A surface of revolution is generated by rotation of a plane
curve z = f{x) about an axis Oz called the axis of the surface
of revolution. The resulting surface therefore always has
azimuthal symmetry. Hence, an explicit equation of a surface
of revolution can be presented in the following form:

=f(r) =f(V¥ +y),

where r = /x? + y? is the distance a point of the surface from
the axis of rotation. Right cylindrical and conical surfaces are
examples of surfaces generated by a straight line when the line
is coplanar with the axis, as well as hyperboloids of one sheet
when the line is skew to the axis. A sphere is a surface of
revolution of a circle around an axis which runs through the
center of the circle. If the circle is rotated about a coplanar
axis, not crossing the circle, then it generates a forus.
Meridians are the lines of intersections of a surface of rev-
olution with planes passing through an axis of rotation. All
meridians of one surface of revolution are congruent to the
rotated curve. A plane passing through the axis of the surface of
revolution is called the meridian plane. 1t is the plane of sym-
metry of the surface. Any surface of revolution has the infinite
number of planes of symmetry. Parallels are the lines of
intersection of the surface with planes orthogonal to an axis of
rotation. Meridians and parallels of a surface of revolution are
the lines of principal curvatures. Any normal of surfaces of
revolution intersects its axis of rotation. A surface of revolution
having more than one axis of rotation is a sphere or a plane.
Tangents to all meridians in the points located on one
parallel circle are lines on the tangent conical (or cylindrical)

surface of revolution, which is created by the revolution of
the tangent about the axis of the rotation. A vertex of the
tangent conical surface is located on the axis of revolution.

A parallel is called the neck circle, if tangent planes to the
surface of revolution in the points on this circle are parallel to
the axis of revolution and the tangent cylindrical surface is
located inside the surface of revolution. A parallel is called the
equator circle, if tangent planes to the surface of revolution in
the points on this circle are parallel to the axis of revolution
and the tangent cylindrical surface is located outside the
surface of revolution. A parallel is called the crater circle,
if tangent plane to the surface of revolution in the points on
this circle is perpendicular to the axis of revolution and normal
to the surface of revolution in the points of this parallel are
parallel to the axis of revolution and form the normal cylin-
drical surface.

Umbilical points of a surface of revolution are placed on
those latitudes on which a center of curvature of a meridian is
located on the axis of rotation. Sphere is umbilical surface.
Under Alexis-Claude Clairaut theorem, the product of a
radius of a parallel into cosines of an angle of intersection of
the geodesic line with the parallel is constant along the geo-
desic line.

A surface of revolution admits bending into another
surface of revolution and a net of lines of principal curva-
tures is remained.

Parametrical equations of arbitrary surface of revolution
are

r=r(r,B) = rcos fi + rsin fj + f(r)k.
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Fig. 1

Assume an equation of a meridian in the form r = r(a) where
a is the angle of the normal to the surface passing through a
given point with the axis of rotation (Fig. 1) then » = R, sin a.
Coefficients of the fundamental forms of the surface of revo-
lution can be obtained with the help of formulas:

A=A(a) =Rya, B=B(x) =r=Rysina, F=0;
L=R(x), M= 0, N = R;sino,

where R is the principal radius of curvature of the meridian
that is the coordinate line of a, R, is the principal radius of
curvature of the parallel. The lines a = const are parallels and
the lines S = const are meridians.

If an equation of a meridian is given in the form » = r
(z) (Fig. 1) then an equation of a surface of revolution can be
written with the help of three scalar equations:

2 Surfaces of Revolution

x=rsinf, y=rcosfl, z=z
where r = r(z) is a function that determines the shape of the
meridian (a profile curve); f is the angle of rotation of the

plane of the meridian and then

A=V14+r? F=0, B=r(2),
1 r’ 1 1
klz_:_iyz’ ky=— = —F——,
Ry (1+r’2) N VAR

where the derivatives with respect to z are denoted by
primes; ki, k, are principal curvatures of the surface. A
normal curvature of a surface in the direction of the meridian
is equal to a curvature of the meridian, i.e., k;. Meridians of
surface of revolution are geodesic lines.

