Chapter 2
Radiation

In this chapter, we discuss the basic principles of electromagnetic radiation due to
simple and distributed sources.

2.1 General Considerations

An antenna is a device used to propagate or to capture electromagnetic waves. When
an antenna is used for transmission (propagation) of radio waves, electric currents
are made to oscillate over the antenna. Energy from this oscillating charge is emitted
into space as electromagnetic radio waves. When an antenna is used for reception,
these waves induce a weak electric current in the antenna. This current is amplified by
the radio receiver. An antenna can generally be used for reception and transmission
on the same wavelength.

Electric energy is fed to an antenna by means of a transmission line, or a coaxial
cable. In reflector antennas, microwave energy is reflected from a metallic paraboloid
that shapes it into a narrow beam.

The dimensions of an antenna usually depend on the wavelength, or frequency, of
the radio wave for which the antenna is designed. The length of an antenna must be
such that it resonates electrically at the desired wavelength. The basic antenna length
must be at least half the wavelength of the radio waves it is designed to transmit
or receive. It can also be an integral multiple of the one-half wavelength. Antennas
with such dimensions are called resonant antennas. A resonant antenna is an efficient
propagator and receptor of electromagnetic energy at its design wavelength.

Let a source distribution (J, p) be confined in a region V in free space. We have
seen that the Hertz vector potential at r due to J satisfies

Vir 4+ kin = —jwieo 2.1)
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so that

e Jkolr—r \
() = / I av 22)
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where ko is the free space wavenumber. The electromagnetic fields are then given
by

E=VV. .1 +kn (2.3)
H = jwe)V x 7 2.4)

We begin our discussion of the radiating systems by elementary sources, and then
extend the concepts to distributed sources.

2.2 Elementary Sources

In this section, we are concerned with simple sources which are small in extent. For
these sources, the maximum dimension of the source is much less than free space
wavelength. We shall assume that the point of observation or the field point P is
located at a large distance from the source. This implies that

kor’ < A (2.5)
r<r (2.6)

Note that no restriction is placed on the order of magnitude of r in comparison with
the wavelength. Later on, we define various field regions based on the magnitude of
r with respect to the wavelength.

We now modify (2.2) on the basis of the approximations represented by (2.5) and
(2.6). Referring to Fig. 2.1, we have

Fig. 2.1 An elementary
current source radiating in
free space
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r—r|=R>~r—r'cosy 2.7
where y is the included angle between r and r’. That is

cosy =r-r (2.8)

Also, since kor’ cos y <« 1, we have

e TRole=r'l ~ o=ikor (1 4 jkor cos ) (2.9)
and
1 1 r
~ —(14 —cosy) (2.10)
r — 1| r r

Using the above, (2.2) can now be written as

Zo e*jk()r
=T
0 r

/J(r’)[l + (jko + é)r/ cos yldv’ (2.11)
v

Note that although the second term within the bracket is small compared with unity,

we have retained it in (2.11), because in some cases the integral / J(@)dv' is zeroin
1%

1
which case / J(') (ko + =7’ cos ydv’) would be the leading term. If / Jahdv'
v r v

is not zero, then we generally neglect the term involving r’ in (2.11).

2.2.1 The Short Electric Dipole

Consider a small linear current element of length ¢ carrying a constant current I
(actually Ipe/®"), and oriented along the 7 direction (Fig.2.2). For such a current
element

(a) (b)
| ————n i I(z) = In(1-2 12’1 |Z’|Si
A (e I ; AR (-7 ?
: ~
-0 ~
Z : 7’=0 \/
1 -q | ///
L | A
R 7l

Fig. 2.2 7Z-directed dipoles located at the origin a a short Hertzian dipole, b an Abraham dipole
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I(z) =1y, |z| =¢/2 (2.12)

We define the total current moment as
2/2
pi = / Jady == / 1)de = Itz 2.13)
v

—t)2

Consider now two time-varying charges +¢q separated by a distance ¢ and placed
along the z-axis. For small ¢, this represents a time varying dipole with moment p
defined as

p=qglz (2.14)
Substituting Iy = jwg, we have
Inl__
p=—73 2.15)
Jw

which indicates that the current moment is related to the dipole moment by
pi = jwp (2.16)

