
Chapter 1
Introduction

“So, naturalists observe, a flea
Has smaller fleas that on him prey;
And these have smaller still to bite ’em,
And so proceed ad infinitum.”
Jonathan Swift

1.1 What Is a Set Operad?

Let us start with an example. Consider a set of (injective) parenthesized words.

A = (a(bhd)), B = ((ec)g), C = (((nim)j )k).

Suppose, we have another parenthesized word F = ((AB)C) for the symbols that
represent the previous set of words. Then we define a “product” between the set of
internal words and the external one as follows,

η({A, B, C}, F ) = (((a(bhd))((ec)g))(((nim)j )k)))

which is simply the substitution of the internal words in the places assigned by the
external one. Now, assume that we have assigned other values to the letters A, B,
and C. Let A = (a), B = (b), C = (c), and we again “multiply” {A, B, C} by F . In
this case we obtain the word (((a)(b))(c)) = ((ab)c) that can be identified with F .
On the other hand, assume F = (A) is a singleton word, with A being (a(bhd)), for
example . The product is then equal to ((a(bhd))), that can be identified with A. The
singleton words are like the “identity” for our operation (product) η. We can also add
a third, fourth, or even more levels in a hierarchy of nested parenthesized words. If
we perform the operation of substitution on each of the levels, we shall get the same
result, independently of the order on the levels that we may choose. Due to this, we
say that the substitution product η is associative.

The family of parenthesized words is an operad. We shall see in Chap. 4 that this
operad was “counted” by Hipparchus as early as around 160 BC. Now, we can give
an intuitive and informal description of a what a set operad is. A set operad consists
of the following data:
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• A family of labeled combinatorial structures
• An “associative” mechanism η that creates larger structures from smaller, using

as assembler an external structure in the same family
• Identity structures over the singleton sets

Set operads are the simplest kind of operads. This monograph is aimed at being an
introduction of this concept as a first approach to the general subject.

1.2 Some Historical Remarks

Operads first appeared in the context of algebraic topology, in the work of Boardman
and Vogt [BV68] under the name of operators in normal form and of May [May72]
where the name operad was introduced. The interested reader is referred to the
introduction of [MSS07] for an extended historical account on the origins of operads.

Set operads on the other hand, have had an independent and informal life. From de-
composition theory (which we discuss below) initiated in the 1960’s, [BE65, Sha61,
Sha63, Sha67], to the combinatorial interpretation of umbral calculus by Reiner
[Rei78], many examples of set operads have been considered. Although general
techniques were developed, no acknowledgment of the implicit general subjacent
structure was given until 1981. Joyal in [Joy81], gave a general brief definition of
set operads in the context of the theory of species and the monoidal structures that
implicit its operations. Using Joyal’s approach, a general way of constructing posets
from cancellative operads was introduced in [Mén89, MY91].

After the breakthrough brought along by the introduction of the Koszul duality for
operads by Ginzburg and Kapranov [GK94], a renaissance took place in the study
of operads. From the point of view of a combinatorialist, Koszul duality (either for
operads or for algebras), can be seen as a sophisticated way of inverting a formal
power series, with respect to the operation of substitution for operads, and with re-
spect to the operation of product, for algebras. Of course, it is much more than that,
but this pedagogical exaggeration can be used as a motivating starting point. That re-
naissance gave rise to research in many areas, from algebraic topology to theoretical
physics [MSS07], which have continued to yield important results to our days. Let us
mention only a few in the case that concerns us, set operads that can be constructed
by combinatorial methods and that lead to interesting algebraic structures. The in-
troduction of the diassociative Dias [Lod01], Trias [LR04], Quad [AL04] operads.
The permutative Perm operad studied in [Cha01], the nonassociative permutative
operad NAP [Liv06a], the operad 2Com of two compatible associative commutative
algebras [DK07]. More recently, an interesting construction from ordinary monoids
to set operads with many applications to combinatorics was given in [Gir14].

Regarding Koszulness, in [Val07], Vallette introduced a method for proving this
property for a cancellative operad by studying the Cohen–Macaulay properties of the
associated posets. This method was successfully used by Chapoton and Vallette to
prove the Koszulness of the Dias and Trias, and their commutative versions Perm and
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Comtrias[CV06]. In [CL07] Chapoton and Livernet used the same approach to prove
the Koszulness of the NAP operad. In [Str08], Strohmayer proved the Koszulness of
the 2Com operad. See also [Val08] where complete families of operads were proved
to be Koszul by the poset method.

