
2Surfaces of Revolution

A surface of revolution is generated by rotation of a plane
curve z = f(x) about an axis Oz called the axis of the surface
of revolution. The resulting surface therefore always has
azimuthal symmetry. Hence, an explicit equation of a surface
of revolution can be presented in the following form:

z ¼ f ðrÞ ¼ f ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ;

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the distance a point of the surface from

the axis of rotation. Right cylindrical and conical surfaces are
examples of surfaces generated by a straight line when the line
is coplanar with the axis, as well as hyperboloids of one sheet
when the line is skew to the axis. A sphere is a surface of
revolution of a circle around an axis which runs through the
center of the circle. If the circle is rotated about a coplanar
axis, not crossing the circle, then it generates a torus.

Meridians are the lines of intersections of a surface of rev-
olution with planes passing through an axis of rotation. All
meridians of one surface of revolution are congruent to the
rotated curve. A plane passing through the axis of the surface of
revolution is called the meridian plane. It is the plane of sym-
metry of the surface. Any surface of revolution has the infinite
number of planes of symmetry. Parallels are the lines of
intersection of the surface with planes orthogonal to an axis of
rotation. Meridians and parallels of a surface of revolution are
the lines of principal curvatures. Any normal of surfaces of
revolution intersects its axis of rotation. A surface of revolution
having more than one axis of rotation is a sphere or a plane.

Tangents to all meridians in the points located on one
parallel circle are lines on the tangent conical (or cylindrical)

surface of revolution, which is created by the revolution of
the tangent about the axis of the rotation. A vertex of the
tangent conical surface is located on the axis of revolution.

A parallel is called the neck circle, if tangent planes to the
surface of revolution in the points on this circle are parallel to
the axis of revolution and the tangent cylindrical surface is
located inside the surface of revolution. A parallel is called the
equator circle, if tangent planes to the surface of revolution in
the points on this circle are parallel to the axis of revolution
and the tangent cylindrical surface is located outside the
surface of revolution. A parallel is called the crater circle,
if tangent plane to the surface of revolution in the points on
this circle is perpendicular to the axis of revolution and normal
to the surface of revolution in the points of this parallel are
parallel to the axis of revolution and form the normal cylin-
drical surface.

Umbilical points of a surface of revolution are placed on
those latitudes on which a center of curvature of a meridian is
located on the axis of rotation. Sphere is umbilical surface.
Under Alexis-Claude Clairaut theorem, the product of a
radius of a parallel into cosines of an angle of intersection of
the geodesic line with the parallel is constant along the geo-
desic line.

A surface of revolution admits bending into another
surface of revolution and a net of lines of principal curva-
tures is remained.

Parametrical equations of arbitrary surface of revolution
are

r ¼ rðr; bÞ ¼ r cos biþ r sin bjþ f ðrÞk:
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Assume an equation of ameridian in the form r = r(α) where
α is the angle of the normal to the surface passing through a
given point with the axis of rotation (Fig. 1) then r ¼ R2 sin a.
Coefficients of the fundamental forms of the surface of revo-
lution can be obtained with the help of formulas:

A ¼ A að Þ ¼ R1a; B ¼ B að Þ ¼ r ¼ R2 sin a; F ¼ 0;

L ¼ R1 að Þ; M ¼ 0; N ¼ R2 sin a;

where R1 is the principal radius of curvature of the meridian
that is the coordinate line of α, R2 is the principal radius of
curvature of the parallel. The lines α = const are parallels and
the lines β = const are meridians.

If an equation of a meridian is given in the form r = r
(z) (Fig. 1) then an equation of a surface of revolution can be
written with the help of three scalar equations:

x ¼ r sin b; y ¼ r cos b; z ¼ z

where r = r(z) is a function that determines the shape of the
meridian (a profile curve); β is the angle of rotation of the
plane of the meridian and then

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p
; F ¼ 0; B ¼ rðzÞ;

k1 ¼ 1
R1

¼ � r00

1þ r02
� �3=2 ; k2 ¼ 1

R2
¼ 1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p ;

where the derivatives with respect to z are denoted by
primes; k1, k2 are principal curvatures of the surface. A
normal curvature of a surface in the direction of the meridian
is equal to a curvature of the meridian, i.e., k1. Meridians of
surface of revolution are geodesic lines.

Catenoid is the only one minimal surface of revolution.
One-sheet hyperboloid of revolution, right circular cylinder
and right circular cone are the only ruled surfaces. The last
two surfaces are the only developable surface of revolution.
If a beginning and an end of unclosed rotated line are placed
on an axis of rotation then the surface of revolution will be
the closed one.

A great deal of surfaces of revolution exists and is studied in
different scientific publications. Tens of surfaces of revolution
are presented in this encyclopedia and shown on pages 101–104.
Such surfaces of revolution as “Lochdiskus”, “Jet Sur-
face”, “Apple Surface”, “Kidney Surface”, “Fish Sur-
face”, “Limpet Torus”, Darwin-de Sitter spheroid, and others are
known but used less and may be found in other original sources.
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■ Surfaces of Revolution Presented in the Encyclopedia

The ellipsoid of revolution
The pseudo-sphere 

The catenoid
The spherical 

surface (sphere)
The surface of 

rotation of a Neil’s 
parabola

The circular torus

Conical surface 
of revolution

The one-sheet 
hyperboloid of 

revolution

The Kappa surface

Corrugated surface 
of revolution 

of a common sinusoid

The bullet nose

The surface of revolution 
of a Agnesi curl

Paraboloid of revolution

Surface of revolution of a parabola
Globoid (toroid) 

The cylindrical 
surface of revolution
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Two-sheeted hyperboloid of 
revolution

The surface of 

revolution of a cycloid

The surface of revolution of a hyper- 
bola z = b/x around the Oz axis 

The fourth order 
paraboloid of revolution

The surface of 
revolution of a sinusoid

The elliptic torusThe pseudo-catenoid

The surface of revolution 
of the Agnesi curl

The surface of revolution 
of a astroid

Surface of revolution of the 
parabola of arbitrary position

Surface of revolution of 
the biquadrate parabola

“Penka”

102 2 Surfaces of Revolution



The cyclic surface of 
revolution 

“Wedding-ring” 

Surface of revolution given 
by a harmonic function 

z = ln[x2 + y2]1/2

The cycloidal torus

“Kiss surface”

The astroidal torus

The Ding–Dong surface 

Surface of revolution «Pear»

“Eight surface”

The parabolic humming-top

The parabolic-and-logarithmic 
surface of revolutionThe hyperbolic-and-logarithmic

surface of revolution

The surface of revolution 
with damping circle waves

“Drop”
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Additional Sources
Parametrische Flächen und Körper. http://www.3d-meier.de/
tut3/

http://www.wolframalpha.com/input/?i=surface+of
+revolution (2014).

Fairing of cycloidal type
The surface of conjugation of 

two coaxial cylinders of 
different diameters

The deformed sphere

Surface of revolution of
the hyperbola of arbitrary 

position

Surface of revolution 
of the inclined sinusoid

Surface of revolution of 
the evolvent of the circle

Surface of revolution “Egg” 
of the fourth order

The surface of conjugation of the coaxial
cylinder and the cone

Surface of revolution 
“Egg” of the third order

Soucoupoid

The Piriform Surface
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■ One-Sheet Hyperboloid of Revolution

One-sheet hyperboloid of revolution is generated by the
rotation of a hyperbola

x2=a2� z2=c2 ¼ 1

about the Oz axis (Fig. 1). These are twice ruled surfaces.
Through every point of the surface, two straight lines, lying on
the hyperboloid, pass (Fig. 2). A hyperboloid can be con-
structed by rotation of a generatrix straight line about the Oz
axis but the straight generatrix and the axis are skew lines
(Figs. 3 and 4). The surface is the only one ruled surface of
revolution of negative Gaussian curvature. The parallel lying
in a plane z = 0 has a radius r = a and is called a waist
circumference that represents a geodesic line. All of the rest of
the geodesic lines besides the equator go from infinity coming

nearer to the equator. One of them intersects the equator and
goes to other half of the surface but others do not reach the
equator and touching the some parallel, turn back; the third
geodesic lines come nearer asymptotically to the equator.

Forms of definition of one-sheet hyperboloid of
revolution

(1) Implicit equation (canonical equation):

x2 þ y2

a2
� z2

c2
¼ 1:

If a = c, then a hyperboloid is called a right hyperboloid.

(2) Parametrical equations (Figs. 3 and 4):

x ¼ xðu; vÞ ¼ �a sin u� av cos u;

y ¼ yðu; vÞ ¼ a cos u� av sin u;

z ¼ zðvÞ ¼ � cv:

Fig. 1

Fig. 2

Fig. 3

Fig. 4
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Coefficients of the fundamental forms of the surface:

A2 ¼ a2 1þ v2
� �

; B2 ¼ a2 þ c2; F ¼ � a2;

L ¼ � ca2 1þ v2
� �

= A2B2 � F2� �1=2
;

M ¼ a2c= A2B2 � F2� �1=2
; N ¼ 0:

Coordinate lines v (u = const) coincide with one system
of straight lines but the lines u are the parallels of the
hyperboloid of one sheet. In Fig. 3, the hyperboloid is shown
with taking into consideration the upper signs in the para-
metrical equations of the surface. The lower signs are taken
into account in Fig. 4.

(3) Parametrical equations (Fig. 1):

x ¼ x r; bð Þ ¼ r cos b; y ¼ y r; bð Þ ¼ r sinb;

z ¼ zðrÞ ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � a2

p
=a:

Coordinate lines r and β (parallels and meridians) are the
lines of principal curvatures.
(4) Parametrical equations (Fig. 1):

x ¼ xðz; bÞ ¼ a
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ z2

p
sin b;

y ¼ yðz; bÞ ¼ a
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ z2

p
cos b;

z ¼ z:

Coordinate lines z and β (meridians and parallels) are the
lines of principal curvatures.

(5) Parametrical equations (Fig. 1):

x ¼ x b; að Þ ¼ acha cos b; y ¼ y b; að Þ ¼ acha sin b;

z ¼ z vð Þ ¼ csha:

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A ¼ acha; F ¼ 0; B2 ¼ a2sh2aþ c2ch2a;

L ¼ �acch2a=B; M ¼ 0; N ¼ ac=B;

k1 ¼ �c=ðaBÞ; k2 ¼ ac=B3:

The surface is widely used in civil (Fig. 5) and industrial
(Fig. 6) engineering.

Additional Literature
Krivoshapko SN. Static, vibration, and buckling analyses
and applications to one-sheet hyperboloidal shells of revo-
lution. Applied Mechanics Reviews. 2002; Vol. 55, No. 3,
p. 241-270 (261ref.).

Fig. 5 The planetarium in Saint Louis, USA

Fig. 6 The Cooling Towers, Uzbekistan
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■ Fairing of Cycloidal Type

A surface of a fairing of cycloidal type is formed by the
rotation of a cycloidal curve

x ¼ x tð Þ ¼ a t þ sin tð Þ; z ¼ z tð Þ ¼ c 1þ cos tð Þ

about an axis Oz (Fig. 1). If a = c, then a generatrix curve
becomes a typical cycloid. The form of fairing is defined by a
form of meridian that is given with the help of splines. Assume
a curve generated by the trajectories of the points of an axis of
symmetry of a limaçon of Pascal in the process of its rolling
along a cycloid as a generatrix curve of a surface of revolution.

Forms of definition of the surface

(1) Parametrical equations (Figs. 1, 2 and 3):

x ¼ xðz; bÞ ¼ rðzÞ sin b;
y ¼ yðz; bÞ ¼ rðzÞ cos b;
z ¼ z;

where

r ¼ rðzÞ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð2c� zÞp

c
þ arccosðz

c
� 1Þ

" #
;

β is the angle counted off from the coordinate axis Oy in the
direction of the axis Ox; 0� b� 2p; 0� z� 2c: In Fig. 1, it
is assumed that c = 2a.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ 1þ a2z
c2ð2c� zÞ ; F ¼ 0; B ¼ rðzÞ;

k1 ¼ kz ¼ � r00ðzÞ
A3 ¼ az

A3ð2cz� z2Þ3=2
;

M ¼ 0; k2 ¼ kb ¼ 1
AB

:

The contour parallel z = 0 is the only geodesic parallel on
the surface because the tangent lines to the meridians in its
points are parallel to the axis of rotation. Choosing the

parameters a и c, it is possible to seek necessary character-
istics for a fairing. The ratio of maximum height H of the
surface to the diameter (2rmax = 2aπ) of the geodesic parallel
and a radius of curvature of the meridian in the frontal point
(z = 2c) are the main characteristics of the fairing.

A radius of curvature R of the meridians in the frontal
point of the surface is defined by a formula:

R ¼ 4a2

c
:

(2) Parametrical equations (Figs. 1, 2 and 3):

x ¼ xðt; cÞ ¼ aðt þ sin tÞ cos c;
y ¼ yðt; cÞ ¼ aðt þ sin tÞ sin c;
z ¼ zðtÞ ¼ cð1þ cos tÞ;

where γ is the angle counted off from the coordinate axis Ox
in the direction of the axis Oy; 0� c� 2p; 0� t� p.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ a2ð1þ cos tÞ2 þ c2 sin2 t; F ¼ 0; B ¼ aðt þ sin tÞ;
L ¼ � acð1þ cos tÞ

A
; M ¼ 0; N ¼ � cB

A
sin t;

k1 ¼ kt ¼ � acð1þ cos tÞ
A3 ; k2 ¼ kc ¼ � c sin t

AB
:

(3) A particular case of parametrical equations (Fig. 3).

Fig. 2 c = 4a

Fig. 1 Fig. 3 c = a
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If one takes c = a, then a surface of rotation of a typical
cycloid about an axis of Oz will be:

x ¼ xðt; cÞ ¼ aðt þ sin tÞ cos c;
y ¼ yðt; cÞ ¼ aðt þ sin tÞ sin c;
z ¼ zðtÞ ¼ að1þ cos tÞ:

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ 2a2ð1þ cos tÞ; F ¼ 0; B ¼ aðt þ sin tÞ;

L ¼ �A
2
; M ¼ 0; N ¼ � aB

A
sin t;

k1 ¼ kt ¼ � 1
2A

; k2 ¼ kc ¼ � a sin t
AB

;K ¼ a sin t
2A2B

[ 0:

References
Krutov AV. On movement defined by centroid-and- trajec-
tory pairs. Izv. vuzov. Mashinostroenie. 2001; No. 2-3,
p. 3-6 (11 ref.).
Krutov AV. Forming curves of fairing. Izv. vuzov. Mashi-
nostroenie. 2002; No. 5, p. 78-80 (3 ref.).

■ Pseudo-Sphere

Gaussian curvature (К = k1k2) is equal to a constant negative
number, i.e.

K ¼ �1=a2;

in all points of a pseudo-spherical surface (Figs. 1 and 2). A
pseudo-sphere or Beltrami surface is formed by rotation of a
tractrix that is trahere in Latin, about an axis Oz. A tractrix
is an evolvent of the catenary:

r ¼ ach
z
a
:

Parametrical equations of a tractrix are written as

x ¼ a sin u;

z ¼ a cos uþ ln tan
u
2

h i
;

where 0\u\p; и is the angle of the axis Oz with the
tangent to the tractrix.

A tractrix can be defined by an explicit equation:

z ¼ a ln
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p
;

where the upper signs concern the positive branch z > 0,
lower signs concern the negative branch z < 0 (Fig. 2). A
length of fragment of the tangent line to the tractrix from the
point of tangency till the point of intersection with the Oz
axis is constant and equal to a > 0. The line of the cross
section of a pseudo-sphere by a plane xOy (an edge of a
pseudo-sphere) is the circle with a radius a, all of the rest of
parallels have a less radius r, that is r < a.

A volume of one part of a pseudo-sphere is

V ¼ pa3

3
:

The inner geometry of pseudo-sphere coincides locally
with the Lobachevski geometry.Fig. 1

Fig. 2
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Forms of definition of the surface

(1) Parametrical form of definition:

x ¼ xðu; vÞ ¼ a sin u cos v;

y ¼ yðu; vÞ ¼ a sin u sin v;

z ¼ zðuÞ ¼ a cos uþ ln tan
u
2

h i
;

where и is the angle of the axis Oz with the tangent to the
meridian. An edge of a pseudo-sphere has и = π /2.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A ¼ aco tan u; F ¼ 0; B ¼ a sin u;

L ¼ �ac tan u; M ¼ 0; N ¼ a sin u cos u;

k1 ¼ � tan u=a; k2 ¼ co tan u=a:

Meridians u and parallels v except the edge of the pseudo-
sphere (и = π/2) are the lines of principal curvatures.