We previously defined the polarization vector P in connection with the Hertz potential
as

P= 1 (2.17)
Jjow
Thus
/P(r’)dv’ = .L/J(r/)dv/ = I,O—E’z\z P (2.18)
jow jow

v
Hence, P is indeed related to the dipole concept. The time varying dipole is referred

to as the Hertzian dipole. For an elementary current source having the distribution

2
1(z) = Ip(1 - ZlZD’ |zl = €/2 (2.19)

the current moment is

Iot__
=2

5 (2.20)

Pi
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which is half the current moment of a Hertzian dipole of the same length. This is
called the Abraham dipole.

Using the approximation similar to (2.11), it can be shown that the potential for
a Hertzian dipole of moment p; = jwp is

e Jkor e~Jkor
m(r) =~ - pi=p (2.21)
Jjwdmegr dregr

The magnetic field is given by

H =jwegV x
w1 % _ R
= 122 4 L0 ehorp 5 7) (2.22)
A 12 r
where 7 is the unit vector in the direction of the field point. The electric field E can
be obtained from

E=VV.7+kin

e—jk()r

1 jko e k(% - e~
(5 + 2080 PP -pl - 2Ex Gxp)l @223)

" dme r

In the far zone (kor > 1), only the terms depending on 1/r dominate, and we
have

k2 efjk()r
E=-2 [7x (Fxpl (2.24)
4dre
wko e~Jkor -
H=— (Fx p) (2.25)
4

For a current element Ipd¢, the above expressions can be used provided that p is
replaced by lpdl/jw.

The above expressions for the electromagnetic fields are valid for any orientation
of the dipole. For aZ-oriented dipole, we have

p=pcosOF —psin0h (2.26)
The spherical components of the electromagnetic fields are, therefore, given by

ek 1 ko

Er :p 27[60 [ﬁ + r—z]COSQ
—jkor 1 ik k2

Eo=pS = + 750 _ X0y5ing (2.27)
dreg 3 2

Lk
2

Hy = jop
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while
Ey=H,=Hy =0 (2.28)

The radiation fields of aZ-directed Hertzian dipole located at the origin are given
in component form as

2 e*jk()r
Ey = j—2 Iodz sinf (2.29)
47 weg
ko e~Jkor
Hy =j—1Iyd sin 6
¢ J47r 04 r

with E, = Ey = H, = Hp = 0. Note that in the far field, the ratio of the transverse
field components is

Eol Kk
Bol _ ko _ (2.30)
|Hy|  weo

where Zj is the free space intrinsic impedance. The radiation fields of an electric
dipole behave as a transverse electromagnetic (TEM) wave with their amplitude
decreasing as 1/r. Also, the Poynting vector is given by

1 * p2w8 2 no
S = 2E x H* = 3220 sin“ 0r (2.31)

representing a real power flow density in the 7-direction.
If a Z-directed dipole of current I (z) is located at a position r’ as shown in Fig. 2.3,
then the far fields are given by

Fig. 2.3 A short Z-directed z
Hertzian dipole positioned
atr’
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k2 efjk()(rfr’~7)
Eg=j—2 sin6 1(z)dz (2.32)
4 weg r
ko e—jko(r—r’~7)
Hy = j—sin ——— 1 (2)dz (2.33)
vi% r

2.2.2 The Small Magnetic Dipole

The half-wavelength dimensional rule applies to all antennas except wire loop anten-
nas. Small loop antennas used in transistor radios are resonant at the long, 300 m
wavelengths of the broadcast (AM) band because they contain a core of magnetic
material called ferrite. Ferrite loop antennas are used in ultracompact transistor
radios.

