ cos θ

(c) Under the assumption that
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e−jk|r−r′|

|r − r′| � e−jkr

r
ejkz′

cos θ

evaluate the Hertz vector(s) in the far field.
(d) Determine E in the far field, showing that E = θ̂ Eθ

2.3: Find the radiation resistance of a short Hertzian dipole.
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