Catenoid is the only one minimal surface of revolution.
One-sheet hyperboloid of revolution, right circular cylinder
and right circular cone are the only ruled surfaces. The last
two surfaces are the only developable surface of revolution.
If a beginning and an end of unclosed rotated line are placed
on an axis of rotation then the surface of revolution will be
the closed one.

A great deal of surfaces of revolution exists and is studied in
different scientific publications. Tens of surfaces of revolution
are presented in this encyclopedia and shown on pages 101-104.
Such surfaces of revolution as “Lochdiskus”, “Jet Sur-
face”, “Apple Surface”, “Kidney Surface”, “Fish Sur-
face”, “Limpet Torus”, Darwin-de Sitter spheroid, and others are
known but used less and may be found in other original sources.
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H Surfaces of Revolution Presented in the Encyclopedia

The spherical
surface (sphere)

The catenoid The surface of
rotation of a Neil’s
parabola

Conical surface
of revolution

The bullet nose

The one-sheet

hyperboloid of The cylindrical Corrugated surface

revolution surface of revolution of revolution The surface of revolution
of a common sinusoid of a Agnesi curl
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The surface of revolution

The surface of revolution
of the Agnesi curl

of a astroid

Surface of revolution of the

parabola of arbitrary position The surface of

revolution of a cycloid

e
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The surface of
revolution of a sinusoid

The surface of revolution of a hyper-
bola z = b/x around the Oz axis

The pseudo-catenoid “Penka”

Surface of revolution of
the biquadrate parabola

Two-sheeted hyperboloid of
revolution

The fourth order
paraboloid of revolution

The elliptic torus
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The hyperbolic-and-logarithmic
surface of revolution

The cyclic surface of
revolution

“Wedding-ring”

The parabolic-and-logarithmic

surface of revolution

The parabolic humming-top

Surface of revolution given
by a harmonic function

2= Inp2+ 2|12

The surface of revolution
with damping circle waves

“Drop”
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The surface of conjugation of

Fairing of cycloidal type two coaxial cylinders of
different diameters

Surfa.ce qf revo.lutior.l Surface of revolution of Surface of revolutign of
of the inclined sinusoid the evolvent of the circle the hyperbol? 'of arbitrary
position

1;’:::; :“‘\ }‘\‘
AL

Surface of revolution “Egg” The Piriform Surface

Surface of revolution
of the fourth order

“Egg” of the third order

——

1]
!g.l
'y

Soucoupoid

The surface of conjugation of the coaxial
cylinder and the cone

http://www.wolframalpha.com/input/?i=surface+of

Additional Sources
+revolution (2014).

Parametrische Fldchen und Korper. http://www.3d-meier.de/
tut3/


http://www.3d-meier.de/tut3/
http://www.3d-meier.de/tut3/
http://www.wolframalpha.com/input/?i=surface+of+revolution
http://www.wolframalpha.com/input/?i=surface+of+revolution
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B One-Sheet Hyperboloid of Revolution

One-sheet hyperboloid of revolution is generated by the
rotation of a hyperbola

Pla* -7/ =1

about the Oz axis (Fig. 1). These are twice ruled surfaces.
Through every point of the surface, two straight lines, lying on
the hyperboloid, pass (Fig. 2). A hyperboloid can be con-
structed by rotation of a generatrix straight line about the Oz
axis but the straight generatrix and the axis are skew lines
(Figs. 3 and 4). The surface is the only one ruled surface of
revolution of negative Gaussian curvature. The parallel lying
in a plane z = 0 has a radius » = a and is called a waist
circumference that represents a geodesic line. All of the rest of
the geodesic lines besides the equator go from infinity coming

Fig. 1

Fig. 2

Fig. 3

Fig. 4

nearer to the equator. One of them intersects the equator and
goes to other half of the surface but others do not reach the
equator and touching the some parallel, turn back; the third
geodesic lines come nearer asymptotically to the equator.