Consider a small loop of area A carrying a current /o as shown in Fig.2.4. Such
a current loop is called a magnetic dipole. For this loop, we note that

/ JaHdv = f Iodl = Iy ]{ de =0 (2.34)
\% C C

However, this does not imply that the current moment is zero. We define the magnetic
dipole moment as

1 [~
m = E/r’ x Jdv' (2.35)
Vv

Applying this definition to the present case, we have

1 [~ 1 ~
m = E%r/ x Iodl' = Iof E(V’ x de’) (2.36)
C C
Fig. 2.4 A small magnetic ds
dipole
dr
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Therefore,

/ s =7l A (2.37)
S

which is clearly independent of the shape of the loop. In order to find the Hertz
potential, we invoke (2.11). Thus

2y e Jkor
m(r) >~ —]— /J(r ) (ko + )r cos ydv’
7 e~ Jkor .
S — (ko + —)/J(r/)r’r/ Fdv’
ko 4m r
Zo e Jkor 1 ror
= —j— Oko + )l d¢ (2.38)
ko 4w r
C
Employing the vector theorem
%I/Jdﬁ/ = —/V/w x nds’ (2.39)

C N

we obtain

Zolo e Jkor 1 [V -r) xnds
Tr()—JT4 ko+—)/—
Zoly e ]kor
—]k— (ko + — ) 7 x nds’ (2.40)

Substituting for the magnetic current moment m, we have

Zg e M
(r)=—j—
ko 4

(m x 7)) (jko + ) (2.41)

and if the loop is oriented so that 7 =Z, we find

Zo eJkor

m(r) =—

;20 m(iko + )sm9¢> (2.42)
k() drrr

It is noted that the Hertz potential is directed entirely in the a direction, regardless
of the size of the loop. Using (2.22) and (2.23), it can be shown that the complete
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electromagnetic fields for a 7 oriented magnetic dipole are given by

—Jjkor ik 1 -
E— m€4n K270 (—Jr—o + ;) $in 09 (2.43)

e~Ikor 1 jko N 1 jko K\ . ~
H=m 25+ )cosOr+| - +— — — |sin60] (2.44)
4 r3 r2 r3 r2 r

For such a magnetic dipole, E, = Eg = hy = 0.
In the far zone, as r goes to infinity, we obtain from the above

e_jk()r

E~ k3 Zosin6¢p
m prpmal) 0sinf¢
(2.45)
—Jjkor .
H =~ —m>——k3sin0d
Tr
Also, the Poynting vector is given by
1 N mzng() PR
S = EE x H* = ) sin“ 07 (2.46)

again representing real power flow in the radial direction.

2.3 Wire Antennas

Consider a straight wire antenna driven by a current distribution e[/ (z)e/®!] similar
to half of what is shown in Fig.2.5. Using expressions (2.32) and (2.33), we may
find the fields due to a wire antenna by the superposition integral. Thus, the electric
field is given by

'k2 —jkor N
Ey~ 4711 a‘jeo sing - / 1Z)e*or' Tay (2.47)

We may write the above expression as

-k2€ —jkor .
Ep~ 2507 T eiy6) (2.48)
drwey r

where 1 is defined as
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Fig. 2.5 A center-fed wire N
antenna of length 2L

_ 02
V() = # 1(Z)e*or' gy (2.49)

—t)2

and ¢ is the length of the antenna. The quantity v is dimensionless and is independent
of Ip and ¢yo. It displays the angular dependence of the radiated field and is some-
times referred to as the field radiation pattern. In order to evaluate v, the current
distribution should be known.

Example 2.1 Let the current distribution on a center-fed wire antenna of length 2L
shown in Fig. 2.5 be given by

sinko(L — |z])

I(z) = Iy sin(koL)

Using (2.49), we obtain

L
sin 6 / sinko(L = 121) jtoe cost 1./
2L sin(kgL)

4GOS

Evaluating the integral, we find that

1 |:cos(koL) — cos(koL cos 9)}

VO = L sintol)

sin @

The radiated electric field is given by (2.48). ]
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2.4 Field Regions

The vector potential at a point P due to a source distribution J in free space is given
by (2.2). Depending on the location of the observation point, the maximum linear
dimension of the source and the wavelength, various approximations are made to
evaluate (2.2), and hence the fields.