Set Operads have permeated recently into other areas such as free probability
and database theory in computer science. Male introduced a new notion of freeness
[Mal13], by means of an algebra constructed from an operad. The structures of this
operad are directed graphs with multiple edges and distinguished input and output
vertices. His notion of freeness is nontrivial interbreeding between Voiculescu’s
[Voi85] and classical independence. Spivak has studied in [Spi13], the operad of
wiring diagrams and the algebra of relations to model relational databases, plug-
and-play devices, and recursion. The operadic point of view brings the advantage
of formalizing effectively self-similarity and creation of larger structures from the
smaller ones.

1.3 Objectives of this Monograph

This monograph has two main objectives. The first one is to give a self-contained ex-
position of the relevant facts about set operads, in the context of combinatorial species
and their operations. This approach has various advantages; one of them, is that the
definition of the basic combinatorial operations on species, sum, product, Hadamard
product, substitution and derivative, is simple and natural. They were designed as
the set theoretical counterparts of the operations with the same names on exponen-
tial generating functions, providing an immediate insight as to their combinatorial
meaning. The definition of these operations using the alternative approach of S-sets,
that is, sequences of actions of the symmetric groups, Sn × R[n] → R[n], n ≥ 0,
requires the use of representation theory (induced representations) whose combina-
torial meaning is not as clear. The same that can be said about operations is also
true about operads, a concept whose combinatorial meaning relies on a notion that
is intrinsic to the substitution of species, which are the structures placed inside other
structures. Moreover, operads usually interact with combinatorial operations. For
example, thanks to the chain rule for species, the derivative of an operad is a monoid
with respect to the product of species, giving a nice link between operads and asso-
ciative algebras. The pointing of an operad (distinguishing a vertex on each structure)
gives rise naturally to another operad. The product of an operad with the uniform
species (equivalent to taking partial structures) is also an operad. The language of
species then provides a handy toolbox for a variety of combinatorial constructions.
However, up to date there is neither elementary expository work addressing set op-
erads, nor any kind of operads, from this point of view. Even though we use a
categorical language, all the concepts are fully explained providing many examples
and figures in Chaps. 2 and 3.

The second objective, relating set operads to decomposition theory, is more am-
bitious. Before formulating it, we present a brief historic account on the sources of
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this theory. For more than 40 years decompositions of discrete structures have been
studied in different branches of discrete mathematics, for example, combinatorial op-
timization, network and graph theory, switching design or Boolean functions, simple
multi-person games and clutters, etc. In 1965 Z. Birnbaum and J. D. Esary [BE65]
proved a unique prime factorization theorem for monotonic Boolean functions. In
1967, the 2012 economy Nobel laureate L.T. Shapley proved a similar unique factor-
ization for simple multiperson games [Sha67]. That same year T. Gallai [Gal67] gave
a prime decomposition theorem for simple graphs. Gallai used his decomposition to
prove a necessary and sufficient condition to recognize transitive orientable graphs,
and exhibited an algorithm running in polynomial time to that end. Since then, a
vast literature has flourished in what is now called “modular decomposition theory,”
or more concisely decomposition theory. Many efficient algorithms have been de-
vised to solve particular decomposition problems in graph theory (see for example,
[JSC72, HM79, CH94, MS94, TCHP08, DGM01, HPV99, BXHLdM09]). At the
same time, decomposition theorems have been used to design a variety of divide and
conquer algorithms, including one for drawing complex networks [PV06]. Modular
decomposition of linear orders have been used in problems related to comparative
genomics, in order to measure the evolutive distance between the genomes of two
chromosomes (see for example, [BCdMR08]). To decompose or factorize a combi-
natorial structure means to always place the “factors,” that are smaller structures, in
the nodes of a tree, each factor being either “trivial” or “prime”.

We can now formulate our second objective, which is to recast decomposition
theory into the more general framework of set and algebraic operads. Within this
framework, the terms “factor,” “trivial,” and “prime,” have a general and precise
meaning without specifying the family of structures we are dealing with. In Chap. 4
we survey many of the results of modular decomposition theory, integrated into the
context of combinatorial operations with species and set operads, and interpret prime
factorization in terms of decorated Schöder trees. By introducing the operation of
amalgam between operads, we extend the classical notion of unique factorizable
structures.

In Chap. 5 we study L -species (classes of rigid structures), families of structures
whose subjacent sets are totally ordered. In this case there are two kinds of prod-
uct operations and two kinds of substitutions, ordinal (see [Joy81]) and shuffle (see
[LV89, BLL98], and references therein). These two substitutions give rise, respec-
tively, to two kinds of operads, nonsymmetric and shuffle. The decomposition of
the nonsymmetric operad of permutations (see [AS02, AA05, BHV08]) and many
others coming from the symmetric world follow the same general amalgam recipe
of Chap. 4.

In Chap. 6 we study Koszulness of cancellative operads. In this context, by
removing the hypothesis on homogeneity of generators, we present a generaliza-
tion of Vallette’s criterion relating Koszulness with Cohen–Macaulay posets from
cancellative operads.
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