Forms of definition of one-sheet hyperboloid of

revolution

(1) Implicit equation (canonical equation):

x4 y? zz_l
a2 2

If a = c, then a hyperboloid is called a right hyperboloid.

(2) Parametrical equations (Figs. 3 and 4):

x = x(u,v) = —asinu % avcos u,
y =y(u,v) = acosu £ avsinu,
z=z(v) = tov.
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Coefficients of the fundamental forms of the surface:

A =d(1+V?), BP=d*+ F=Fd,
L=7Fca(14+)/ (A8 - F)"*,

M =dc/(AB - F2)'? N =0

Coordinate lines v (# = const) coincide with one system
of straight lines but the lines u are the parallels of the
hyperboloid of one sheet. In Fig. 3, the hyperboloid is shown
with taking into consideration the upper signs in the para-
metrical equations of the surface. The lower signs are taken
into account in Fig. 4.

(3) Parametrical equations (Fig. 1):
x=x(r,f) =rcosf, y=y(r,p)=rsinf,

z=2z(r) =cVr: —d?/a.

Coordinate lines r and S (parallels and meridians) are the
lines of principal curvatures.
(4) Parametrical equations (Fig. 1):

a g .
X:X(Z, ﬁ) :E 62 +Z2 Sll’lﬁ,

a /
y:y(zaﬁ)zz C2+1200Sﬂ,
=2

Coordinate lines z and f (meridians and parallels) are the
lines of principal curvatures.

(5) Parametrical equations (Fig. 1):

x=x(p,o) = achacos f, y=y(f,a) = acho sin f3,

z = z(v) = csho.

Coefficients of the fundamental forms of the surface and
its principal curvatures:
A=acha, F=0, B?>=da*sh*u+ c*ch’a,
L= —acch’a/B, M =0, N = ac/B,
ki = —c/(aB), ky =ac/B>.

Fig. 5 The planetarium in Saint Louis, USA

Fig. 6 The Cooling Towers, Uzbekistan

The surface is widely used in civil (Fig. 5) and industrial
(Fig. 6) engineering.

Additional Literature

Krivoshapko SN. Static, vibration, and buckling analyses
and applications to one-sheet hyperboloidal shells of revo-
lution. Applied Mechanics Reviews. 2002; Vol. 55, No. 3,
p. 241-270 (261ref.).



2 Surfaces of Revolution

107

M Fairing of Cycloidal Type

A surface of a fairing of cycloidal type is formed by the
rotation of a cycloidal curve
x=x(t) = a(t+ sint), z=2z(t) =c(1+ cost)
about an axis Oz (Fig. 1). If a = ¢, then a generatrix curve
becomes a typical cycloid. The form of fairing is defined by a
form of meridian that is given with the help of splines. Assume
a curve generated by the trajectories of the points of an axis of
symmetry of a limagon of Pascal in the process of its rolling
along a cycloid as a generatrix curve of a surface of revolution.

Forms of definition of the surface

(1) Parametrical equations (Figs. 1, 2 and 3):

x =x(z, ) = r(z) sin f,
y=(z, B) = r(z) cos B,

=2,
where

72(2c — 2)

r= r(z) =a + arccos(g— 1) s
C

p is the angle counted off from the coordinate axis Oy in the
direction of the axis Ox; 0 < f <27; 0 <z<2c. In Fig. 1, it
is assumed that ¢ = 2a.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

2
az
A>=1+———— F=0,B=
+c2(2c’—z)’ ’ @)
PO ) N
¢ AT B (2ez — 2
1
M:O7 kZZkﬁ:E

The contour parallel z = 0 is the only geodesic parallel on
the surface because the tangent lines to the meridians in its
points are parallel to the axis of rotation. Choosing the

Fig. 1

Fig.2 c=4a

parameters a U c, it is possible to seek necessary character-
istics for a fairing. The ratio of maximum height H of the
surface to the diameter (2r,,,.x = 2ar) of the geodesic parallel
and a radius of curvature of the meridian in the frontal point
(z = 2¢) are the main characteristics of the fairing.