We consider point sources and extended sources separately.

2.4.1 Point Sources

If the maximum linear dimension of the source is small compared to the wavelength,
that is, ¥’ < A or kr’ < 1, then the exponential term in the integrand of (2.2) may
be approximated by the first two terms of its Taylor series expansion. This will yield
(2.11) applicable for point or small sources. For such cases, the nature of the fields
produced are different for kr << 1 and kr > 1, with the source assumed to be located
at the origin. The two regions, so defined, are called the (reactive) near field and
(radiating) far field regions of the source (Fig.2.6). The common boundary of these
two regions are arbitrarily chosen to be at kr = 1 or, equivalently, r = A /2.

\
\
\
\
\
|
Reactive Near Field Region |  Radiating Far Field Region
l
. ° A !
F<< 2 o |
I
kr<1 l kr>1
/
/
/
/
/
/
/

Fig. 2.6 Field regions for point sources in the near field region, the reactive energy is dominant,
while in the far field, the radiating energy is dominant
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2.4.2 Extended Sources

In many cases, the maximum dimension of the source may be much larger than A.
Due to the extended nature of the source, the far field region can no longer be assumed
A
to start at 5-. .
Under the assumption

r> v, kor>1 (2.50)

we may write

Ir—r| :r—(?-r’)+%[r/z—(’r‘-r/)z]+(9(r7/)3 (2.51)
when making phase calculations and
Ir—r'|~r (2.52)
for amplitude considerations. Under these assumptions, (2.2) reduces to

(?- r/)z r/2

2y (2.53)

w(r) >~ —j—

Zoe o [ jkol(For) +
=S / e

14

According to the IEEE Standard, the far field region, also known as the Fraunhofer
region starts at a distance » where

2

Tmax _ 5 /16 (2.54)
2r
that is
2/ (2.55)
i .
Assuming D to be the maximum linear dimension of the source, r, max = D/2, and
we obtain the far field region definition as
r>2D*/x (2.56)

Under this condition, only the (7 - r’) term in the exponential integrand of (2.53) is
retained.

0 e —Jjkor
m(r) =~ —J—

/ Ja)e o Ty (2.57)
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Fig. 2.7 Field regions for extended sources. In the Fresnel region, the angular field distribution
depends on the distance from the antenna, while in the Franuhofer region, it is independent of the
distance

This is the usual approximation used when determining the radiation fields of anten-
nas. The neglect of lower order terms introduces a maximum phase error of kor'?/2r
implying an error of 77/8 at the far field boundary = 2D?/A. For larger distances,
the error will be less.

The far field region is dominated by radiating energy and is very important in
antenna analysis and design.

The region in which the second order term kor’?/2r must be retained for field
calculations is referred to as the Fresnel region. This is also known as the quasi-far
field or the radiating near field region. There is no clearly marked boundary for the
specification of the Fresnel region. However, for electrically large sources (D >> 1),
the region may be defined as

D?/4) < r < 2D?*/ (2.58)

as shown in Fig.2.7.

The near field region extends from the source up to the lower boundary of the
Fresnel region. For this region in which the reactive energy dominates, no general
approximation is made in the evaluation of the potential and the fields.

2.5 Far Field Calculation for General Antennas

The far field expression (2.57) for the Hertz potential may be written as

Zy eor
(r) = A
o 4mr

N(@, ¢) (2.59)
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where

_ / (@) o Ty (2.60)

The magnetic field is given by
H(r) = jwegV x 7 (r) (2.61)
Since we are interested in the far fields, we wish to express the result only retaining

those terms behaving like e /X" /r as r — oo. Carrying out the differentiation, we
have

—jkor e—Jkor —jkor
V x { N@, ¢)} = V( ) x N+ V x N
r
ik 1 —ikor
_ _(J_O + —5)e M (T N) + ¢ _VxN
i —Jkor e—Jkor
=(1+_) (—jko) 7T x N + V xN
(2.62)
Note that the curl of the vector N in the above equation is
VxN=01/r) (2.63)
Therefore
—Jkor e—Jkor R 1
Vx| N@, ¢)} = (=jko)(* x N) + O(ﬁ) (2.64)