(2) Parametrical equations:

x ¼ xðr; bÞ ¼ r cos b; y ¼ yðr; bÞ ¼ r sin b;

z ¼ zðrÞ ¼ a ln aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p� �
=r

h i
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p
;

where r is the distance an axis of rotation from a corre-
sponding point of the pseudo-sphere (r < a), the circum-
ference r = a is the edge of the pseudo-sphere.

An area of the fragment of a pseudo-sphere between the
parallels r = a and r = ro is

S ¼ 2pa a� roð Þ:

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A ¼ a
r
; F ¼ 0; B ¼ r;

L ¼ a

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p ; M ¼ 0; N ¼ � r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p

a
;

k1 ¼ r

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p ; k2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p

ar
:

(3) Parametrical equations:

x ¼ xðc; tÞ ¼ 1
c
cos at; y ¼ yðc; tÞ ¼ 1

c
sin at;

z ¼ zðcÞ ¼ a ln acþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2c2 � 1

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1=c2

p
:

Coefficients of the fundamental forms of the surface:

A ¼ B ¼ a
c
; F ¼ 0;

L ¼ � a

c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2c2 � 1

p ; M ¼ 0;

N ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2c2 � 1

p
c2

;

K ¼ �1=a2 ¼ const:

Here, using the substitution γ = 1/r and t = β/a, we
reduced a linear element of the surface to isothermal form
that is when A = B.

Additional Literature
Popov AG. Pseudo-spherical surfaces and some problems of
mathematical physics. Fundamental and Applied Mathe-
matics. 2005; Vol. 11, No. 1, p. 227-239.

■ Paraboloid of Revolution

A paraboloid of revolution is created by the rotation of a
parabola

x2 ¼ 2pz

about an axis z (Fig. 1). The parabolic surface can be gen-
erated also by translation of a movable parabola y2 = 2pz
along the fixed parabola x2 = 2pz (Fig. 2).

The peak of the movable parabola must slide along the
fixed parabola but the plane and the axis of the moving
parabola must remain parallel. The concavities of the both
parabolas must be directed in one side.

z

Fig. 1
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Paraboloid of revolution possesses the interesting optical
property. The light rays coming from the focus after the
reflection of them from the surface of the paraboloid will go
parallel to the axis of paraboloid of revolution.

Forms of definition of the surface

(1) Explicit form of definition (Fig. 2):

2z ¼ ðx2 þ y2Þ=p:

Coefficients of the fundamental forms of the surface and
its curvatures:

A2 ¼ 1þ x2

p2
; F ¼ xy

p2
; B2 ¼ 1þ y2

p2
;

L ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ x2 þ y2

p ¼ N; M ¼ 0; k[ ¼ L
A2 ;

k�� ¼ L
B2 ; k1 ¼ L; k2 ¼ p2L3:

On the surface of a paraboloid of revolution, coordinate
lines x, y generate Tchebychef’s net, i.e., every quadrangle
formed by the lines of curvilinear coordinate net has equal
opposite sides. The coordinate net is non-orthogonal (F ≠ 0)
but conjugate (M = 0).

The partial derivatives дz/дx and дz/дy are much less than
one in strength analyses of real shallow shell objects and that
is why it is possible to neglect squares of the derivatives in

comparison with 1. So, the formulas obtained will take the
simplified form for shallow middle surfaces of shells:

A ¼ B ¼ 1; F ¼ 0; L ¼ 1=p ¼ N; M ¼ 0;

kx ¼ ky ¼ 1=p:

(2) Parametrical equations (Fig. 1):

x ¼ xðr; bÞ ¼ r cos b; y ¼ yðr; bÞ ¼ r sinb;

z ¼ zðrÞ ¼ r2=ð2pÞ:

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ 1þ r2=p2; F ¼ 0; B ¼ r;

L ¼ 1=ðpAÞ; M ¼ 0; N ¼ r2=ðpAÞ;
k1 ¼ 1=ðpA3Þ; k2 ¼ L:

(3) Parametrical equations (Fig. 1):

x ¼ xðu; vÞ ¼ a
ffiffiffiffiffiffiffiffi
u=h

p
cos v;

y ¼ yðu; vÞ ¼ a
ffiffiffiffiffiffiffiffi
u=h

p
sin v;

z ¼ zðuÞ ¼ u where u� 0; 0� v� 2p:

The paraboloid has a radius r = a at the height of z = h.
An area of the lateral surface of a paraboloid of revolution is

S ¼ pa a2 þ 4h2
� �3=2� a3
h i

= 6h2
� �

:

A volume of a paraboloid of revolution is V = πa2h/2 if
0� v� 2p; 0� u� h:

Fig. 2

Fig. 3 The glass dome of museum, Kiev, Ukraine Fig. 4 A planetarium in Bochum, Germany
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Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ 1þ a2

4uh
; F ¼ 0; B2 ¼ a2u

h
;

L ¼ a

2u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4uh

p ; M ¼ 0; N ¼ 2auffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4uh

p ;

k1 ¼ L
A2 ; k2 ¼

N
B2 :

The surface is widely used in civil (Fig. 3) and industrial
(Fig. 4) engineering.

Additional Literature
Krivoshapko SN. Parabolic shells of revolution. Montazhn. i
spetz. raboty v stroitelstve. 1999; No. 12, p. 5-12 (63 ref.).

■ Circular Torus

A circular torus or torus in Latin is formed by rotation of a
circumference

x� að Þ2 þ z2 ¼ b2

about an axis Oz. An open torus is a torus (Fig. 1) generated
by rotation of a circumference about an axis lying outside
limit of this circle (a > b). A closed torus (Horn Torus) is a
torus generated by rotation of a circumference about an axis
touching (a = b, Fig. 2) or intersecting (a < b, Figs. 3 and 4)
the circle. The inner part of surface of an open torus is a
surface of negative Gaussian curvature but the outer surface
is a surface of positive Gaussian curvature (Figs. 1, 2 and 3).

Forms of definition of the surface

(1) Implicit equations:

x2 þ y2 þ z2 þ a2 � b2
� �2¼ 4a2 x2 þ y2

� �
:

Fig. 1 The torus with a > b (the open torus)

Fig. 2 The torus with a = b (the closed torus)

Fig. 3 The torus with a = 0 (a sphere)

Fig. 4 The torus with a < b (the closed torus)
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(2) Parametrical equations:

x ¼ xðu; vÞ ¼ ðaþ b cos vÞ cos u;
y ¼ yðu; vÞ ¼ ðaþ b cos vÞ sin u;
z ¼ zðvÞ ¼ b sin v;

where a is a radius of the centers of generatrix circles, b is a
radius of a generatrix circle, an angle u is called an inner
latitude of a point of the torus; 0� u� 2p; 0� v� 2p; a
ratio b/a is an eccentricity of torus. On a circular torus
besides parallels and meridians, two families of plane circles,
called Villarceau circles, exist. They can be seen in the cross
sections of a torus by a plane touching the torus at two
points. A radius of Villarceau circles is equal to a.

An area of the whole surface of a torus is 4π2ab, its
volume is 2π2ab2.

Coefficients of the fundamental forms of the surface:

A ¼ aþ b cos v; F ¼ 0; B ¼ b;

L ¼ �ðaþ b cos vÞ cos v; M ¼ 0; N ¼ �b;

K ¼ cos v=ðbAÞ:

Assume a < b (Fig. 4), then the angle v changes in the
limit of

� arccos �a=bð Þ� v� arccos �a=bð Þ;

but if we want to have the torus (the lemon) shown in Fig. 4b
then we must take

arccos �a=bð Þ� v� 2pþ arccos �a=bð Þ:

(3) Parametrical equations:

x ¼ xðu; bÞ ¼
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
� b

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p cos u;

y ¼ yðu;bÞ ¼
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
� b

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p sin u;

z ¼ bbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ; b ¼ a tan a;

where α is the angle of the straight line, connecting the
center of the generatrix circle of the radius b with arbitrary
point of the torus, with a plane z = 0.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A ¼ að
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
� bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p ; F ¼ 0; B ¼ ab

a2 þ b2
;

L ¼ � a2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
� bÞ

a2 þ b2
; M ¼ 0; N ¼ a2b

ða2 þ b2Þ2 ;

k1 ¼ ku ¼ �1=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
� bÞ; k2 ¼ kv ¼ 1=b:

(4) Parametrical equations of a circular torus if
a = b (Fig. 2):

x ¼ xðc; uÞ ¼ aðchc� 1Þ
chc

cos u;

y ¼ yðc; uÞ ¼ aðchc� 1Þ
chc

sin u;

z ¼ athc:

Additional Literature
Gulyaev VI, Bazhenov VA, Gotzulyak EA, Gaydaychuk VV.
An Analysis of Shells of Complex Form. 1990; Kiev:
Budivelnik, 192 p.
Kutzenko GV. Axis-symmetrical deformation of a circular
torus. PM. 1979; Vol. 15, No. 11, p. 46-51.

■ Elliptic Torus

An elliptic torus is generated by the rotation of an ellipse of
arbitrary position (Fig. 1):

x ¼ xðvÞ ¼ aþ r cos v; z ¼ zðvÞ ¼ r sin v;

where r ¼ rðvÞ ¼ cbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 sin2 bþc2 cos2 b

p ; b ¼ m� h, about an

axis Oz; θ = const is the slope angle of the semi-axis of the
ellipse ξ with the plane xOy.

Mo

-ba

O
r

z

v

-c

b

c

Fig. 1
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An open elliptic torus is a torus formed by the rotation of
an ellipse about an axis Oz lying outside of the limit of this
ellipse (Figs. 1 and 2).

A closed torus is a torus generated by rotation of an
ellipse about an axis Oz touching (Fig. 3) or intersecting
(Fig. 4) the ellipse.

An ellipse touches an axis of rotation if the condition
дx/дv = 0 carries out or

r2 c2� b2
� �

sin 2 v� hð Þ½ � ¼ 2c2b2 tan v:

Parametrical equations of the surface have the following
form:

x ¼ xðu; vÞ ¼ ðaþ r cos vÞ cos u;
y ¼ yðu; vÞ ¼ ðaþ r cos vÞ sin u;
z ¼ zðvÞ ¼ r sin v;

where a is the radius of the circle generated by the point
of the intersection of the axes ξ and η of the generatrix
ellipse (Fig. 1); r is the distance the point of the inter-
section of the ellipse’s axes from an arbitrary point Mo

belonging to the ellipse; b, c are the semi-axes of the
ellipse; 0� u� 2p; 0� v� 2p; u is the angle of the axis
Ox with the axis Oy.

If one of the axes of the generatrix ellipse, for example,
the ξ axis, is parallel to the axis of rotation Oz, then it is
necessary to assume θ = π/2. If we take b = c, then we shall
have r = b, v = β, but an elliptical torus will degenerate into
a circular torus where a will be a radius of the centers of
generatrix circles with the radius of b.

Coefficients of the fundamental forms of the surface:

A ¼ aþ r cos v; F ¼ 0;

B2 ¼ ðb4 sin2 bþ c4 cos2 bÞr6
c4b4

;

L ¼ �A
B
r
c2 � b2

2c2b2
r2 sin 2b sin vþ cos v

� �
;

M ¼ 0; N ¼ � r6

c2b2B
:

Having assumed a = 0, we can design an oblique ellip-
soid of revolution (Fig. 5a, b and c).

Additional Literature
Clark RA, Girloy TI. and Reissner E. Stresses and defor-
mation of toroidal shells of elliptical cross section. J. Appl.
Mech. 1953; Vol. 20, No. 4.

Fig. 2

Fig. 3

Fig. 4

Fig. 5
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■ Surface of Revolution of a Curve z = b exp(−a2x2)
Around the Z Axis

The surface is formed by rotation of a curve z ¼ be�a2x2

about a coordinate axis z.

Forms of definition of the surface

(1) Parametrical equations (Fig. 1):

x ¼ xðuÞ ¼ u; y ¼ yðvÞ ¼ v; z ¼ b exp½�a2ðu2 þ v2Þ�:

The surface is called «Die Glocke» in German.

(2) Parametrical equations (Fig. 2):

x ¼ x r; bð Þ ¼ r cos b; y ¼ y r; bð Þ ¼ r sin b;

z ¼ z rð Þ ¼ be�a2r2 ;

where 0� r\1; 0� b� 2p; z� b.

(3) An explicit equation (Fig. 1): z ¼ be�a2ðx2þy2Þ

■ Two-Sheeted Hyperboloid of Revolution

Two-sheeted hyperboloid of revolution is formed by rotation
of a hyperbola

� x2

a2
þ z2

c2
¼ 1;

about its focal axis (an axisOz). The surface has two separate
sheets when the axis of revolution is the transverse axis.

A section of a hyperboloid by a plane z = h > c = const

gives a circle with a radius r ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � c2

p
=c (Fig. 1). If we

cut a hyperboloid by a plane y = t = const, then hyperbolas
z ¼ � c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ t2 þ x2

p
=a will be in the cross section (Fig. 2),

but having intersected a hyperboloid by a plane x = p =

const, we can have hyperbolas z ¼ � c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ p2 þ y2

p
=a

(Fig. 2).
The peaks of two sheets of hyperboloid are placed at the

points with coordinates (0, 0, ±c). The signs correspond two
sheets of hyperboloid. Two-sheeted hyperboloid of revolu-
tion belongs to a class of not closed central surfaces of the
second order. It is a particular case of hyperboloid of two
sheets which is presented in Chap. “35. Surfaces of the
second order.”

Forms of definition of the surface

(1) Implicit equation:

�x2 � y2

a2
þ z2

c2
¼ 1;

a = b = 1; 

− 2 ≤ u, v ≤ 2m

Fig. 1

0 ≤ r ≤ 2m
a = b = 1; 

Fig. 2

z

x

O

y

Fig. 1

Fig. 2
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where a and c are the semi-axes of a hyperboloid of revo-
lution, zj j � c; a2/c = p is a focal parameter of meridian. A
hyperboloid is called a right hyperboloid of revolution if
a = c. It is formed by rotation of an equilateral hyperbola.
An asymptotical cone of two-sheeted hyperboloid of revo-
lution is defined by an implicit equation:

x2 þ y2

a2
� z2

c2
¼ 0:

A hyperboloid of revolution is a quadric surface.

(2) Explicit equation (Fig. 2):

z ¼ � c
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2 þ y2

p
(3) Parametrical equations (Fig. 1):

x ¼ xðu; vÞ ¼ ashu cos v; y ¼ yðu; vÞ ¼ ashu sin v;

z ¼ �cchu:

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ a2ch2uþ c2sh2u;

F ¼ 0; B ¼ ashu;

L ¼ � ac
A
; M ¼ 0;

N ¼ � ac
A
sh2u;

k1 ¼ � ac
A3 ; k2 ¼ � c

aA
:

Coordinate lines u, v are the lines of principal curvatures.

(4) Parametrical equations (Fig. 1):

x ¼ xðz; bÞ ¼ r sinb;

y ¼ yðz; bÞ ¼ r cos b;

z ¼ z; where r ¼ a
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � c2

p
:

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p
; F ¼ 0; B ¼ rðzÞ;

k1 ¼ 1
R1

¼ � r00

1þ r02
� �3=2 ; k2 ¼ 1

R2
¼ 1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p ;

where the first and second derivatives of r with respect to
parameter z are denoted by primes.

(5) A parametrical form of definition with the help of polar
coordinates of the meridians (Fig. 1):

x ¼ xðu; bÞ ¼ q sinu sin b;

y ¼ yðu; bÞ ¼ q sinu cos b;

z ¼ zðuÞ ¼ q cosu;

where

q ¼ p
1� e cosu

; p ¼ a2

c
; e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

c2

r
;

h�u� pþ h; cos h ¼ 1
e
:

Additional Literature
Vasil’ev AN. Stability of anisotropic two-sheeted hyperbo-
loid of revolution with filling material. Kazan: KFEI, 1991;
14 p., 6 ref., Dep. v VINITI 08.07.91, No. 2887-В91.
Gritskevich OV, Meshcheryakov NA, Pod’yapol’skii YuV,
Precision laser processing of curved surfaces of revolution,
QUANTUM ELECTRON. 1996; 26 (7), p. 644-646.

■ Surface of Conjugation of Two Coaxial Cylinders of
Different Diameters

A surface of conjugation of two coaxial cylinders of different
diameters may be included as a component of the two
classes of surfaces. These are a class of cyclic surfaces and a
class of surfaces of revolution.

The surface is formed by rotation of the sinusoid about a
common axis of two conjugated cylinders (Fig. 1).