A radius of curvature R of the meridians in the frontal
point of the surface is defined by a formula:

,7) = a(t + sint) cos y,
,7) = a(t + sint) siny,
z=2z(t) = ¢(1 + cost),

where y is the angle counted off from the coordinate axis Ox

in the direction of the axis Oy; 0 <y <2m; 0 <¢r<m.
Coefficients of the fundamental forms of the surface and

its principal curvatures:

A% = (1 4 cos1)” + P sin’ 1,

F =0, B=a(t+sint),

1 t B
L:_ac( -Z(Cfs )’ A/;:0, N:—%si?lt,

ac(l + cost csint
Iq:kt:—T, ky =k, = — B

(3) A particular case of parametrical equations (Fig. 3).

Fig.3 c=a
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If one takes ¢ = a, then a surface of rotation of a typical
cycloid about an axis of Oz will be:

x=x(ty) =
y(t,7) = a(t + sint) siny,
z(t) = a(1 + cos ).

a(t+ sint) cosy,

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A* =2a*(14cost), F=0, B=a(t+sinr),

B Pseudo-Sphere

Gaussian curvature (K = kk,) is equal to a constant negative
number, i.e.

K=—-1/d%,

in all points of a pseudo-spherical surface (Figs. 1 and 2). A
pseudo-sphere or Beltrami surface is formed by rotation of a
tractrix that is trahere in Latin, about an axis Oz. A tractrix
is an evolvent of the catenary:

Z
r=ach-.
a

Parametrical equations of a tractrix are written as
X =asinu,

u
z=a cosu—i—lntani ,

where O<u<m, u is the angle of the axis Oz with the
tangent to the tractrix.

Fig. 1

L:_E’ M =0, N = ——sint,

1 asint asint
kh=k=——lk=k =— K = > 0.
D VR AB '" T 2AB

References

Krutov AV. On movement defined by centroid-and- trajec-
tory pairs. Izv. vuzov. Mashinostroenie. 2001; No. 2-3,
p. 3-6 (11 ref.).

Krutov AV. Forming curves of fairing. Izv. vuzov. Mashi-
nostroenie. 2002; No. 5, p. 78-80 (3 ref.).

Fig. 2
A tractrix can be defined by an explicit equation:

+ 2 42
niEvVe-r o T
r

Zi=a

where the upper signs concern the positive branch z > 0,
lower signs concern the negative branch z < 0 (Fig. 2). A
length of fragment of the tangent line to the tractrix from the
point of tangency till the point of intersection with the Oz
axis is constant and equal to a > 0. The line of the cross
section of a pseudo-sphere by a plane xOy (an edge of a
pseudo-sphere) is the circle with a radius a, all of the rest of
parallels have a less radius r, that is r < a.

A volume of one part of a pseudo-sphere is
Vv na®
==
The inner geometry of pseudo-sphere coincides locally

with the Lobachevski geometry.
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Forms of definition of the surface

(1) Parametrical form of definition:

x = x(u,v) = asinucosv,
y =y(u,v) = asinusinv,

u
z=z(u)=a cosu+lntan§ )

where u is the angle of the axis Oz with the tangent to the
meridian. An edge of a pseudo-sphere has u = = /2.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A =acotanuy, F =0, B=asinu,
L= —actanu, M =0, N =asinucosu,
ky = —tanu/a, k; = co tanu/a.

Meridians u and parallels v except the edge of the pseudo-
sphere (u = n/2) are the lines of principal curvatures.

(2) Parametrical equations:

x:x(r,ﬁ):rcosﬁ, y:y(r,ﬁ):rsinﬁ,

z=12(r) :aln{(a—i—\/m)/r} —Va: -1,

where r is the distance an axis of rotation from a corre-
sponding point of the pseudo-sphere (r < a), the circum-
ference r = a is the edge of the pseudo-sphere.

An area of the fragment of a pseudo-sphere between the
parallels r = a and r = r, is

S =2mna(a — r,).

M Paraboloid of Revolution

A paraboloid of revolution is created by the rotation of a
parabola

X =2pz

about an axis z (Fig. 1). The parabolic surface can be gen-
erated also by translation of a movable parabola y* = 2pz
along the fixed parabola x* = 2pz (Fig. 2).