Hence, the operation (V x) can be replaced by (—jkogr x) in the far field calculations.
We may, therefore, write

—jkor
H(r) = —jk
(r) = —jko yp

—(FxN) + (9(—) (2.65)

Noting that 7 x N =7 x N;, we have

—Jjkor

H(r) = —jk() (r x Ny) (2.66)

where

N,=N-7N,=-7x7rxN (2.67)
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is referred to as the radiation vector of the current distribution! and the terms neglected
are of the order 1/ kor?. The radiation vector has the dimension of [A.m]. We may
write

N, = I;h(0, ¢) (2.68)

where I; is a reference current, usually taken as the input current to the antenna. Then
h(0, ¢) is called the vector effective height function.
The electric field in the region away from the sources is given by

E(r) = ;V x H(r) (2.69)

JWEQ

Thus, we have

1 o~
E(r) = —(—jkor) x H(r)
Jjweo
—Jjkor

= jkoZo 1 [7 x (7 x Np)] (2.70)

r

Therefore, the transverse components of the fields dominate in the far field.
Summarizing the above results, we use the following procedure to find the far
fields of any antenna.

N= / J)eror' T qy
\%

=-7x7xN 2.71)

E = E¢f + Esd

efjk()r

= —jkoZ
TR0 dr
1

H=—7"xE
Zy

N;

It is noted that the direction of the Poynting vector is that of N; x (7 x N;), that
is7and E, H and 7 form a right handed perpendicular system of vectors.

The above prescription is widely used to obtain the far fields of various antennas,
provided the current distribution is known.

! This vector is due to Schelkunoff.
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2.6 Antenna Parameters

In this section, we discuss various antenna parameters. Some of these parameters
such as the radiation intensity and the directive gain pertain to the far field behavior
of the antenna, while the others like the antenna impedance are near field quantities.

2.6.1 Antenna Patterns and Radiation Intensity

A plot of |E| with constant r as a function of (9, ¢) is called the field radiation pattern
of the antenna.

The power radiated from an antenna per unit solid angle is called the radiation
intensity of the antenna. If S is the Poynting vector, then

U =r*S.0, ) (2.72)

is the radiation intensity in Watts per unit solid angle. In the far field, the Poynting
vector is given by 8 = ﬁ |E|%7 and

}"2 2
U@, ¢) = %IEI (2.73)

A plot of U as function of (6, ¢) is called the antenna power pattern. These patterns
are usually plotted in the far-field and are directly related to the magnitude of the
vector effective height function. The normalized power pattern is defined as

Un0, ) = — &9 2.74)

U0, #)max

For a short electric dipole, The normalized field radiation and power patterns are
shown in Fig.2.8.

(@ (b) z

Fig. 2.8 The normalized a field radiation pattern, and b power pattern pf a short Hertzian dipole
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2.6.2 Directive Gain

The directive gain of an antenna in a given direction is the ratio of the radiation
intensity in that direction to the radiation intensity of an equivalent isotropic antenna
radiating the same total average power. Thus

U U
D= —=—"—— (2.75)
Uo Prad / 4
where P, can be written in terms of the radiated power density S,
Prag = ?{ 285,dS2 2.76)

N

where df2 is the element of solid angle. Thus, using the above expression and (2.72),
the directive gain (2.75) can also be expressed as

4r S- (0, @)

Dg(@, ¢)) = f4n Sr(9,¢)d9

(2.77)

If the direction is not specified, it is implied that D, is specified in the direction
of maximum gain. This is referred to as directivity. Directivity is denoted by Dy and
is given by

Unax 4
Praa/Am  [4, Un(0, $)dQ2

Do = (2.78)

The directive gain can be expressed in terms of the directivity and the normalized
power pattern as

D0, ¢) = DoUn(6, ¢) (2.79)

Example 2.2 A short Hertzian dipole transmits or receives most of its energy at
right angles to the wire; little energy is transferred along the length of the wire. Such
directivity is one of the most important electric qualities of an antenna. It allows
transmission or reception to be beamed in a particular direction, to the exclusion of
signals in other directions.