Parametrical equations of the surface of conjugation are
(Figs. 1 and 2).
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x ¼ xða; bÞ ¼ rðaÞ cos b; y ¼ yða; bÞ ¼ rðaÞ sin b;
z ¼ a;

where

r ¼ rðaÞ ¼ R2 � R1

2
1� cos

pa
2b

� �
þ R1

¼ R2 � R1ð Þ sin2 pa
4b

þ R1

is a law of change of a radius of the studied surface of
conjugation along an axis Oz (an axis of rotation); R2 �R1;
0� a� 2b; 2b is a length of a segment between two cylin-
ders of different diameters; β is the angle in the planes of
parallels taken from the axis Ox in the direction of the axis
Oy; 0� b� 2p:

Two parallels placed in the cross sections z = 0 and
z = 2b are geodesic lines, because the tangent to the meridians
at the points of these parallels are parallel to the axis of rotation.

All meridians of the surface of revolution are geodesic
lines too.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2¼ 1þ p2

16b2
R2�R1ð Þ2sin2pa

2b
; F¼ 0; B¼ rðaÞ;

L¼�p2 R2�R1ð Þ
8b2A

cos
pa
2b

; M¼ 0; N¼B
A
;

ka¼ k1¼�p2 R2�R1ð Þ
8b2A3 cos

pa
2b

; kb¼ k2¼ 1
AB

;

K¼�p2 R2�R1ð Þ
8b2A4B

cos
pa
2b

;

H¼p2 R2�R1ð Þ R2�R1�ðR2þR1Þcos pa=ð2bÞ½ �f gþ16b2

32b2A3B
:

A curvilinear coordinate net is given in lines of principal
curvatures α, β. If R2 [R1, then the surface has a segment of
negative Gaussian curvature if 0� a� b and of positive
Gaussian curvature if b� a� 2b. In Fig. 2, the surface of
conjugation is shown with

R2 ¼ 3R1; b ¼ 3R1; 0� a� 2b; 0� b� 2p:

The surface in issue is a component of subclass “Cor-
rugated surface of revolution of a common sinusoid” con-
tained also in a class “Surface of revolution.” A surface of
conjugation degenerates into a cylindrical surface of revo-
lution if R1 = R2.

Additional Literature
Gulyaev VI, Bazhenov VA, Gotzulyak EA, Gaydaychuk VV.
An Analysis of Shells of Complex Form. 1990; Kiev:
Budivelnik, 192 p.

Fig. 2

■ Surface of Revolution “Wellenkugel”

Information about a surface of revolution “Wellenkugel” is
presented in sites given in References. This surface has
parametrical equations:

x ¼ u cos cos uð Þ cos v;
y ¼ u cos cos uð Þ sin v;
z ¼ u sin cos uð Þ:

In Fig. 1, the surface with 0� u� 14; 5 m; 0� v� 1; 5p
is shown.

References
1. Mathematics Museum (Japan). Introduction to Geometry,
Ibaraki University, 2002, http://mathmuse.sci.ibaraki.ac.jp/
MuseumE.html
2. Parametrische Flächen und Körper.—http://www.3d-mei
er.de/tut3/Seite63.html

Fig. 1
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■ Surface of Conjugation of Coaxial Cylinder and Cone

A surface of conjugation of coaxial cylinder and cone is a
fragment of a corrugated surface of revolution of a common
sinusoid. It is formed by rotation of a curve

y ¼ a 1� cos 2pz=cð Þ½ � þ R1

about an axis Oz. Having assumed two necessary conditions

2pa
c

sinð2pb
c
Þ ¼ tan u and

a 1� cosð2pb
c
Þ

� �
þ R1 ¼ R2;

we may design a surface of conjugation of coaxial cylinder
with a radius R1 and circular cone with the angle φ at the
vertex and with a base having a radius R2 (Fig. 1). So,
having six constants R1, R2, a, b, c, and φ, one may take four
constants as desired but two remaining geometrical constants
are derived from the system of two presented equations.
Moreover, it is necessary to take a < 0 when R1 > R2.

For example, let us consider that R1, R2, c, and φ are
given, then the rest two parameters a and b can be obtained
with the help of formulas:

a ¼ �1
R1 � R2

R1 � R2ð Þ2
2

þ c2 tan2 u
8p2

" #
;

b ¼ c
2p

arcsin
c tanu
2pa

if u[ 0;

R2 > R1 (Fig. 1) or φ < 0, R2 < R1 and

b ¼ c
2
� c
2p

arcsin
c tanu
2pa

if u\0; R2 [R1 or

u[ 0; R2\R1:

Forms of definition of the surface

(1) Parametrical equations:

x ¼ xðz; bÞ ¼ r cos b;

y ¼ yðz; bÞ ¼ r sin b;

z ¼ z

where

r ¼ rðzÞ ¼ a 1� cosð2pz=cÞ½ � þ R1;

0� z� b; b\c; 0� b� 2p (Figs. 1 and 2).
Coefficients of the fundamental forms of the surface:

A2 ¼ 1þ 4p2a2

c2
sin2

2pz
c

; F ¼ 0; B ¼ rðzÞ;

L ¼ � 4ap2

c2A
cos

2pz
c

; M ¼ 0; N ¼ r
A
:

k1 ¼ kz ¼ � 4ap2

c2A3 cos
2pz
c

; k2 ¼ kb ¼ 1
rA

;

K ¼ � 4ap2

c2rA4 cos
2pz
c

:

All meridians and also the parallels z = 0, z = c/2, and
z = c on surface of a coaxial cylinder and a cone are geodesic
lines. The surface of conjugation contains fragments of
positive Gaussian curvature in the limits of c/4 < z < 3c/4 if
a > 0 and fragments of negative Gaussian curvature in the
limits of 0 < z < c/4 and 3c/4 < z < c if a > 0.

The surface of conjugation shown in Fig. 1 has the fol-
lowing geometrical parameters: R2 = 1.5R1, c = 4R2, and
φ = π/6.

The surface of conjugation with R1 = 1.5R2, c = 4R2, and
φ = π/6 is presented in Fig. 2.

2R
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Fig. 2
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(2) Parametrical equations:

x ¼ xðz; bÞ ¼ r cos b;

y ¼ yðz; bÞ ¼ r sin b;

z ¼ z;

r ¼ r zð Þ ¼ a 1� cos 2pz=cð Þ½ � þ R1;

a ¼ R2 � R1;

where b = c/4; c = 2πa/ tan φ if φ > 0, a > 0 (Fig. 3) or φ < 0,
a < 0 (Fig. 4) and b = 3c/4; c = −2πa/tan φ if φ < 0, a > 0
(Fig. 5) or φ > 0, a < 0 (Fig. 6).

Coefficients of the fundamental forms of the surface are
defined by the formulas given for the first variant.

The surfaces shown in Figs 1, 2, 3, 4, 5 and 6 are con-
structed when |φ| = π/6.

Reference
Krivoshapko SN. Model surfaces of connecting fragments of
two pipe lines. Montazhn. i spetz. raboty v stroitelstve. 2005;
No.10, p. 25-29.

Fig. 3

Fig. 4

Fig. 5

Fig. 6

■ Surface Formed by Rotation of a Meridian in the
Form of Semicubical Parabola

A surface is generated by rotation of a semicubical parabola
z = bx2/3 (Neil’s parabola) about an axis Oz. This surface of
revolution has a singular point with coordinates (0, 0, 0).

Forms of definition of the surface

(1) Explicit equation:

z ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y23

p
:
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(2) Parametrical equations:

x ¼ u3; y ¼ v3; z ¼ b u6 þ v6
� �1=3

:

(3) Parametrical equations (Fig. 1):

x ¼ xðr; bÞ ¼ r cos b;

y ¼ yðr; bÞ ¼ r sinb;

z ¼ zðrÞ ¼ br
2
3:

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ 1þ 4b2

9
r�

2
3; F ¼ 0; B ¼ r;

L ¼ � 2b
9A

r�
4
3; M ¼ 0; N ¼ 2b

3A
r
2
3;

k1 ¼ � 2b
9A3 r

�43; k2 ¼ 2b
3A

r�
4
3:

This is a surface of negative total curvature, i.e., K < 0.

z

x y
O

Fig. 1

■ Surface of Revolution of a Hyperbola z = b/x About
the Oz Axis

Forms of Definition of the Surface

(1) Explicit equation:

z ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p :

A surface of rotation of a hyperbola z = b/x about the axis
Oz can be reckoned also in Tzitzéica’s surface with central
affine invariant equal to I = −4/(27b2).
(2) Parametrical equations (Fig. 1):

x ¼ xðr; bÞ ¼ r cos b; y ¼ yðr; bÞ ¼ r sin b;

z ¼ zðrÞ ¼ b=r;

where x > 0, y > 0, r ¼ b=r:
Coefficients of the fundamental forms of the surface and

its principal curvatures:

A2 ¼ 1þ b2

r4
; F ¼ 0; B ¼ r;

L ¼ 2b
Ar3

; M ¼ 0; N ¼ � b
Ar

;

k1 ¼ 2b
r3A3 ; k2 ¼ � b

r3A
:

The surface of rotation of a hyperbola is a surface of
strictly negative Gaussian curvature. Not a single parallel
will be a geodesic line.

If we assume b = 1, i.e., z = 1/x on [1, ∞], then we have
Gabriel’s Horn, or Gabriel’s Trumpet, due to a highly
unusual and paradoxical trait. The volume of Gabriel’s Horn
is equal to π on [1,∞] and the area of lateral surface is equal
to infinity, i.e., A = ∞, on [1, ∞]. So, we have a surface
with infinitive surface area enclosing a finite volume.

Additional Literature
Tzitzéica G. Sur une nouvelle classe de surface. Comptes
Rendus, Acad. Sci. Paris. 1907; 144, p. 1257-1259.

z

Fig. 1
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■ Parabolic Humming-Top

A surface “Parabolic humming-top” has a parabola, as a
meridian, the axis of which is perpendicular to the axis of
rotation but a peak of the parabola is lying at the axis of
rotation, i.e., on an axis z (Fig. 1).

This surface called also “Der Kreisel” can be given by
parametrical equations (Fig. 2):

x ¼ ð zj j � hÞ2
2p

cos b;

y ¼ ð zj j � hÞ2
2p

sin b; z ¼ z;

where h is a height of one sheet of the surface; h2/(2p) is a
radius of the equator of the surface of revolution (Fig. 1);
�h� z� h; 0� b� 2p: The peaks of two generatrix
parabolas are placed in the points with coordinates (0;
0; ± h). This surface contains two segments of a surface of
rotation of a parabola (Page 123).

z

x

h

h2

2 p

Fig. 1

■ Surface of Revolution of an Astroid

A surface of revolution of an astroid can be generated by the
rotation of a astroid x2/3 + z2/3 = a2/3 about its axis Ox or Oz
(Fig. 1).

Forms of definition of the surface

(1) Explicit equation:

z ¼ � a2=3 � x2 þ y2
� �1=3h i3

2
:

The surface has two singular points in the poles of the
surface with the coordinates x = y = 0, z = ��a and an edge
of regression that is the parallel r = a when z = 0.

(2) Parametrical equations:

x ¼ x r; bð Þ ¼ r cos b;
y ¼ y r; bð Þ ¼ r sin b;

z ¼ �ða2=3 � r2=3Þ3=2;

where 0� r� a:
Coefficients of the fundamental forms of the surface and

its principal curvatures:

A ¼ a
r

� �1=3
; F ¼ 0; B ¼ r;

L ¼ a1=3

3r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=3 � r2=3

p ; M ¼ 0; N ¼ � r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=3 � r2=3

p

a1=3
;

k1 ¼ 1

3ðarÞ1=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=3 � r2=3

p ; k2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=3 � r2=3

p

ra1=3
;

K ¼ � 1
3r4=3a2=3

\0:

Fig. 2

Fig. 1
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(3) Parametrical equations:

x ¼ xðt; bÞ ¼ a sin3 t cos b; y ¼ yðt; bÞ ¼ a sin3 sin b;
z ¼ zðtÞ ¼ a cos3 t:

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A ¼ 3a sin t cos t; F ¼ 0; B ¼ a sin3 t;

L ¼ 3a sin t cos t; M ¼ 0; N ¼ �a sin3 t cos t;

k1 ¼ 2
3a sin 2t

; k2 ¼ � cos t

a sin3 t
; K\0:

■ Astroidal Torus

A surface of the rotation of an astroid is formed by an
astroid

x2=3 þ z2=3 ¼ a2=3

rotating about any of two its axes Ox or Oz. If an astroid

x ¼ x uð Þ ¼ a cos3 u; z ¼ z uð Þ ¼ a sin3 u

is placed at the r distant from the axis of rotation, then we
will have an astroidal torus. An inner area bounded by an
astroid is

A ¼ 3
8
pa2:

A length of full astroid is 6a. It can be noted that an
astroid is an evolute of the ellipse. The evolute of an astroid
is another astroid.

An astroidal torus can be defined by parametrical
equations:

X ¼ Xðu; vÞ ¼ ½r þ xðuÞ cos h� zðuÞ sin h� cos v;
Y ¼ Yðu; vÞ ¼ ½r þ xðuÞ cos h� zðuÞ sin h� sin v;
Z ¼ ZðuÞ ¼ xðuÞ sin hþ zðuÞ cos h;

where θ is the angle of rotation of local axes x, z of the
generatrix astroid in the vertical plane containing the axis
The local coordinate system is rotated counter-clockwise if
the θ angle has positive value.

An astroidal torus degenerates into an astroidal surface
of revolution when r = 0, θ = 0 (Fig. 1).

In Fig. 1, the astroidal torus is given when a = 1 m,
r = 2 m, θ = 0, 0� v� 2p; �p� u� p:

The astroidal torus with θ = 0, 0� v� 2p, �p� u� p,
a = r = 1 m is given in Fig. 2.

The right astroidal torus is represented in Fig. 3 when
a = 1 m, r = 2 m, θ = 0.25π; 0� v� 2p; �p� u� p:

Additional Literature
Weisstein EW. Astroid from MathWorld.

Fig. 1

Fig. 2

Fig. 3
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■ Surface of Revolution of the Agnesi Curl

The meridians of a surface of revolution of the Agnesi curl
about its asymptote intersect the plane z = 0, perpendicular to
the rotation axis, at angle of 90° (Fig. 1). An implicit
equation of an Agnesi curl is

z2y ¼ 4a2 2a� yð Þ:

The circle with a radius 2a lies in the cross section of this
surface of revolution by the plane z = 0. This parallel is a
geodesic line.

Forms of definition of the surface

(1) Implicit equation:

z2 ¼ 4a2
2affiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p � 1

 !
:

(2) Parametrical equations (Fig. 1):

x ¼ x r; bð Þ ¼ r cos b; y ¼ y r; bð Þ ¼ r sinb;

z ¼ z rð Þ ¼ 2a 2a=r�1ð Þ1=2:

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ 1þ 4a4

r4ð2a=r � 1Þ ; F ¼ 0; B ¼ r;

L ¼ 2a2ð3a� 2rÞ
Ar4ð2a=r � 1Þ3=2

; M ¼ 0; N ¼ � 2a2

Ar
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a� 1

p ;

k1 ¼ kr ¼ L
A2 ; k2 ¼ kb ¼ N

B2 \0:

So, К > 0 if r > 1.5a; К < 0 if r < 1.5a and К = 0 on the
parallel r = 1.5a.

Fig. 1

■ Deformed Sphere

Surface of revolution “Deformed Sphere” is a closed surface
consisting of two parts one of which is a surface of positive
Gaussian curvature but another one is of negative Gaussian
curvature. These parts of the surface are jointed along the
plane circle with parabolic points.

“Deformed Sphere” has the following parametrical
equations (Fig. 1):

x ¼ xðu; vÞ ¼ cos u cos v;

y ¼ yðu; vÞ ¼ cos u sin v;

z ¼ zðuÞ ¼ sinðu� aÞ

where a is a constant parameter, �p=2� u� p=2;
0� v� 2p.

A “Deformed Sphere” is degenerated into a sphere when
a = 0 and a = π.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ sin2 uþ cos2ðu� aÞ; F ¼ 0; B ¼ cos u;

L ¼ cos a
A

; M ¼ 0; N ¼ cos u cosðu� aÞ
A

;

k1 ¼ cos a
A3 ; k2 ¼ cosðu� aÞ

A cos u
:
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■ Surface of Revolution of a Parabola

A paraboloid of revolution is formed by rotation of a
parabola about its axis of symmetry, i.e., about the axis of
the parabola. A surface of revolution of a parabola is gen-
erated by rotation of a parabola about a straight line that is
perpendicular to the axis of the parabola, i.e., is parallel to
the directrix of the parabola. A parabola has the only one
directrix which is p away from its focus.