The peak of the movable parabola must slide along the
fixed parabola but the plane and the axis of the moving
parabola must remain parallel. The concavities of the both
parabolas must be directed in one side.

109

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A=% F=0 B=r
a rvat —r?
L=  M=0,N=-— :
rva?—r? a
' r L az —r?
| =—F, kb =—
ava? —r? ar

(3) Parametrical equations:

1 1
x=x(y,t) =—cosat, y=y(y,t) =-sinat,

Y bs
z=2z(y) = aln(ay—i— v ay? — 1) —Va? —1/y%

Coefficients of the fundamental forms of the surface:

A=B=2 F=o,
v
a
2@ =1’
_av/a*y? -1
NiT
K = —1/a* = const.

L=— M =0,

7

Here, using the substitution y = 1/r and t = f/a, we
reduced a linear element of the surface to isothermal form
that is when A = B.

Additional Literature

Popov AG. Pseudo-spherical surfaces and some problems of
mathematical physics. Fundamental and Applied Mathe-
matics. 2005; Vol. 11, No. 1, p. 227-239.

Fig. 1



110

2 Surfaces of Revolution

Fig. 2

Paraboloid of revolution possesses the interesting optical
property. The light rays coming from the focus after the
reflection of them from the surface of the paraboloid will go
parallel to the axis of paraboloid of revolution.

Forms of definition of the surface
(1) Explicit form of definition (Fig. 2):
22 = (& +%)/p.

Coefficients of the fundamental forms of the surface and
its curvatures:

x2 2
A=1+5, F=2, B=1+%,
P p p
1 L
L= = ) MZOv k> :_za
P2+ 242 A
L
k,——zﬁ,kl L, ko =p*L®

On the surface of a paraboloid of revolution, coordinate
lines x, y generate Tchebychef’s net, i.e., every quadrangle
formed by the lines of curvilinear coordinate net has equal
opposite sides. The coordinate net is non-orthogonal (F # 0)
but conjugate (M = 0).

The partial derivatives 0z/0x and 0z/0y are much less than
one in strength analyses of real shallow shell objects and that
is why it is possible to neglect squares of the derivatives in

Fig. 3 The glass dome of museum, Kiev, Ukraine

comparison with 1. So, the formulas obtained will take the
simplified form for shallow middle surfaces of shells:

A=B=1,
ke =k, =1/p.

F=0, L=1/p=N, M=0,

(2) Parametrical equations (Fig. 1):

x=x(r,p) =rcos B, y=y(r,f)=rsinp,

z=2z(r)=1r/(2p).

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A =1+7/p*, F=0,B=r,
L=1/(pA), M =0, N = r*/(pA),
ki = 1/(pA®), ko = L.

(3) Parametrical equations (Fig. 1):

x =x(u,v) = av/u/hcosv,
vy =y(u,v) = a\/u/hsinv,
z=z(u) =u where u>0; 0<v<2nm.

The paraboloid has a radius r = a at the height of z = h.
An area of the lateral surface of a paraboloid of revolution is

S =mna [(a2 + 4h2)3/2— a3} /(6h%).

A volume of a paraboloid of revolution is V = za’h/2 if
0<v<2n, 0<u<h.

il -'|_I‘|I'” N\ o8
111 h"-'-‘_'-‘\.“-"\7-.\\.\\\

! '.'..l‘.'l\'

Fig. 4 A planetarium in Bochum, Germany
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Coefficients of the fundamental forms of the surface and
its principal curvatures:

a2 acu
A’=14+—, F=0, B> =—
+4uh’ ’ h’
a 2au
L=———"M=0N=————,
2uv/a? + 4uh va* + 4uh
L N
kl—ﬁakz_ﬁ'

M Circular Torus

A circular torus or torus in Latin is formed by rotation of a
circumference

(x—a)’+ 22 = b

about an axis Oz. An open torus is a torus (Fig. 1) generated
by rotation of a circumference about an axis lying outside
limit of this circle (a > b). A closed torus (Horn Torus) is a
torus generated by rotation of a circumference about an axis
touching (a = b, Fig. 2) or intersecting (a < b, Figs. 3 and 4)
the circle. The inner part of surface of an open torus is a
surface of negative Gaussian curvature but the outer surface
is a surface of positive Gaussian curvature (Figs. 1, 2 and 3).
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Fig. 2 The torus with a = b (the closed torus)

The surface is widely used in civil (Fig. 3) and industrial
(Fig. 4) engineering.