The complex Poynting vector for a short electric dipole is given by (2.31)

S, =

The directive gain is expressed as



74 2 Radiation
D,(f) = ———— = Zsin%6
8 1

and the directivity is Do = 3/2. (]

The directive gain may also be written in terms of the vector effective height
function i (0, ¢) as

_ 1. 9P
= Jo 1h(0, 9)12dQ2

. (2.80)

2.6.3 Gain

The gain of an antenna in a specified direction is defined as the ratio of the power
density radiated by the antenna, S, (0, ¢), to the power density radiated by a lossless
isotropic antenna, S,;, provided both antennas are supplied with the same amount of
power, P;

S-(0,
G@®,p) = . 9) 2.81)
Sri
The total power radiated by the antenna is given by
Praa = j{ S0, ¢)ds (2.82)
S
while the total power radiated by the lossless isotropic antenna is given by
Pl =A4xr?S, (2.83)

This is equal to the total power delivered to the antenna P;,. However, due to the
losses in the antenna system, part of the power is dissipated in the antenna structure.
Designating this power loss as Py, the radiation efficiency is defined as

Prad
= 2.84
uli P, (2.84)
Combining (2.82) to (2.84), we find that
1
Si= o [ S0, 0)49 (2.85)
47 ne
4

and substituting in (2.81), we obtain
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41neS, (6, ¢)

GO, ¢p)= ———— (2.86)
Juz S0, 9)d2
In view of (2.77), the gain can be written in terms of the directive gain as
GO, ¢9)=nD(O, ) (2.87)

The antenna gain accounts for ohmic losses in the antenna structure.

2.6.4 Effective Aperture

The ability of an antenna to capture energy from an incident wave and to convert
it to an intercepted power for delivering to a matched load is characterized by the
effective aperture A,.. If the incident power density at the position of the receiving
antenna is S;, then the intercepted power is given by

Pint = A.S; (2.88)

The effective aperture is also known as effective area and receiving cross section.
The effective aperture can be written in terms of directivity of the antenna as
22Dy

T A4x

A, (2.89)

2.6.5 Antenna Impedance

Consider the antenna shown in Fig.2.9. Enclose the antenna by a closed surface S
consisting of three surfaces: Surface S, in the far-field region, surface S; enclosing
the antenna and the generator, and surface S, a tube-shaped surface connecting S,
and Sp. Thus, we may write S = S, + Sp + S.. We now write the Poynting theorem
for the surface S enclosing the volume V

1

1 1
— 5%5 -dS =j2a)/ Z[,uo|H|2 — ¢|E[*1dV +/§E-JadV (2.90)

N 14 14

We may reduce the diameter of the tube S, as far as we are pleased. Therefore,
the contribution of the surface integral S, is negligible. Hence, we have



76 2 Radiation

Fig. 2.9 The Poynting
theorem for radiating T~ /
antennas

2 Zy

Sa

1|EFdS 1 Ex B . 1 2 2
I Sl T E( x H") - dS = 2w Z[“‘)'H' —¢|E|*1dV  (2.91)
Sp 14

where we used the expression for S in the far-field region. We now give an interpre-
tation for the second integral on the left. If, in accordance with the concepts of circuit
theory, we ignore the displacement current and magnetic induction effects, we may
write

E=-Vo (2.92)
so that
1 * 1 *
—%E(EXH)-dS:—j{E(—VCDXH)-dS (2.93)
Sp Sp
Using the vector identity
V x (PH*) = VO x H* + &V x H* (2.94)

we have

1 1 1
—fz(ExH*)-dS=E%VX(ch*)-dS—E%@VxH*)-ds (2.95)
Sp Sp Sp

Butsince VxH =],
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1 . 1 .
—%E(EXH)~dS=—§7{©J‘dS (2.96)
Sp Sp