The general surface of revolution of a parabola is
obtained when a parabolic arc is rotated about an arbitrary
axis. In the encyclopedia, this surface is called a surface of
revolution of a parabola of arbitrary position.

a = 0 a = 0,5 a = 1  

a = 2  a = π  

a = π/2  a = 1,7  a =1,25

Fig. 1

(a>0)

Fig. 1
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Forms of the definition of the surface

(1) Parametrical equations (Fig. 1):

x ¼ xðr; bÞ ¼ r cos b;

y ¼ yðr; bÞ ¼ r sin b;

z ¼ zðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � aÞ;

p
where r = a is the radius of the waist circle, p is a distance
the focus from the directrix of the parabolic meridian,
xj j � a, yj j � a, 0� b� 2p. The surface of revolution is
formed by the rotation of a parabola z2 = 2p(x − a) about the
z axis. The surface of revolution with a > 0 is shown in
Fig. 1. If one takes a = 0, then he will design the surface
represented in Fig. 2.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ 1þ p
2ðr � aÞ ; F ¼ 0; B ¼ r;

L ¼ � p2

A½2pðr � aÞ�3=2
;

M ¼ 0; N ¼ pr

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � aÞp ;

k1 ¼ kr ¼ � p2

A3½2pðr � aÞ�3=2
;

k2 ¼ kb ¼ p

Ar
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � aÞp ; K\0:

A surface of revolution of a parabola belongs to surfaces
of negative Gaussian curvature if a ≥ 0. A directrix of the
family of meridians becomes the axis of rotation when a = p.

(2) Parametrical equations (Figs. 1 and 2):

x ¼ xðz; bÞ ¼ aþ z2=ð2pÞ	 

cos b;

y ¼ yðz; bÞ ¼ aþ z2=ð2pÞ	 

sin b;

z ¼ z:

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ 1þ z2

p2
; F ¼ 0; B ¼ r ¼ aþ z2

2p
;

L ¼ 1
pA

; M ¼ 0 N ¼ �B
A
;

k1 ¼ kz ¼ 1
pA3 ; k2 ¼ kb ¼ � 1

AB
;

K ¼ � 1
pA4B

\0:

(3) Parametrical equations (Figs. 3 and 4):

x ¼ xðz; bÞ ¼ z2

2p
� b

� �
cos b;

y ¼ yðz; bÞ ¼ z2

2p
� b

� �
sin b;

z ¼ z;

(a = b = 0)

Fig. 2

(b > 0)

Fig. 3
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where b ≥ 0 is the distance the peak of the parabola
from the axis of rotation. The surface shown in Fig. 2 is

formed when b = 0. In Fig. 3, the surface with b > 0 is
presented.

Having assumed b > 0 and � ffiffiffiffiffiffiffiffi
2pb

p
\z\

ffiffiffiffiffiffiffiffi
2pb

p
, we can

design a barrel-shaped surface of revolution (Fig. 4).
In several works, the surfaces shown in Figs 1, 2, 3 and 4

were called a parabolic torus.

Additional Literature
Darevskiy VM. A method of stability analysis of shells of
revolution subjected to torsion. Izv. AN SSSR, MTT. 1989;
No. 6, p. 169-176.
Nedeshev YuB, Popov AYu. A method of determination of
particular dimensions of shells of revolution. Izv. AN SSSR,
MTT. 1991; No. 3, p. 118-126.

Fig. 4

■ Parabolic-and-Logarithmic Surface of Revolution

A parabolic-and-logarithmic surface of revolution of posi-
tive Gaussian curvature is formed by rotation of a plane
curve

r ¼ rðzÞ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
czþ b

p
lnðczþ bÞ

about the z axis.

Forms of definition of the surface

(1) Parametrical equations (Fig. 1):

x ¼ xðz; bÞ ¼ rðzÞ sin b;
y ¼ yðz; bÞ ¼ rðzÞ cos b;
z ¼ z:

The indeterminacy in the form of 0 � 1 existing at the
point zo (czo + b = 0) is disclosed and leads to an equality r
(zo) = 0. The parallel, lying in the plane z = 0, has a radius
ro = ab1/2 lnb.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ 1þ a2c2

czþ b
lnðczþ bÞ

2
þ 1

� �2
; F ¼ 0;

B ¼ rðzÞ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
czþ b

p
lnðczþ bÞ;

L ¼ ac2 lnðczþ bÞ
4Aðczþ bÞ3=2

; M ¼ 0; N ¼ rðzÞ
a

;

k1 ¼ ac2 lnðczþ bÞ
4A3ðczþ bÞ3=2

;

k2 ¼ 1
rðzÞA ; K ¼ c2

4A4ðczþ bÞ2 [ 0:

Additional Literature
Nazarov GI, Puchkov AA. An equilibrium of a parabolic-
and-logarithmic surface of revolution. Prikl. Mat. i Mehan-
ika (Moscow). 1991; 55, No. 5, p. 867-869.

Fig. 1
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■ Hyperbolic-and- Logarithmic Surface of Revolution

A hyperbolic-and-logarithmic surface of revolution of neg-
ative Gaussian curvature has meridians:

r ¼ rðzÞ ¼ aðzþ bÞ2 lnðzþ bÞ;

where a > 0 is a constant characterizing the form of the
surface (Fig. 1). A constant b does not influence on the form
of the surface but the position of the beginning of coordi-
nates depends on the parameter b. The beginning of a system
of Cartesian coordinates is placed at the peak of the surface
of revolution when b = 0. The axis Oz is an axis of rotation.
The indeterminacy in the form of 0 � 1 existing at the peak
when z = −b is disclosed due to de l’Hopitale rule. So, one
will obtain:

r ¼ r z ¼ �bð Þ ¼ 0:

Parametrical equations of the studied surface of revolu-
tion can be written as (Fig. 1):

x ¼ xðz; bÞ ¼ rðzÞ sin b;
y ¼ yðz; bÞ ¼ rðzÞ cos b;
z ¼ z:

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ 1þ a2ðzþ bÞ2½1þ 2 lnðzþ bÞ�2;
F ¼ 0; B ¼ rðzÞ ¼ aðzþ bÞ2 lnðzþ bÞ;

L ¼ � a½2 lnðzþ bÞ þ 3�
A

; M ¼ 0; N ¼ rðzÞ
A

;

k1 ¼ � a½2 lnðzþ bÞ þ 3�
A3 ; k2 ¼ 1

rðzÞA ;

K ¼ � 3þ 2 lnðzþ bÞ
ðzþ bÞ2 lnðzþ bÞA4

\0:

In Fig. 1, the hyperbolic-and-logarithmic surface of rev-
olution is shown when a = 0.5; b = 0; 0:1� z� 4 m;
rmax = 11.09 m if z = 4 m.

Additional Literature
Nazarov GI, Puchkov AA. An inverse problem for a shell of
revolution of negative Gaussian curvature. Izv. Vuzov:
Stroit. i Arhitectura. 1990; No. 12, p. 22-24.Fig. 1

■ Bullet Nose

“Bullet Nose” is formed by rotation of a curve:
x ¼ �az

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ z2

p
(Figs. 1 and 2) about a coordinate axis z.

Forms of definition of the surface

(1) Parametrical equations (pиc. 3):

x ¼ xðu; vÞ ¼ a cos v cos u;

y ¼ yðu; vÞ ¼ a cos v sin u;

z ¼ zðvÞ ¼ �b= tan v;

x\a; y\a; 0� u� 2p; 0\v� p=2:

(2) Implicit equation

ðb2 þ z2Þðx2 þ y2Þ ¼ a2z2

126 2 Surfaces of Revolution



■ The Fourth-Order Paraboloid of Revolution

The fourth-order paraboloid of revolution is formed by
rotation of biquadratic parabola x4 = cz about an axis
z (Fig. 1). This surface is also called a quartoid.

Forms of definition of the surface

(1) Explicit equation:

cz ¼ x2 þ y2
� �2

:

Having assumed c = a3, we can get a poweroid (Jackway
and Deriche).

In the cross section of the surface of revolution by the
planes z = h = const, circles with radii

r ¼
ffiffiffiffiffi
hc4

p

are placed; h > 0.

(2) Parametrical equations (Figs. 1 and 2):

x ¼ x r; bð Þ ¼ r cos b;

y ¼ y r; bð Þ ¼ r sin b;

z ¼ z rð Þ ¼ r4=c:

z

Fig. 2

Fig. 1

Fig. 2

Fig. 1
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Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ 1þ 16
r6

c2
; F ¼ 0; B ¼ r;

L ¼ 12r2

cA
; M ¼ 0; N ¼ 4r4

cA
;

kr ¼ k1 ¼ 12r2

cA3 ; kb ¼ k2 ¼ 4r2

cA
;

K ¼ 48r4

c2A4 [ 0; H ¼ 2r2

cA
1þ 3

A2

� 

:

The studied surface of revolution is given in the lines of
principal curvatures r and β. A paraboloid of revolution of
the fourth order is a surface of positive total curvature. The
surface has zero Gaussian and mean curvatures (K = H = 0)
only at one point r = 0. So, the peak of a paraboloid of
revolution of the fourth order is a plane point.

(3) Parametrical equations (Figs. 1 and 2):

x ¼ xðz; bÞ ¼ ffiffiffiffi
cz4

p
cos b;

y ¼ yðz; bÞ ¼ ffiffiffiffi
cz4

p
sin b;

z ¼ z:

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ 1þ c2

16ðczÞ3=2
; F ¼ 0; B ¼ ffiffiffiffi

cz4
p

;

L ¼ 3c2

16AB7 ; M ¼ 0; N ¼ B
A
;

kz ¼ k1 ¼ 3c2

16A3B7 ; kb ¼ k2 ¼ 1
AB

;

K ¼ 3c2

16A4B8 ¼
48zffiffiffi

c
p þ 16z3=2ð Þ2

[ 0:

The obtained values of the coefficients of the fundamental
forms of surface show that the surface of rotation of a
biquadratic parabola is given in lines of principal curvatures
z and β but the fourth-order paraboloid of revolution is a
surface of positive total curvature and only in one point
z = 0, the surface has zero Gaussian and mean curvatures.

Additional Literature
Sun Bo-Hua, Zhang Wei, Yeh Kai-Yuan, Rimrott FPJ.
Exact displacement solution of arbitrary degree paraboloi-
dal shallow shell of revolution made of linear elastic
materials. Int. J. Solids and Struct. 1996; 33, No. 16,
p. 2299-2308 (14 ref.).
Fan S.C., Luah MH. New spline element for analysis of
shell of revolution. J. Eng. Mech. 1990; 116, No. 3, p. 709-
726.
Jackway PT. and Deriche M. Scale-space properties of the
multiscale morphological dilation-erosion. Trans. on Pattern
Analysis and Machine Intelligence. 1996; 18(1), p. 38-51.
Palm G. Robust segmentation of human cardiac contours
from spatial magnetic resonance images. Diss. zur Erlan-
gung des Doct. (Dr. rer.nat.), der Fakultät für Informatik der
Universität Ulm.; 2004; 130 p.

■ Surface of Revolution with Damping Circular Waves

Having researched damped natural vibrations, one seeks the
amplitude-time dependence in the form of a function

z ¼ z xð Þ ¼ ae�nx sin xxþ uð Þ:

A surface of revolution with damping circular waves is
traced by a curve z = z(x) in the process of its rotation about
an axis Oz.

Forms of definition of the surface

(1) Parametrical equations (Fig. 1):

x ¼ xðr; uÞ ¼ r cos u;

y ¼ yðr; uÞ ¼ r sin u;

z ¼ zðrÞ ¼ ae�nr sinðxr þ uÞ;

whereω=mπ/b,m is a number of integral half-waves, placed
at the straight line segment with the b length; φ = const.

Coefficients of the fundamental forms of the surface:

A2 ¼ 1þ a2e�2nr �n sinðxr þ uÞ þ x cosðxr þ uÞ½ �2;
F ¼ 0; B ¼ r;

L ¼ ae�nr ðn2 � x2Þ sinðxr þ uÞ � 2nx cosðxr þ uÞ	 

=A;

M ¼ 0;N ¼ rae�nr �n sinðxr þ uÞ þ x cosðxr þ uÞ½ �=A:

In Fig. 1, the surface of revolution with m = 6, b = 6 m;
a = 4 m; n = 0.5; 0� r� b; φ = 0 is shown.

Fig. 1
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■ Kiss Surface

A “Kiss Surface” is an algebraic surface of the fifth order
(Fig. 1). Sometimes this surface is called a “Falling Drop.”
It is traced by a curve x = x(z) = z2(1 − z)1/2 in the process of
its rotation about an axis Oz.

Forms of definition of the surface

(1) Implicit form of the definition:

x2 þ y2 ¼ 1� zð Þz4; where�1� z� 1:

(2) Explicit form of the definition:

x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� zÞz4 � y2

p
:

(3) Parametrical equations (Fig. 1):

x ¼ xðu; zÞ ¼ z2
ffiffiffiffiffiffiffiffiffiffiffi
1� z

p
cos u; y ¼ yðu; zÞ ¼ z2

ffiffiffiffiffiffiffiffiffiffiffi
1� z

p
sin u;

z ¼ z:

Coefficients of the fundamental forms of the surface:

A2 ¼ z4ð1� zÞ; F ¼ 0;

B2 ¼ 4ð1� zÞ þ z2ð4� 5zÞ2
4ð1� zÞ ; M ¼ 0;

L ¼ 2ð1� zÞz2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1� zÞ þ z2ð4� 5zÞ2

q ;

N ¼ 15z2 � 24zþ 8

2ð1� zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1� zÞ þ z2ð4� 5zÞ2

q ;

K ¼ 4ð15z2 � 24zþ 8Þ
z2 4ð1� zÞ þ z2ð4� 5zÞ2
h i2 :

The surface contains the parts of positive and negative
Gaussian curvatures. Parabolic points with К = 0 are placed at
the cross section of the surface by a plane z = 0.8 − 0.4(2/3)1/2

= 0.473. In Fig. 2, the surface is shown when �1� z� 1;
0� u� 2p:

y              
x              

z

Fig. 1

■ Soucoupoid

Forms of Definition of the Surface

(1) Parametrical equations (Fig. 1):

x ¼ xðu; vÞ ¼ a cos u cos v; y ¼ yðu; vÞ ¼ a cos u sin v;

z ¼ zðuÞ ¼ b sin3 u;

where coordinate lines u, v (meridians and parallels) are the
lines of principal curvatures; a, b are constants;
�p=2� u� p=2; 0� v� 2p:

(2) Implicit equation: z2 ¼ b2 1� x2þy2

a2

� �3
:

Reference
Encyclopédie Des Formes Mathematiques Remarquables
Surfaces.—http://mathcurve.com/surfaces/surfaces.shtml

a = b = 1m

Fig. 1
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■ Globoid (Toroid)

A globoid is a surface formed by rotation of an arc of the
circle m about an axis z lying at the plane of this arc. A
method of generation of a surface of a globoid shows that we
have a segment of the circular torus which has a negative
Gaussian curvature (Fig. 1). A line on the globoid generated
by uniform motion of a point along the axis of the globoid
with simultaneous steady rotation of the globoid about its
axis is called a globoidal helical line.

A globoidal worm gearing is an example of application of
globoid in the technique.

Forms of definition of the surface

(1) Parametrical equations (Fig. 2):

x ¼ xðu; vÞ ¼ ðaþ b cos vÞ cos u;
y ¼ yðu; vÞ ¼ ðaþ b cos vÞ sin u;
z ¼ zðvÞ ¼ b sin v;

where a is a radius of centers of generatrix circles; b is a
radius of the generatrix circle, 0� u� 2p; p=2� v�ð3=2Þp:
In Fig. 3, a fragment of the surface bounded by the lines of
principal curvatures is shown; 0� u� p and p� v�ð3=2Þp:

Coefficients of the fundamental forms of the surface:

A ¼ aþ b cos v; F ¼ 0; B ¼ b;

L ¼ �ðaþ b cos vÞ cos v; M ¼ 0; N ¼ �b;

ku ¼ k1 ¼ � cos v
A

; kv ¼ k2 ¼ � 1
b
;

K ¼ cos v
bA

:

(2) Parametrical equations:

x ¼ xðu; bÞ ¼
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
� b

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p cos u;

y ¼ yðu; bÞ ¼
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
� b

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p sin u;

z ¼ bbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ;

where β = a tan α; α is the angle of a straight, connecting the
center of generatrix circle with a radius b with an arbitrary
point of the torus, with a plane z = 0. Positive direction is
counted off anticlockwise; −π/2 < α < π/2.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A ¼ að
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
� bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p ; F ¼ 0; B ¼ ab

a2 þ b2
;

L ¼ � a2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
� bÞ

a2 þ b2
; M ¼ 0; N ¼ a2b

ða2 þ b2Þ2 ;

k1 ¼ ku ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
� b

; k2 ¼ kv ¼ 1
b
:

r

m

z

b

Fig. 1

Fig. 2

Fig. 3
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Coordinate lines u, v and u, β are the lines of principal
curvatures. They coincide with the meridians and the par-
allels of surface of revolution.

(3) Parametrical equations:

x ¼ xðc; vÞ ¼ aðchc� 1Þ
chc

cos v;

y ¼ yðc; vÞ ¼ aðchc� 1Þ
chc

sin v;

z ¼ athc; �1\c\þ1;

The globoid has a degenerated point with coordinates (0,
0, 0) or when γ = 0; a = b.