Additional Literature
Krivoshapko SN. Parabolic shells of revolution. Montazhn. i
spetz. raboty v stroitelstve. 1999; No. 12, p. 5-12 (63 ref.).

Fig. 3 The torus with @ = 0 (a sphere)

(b)

Fig. 4 The torus with a < b (the closed torus)

Forms of definition of the surface
(1) Implicit equations:

(P4 +2+ @ — D)= 4 (2 +7).
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(2) Parametrical equations:

x =x(u,v) = (a+ bcosv)cosu,

=X ):
y =y(u,v) = (a+ bcosv)sinu,

z(v) = bsinv,

where a is a radius of the centers of generatrix circles, b is a
radius of a generatrix circle, an angle u is called an inner
latitude of a point of the torus; 0 <u<2m, 0<v<2m; a
ratio b/a is an eccentricity of torus. On a circular torus
besides parallels and meridians, two families of plane circles,
called Villarceau circles, exist. They can be seen in the cross
sections of a torus by a plane touching the torus at two
points. A radius of Villarceau circles is equal to a.

An area of the whole surface of a torus is 4z2ab, its
volume is 27%ab>.

Coefficients of the fundamental forms of the surface:

A=a-+bcosv, F=0,
L= —(a+bcosv)cosv,
K = cosv/(bA).

B=b,

M=0, N=-b,

Assume a < b (Fig. 4), then the angle v changes in the
limit of

— arccos(—a/b) <v < arccos(—a/b),

but if we want to have the torus (the lemon) shown in Fig. 4b
then we must take

arccos(—a/b) <v <2m + arccos(—a/b).

(3) Parametrical equations:

a( a2+[327b>
a +

cosu,

B Elliptic Torus

An elliptic torus is generated by the rotation of an ellipse of
arbitrary position (Fig. 1):

x=x(v)=a+rcosv, z=z(v)=rsinv,

_ _ cb — y—
where r=r(v) = Tl p=v—0, about an
axis Oz; 6 = const is the slope angle of the semi-axis of the
ellipse ¢ with the plane xOy.

2 Surfaces of Revolution

bp

where a is the angle of the straight line, connecting the
center of the generatrix circle of the radius b with arbitrary
point of the torus, with a plane z = 0.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

7= f =atano,

2 2 _
A—WVEEE b)) g b
Va + @’ + B
a(\a® + f* —b) a’b
L=-— 5 , M=0, N=——,
@+ f @+ )
ki =k, =—1/(\/a® + > —b), ky=k,=1/b.
(4) Parametrical equations of a circular torus if
a = b (Fig. 2):
hy £ 1
x =x(y,u) = ale wa )cos u,
hy +£1
y=y(y,u) = ale wa )sin u,
z = athy.

Additional Literature

Gulyaev VI, Bazhenov VA, Gotzulyak EA, Gaydaychuk VV.
An Analysis of Shells of Complex Form. 1990; Kiev:
Budivelnik, 192 p.

Kutzenko GV. Axis-symmetrical deformation of a circular
torus. PM. 1979; Vol. 15, No. 11, p. 46-51.

Fig. 1
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Fig. 2

N :
Fig. 3
Fig. 4

An open elliptic torus is a torus formed by the rotation of
an ellipse about an axis Oz lying outside of the limit of this
ellipse (Figs. 1 and 2).

A closed torus is a torus generated by rotation of an
ellipse about an axis Oz touching (Fig. 3) or intersecting
(Fig. 4) the ellipse.

An ellipse touches an axis of rotation if the condition
0x/ov = 0 carries out or

r?(*=b?) sin2(v — 0)] = 2c*b tan .