Clearly, the right hand side of the above equation is the power generated by the
source

1 1
— j{ E(E x H*) -dS = E‘bili" 2.97)
Sp

The complex voltage of the antenna is proportional to the complex terminal cur-
rent

S = Zyul (2.98)
where Z,,; is the antenna impedance. The real part of the antenna can be defined as
NeZ R ! j{ Ly ds (2.99)
Ne =Ruyw=—¢ — .
ant ad Zo < |IO|2

where R,y is the radiation resistance and the imaginary part is related to the
reactive power supplied to the antenna

o [y, (nolHI* — €o|E|?)dV
[To]?

SMZ gt = (2.100)

Example 2.3 The radiation resistance of a short electric dipole of length ¢ can be
found by the total power radiated by the dipole in the far-field

P:f&ds

S

where S is the Poynting vector. Using (2.96), we have

2 7 k2Z
_ 2 %40 . 2
P_//(Ioﬂ)msm Ods
00
k220 Igt 7
= (Ip0)* L= = (=5)?2Z
(o?) o ()»0)3 0

The radiation resistance is given by
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Ryaq = 2P /13
Thus
Rud = 202010

This expression is valid for short dipoles (¢ < Xg), but it is a good approximation
for dipoles of length £ < Ao /4. (]

2.6.6 Friis Transmission Formula

Consider a transmitting and a receiving antenna positioned in the direction of their
maximum gain in free space separated by a distance R, as shown in Fig.2.10 . If the
power transmitted by the transmitting antenna is P, the power density at the receiver
is given by

Py

S, =G, ——
" "4x R2

(2.101)

where G, is the gain of the transmitting antenna. The intercepted power at the
receiving antenna is expressed as

P,
Pim = ArSr = ArGtﬁ (2102)

where A, is the effective aperture of the receiving antenna. The received power can
be written in terms of the intercepted power as

Prec = 1y Ping (2.103)

where 7, is the receiving antenna efficiency. Substituting from (2.102), we get

P, 4,6, — GG (- ’ 2.104
rec—nrrtm— tUr m 2. )
Fig. 2.10 The configuration Transmitter Receiver
for the derivation of the Friis
transmission formula ¥
R

O e
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where use has been made of (2.89). The power transfer ratio is given by

Prec Y
=G,G, | — 2.105
=66, (1) 2.105)

If the antennas are positioned arbitrarily, then this ratio is given by

P rec
Py

5 \2
= GG, <4—) Ui (0, o) U (Or, 1) (2.106)
TR

which is known as Friis transmission formula.

Exercises

2.1: If F = Af(r) where A is a constant vector, f is a function of r only, and
r = ¥ = XX + Yy + zZ is the position vector,
(a) show

daf

VxF=7xA—
dr

—jkr

(b) In particular, if f(r) = “——, show that for kr > 1 (corresponding to the far field)

VxF>~—jkr xF

(¢) More generally, if F = F(r, 0, ¢) = A%— where A is any vector independent
of r but not necessarily constant, show that in the far field

—jkr
r

VxF>~—jki xF
V x V x F~ —k*7 x (FF)
In other words, in the far field the operator V(.) is equivalent to —jk7 x (.). Thus,

given a Hertz vector, the resulting E and H in the far field region can be obtained
without any differentiation.

2.2: A straight wire of length L carrying the current ZIpe /A lies on the z-axis
(0 <z < L). With g areal constant, this represents a travelling wave antenna.

(a) State the Hertz vector(s) associated with this source.

(b) If the point of observation r is such that » > L, show that

r—r'|~r—7cosf

(c) Under the assumption that
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—jkfr—r| —jkr

e/ e 0

—_— ~ & cos @
,

Ir —r’|

evaluate the Hertz vector(s) in the far field.
(d) Determine E in the far field, showing that E = 0 Ey

2.3: Find the radiation resistance of a short Hertzian dipole.

2 Radiation
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