Additional Literature
Blachut J and Jaiswal OR. Instabilities in torispheres and
toroids under suddenly applied external pressure. Int.
J. Impact. Eng. 1999; 22 (5), p. 511-530 (16 ref.).

■ Surface of Revolution of a Usual Cycloid

A surface of revolution of a usual cycloid is formed by the
rotation of an usual cycloid

zc ¼ at � a sin t; xc ¼ a � a cos t

about the axis zc, where t is a real parameter, corresponding
to the angle through which the rolling circle has rotated,
measured in radians. For given t, the circle’s center lies at
zc = at, xc = a.

A usual cycloid is generated by a point that is apart from
a center of the circle with a radius a, rolling without sliding
on the axis zc, at the distance of a.

Let us study a general case when a cycloid is rotated
about the axis z which is parallel to the axis zc and is apart
from it at the distance of c.

Forms of definition of the surface

(1) Parametrical equations (Fig. 1):

x ¼ xðt; bÞ ¼ ðaþ c� a cos tÞ cos b;
y ¼ yðt; bÞ ¼ ðaþ c� a cos tÞ sin b;
z ¼ zðtÞ ¼ at � a sin t:

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A ¼ 2a sin
t
2
; F ¼ 0; B ¼ cþ 2a sin2

t
2
;

L ¼ A
2
; M ¼ 0; N ¼ AB

2a
;

k1 ¼ kt ¼ 1
2A

¼ 1
4a sin t

2

;

k2 ¼ kb ¼ A
2aB

¼ sin t
2

cþ 2a sin2 t
2

� � ;
K ¼ 1

4aB
¼ 1

4a cþ 2a sin2 t
2

� � [ 0:

Coordinate lines β and t (parallels and meridians) are the
lines of principal curvatures.

A length of a meridian from a parallel t = 0 till a parallel
t = const is calculated by a formula:

s ¼ 4a 1� cos
t
2

� �
:

In Fig. 2, the fragment of the surface bounded by the
parallels t = 0, t = 2π and by the meridians β = 0, β = π is
presented.

In Fig. 3, three sections of the surface of the rotation of a
usual cycloid with c = 0 are given; but in Fig. 4, the surface
with c > 0 is shown, 0� t� 5p.z

Fig. 1 Fig. 2
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Two sections of the surface presented in Fig. 3 belong to
a category of closed surfaces of revolution because the
beginning and the end of a not closed rotated usual cycloid is
placed at the rotation axis.

An area of a surface of rotation of a segment of the
meridian (t0 � t� t1) in the form of a usual cycloid can be
defined by a formula:

A ¼ 8ap
2a
3
cos3

t
2

���t1
t0
�ðcþ 2aÞ cos t

2

���t1
t0

� �
; 0� b� 2p:

For example, an area of one closed section of the surface
shown in Fig. 3 is

A1 ¼ 64a2p
3

; 0� t� 2p; 0� b� 2p:

Additional Literature
Barra Mario. The cycloid. Educ. Stud. Math. 1975; 6, No. 1,
p. 93-98.
Churkin GM. The property of points of a cycloid. In-t him.
Kinet. I goreniya SO AN SSSR, Novosibirsk, 1989; 10 p., 3
ref., Dep v VINITI 06.01.89, No. 156-В89.
Wells D. (1991). The Penguin Dictionary of Curious and
Interesting Geometry. New York: Penguin Books. 1991;
p. 445-47.

Fig. 3

Fig. 4

■ Pseudo-Catenoid

A catenoid is formed by the rotation of a catenary

x ¼ a cos h z=að Þ

about an Oz axis (Fig. 1). A catenoid is the only minimal
surface of revolution, i.e., mean curvature of its surface is
equal to zero at all points of the surface. It is the first
minimal surface to be discovered.

A pseudo-catenoid is generated by the rotation of a curve

x ¼ b cos h z=að Þ

about anOz axis. A pseudo-catenoid is a surface of rigorously
negative Gaussian curvature but it is not a minimal surface.

Forms of definition of the surface

(1) Explicit equation:

z ¼ aAr cos h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ=b2

p
:

(2) Parametrical equations (Figs. 2 and 3):

x ¼ x r; bð Þ ¼ r cos b;

y ¼ y r; bð Þ ¼ r sin b;

z ¼ z rð Þ ¼ � aAr cos h r=bð Þ;

a = b

Fig. 1
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where β is the angle taken from the axis Ox in the directions
of the Oy axis.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ r2 � b2 þ a2

r2 � b2
; F ¼ 0; B ¼ r;

L ¼ �ar

ðr2 � b2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � b2 þ a2

p ;

M ¼ 0; N ¼ raffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � b2 þ a2

p ;

k1 ¼ �ar

ðr2 � b2 þ a2Þ3=2
; k2 ¼ a

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � b2 þ a2

p ;

K ¼ �a2

r2 � b2 þ a2½ �2 \0;

H ¼ aða2 � b2Þ
2r r2 � b2 þ a2ð Þ3=2

6¼ 0:

Coordinate lines r and β (parallels and meridians) are the
lines of principal curvatures (Figs. 1, 2 and 3). In Fig. 2, the
pseudo-catenoid has a > b. The surface of revolution shown
in Fig. 3 was created when a < b. And a pseudo-catenoid
becomes a minimal surface if a = b (Fig. 1) and this surface
can be called a catenoid.

Substituting a = b in the formulae for the determination
of coefficients of the fundamental forms of surface, it is
possible to obtain corresponding values of these coefficients
for catenoid.

Additional Literature
Krivoshapko SN. On mistakes in the terminology on theory
of surfaces and geometric modelling. Present Problems of
Geometric Modelling: Proc. of Ukraine-Russian Scientific-
and-Practical Conf. April 19-22, 2005. Kharkov, 2005;
p. 82-87.

(a > b)

Fig. 2

(a < b)

Fig. 3

■ Surface of Revolution “Pear”

A surface of revolution called “Pear” is generated by
rotating curve

b2y2 ¼ z3 a� zð Þ

about its coordinate axis Oz.

Forms of definition of the surface

(1) Parametrical form of the definition (Fig. 1):

x ¼ x z; bð Þ ¼ r zð Þ sin b;
y ¼ y z; bð Þ ¼ r zð Þ cos b; z ¼ z;

where r ¼ rðzÞ ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zða� zÞp �

b; a and b are arbitrary
constants; 0 � z � a;

O

x y

z

Fig. 1
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0 � r � 3
ffiffiffi
3

p
a2=ð16bÞ:

A parallel z = 3a/4 with

r ¼ rmax ¼ 3
ffiffiffi
3

p
a2=ð16bÞ

is a geodesic line.

(2) Implicit equation:

z3 a� zð Þ � b2 x2 þ y2
� � ¼ 0:

It means that the studied surface “Pear” is an algebraic
surface of the fourth order.

Additional Literature
Gustavo Gordillo. A collection of famous plane curves.
http://curvebank.calstatela.edu/famouscurves/famous.htm.
August 14, 2001.

■ Surface of Revolution of a General Sinusoid

A surface of revolution of a general sinusoid

z ¼ a sinðnpx=R þ p=2Þ ¼ a cos npx=Rð Þ

about an axis Oz is used in technics. General sinusoid in
contrast to usual sinusoid (z = sin x) is elongated aj j times
along the axis Oz and contracted R/(nπ) times along the axis
Ox, where n is an integer, R is a dimension of an integer n of
half-waves of the sinusoid, and is shifted to the left by a
straight-line segment R/(2n). A period of the function is
T = 2R/n. The points of intersection of the sine function with
the Ox axis have the coordinates [(k + ½)R/n, 0]. A surface
of revolution of a general sinusoid has the parts of positive
and negative Gaussian curvatures. This surface can be
reckoned in a subclass of waving or corrugated surfaces.

Forms of definition of the surface

(1) Parametrical equations (Fig. 1):

x ¼ xðr; bÞ ¼ r cos b; y ¼ yðr; bÞ ¼ r sin b;

z ¼ zðrÞ ¼ a cos
npr
R

:

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ 1þ a2n2p2

R2 sin2
npr
R

;

F ¼ 0; B ¼ r;

L ¼ � an2p2

AR2 cos
npr
R

;

M ¼ 0; N ¼ � anp
AR

r sin
npr
R

;

k1 ¼ kr ¼ � an2p2

A3R2 cos
npr
R

;

k2 ¼ kb ¼ � anp
rAR

sin
npr
R

;

K ¼ a2n3p3

2rA4R3 sin
2npr
R

:

The curvilinear coordinate net is put down to lines of
principal curvatures.

(2) Parametrical equations (Fig. 2):

x ¼ xðr; bÞ ¼ r cos b; y ¼ yðr; bÞ ¼ r sin b;

z ¼ zðrÞ ¼ a sin
npr
R

:

The general generating sinusoid in contrast to usual
sinusoid (z = sinx) is elongated aj j times along the axis Oz
and contracted R/(nπ) times along the axis Ox, where n is an
integer, R is a dimension of an integer n of half-waves of the
sinusoid. A period of the function is T = 2R/n. The points of
intersection of the sine function with the Ox axis have the
coordinates [kR/n, 0].

The presented surface of revolution can be given in an
explicit form (Fig. 3):

z ¼ a sin
np
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
:

Fig. 1 Fig. 2
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The surface shown in Fig. 3 is called “Die Sinuswelle” in
the German language scientific literature.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ 1þ a2n2p2

R2 cos2
npr
R

;

F ¼ 0; B ¼ r;

L ¼ � an2p2

AR2 sin
npr
R

;

M ¼ 0; N ¼ anp
AR

r cos
npr
R

;

k1 ¼ kr ¼ � an2p2

A3R2 sin
npr
R

;

k2 ¼ kb ¼ anp
rAR

cos
npr
R

;

K ¼ � a2n3p3

2rA4R3 sin
2npr
R

:

The parallels β and meridians r of the surface of revo-
lution of a general sinusoid coincide with lines of principal
curvatures.

(3) Explicit equation:

z ¼ a cos
np
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
:

Additional Literature
http://samoucka.ru/document22180.html

Fig. 3

■Corrugated Surface of Revolution of aGeneral Sinusoid

A corrugated surface of revolution of a general sinusoid

x ¼ a sin
npz
b

þ c

about the axis Oz contains circular parts of both positive
and negative curvatures.

General sinusoid in contrast to usual sinusoid (x = sin z) is
elongated aj j times along the axis Ox and contracted b/(nπ)
times along the axis Oz, where n is an integer, b is a
dimension of an integer n of half-waves of the sinusoid.

A period of the function is T = 2b/n.
A volume of a body bounded by a surface of revolution

of the half-wave of a usual sinusoid x = sin z is equal to π2/2.

Forms of definition of the surface

(1) Explicit equation:

z ¼ b
np

arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� c

a
:

(2) Implicit equation:

x2 þ y2 � a sin
npz
b

þ c
� �2

¼ 0:

(3) Parametrical equations (Fig. 1):

x ¼ xðz; bÞ ¼ rðzÞ cos b;
y ¼ yðz; bÞ ¼ rðzÞ sin b;

zðzÞ ¼ z;

where r ¼ rðzÞ ¼ a sin npz
b þ c:

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ 1þ a2n2p2

b2
cos2

npz
b

; F ¼ 0; B ¼ rðzÞ;

L ¼ an2p2

Ab2
sin

npz
b

; M ¼ 0; N ¼ rðzÞ
A

;

k1 ¼ kz ¼ an2p2

A3b2
sin

npz
b

; k2 ¼ kb ¼ 1
rðzÞA ;

K ¼ an2p2

rA4b2
sin

npz
b

:
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The curvilinear coordinate net is put down to lines of
principal curvatures β and z.

In Fig. 1, the corrugated surface of revolution of a general
sinusoid is shown when a < c. Having assumed c 	 a, we
can obtain a corrugated cylinder (Wolfram Demonstrations
Project) or a sinusoidal cylinder (SpringerImages).

In Fig. 2, the surface of revolution has a > c; in Fig. 3, it
is c = 0, and in Fig. 4, the surface of revolution has a = c.

The surface of revolution represented in Fig. 1 is called
“Isolator.”

The surfaces of revolution shown in Figs. 1, 2, and 4 have
the parts of both positive and negative Gaussian curvatures.

Fig. 1

Fig. 2

Fig. 3

Fig. 4
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The surface of revolution represented in Fig. 3 is a sur-
face of positive Gaussian curvature.

Additional Literature
Krivoshapko AN, Halabi SM, Se Tsyan. Analytical surfaces
with a sine generatrix. Vestnik RUDN. “Engineering
Researches”. 2005; No. 1 (11), p. 115-120.

Zhulaev VP, Sultanov BZ. Screw pumping stations for
recover of oil: Manual. Ufa: Izd-vo UShU, 1997; 43 p.
2014 Wolfram Demonstrations Project: http://demonstrati
ons.wolfram.com/SinusoidalBellows/
SpringerImages: http://www.springerimages.com/Images/
RSS/1-10.1007_s00348-005-0981-9-0

■ Surface of Revolution of a Parabola of Arbitrary
Position

A surface of revolution of a parabola of an arbitrary
position is formed by rotation of a parabola Y(t) = ct2 with
the axis Y, turned relatively to an axis of rotation Oz at the θ
angle, about the axis Oz. A peak of the parabola lies at the
distance a from the axis of rotation (Fig. 1).

Forms of definition of the studied surface

(1) Parametrical equations (Fig. 1):

xðu; tÞ ¼ aþ t cos hþ ct2 sin h
� �

cos u;

yðu; tÞ ¼ aþ t cos hþ ct2 sin h
� �

sin u;

zðu; tÞ ¼ �t sin hþ ct2 cos h:

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A ¼ aþ t cos hþ ct2 sin h
� �

;

F ¼ 0; B2 ¼ 1þ 4c2t2;

L ¼ aþ t cos hþ ct2 sin h
� � 2ct cos h� sin h

B
;

M ¼ 0;N ¼ aþ t cos hþ ct2 sin h
� � 2c

B
;

ku ¼ k1 ¼ 2ct cos h� sin h
AB

;

kt ¼ k2 ¼ 2c
B3 :

In Fig. 2, the surface of revolution of positive Gaussian
curvature is shown when a = 0.8 m; c = 2 m−1; θ = 0.2π.

In Fig. 3, the studied surfaces of revolution of negative
Gaussian curvature are presented. Here, the surface given in
Fig. 3a has θ = π/2, a = 0, c = 1 m−1, but the surface in
Fig. 3b has θ = −π/2, a = 0.8 m; c = 1 m−1. These surfaces
are studied in the section “Surface of revolution of a
parabola” of the Chap. “2. Surfaces of revolution”.

In Fig. 4, two types of the studied surfaces of revolution
are presented some more.

θ

O

t

x

Y = ct 2

Y

a

z

Fig. 1

a = 0.8 m; c = 2 m-1;    = 0.2θ π

Fig. 2
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Assume a slope angle of the axis of a parabola to an axis
of rotation equal to zero (θ = 0) and the distance a peak of
the parabola from the rotation axis equal to zero (a = 0) too,
then the studied surface of revolution will degenerate into a
paraboloid of revolution that is considered in section
“Paraboloid of revolution”.

Additional Literature
Ivanov VN. Geometry and design of shells on the base of
surfaces with a system of curvilinear coordinate lines in the
pencil of planes. Spatial Structures of Buildings and Erec-
tions: Collected articles. Moscow: ООО “Devyatka Print”.
2004; vol. 9, p. 26-35 (13 ref.).
Weisstein Eric W. “Parabola”. From MathWorld – A Wol-
fram Web Resource. http://mathworld.wolfram.com/
Parabola.html

a = 0; c = 1 m-1;    =θ π /2 a = 0.8 m; c = 1 m-1;    = –θ π /2

(a) (b)

Fig. 3

a = 0.5 m; c = 1 m-1;    = –θ π /5 a = 0.8 m; c = 1 m-1;    = –2θ π /5

Fig. 4

■ Surface of Revolution of a Biquadrate Parabola

A paraboloid of revolution of the fourth order is generated
by a rotating biquadrate parabola about its axis of symmetry,
i.e., about the axis of the parabola.

A surface of revolution of a biquadrate parabola is
formed in the process of rotation of a biquadrate parabola
about a straight that is perpendicular to the parabola axis.

Forms of definition of the surface of revolution

(1) Parametrical equations (Fig. 1):

x ¼ xðr; bÞ ¼ r cos b; y ¼ yðr; bÞ ¼ r sin b;

z ¼ zðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðr � aÞ4

p
;

where r = a is a radius of the waist circle, xj j � a, yj j � a,
0� b� 2p. The surface is formed by rotation of a parabola
of the fourth order

z4 ¼ c x�að Þ

about the axis z. In Fig. 1, the surface of rotation of the
biquadrate parabola is shown when a > 0.

Having assumed a = 0, we can design the surface of
revolution presented in Fig. 2. If a � 0, then the surface of
revolution of the biquadrate parabola belongs to a class of
surfaces of negative Gaussian curvature.

(a > 0)

Fig. 1

(a = b = 0)

Fig. 2
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Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ 1þ
ffiffiffiffi�p

16ðr � aÞ3=2
; F ¼ 0; B ¼ r;

L ¼ � 3�1=4

16Aðr � aÞ7=4
; M ¼ 0; N ¼ c1=4r

4Aðr � aÞ3=4
;

k1 ¼ kr ¼ � 3c1=4

16A3ðr � aÞ7=4
; k2 ¼ kb ¼ c1=4

4Arðr � aÞ3=4
;

K ¼ � 3
ffiffiffi
c

p

64rA4ðr � aÞ5=2
\0:

(2) Parametrical equations (Figs. 3 and 4):

x ¼ xðz; bÞ ¼ z4

c
� b

� �
cos b;

y ¼ yðz; bÞ ¼ z4

c
� b

� �
sin b;

z ¼ z;

where b ≥ 0 is a distance between a peak of the parabola and
the axis of rotation.

If b = 0, then we can produce the surface shown in Fig. 2.
In Fig. 3, the surface is shown when b > 0. Having assumed
b > 0 and�bc\z4\bc, we can have a barrel-shaped
surface of revolution of positive Gaussian curvature (Fig. 4).
A surface of revolution of a biquadrate parabola has two
conical points:

x ¼ y ¼ 0; z ¼ � cbð Þ1=4:

If z4 > |bc|, then a surface of revolution of a biquadrate
parabola becomes a surface of negative Gaussian curvature.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A2 ¼ 1þ 16
z6

c2
; F ¼ 0; B2 ¼ ðz

4

c
� bÞ2;

L ¼ � 12z2

cA
; M ¼ 0; N ¼ B

A
;

k1 ¼ kz ¼ �12
z2

cA3 ; k2 ¼ kb ¼ 1
AB

; K ¼ � 12z2

cA4B
:

(b > 0)

Fig. 3

(b > 0)

Fig. 4

■ Ellipsoid of Revolution

An ellipsoid of revolution is a surface formed by rotating of
an ellipse

x2

a2
þ z2

b2
¼ 1

about its axis of symmetry Oz. An ellipsoid of revolution is
a closed quadric surface. Older literature uses “spheroid” in
place of “ellipsoid of revolution.” An oblate spheroid
(oblate ellipsoid of revolution) is formed by rotation of the
ellipse about its minor axis (Fig. 1a). A special case arises
when a = b, then the surface is a sphere and the intersection
with any plane passing through it is a circle (Fig. 1b).
A prolate spheroid (prolate ellipsoid of revolution) is

formed by rotation of the ellipse about its major axis
(Fig. 1c).

An ellipsoid of revolution lies inside the rectangular
parallelepiped bounded by the sides �a� x� a;
�a���� a; �b� z� b: The geodesic line coincides with
the equator parallel of an ellipsoid of revolution. The geo-
desic line passing through a pole point of an ellipsoid passes
through an opposite pole point too. A volume contained
inside the surface of ellipsoid of revolution is

V ¼ 4
3
pa2b:

In cartography, the Earth is often approximated by an
oblate spheroid instead of a sphere. The current World
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Geodetic System model uses a spheroid whose radius is
6,378.137 km at the equator and 6,356.752 km at the poles.

Forms of definition of the surface

(1) The standard equation of an ellipsoid of revolution
centered at the origin of a Cartesian coordinate system
and aligned with the axes is:

x2 þ y2

a2
þ z2

b2
¼ 1:

(2) Parametrical equations (Fig. 1):

x ¼ xða; bÞ ¼ a cos a cos b;

y ¼ yða; bÞ ¼ a sin a cos b;

z ¼ zðbÞ ¼ b sin b;

0� a� 2p; �p=2� b� p=2:

Coefficients of the fundamental forms of the surface:

A ¼ a cos b;F ¼ 0;B2 ¼ a2 sin2 bþ b2 cos2 b;

L ¼ ab cos2 b=B;M ¼ 0;N ¼ �ab=B:

Coordinate lines α and β (parallels and meridians) are
lines of principal curvatures.

(3) Parametrical equations (Fig. 2):

x ¼ xðu; vÞ ¼ q sin u cos v;

y ¼ yðu; vÞ ¼ q sin u sin v;

z ¼ zðuÞ ¼ q cos u;

where q ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x sin2 u cos2 v

p ; x ¼ b2

a2
� 1:

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x

2a2
q2 sin 2u cos2 v

� �2r
; F ¼ 0;

B ¼ q sin u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x

2a2
q2 sin 2v sin2 u

� �2r
;

k1 ¼ ab

b2 þ xðq sin u cos vÞ2
h i3=2 ;

k2 ¼ 1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� a4=b4Þ sin2 u cos2 v

q :

Coordinate lines u, v form the geographic system of
coordinates but they are not lines of principal curvatures.

Additional Literature
Krivoshapko SN. Research on general and axisymmetric
ellipsoidal shells used as domes, pressure vessels, and tanks.
Applied Mechanics Reviews (ASME). 2007; vol. 60, No. 6,
p. 336-355.
“Ellipsoid” by Jeff Bryant, Wolfram Demonstrations Project,
2007.

(a) (b) (c)

Fig. 1 a The oblate ellipsoid of revolution (a > b). b The sphere (a = b). c The prolate ellipsoid of revolution (a < b)

Fig. 2 The ellipsoid of revolution with the elliptical opening,
uo � u� p
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■ Ding–Dong Surface

A surface of revolution “Ding–Dong Surface” is like a
surface of revolution “Kiss surface.”

Forms of definition of the surface

(1) Implicit equation: x2 + y2 = (1 − z)z2

So, the studied surface of revolution is an algebraic sur-
face of the third order. It is obtained by rotating curve

x ¼ x zð Þ ¼ z 1�zð Þ1=2

about an axis Oz.

(2) Parametrical equation (Fig. 1):

x ¼ xðu; vÞ ¼ rðvÞ cos u; y ¼ yðu; vÞ ¼ rðvÞ sin u;
z ¼ zðvÞ ¼ v;

where rðvÞ ¼ v
ffiffiffiffiffiffiffiffiffiffiffi
1� v

p
; �1� v� 1; 0� u� 2p:

Additional Literature
Hauser H. The Hironaka theorem on resolution of singu-
larities. Bull. Amer. Math. Soc. 2003; vol. 40, No. 3, p. 323-
403.

(−1 ≤ v ≤ 1)

Fig. 1

■ “Eight Surface”

A surface of revolution “Eight Surface” is generated by
rotation of a curve

x ¼ x zð Þ ¼ 2z 1� z2
� �1=2

about the axis Oz. The surface pictured in Fig. 1 is called an
eight surface because it is a surface of revolution of a figure
eight.

Forms of definition of the surface

(1) Implicit equation:

x2 þ y2 ¼ 4 1� z2
� �

z2:

Hence, the studied surface is an algebraic surface of the
fourth order.
(2) Parametrical equations (Fig. 1):

x ¼ xðu; vÞ ¼ cos u sin 2v; y ¼ yðu; vÞ ¼ sin u sin 2v;

z ¼ zðvÞ ¼ sin v;

where �p=2� v� p=2; 0� u� 2p: The surface comes to a
point at its very center.

Reference
The Eight Surface: http://www.math.hmc.edu/*gu/math
142/mellon/curves_and_surfaces/surfaces/eightsurf.html

Fig. 1
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■ Surface of Revolution “Egg” of the Fourth Order

Eggshell is one of the perfect natural forms. Having
researched closed two-focus curves of the fourth order, one
can obtain an equation of mathematical model of the
meridian cross section of an eggshell. G.V. Brandt consid-
ered that an egg form can be described by an implicit
equation of the fourth order:

z2 þ y2 ¼ 3xð2a� xÞ 1� c2=ðxþ aÞ2
h i

=4;

where 2a is a length of major axis (an axis of rotation); c is the
interfocus distance; (a − c)/2 is the distance the origin of a
Cartesian coordinates from the first focus of meridional curve.

Parametrical equations of a surface of revolution “Egg”
can be written in the form:

x ¼ x; y ¼ yðx;uÞ ¼ rðxÞ cosu;
z ¼ zðx;uÞ ¼ rðxÞ sinu;

where rðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4 xð2a� xÞ 1� a2b2

ðxþaÞ2
h ir

; β = c/a is a coeffi-

cient characterized a form of the meridian. A surface “Quail
Egg” with β = 0.75 is presented in Fig. 1.

Reference
Brandt GV. The research of an equation of a shell formed by
the two-focus curve. Sb. tr. VZPI: “Stroitelstvo i Arhitek-
tura”. Moscow: VZPI. 1973; p. 76-86.

Fig. 1

■ Surface of Revolution “Egg” of the Third Order

It is known also a surface of revolution “Egg” which is
given by an implicit equation of the third order:

x2 þ y2 ¼ c2z z� að Þ z� bð Þ;

where a, b, c are constant parameters determining the form
of a surface. Parametrical equations of the third-order sur-
face of revolution “Egg” (Fig. 1) can be given as

x ¼ xðu; vÞ ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu� aÞðu� bÞ

p
sin v;

y ¼ yðu; vÞ ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu� aÞðu� bÞ

p
cos v;

z ¼ z uð Þ ¼ u;

where a < = b, then 0� v� 2p; 0� u� a:

a = 1 cm; b = 1.5 cm;
c2 = 0.852 cm–1

Fig. 1

■ Piriform Surface

This surface of revolution resembles a coming to the surface
soft capacity with load. In English language literature, this
surface is called “Piriform Surface”.

Parametrical equations are

x ¼ xðu; vÞ ¼ b½cos vðr þ sin vÞ� cos u;

y ¼ yðvÞ ¼ aðr þ sin vÞ;
z ¼ zðu; vÞ ¼ b½cos vðr þ sin vÞ� sin u;

where 0� u� 2p, �p=2� v� p=2; a, b, and r are constant
coefficients defining the form of the surface (Fig. 1).
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a = 1.5; b = 0.8; r = 1 a = 0.8; b = 0.8; r = 0.75a = 0.8; b = 0.25; r = 1 

a = 0.8; b = 0.8; r = 0.25 a = 0.8; b = 0.8; r = 0 

a =  0.8; b = 0.8; r  = 1.5a = 0.5; b = 0.8; r = 1 a = 0.8; b = 0.8; r = 2.5

a = 0.2; b = 0.8; r = 0.5 

Fig. 1

■ “Drop”

Assuming certain values of constant parameters entering into
parametrical equations of a surface of revolution “Drop,”
one can obtain the form of a drop in the process of falling.

Parametrical equations of the surface can be given as
(Figs. 1 and 2):

x ¼ xðu; vÞ ¼ aðb� cos uÞ sin u cos v;

y ¼ yðu; vÞ ¼ aðb� cos uÞ sin u sin v;
z ¼ zðuÞ ¼ cos u;

where 0� u� p; 0� v� 2p; a and b are constant coeffi-
cients defining the form of the surface.
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pages of the Chap. “2. Surfaces of Revolution”.

2.1 Middle Surfaces of Bottoms of Shells
of Revolution Made by Winding of One
Family of Threads Along the Lines
of Limit Deviation

Shells of revolution made by winding of one family of
threads along the lines of limit deviation are used in
pressure vessels from composite materials. They consist of
a cylindrical fragment and two bottoms that are jointed

smoothly just between themselves along the edges. The
bottoms end by the pole openings with metal flange for the
fixing of the cover. A pressure vessel from composed
materials made by a method of winding of high-strength
threads is more adaptable to streamlined production and
gives a reduction of 30–50 % in weight in comparison
with metal analogies.

Inner forces appearing in the bottom under inner pressure
must be oriented along the threads in its every point.
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An equation of a middle surface of bottoms of shells of
revolution made by winding of one family of threads along
the lines of limit deviation is derived from the decision of a
nonlinear ordinary differential equation:

y00

y0 1þ y02ð Þ ¼
2r

r2 � t2
� tg2u

r

obtained on the base of a momentless theory of analysis of
shells made of threads. The following conventions are used
in the formula: y = f1(r) is an equation of a meridian of the
middle surface of the bottom of revolution; r is a radial
coordinate of a generatrix line of the bottom (meridian); the
primes mean the differentiation with respect to a coordinate
r; φ is an angle of the thread with a meridian of the surface of
the bottom. In every point of the shell surface, a tread with
an angle +φ corresponds the thread with the angle −φ; a
parameter t is equal to zero for the pole opening closed by
the cover or to the radius rp of the opening in the cover.

Trajectories of the threads of the shell must satisfy a
condition of technological realizably, i.e., absolute value of
tangent of the angle between the normal to the trajectory of a
thread and the normal to the surface must not go over the
coefficient of friction k of the thread on the surface in the
process of winding. It can be written as

ru0 cosuþ sinu
ry00 cos2 u
1þy02 þ y0 sin2 u

�����
������ k:

For shell of revolution made by winding of one family of
threads along the lines of limit deviation, an equation of
generatrix surface y = f1(r) and an equation of the trajecto-
ries of the threads φ = f2(r) are calculated numerically from
the solution of Augustin Louis Cauchy problem for a system
of two differential equations that are the equation of gener-
atrix curve of the surface of revolution and the equation of
technological realizably with a sign of an equality in the
right part and with a meaning k0 � k. An angle φ of a thread
at the pole must be equal to 90° due to a condition of con-
tinuity of automatized winding.

The given differential equations give an opportunity to
find a form of generatrixes of a surface of bottoms and the
trajectory of threads of pressure vessels with maximally
differing radiuses of pole openings.
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2.2 Middle Surfaces of Bottoms of Shells
of Revolution Made by Plane Winding
of Threads

Shells of revolution made by plane winding are used in
pressure vessels from composite materials. They consist of a
cylindrical fragment and two bottoms that are jointed
smoothly just between themselves along the edges. The
bottoms end by the pole openings with metal flange for the
fixing of the cover. A pressure vessel from composed
materials made by a method of winding of high-strength
threads is more adaptable to streamlined production and
gives a reduction of 30–50 % in weight in comparison with
metal analogies.

Inner forces appearing in the bottom of the shell under
action of inner pressure must be oriented along the threads in
its every point. An equation of the generatrix of the middle
surface of bottoms of shells of revolution made by plane
winding of threads is derived from the decision of a non-
linear ordinary differential equation:

y00

y0 1þ y02ð Þ ¼
2r

r2 � t2
� tg2u

r

obtained on the base of a momentless theory of analysis of
shells made of threads. The following conventions are used
in the formula: y = y(r) is an equation of a meridian of the
middle surface of the bottom of revolution; r is a radial
coordinate of a generatrix curve of the surface of revolution
of bottom. The primes mean the differentiation with respect
to a coordinate r; φ is an angle of the thread with a meridian
of the surface of revolution of the bottom. In every point of
the shell surface, a tread with an angle +φ corresponds the
thread with the angle −φ; a parameter t is equal to zero for
the pole opening closed by the cover or to the radius rp of the
opening in the cover.

The threads of plane winding are placed on the surface of
revolution in the planes tangent to the pole openings of the
both bottoms in conformity with an equation

tgu ¼ ry0 � yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ctg2c� y2

p ;

where γ is the angle of the plane with a thread with the axis
of rotation of a surface of the bottom. An angle φ of a thread
at the pole must be equal to 90° due to a condition of con-
tinuity of winding.

An equation of a meridian of the middle surface y = y(r) for
a shell of revolutionmade by plane winding is turn up from the
solution of A.L. Cauchy problem for a nonlinear ordinary
differential equation
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y00

y0 1þ y02ð Þ ¼
2r

r2 � t2
� ðry0 � yÞ2
rð1þ y02Þðr2ctg2c� y2Þ ;

which is obtained by equating corresponding parts of two
given above differential equations. The given differential
equations give an opportunity to find a form of generatrix
curves of middle surfaces of bottoms and the trajectory of
threads of pressure vessel both with equal and different
radiuses of pole openings of two bottoms.

The calculated trajectory of laying of the thread in the
process of winding must satisfy a condition of technological
realizably, i.e., absolute value of tangent of the angle
between the normal to the trajectory of a thread and the
normal to the surface must not go over the coefficient of
friction k of the thread on the surface in the process of
winding. This condition is presented in the previous section.
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2.3 Middle Surface of Bottoms of Shell
of Revolution Made by Winding
of Threads Along Geodesic Lines

Pressure vessels from composed materials made by a method
of winding of high-strength threads along geodesic lines are
more adaptable to streamlined production and give a reduction
of 30–50 % in weight in comparison with metal analogies.

The laying of threads on a surface along geodesic lines
maintains a stable position of threads in the process of
their winding in conformity with A. Clairaut equation:
r sin φ = r0, where φ is the angle of the thread with the
generatrix curve of a surface of revolution. In every point
of the middle surface of a shell of revolution, a tread with
an angle +φ corresponds the thread with the angle −φ; r0 is
the radius of the pole opening. The form of a generatrix
curve y = y(r) of the middle surface of revolution of the
bottom ensures the direction of inner forces, appearing in
the shell of the bottom under action of inner pressure,
along the threads. A generatrix of the surface of bottom
with a flange is computed as a result of consistent solution
of two differential equations:

dy1
dr

¼ � rðr2 � t2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðr2 � r20Þða2 � t2Þ2 � r2ða2 � r20Þðr2 � t2Þ2

q

where b� r\a;

dy2
dr

¼ � rðb2 � r20Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða2 � r20Þðr � r20Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðb2 � r20Þ2ða2 � r20Þ2 � r2ðr2 � r20Þðb2 � r20Þ2ða� r20Þ

q

r0 � r� b; y = y(r) is a axial coordinate of a generatrix curve
of the bottom; a is the radius of the cylindrical segment of
the shell of revolution; b is the maximal radius of the flange;

a parameter t is equal to zero for the pole opening closed by
the cover or to the radius rp of the opening in the cover.

A.L. Cauchy problem for the first differential equation is
solved with a initial condition that is y1 = 0 if r = a. For the
second differential equation, an initial condition is y2 = y1 if

r = b. The first and the second equation can be solved in
elliptical integrals. Maximal radius of the flange for the
convex surface of the bottom must satisfy a condition:

b�
ffiffiffi
3

p

2
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8t2

9r20

svuut :

The form of the studied middle surface is shown in
Fig. 1. An equation of the meridian y = y(r) was derived
numerically with the help of presented differential equations.
A problem was solved for a surface of revolution with the
following parameters: a = 3 m; b = 1.3 m; r0 = 1 m, t = 0.
The surface of revolution runs smoothly into the cylindrical
segment of the pressure vessel.

Fig. 1
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2.4 Middle Surfaces of Shells of Revolution
with Given Properties

Many scientific works devote to discovering form of a
meridian of the middle surface of thin-walled shell of
revolution with given properties in advance. It is known
the following criterions of selection of optimal form of
shell of revolution: a cost of a shell, minimal weight [1],
the absence of bending moments and tensile normal for-
ces [2], the given stress state for acting external load [3],
the given bearing capacity for optimal slope [4], maximal
external load; minimal weight under limitation for value
of the natural frequency and maximal displacements [5];
the absence of bending moments with taking into account
inner pressure, dead weight and centrifugal forces [6];
maximal critical load [7, 8] or the selection of a form
with taking into consideration another set of presented
demands.

A condition of equi-strength of thin-walled shell of res-
ervoir is assumed as a basis of analysis of drop-shaped
reservoir for the liquid products [9]. Geometry of the middle
surface of a shell is chosen on condition that tensile
meridional and circular forces will be equal to each other
and constant (N1 = N2 = N = const) under an action of
designed load. It means that a condition

1=R1 þ 1=R2 ¼ c hþ yð Þ=N ¼ pN;

must be satisfied. This equation follows from the condition
of equilibrium of a shell element (Laplace formula). Here R1

and R2 are radiuses of principle curvatures correspondingly
in meridional and circular directions. The key designed load
(inner pressure)

p ¼ c hþ yð Þ

is a sum of hydrostatical pressure of liquid and uniform
redundant pressure; y is the distance the peak from a con-
sidered point of the shell in the vertical direction; γ is a density
of the product; h is a height of designed column of liquid.

In a paper [10], problems of existence of optimal forms
of thin-walled shells possessing minimal mass and satisfy-
ing to corresponding geometrical limitations and satisfying

to restrictions on acceptable number of cycles of external
cyclical load were studied. In this paper, an equilibrium
stress state of a membrane shell of revolution loaded by
axisymmetric loads qn, qθ was described by the following
equations:

dðr0NaÞ=da� NhR1 cos aþ r0R1qa ¼ 0;

Na=R1 þ Nh=R2 ¼ qn;

r0 = R2 sin α. The symbolism is shown in Fig. 1 at Page 100.
E. Annaberdyev [11] offers a method of selection of the

single surface of revolution passing through given parallels
and having the given magnitudes of coefficients of the first
fundamental form in the theory of surfaces

ds2 ¼ Edu2 þ Gdv2:

We cannot design a surface of revolution when a finite
number of its parallels is taken. A meridian of surface of
revolution can be formed if we shall give the common
tangents at the joints of the parallels for maintaining
smoothness of the meridian.
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■ Surfaces of Revolution with Geometrically Optimal
Rise

In applied geometry of surfaces, interest to methods of opti-
mization of geometrical form of surfaces of revolution with
given properties in advance arose time and again. It was
considered that the most actual problem is the following: it is
necessary to obtain a form of the surface with minimal area
S covering the maximal volume V. It gives the lesser
expenditure of materials and the lesser weight of the shell.
The special criterion

n ¼ V=S

was introduced into practice (Fig. 1).
An area S of the second-order surface and a volume

covered by this surface can be defined with the help of the
general formulas:

S ¼ 2p
Zh
0

xðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xðzÞ02

q
dz; V ¼ p

Zh
0

xðzÞ2dz;

where x = x(z) is an equation of a meridian; h is the rise of a
surface, i.e., maximal rise of a surface over the plane xOy.
A meridian is rotated about the axis Oz.

For concrete surfaces of revolution, these formulas give:

(1) a truncated sphere:

x ¼ xðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ðzþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � R2

p
Þ2

q
;

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 � h2 � r2Þ2=ð4h2Þ þ R2

q
;

S ¼ 2pah;V ¼ ph
2

R2 þ h2

3
þ r2

� 

;

nsph:segm: ¼ h R2 þ h2=3þ r2ð Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 � h2 � r2Þ2 þ 4h2R2

q ;

nsphere ¼ R
3
;

(2) a truncated cone:

x ¼ xðzÞ ¼ R� R� rð Þz=h;
S ¼ pðRþ rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR� rÞ2 þ h2

q
;

V ¼ ph
3

R2 þ r2 þ rR
� �

;

ntr:c ¼ hðR2 þ r2 þ rRÞ
3ðRþ rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR� rÞ2 þ h2

q ;

nc ¼ hR

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ h2

p ;

(3) a circular cylinder:

S ¼ 2pRh; V ¼ pR2h; ncyl: ¼ R=2:

z

l

O

r

R

h

x
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(4) a truncated paraboloid of revolution:

x ¼ xðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � zðR2 � r2Þ=h

p
;

S ¼ 4ph
3ðR2 � r2Þ R2 þ ðR2 � r2Þ2

4h2

" #3=28<
:

� r2 þ ðR2 � r2Þ2
4h2

" #3=29=
;;

V ¼ ph
2
ðR2 þ r2Þ; npar: ¼ 3Rh3

ð4h2 þ R2Þ3=2 � R3
h i ;

ntr:par: ¼ 3ðR4 � r4Þ
8 R2 þ ðR2 � r2Þ2=ð4h2Þ
h i3=2

�8 r2 þ ðR2 � r2Þ2=ð4h2Þ
h i3=2 ;

(5) a truncated ellipsoid of revolution:

x ¼ xðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � z=k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � R2

p� �2r
;

a�R; m2 ¼ a2 �R2;

c
a
¼ k ¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � r2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � R2

p ;

V ¼ p a2h� ðhþ kmÞ3
3k2

þ km3

3

" #
;

ntr:el: ¼ V
S
;

where for an oblate ellipsoid with semi-axes a > c (k < 1);
b2 = 1 − k2, one has

S ¼ pb
hþ km

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4a2

b2
þ hþ kmð Þ2

r
� m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

b2
� R2

r"

þ k2a2

b2
ln
hþ kmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4a2=b2 þ hþ kmð Þ2

q
kðmþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2=b2 � R2
p

3
5;

for a prolate ellipsoid with semi-axes a < c (k > 1); t2 = k2 −
1 > 0, one has

S ¼ pt
hþ km

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2k4

t2
� hþ kmð Þ2

r
� m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2k2

t2
� m2

r
þ

"

þ a2k2

t2
arcsin

hþ km
ak2

t � arcsin
mt
ak

� 
�
:

Curves showing a change of the ratio n = V/S with a
change of a rise h give an opportunity to choose optimal
parameters of the meridian for the given shell form
(Fig. 2).

Reference
Krivoshapko SN. Emel’yanova YuV. On a problem of surface
of revolution with geometrically optimal rise. Montazh. i
Spetz. Raboty v Stroit. 2006; 2, p. 11-14.

■ Middle Surface of Non-Bending Shell of Revolution
Under Uniform Pressure

Under action of uniform pressure with corresponding
boundary conditions, not only spherical and circular cylin-
drical shells deform without bending but also endless two-
parametrical family of shells of revolution which includes a
sphere and a cylinder as a particular case. In the process of
axisymmetrical deformation, all normals to a middle surface
do not turn, i.e., their angle of turn in the meridional plane is
equal to zero. Besides, the angles of shearing between the

meridians and parallels are equal to zero too and the angles
between them remain equal to π/2.

Having assumed these propositions and using the first
condition of Peterson-Codazzi

dR2

dh
¼ ðR1 � R2Þ cos hsin h

;

V.I. Gurevich and V.S. Kalinin derived a condition of
absence of bending in shells of revolution in forces in the
form:
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R2

R1

dðN2 � mN1Þ
dh

þ ð1þ mÞðN2 � N1Þ cos hsin h
¼ 0

where R1 and R2 are the principal radiuses of curvatures of
the meridian and the parallels accordingly; θ is the angle of a
normal to the meridian with an axis of rotation; ν is Pois-
son’s ratio in theory of elasticity; N1 and N2 are the normal
tensile or compressive forces reckoned per unit of curvilin-
ear coordinates’ length acting in the tangent plane of middle
surface of the shell of revolution,

N1 ¼ pR2

2
; N2 ¼ 0:5pR2ð2� R2

R1
Þ:

A condition of absence of bending is correctly for shells
of revolution subjected to any axisymmetrical loading.
Substituting the values of normal forces in this condition, we
can obtain its new interpretation:

3� R2

R1

� 

dR2

dh
� R2

d
dh

R2

R1

� 

¼ 0

defining radiuses of principal curvatures of shell of revolu-
tion deforming without bending under action of uniform
pressure.

It is obviously that not only radiuses of principal curvatures
of sphere and cylinder satisfy this condition but shells with
constant ratio R2/R1 = 3 too. In this case,N1 =N2. Assume that
z = f(x) is an equation of unknown meridian, then

R1 ¼ �ð1þ f 02Þ3=2
f 00

; R2 ¼ x
sin h

¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 02

p
f 0

:

After substituting of values R1 = R1( f ) and R2 = R2( f ) into
the differential equation of absence of bending, we can derive
an equation of left branch of the meridian in the form of an
integral:

z ¼ f ðxÞ ¼ �
Zx
�g

2C1C2x3dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC1 � C2x2Þ2 � 4C2

1C
2
2x

6
q ;

which does not express itself in terms of elementary func-
tions. Here, C1 is constant.

In Fig. 1, taken from a paper of V.I. Gurevich and V.S.
Kalinin, the meridians of non-bending shells of revolution
having an angle θ = π/2 when x = ±r1, i.e., R2 = r1, where r1
is the radius of the support circle, are presented.

The surfaces represented in Fig. 1 divide by a sphere into
closed and unclosed at the peak. Unclosed surfaces divide by
a circular cylinder into the surfaces of negative and positive
Gaussian curvatures near the support part.

Meridians were constructed under the condition that

C1 ¼ R1

r1ðr1 � 3R1Þ ; C2 ¼ R1

r31ðr1 � R1Þ :

Dissertation of N.V. Cherdyntzev is devoted to seeking of
forms of shells of revolution and differential equations of
stress-strain state of non-bending shell of revolution under
uniform external pressure are presented. An integral defining
a form of the shell was reduced to a sum of two elliptical
integrals and was presented also in the form of power series.

Additional Literature
Gurevich VI, Kalinin VS. Forms of shells of revolution
deforming without bending under uniform pressure. DAN
AN SSSR. 1981; Vol. 256, No. 5, p. 1085-1088.
Cherdyntzev N.V. Stability of non-bending ship shells of
revolution loaded by uniform pressure. PhD Dissertation.
Leningrad. 1983; 153 p. (58 ref.).
Kreychman MM, Cherevatzkiy VB. On research of new
forms of shells of revolution. Issled. po Teor. Plastin i
Obolochel. 1978; Iss. 4, p. 125-129.
Kolesnikov A.M. Large Deformation of High-Elastic Shells.
PhD Thesis. Rostov-na-Donu. 2006; 16 p.
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2.5 Surfaces of Revolution with Extreme
Properties

Let a plane curve r = r(z) (Fig. 1) passing through the given
points has the given length L and revolving about an axis Oz,
forms a surface of revolution of the given area S. Besides this,
the volume V bounded by this surface and by two planes that
are perpendicular to the axis of revolution must have the
greatest value. This is a classical variational problem about
conditional extremum: if a curve r = r(z) gives an extremum to
an integral

V ¼
Z
D

p � r2dr

under conditions

L ¼
Z
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p
dz and S ¼

Z
D

2pr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p
dz

then the constants λ0, λ1, and λ2 (Lagrange multipliers) exist
and the curve r = r(z) gives the extremum to an integral

Q ¼
Z
D

Hdz

where

H ¼ k0pr
2 þ k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p
þ 2k2pr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p
:

Taking into consideration that this problem due to a
reciprocity principle is equivalent to other two problems
about conditional extremum:
(1) Obtain a plane curve r = r(z) of a given length L which

rotating about an axis Oz forms a surface of the mini-
mal area bounding the given volume V.

(2) Obtain a plane curve r = r(z) of the minimal length
L which rotating about an axis Oz forms a surface of the
given area S bounding the given volume V.

An Euler equation for the functional H is

H � @H
@r0

¼ C;

because the function H does not depend explicitly on z, i.e.,
H = H(r,r′).

After transformation, we can derive an equation z ¼ z rð Þ
in the integral form:

z ¼
Z ðC � k0r2Þdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ðk1 þ k2rÞ2 � ðC � k0r2Þ2
q þ c:

In general case, this integral can be expressed with the
help of elliptical integrals. But having specific values of λ0,
λ1, λ2, and C, it is possible to integrate in the elementary
functions. In this case, we shall obtain a sphere and a torus
when k21 � Ck22 ¼ 0.

So, a sphere and a torus satisfy to all extremal conditions.
The expressions for Gaussian and mean curvatures of

extreme surfaces have the following form:

K ¼ ðC � k0r2Þðk2C þ k0k2r2 þ 2k0k1rÞ
4rðk1 þ k2rÞ3

;

2H ¼ k1ðC � 3k0r2Þ � 2k0k2r3

2rðk1 þ k2rÞ2

Giving different values to Lagrange constants, we can
obtain different forms of surfaces possessing by extreme
properties. There are well-known surfaces such as cylindri-
cal surface, sphere, torus, catenoid, little known and
insufficiently studied surfaces such as nodoid and unduloid,
and recently presented surfaces such as “Penka” and a
surface of catenoidal type, among them.

One paper is devoted to investigation of extremal surfaces
of rotation for area-type functional. The solutions of differ-
ential Euler–Lagrange equation are obtained. Also, the sym-
metry property of this surface is proved; the examples of
functionals are demonstrated and their corresponding solu-
tions are given.

r =r(z)

O

α1

r2

z

r1

α2

Fig. 1
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A theorem of existence for nonholonomic rotation sur-
faces of zero total curvature of the second kind was proved
in a paper of O.V. Vasil’eva . An example of a nonholo-
nomic surface of this class was constructed.

Additional Literature
Pul’pinskiy YaS. Equations of generate shells or revolu-
tion of optimal forms. Architecture of Shells and Strength
Analysis of Thin-Walled Building and Machine-Building
Structures of Complex Form. Proc. Intern. Scient. Conf.,
Moscow, Jine 4-8, 2001. Moscow: Izd-vo Peoples
Friendship University of Russia, 2001; p. 342-347
(3 ref.).

Pul’pinskiy YaS. Classification of surfaces possessing by
extreme properties. Problimy Optim. Proektir. Soor.: Sb.
dokl. IV All-Russian Semenar. Novosibirsk: NGASU, 2002;
p. 302-312 (3 ref.).
Zalgaller VA. One family of extremal spindle-shaped bodies.
Algebra i Analiz. 1993; 5, No. 1, p. 200-214.
Klyachin VA, Tkacheva VA. Extremality condition of a
surface of revolution for area-type functional. Vestnil Vol-
GU. Ser. 1. Vol. 11. 2007; p. 39-44.
Vasil’eva OV. Nonholonomic surfaces of revolution of zero
total curvature of the second kind. Vestnik Tomskogo gosud.
un-ta. 2003; 280, p. 12-16.

■ Surface of Catenoidal Type

Substitute k
0 ¼ 0; k
1 6¼ 0; k
2 6¼ 0 into general equation for
generatrix curves

z ¼
Z ðC
 � k
0r

2Þdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðk
1 þ k
2rÞ2 � ðC
 � k
0r2Þ2

q þ c

of surfaces of revolution possessing by extremal properties
then we can formulate a problem in the following form:
determine a surface formed by rotation of a curve r = r
(z) about an axis Oz limited by two planes, that are perpen-
dicular to the axis of rotation, and having the least area of the
surface with given length of a generatrix meridian r = r(z).

Due to reciprocity theorem, such surface is equivalent to a
surface of given area formed by rotation of a line z = z(r) with
the least length about an axis Oz. Then an expression for
generatrix curves, represented before, will have the following
form:

z ¼
Z
D

Cdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðk1 þ rÞ2 � C2

q ;

where we introduced the following symbolisms:

k1 ¼ k
1
k
2

; C ¼ C


2k
2
:

Having fulfilled the specific manipulations, one can
obtain an equation of the meridian r = r(z) expressed in
elementary functions:

r ¼ C � cosh z� c
C

� k1:

The equation obtained is an equation of a catenary that is
parallel transferred along an axis Oz at a distance of λ1.

It should be noted that catenary is formed by a focus of a
parabola in the process of rolling of this parabola along an
axis Ox. The magnitude C is a parameter of the parabola. A
value γ is defined by the initial position of the focus of the
parabola.

A classical catenoid is formed by rotation of a catenary
when this line is placed at the certain distance from the axis
of rotation. A surface of revolution formed by rotation of a
catenary displaced from this position will not be a minimal
surface because the sum of principal curvatures of this
surface is not equal to zero (Fig. 1).

Parametrical equations of a surface of catenoidal type
can be written in the following form:

x ¼ x z; bð Þ ¼ r zð Þcos b;
y ¼ y z; bð Þ ¼ r zð Þ sinb;
z ¼ z:

Fig. 1
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Coefficients of the fundamental forms of the surface and
its principal curvatures:

A ¼ ch
z� c
C

; F ¼ 0; B ¼ r;

L ¼ � 1
C
; M ¼ 0; N ¼ B

A
;

kz ¼ k1 ¼ �1
CA2 ; kb ¼ k2 ¼ 1

AB
;

K ¼ �1
CBA3 ¼

�C2

rðr þ k1Þ3
\0;

2H ¼ C

rðr þ k1Þ2
6¼ 0:

Additional Literature
Dao Chong Thi, Fomenko AT. Minimal surfaces and a
problem of Plato. Moscow: “Nauka”, 1987; 312 p
Pul’pinskiy YaS., Cherevatskiy VB. Modelling of extremum
surfaces by soap films. Materialy Mezhdunarodnoy Nauchn.
Konf. “Modelling as instrument of solving of technical and
pertaining to the humanities problem”. Part 1. Taganrog:
TRTU, 2002; p. 62-65 (4 ref.).

■ “Penka”

Assuming k0 6¼ 0; k1 6¼ 0; k2 ¼ 0 in the equation for gen-
eratrix curves of surfaces of revolution possessing extreme
properties

z ¼
Z

C
 � k0r2ð Þdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 k1 þ k2rð Þ2� C
 � k0r2ð Þ2

q þ c;

we can raise a problem in the following form: determine a
curve

r ¼ r zð Þ

of the given length in the process of rotation of which about
an axis Oz, a surface of revolution is formed and together
with two planes, that are perpendicular to the axis Oz, it
envelops a maximal volume.

Assume λ = λ1/λ0, C = C*/λ0, then an integral expression
for the generatrix meridian of a surface of revolution has the
form:

z ¼
Z

C � r2ð Þdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 � C � r2ð Þ2

q þ c:

In this case, Gaussian and mean curvatures, radiuses of
principal curvatures are

K ¼ �ðC � r2Þ
2k2

; 2H ¼ C � 3r2

2kr
;

R1 ¼ k
r
; R2 ¼ 2kr

ðC � r2Þ :

Constants λ and C are determined due to the boundary
conditions.

An equation of the generatrix meridian can be expressed
with the help of elliptical integrals with taking into account
the parameters λ, C and the conditions at the edges:

z ¼ 2
ffiffiffiffiffiffiffi
�k

p
E k;uð Þ � E k;u0ð Þ½ � þ

ffiffiffiffiffiffiffi
�k

p
F k;uð Þ � F k;u0ð Þ½ �;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k� Cj j

p
cosu;

)

or

z ¼ � Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k� Cj jp F k;uð Þ � F k;u0ð Þ½ �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k� Cj j

p
E k;uð Þ � E k;u0ð Þ½ �;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k� Cj j

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 u

q
;

9>>>>>=
>>>>>;
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where F k;uð Þ and E k;uð Þ are the elliptical integrals of the
first and second orders, k is a module but φ is an amplitude
of the elliptical integrals, φ0 is an initial amplitude corre-
sponding to r ¼ a.

If k ¼ �C=2 and C = 0 then the integral expression for
the generatrix curve is solved in quadrature: if k ¼ �C=2,
then (Fig. 1).

z ¼
ffiffiffiffi
C
2

r
ln

ffiffiffiffiffiffi
2C

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C � r21

p
ffiffiffiffiffiffi
2C

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C � r2

p � r
r21

�����
�����þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C � r2

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C � r21

q
;

if C = 0, then

z ¼ 1
2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kð Þ2�r2

q
� a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kð Þ2�a2

q� �
� 2k2 arcsin

r
2k

� arcsin
a
2k

h i
:

Having known the equation of a generatrix curve, it is
easy to construct the surface of revolution with extremum
properties with the help of parametrical equations:

x ¼ x r; bð Þ ¼ r cos b;

y ¼ yðr; bÞ ¼ r sin b;

z ¼ z rð Þ:

A surface with k ¼ �C=2 is called “PenKa” (Fig. 1).

Reference
Pul’pinskiy YaS. Equations of generate shells or revolution
of optimal forms. Architecture of Shells and Strength
Analysis of Thin-Walled Building and Machine-Building
Structures of Complex Form. Proc. Intern. Scient. Conf.,
Moscow, Jine 4-8, 2001. Moscow: Izd-vo Peoples Friend-
ship University of Russia, 2001; p. 342-347.

2.6 The Surfaces of Delaunay

In 1841, astronomer and mathematician C. Delaunay has
picked out some surfaces of revolution described by him in
his paper into an independent group.

In appendix of this paper, M. Sturm noted that the
determination of equations of Delaunay surfaces is a vari-
ational problem on a conditional extremum.

For example, for unduloid and nodoid, the crux of the
problem consists in the following: determine the functions y
(x), that are identified with meridians of surfaces of revo-
lution, the volume of which can be calculated by a formula

VðyÞ ¼ p
Zx1
x0

y2dx;

under condition of extremum of areas of their lateral
surfaces

SðyÞ ¼ 2p
Zx1
x0

yds ¼2p:

It is supposed that the edges of a surface of revolution are
fixed.

This problem results in an equation of Euler–Lagrange:

y2 þ 2ayffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p � b2 ¼ 0;

that is connected with an integral

FðyÞ ¼ p
Zx1
x0

ðy2dxþ 2aydsÞ ¼ p
Zx1
x0

ðy2 þ 2ay
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p
Þdx:

Here, a is a corresponding real parameter; b is the second
parameter.

It is recognized that the Delaunay surfaces are surfaces of
revolution with constant mean curvature. With the excep-
tion of spheres, they are generated by roulettes in the pro-
cess of their rotation about a curve along which the
corresponding conics roll.

Roulettes are formed by focuses of parabola, ellipse, and
hyperbola rolling without sliding along a straight line that is
an axis of rotation.

Delaunay surfaces incorporate five surfaces of revolution
that are catenoids, unduloids, nodoids, spheres, and circular
cylindrical surfaces.

Let us present Euler–Lagrange equations for every type
of surfaces of revolution:

yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p � c ¼ 0; c[ 0 catenoidð Þ;

y2 � 1
H

yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p þ b2 ¼ 0;
1
2H

[ b[ 0 unduloidð Þ;

y2 � 1
H

yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p � b2 ¼ 0; b[ 0 nodoidð Þ;

y2 � 1
H

yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p ¼ 0; H[ 0 sphereð Þ;

y2 � 1
H

yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p þ b2 ¼ 0; H[ 0; b[
1
2H

circular cylindrical surfaceð Þ:

2 Surfaces of Revolution 155



So, the Delaunay surfaces are included in a group of
“Surfaces of Revolution with Extreme Properties” (p. 72).
Axisymmetric surfaces of Delaunay’s unduloids provide
solutions of the shape equation in explicit parametric form.
This class provides the analytical examples of surfaces with
periodic curvatures studied by K. Kenmotsu and leads to

some unexpected relationships among Jacobian elliptic
functions and their integrals (Fig. 1).

Delaunay surfaces are used for description ofprocesses in gas
dynamics, for research of surfaces of soap films and bubbles.

Additional Literatures
Delaunay C. Sur la surface de révolution dont la courbure
moyenne est constante. J. Math. Pures et Appl. 1841; Ser. 1,
6, p. 309-320.
Eells James. The surfaces of Delaunay. Math. Intell. 1987; 9,
No. 1, p. 53-57.
Hano Jun-ich, Nomizu Katsumi. Surfaces of revolution with
constant mean curvatures in Lorentz – Minkowski space.
Tohoku Math. J. 1984; 36, No. 3, p. 427-437.
Koiso Miyuki. On the surfaces of Delaunay. Kyoto kyoiku
daigaku kiyo = Bull. Kyoto Univ. Educ. 2000; Ser. B,
No 97, p. 13-33 (in Japan) (4 ref.).
Djondjorov PA, Hadzhilazova MTs, Mladenov IM, Vassilev
VM. Beyond Delaunay surfaces. J. of Geom. and Symmetry
in Physics. 2010; 18, p. 1-12 (33 ref).
Kenmotsu K. Surfaces of revolution with periodic mean
curvature. J. Math. Osaka. 2003; 40, p. 687-696.

Fig. 1 Open parts of the bulb (left) and the neck (right) segments
of the axially symmetric unduloid-like periodic surfaces of revo-
lution obtained with the help of parametric equations by Djondjo-
rov PA, et al

2.6.1 Nodoid and Unduloid Surfaces
of Revolution

Substituting k0 6¼ 0; k1 ¼ 0; k2 6¼ 0 into a general shape
equation for generatrix curves of surfaces of revolution
possessing extreme properties

z ¼
Z ðC � k0r2Þdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ðk1 þ k2rÞ2 � ðC � k0r2Þ2
q þ c

we can obtain an integral equation of the generatrix:

z ¼
Z ðC � k0r2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ðk2rÞ2 � ðC � k0r2Þ2
q dr þ c:

This integral equation describes a family of curves of
Shturm. that are lines generated by a focus of a parabola or
hyperbola in the process of rolling of corresponding curves
along a straight.

In that case, we can state a problem in the following form:
find a plane curve r = r(z) that forms a body of rotation of
the given volume V. This curve rotates about an axis Oz but
the body must cover a minimal area S.

Due to the principle of mutuality, this problem is equiv-
alent to the following problem: determine a plane curve r = r
(z) rotating about an axis Oz that forms a body of minimal
volume V limited by the surface of the given area S (Fig. 1).

Constant mean curvature is a remarkable property of
nodoids and unduloids:

2H ¼ � 1
k2

¼ const;

but

K ¼ C2 � r4ð Þ
4k22r4

:

So, an unduloid, or onduloid, is a surface with constant
nonzero mean curvature obtained as a surface of revolution
of an elliptic catenary: that is, by rolling an ellipse along a
fixed line, tracing the focus, and revolving the resulting
curve around the line. A nodoid is a surface of revolution
with constant nonzero mean curvature obtained by rolling a
hyperbola along a fixed line, tracing the focus, and revolving
the resulting nodary curve about the line.

z

a cylindrical surfacer

a nodoid

a sphere
an unduloid

1

1 2

Fig. 1
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In 1828, Poisson has shown that a surface of separation of
two mediums that are at balance is a surface of a constant
mean curvature. But in this case, one neglects the deadweight.
These surfaces can be modeled by soap films. A physical
principle forming soap films, regulating their behavior, local
and global properties is rather simple. A physical system
keeps corresponding configuration only if the system cannot
change easily the configuration having captured a position
with less level of energy. An integral of general type is
reduced into elliptical integrals of the first and second types:

x ¼ �CFðk0;uÞ
r

þ rEðk0;uÞ; y ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k02 sinu

p
;

where

k ¼ m
r
; k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p

is an additional module of the integral. In ultimate cases, the
integral for the studied surfaces can be reduced to an
equation of sphere and circular cylindrical surface.

An analog of geometrical properties of shells of revolu-
tion under corresponding conditions is a condition of
matching in strength (the same strength), i.e., an equality of
circular and meridional forces in every cross section. A shell

of revolution will be in equal strength state under action of
inner pressure P and axial force Pz

0 per unit length of the
circular edge if

Pz
0

2pr1
¼ k2P sin h0:
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VINITI 28.03.1977; No. 1197-77Dep., 5 ref.
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nodoid type loaded by non-axisymmetrical load quickly
changing. Kazan: Kazan. un-t, 15 p. Ruk. dep v VINITI
2.04.1982; No. 1539-82Dep (6 ref.).
Gorodov GF, Gagarin YuA, Mitenkov FM, Pichkov SN. The
application of nodoid and unduloid shells for the design of
atomic installations. Prikl. Probl. Prochnosti i Plastichnosti.
2000; No. 61, p. 61-63.
Mladenov IM. Delaunay surfaces revisited. Dokl. Bylgar.
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■ Nodoid Surface Connecting Two Circular Cones

It is necessary to know Lagrange multipliers λ0, λ2; Euler
constant C and a constant of integration γ for the unambig-
uous determination of a curve defined by an equation:

z ¼
Z ðC � k0r2Þdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ðk2rÞ2 � ðC � k0r2Þ2
q þ c;

These values can be obtained without using of integral
conditions for areas and volumes of the surface.

Let us construct a conjugation of two circular cones with
known radiuses r1 and r2 and with slopes α1, α2 of rectilinear
generatrixes of the cones (Fig. 1). For this case, we shall use
a nodoidal surface. The length of the surface along an axis
Oz turns automatically.

The integral equation becomes

z ¼
Z ðC
 � r2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 � krð Þ2�ðC
 � r2Þ2
q � dr þ c;

where C
 ¼ C
k0
; k ¼ k2

k0
.

The values r1 and r2, α1 and α2 must be connected
between themselves.

Let us study a soap bubble subjected to inner pressure
q. A contact of a soap film with the bases of the circular
cones takes place in the sections a and b. In these sections,
surface tension forces are directed along rectilinear
generatrixes

�

� 1

F2

q

� 2

r =r(z)

�1

r2

z

r1

�2

b

F1

Fig. 1
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These forces are

F1 ¼ ll1 ¼ 2pr1l and F2 ¼ ll2 ¼ 2pr2l;

where μ is a coefficient of surface tension, li are the lengths
of the contours of contact.

The conditions of equilibrium give

r1 sin a1 ¼ r2 sin a2:

Using a Laplace formula for surface tension, we can get

Dp ¼ 2Hl:

So, we can design the surfaces both of positive and
negative mean curvatures.

For the determination of coefficients λ and C, it is nec-
essary to use an expression for derivative:

r0ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2r2 � ðC
 � r2Þ2

q
ðC
 � r2Þ

and boundary conditions: if z = 0 then r = r1 and r0 ¼ tan a1;
but if r = r2 then r0 ¼ tan a2.

In addition, we have

k ¼ r21 � r22
2ðr2 cos a1 � r1 cos a2Þ ;

C
 ¼ r1r2 r1 cos a1 � r2 cos a2ð Þ
ðr2 cos a1 � r1 cos a2Þ :

In Fig. 2, copper nodoids are shown made by a method of
galvanoplastics.

Additional Literature
Cherevatzkiy VB. Some considerations about shells of maxi-
mum capacity in the joint with a cone. Voprocy Dinamiki i
Prochnosti: Tr. RKIIGA, Riga, 1970; 158, p. 94-101(2 ref.).
Pul’pinskiy YaS. Dome of the Russian church in the form of
shell of optimal shape. Tr. Mezhd. Foruma po Problemam
Nauki, Tehniki, Obrazovaniya. Moscow: Akad. nauk o
Zemle, 2001; Vol. 1, p. 95-97 (4 ref.).
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