(a) (b)

Fig. 5

Parametrical equations of the surface have the following
form:

x =x(u,v) = (a+ rcosv) cosu,
y =y(u,v) = (a+ rcosv)sinu,
z=2z(v) = rsinv,

where a is the radius of the circle generated by the point
of the intersection of the axes ¢ and # of the generatrix
ellipse (Fig. 1); r is the distance the point of the inter-
section of the ellipse’s axes from an arbitrary point M,
belonging to the ellipse; b, ¢ are the semi-axes of the
ellipse; 0<u <2rn, 0<v<2m uis the angle of the axis
Ox with the axis Oy.

If one of the axes of the generatrix ellipse, for example,
the ¢ axis, is parallel to the axis of rotation Oz, then it is
necessary to assume 6 = 7/2. If we take b = ¢, then we shall
have r = b, v = f, but an elliptical torus will degenerate into
a circular torus where a will be a radius of the centers of
generatrix circles with the radius of b.

Coefficients of the fundamental forms of the surface:

A=a+rcosv, F=0,

,  (b*sin? B+ c¢* cos? B)r®
B = Apt J
A [—b?
L= 5" CZTbZrzsin2ﬁsinv+cosv ,
c
6
/
M=0N=———.
’ c2b?B

Having assumed a = 0, we can design an oblique ellip-
soid of revolution (Fig. 5a, b and c).

Additional Literature

Clark RA, Girloy TI. and Reissner E. Stresses and defor-
mation of toroidal shells of elliptical cross section. J. Appl.
Mech. 1953; Vol. 20, No. 4.
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M Surface of Revolution of a Curve z = b exp(—azxz)
Around the Z Axis

. . 2.2
The surface is formed by rotation of a curve z = be™**
about a coordinate axis z.

Forms of definition of the surface

(1) Parametrical equations (Fig. 1):

7= b exp[—d®*(u® +?)).

x=x(w) =u, y=y()=v,

The surface is called «Die Glocke» in German.

(2) Parametrical equations (Fig. 2):

x=x(r,p)=rcosf; y=y(r,p)=rsinp;

z=2(r) = be @7,
where 0 <r<oo; 0<<2m; z<b.

(3) An explicit equation (Fig. 1): z = be ' +7)

B Two-Sheeted Hyperboloid of Revolution

Two-sheeted hyperboloid of revolution is formed by rotation
of a hyperbola

about its focal axis (an axis Oz). The surface has two separate
sheets when the axis of revolution is the transverse axis.
A section of a hyperboloid by a plane z = h > ¢ = const

gives a circle with a radius r = av'h? — ¢%/c (Fig. 1). If we

Fig. 1

\
: T \ 1 =
- NN
— ~d \.E:
' SYNNNNASSS
T —hmhhxﬁl |
::~-- _:a »
sS== o
L
a=b=1;
-2<u,v<2m
Fig. 1
Fig. 2
Fig. 2

cut a hyperboloid by a plane y = ¢ = const, then hyperbolas

7z =t cva® + * + x*/a will be in the cross section (Fig. 2),
but having intersected a hyperboloid by a plane x = p =

const, we can have hyperbolas z = +c\/a? + p* +y?/a
(Fig. 2).

The peaks of two sheets of hyperboloid are placed at the
points with coordinates (0, 0, £c). The signs correspond two
sheets of hyperboloid. Two-sheeted hyperboloid of revolu-
tion belongs to a class of not closed central surfaces of the
second order. It is a particular case of hyperboloid of two
sheets which is presented in Chap. “35. Surfaces of the
second order.”

Forms of definition of the surface
(1) Implicit equation:

2y Zz—l
2 T a2 h

a C


http://dx.doi.org/10.1007/978-3-319-11773-7_35
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where a and ¢ are the semi-axes of a hyperboloid of revo-
lution, |z| >¢; a*lc = p is a focal parameter of meridian. A
hyperboloid is called a right hyperboloid of revolution if
a = c. It is formed by rotation of an equilateral hyperbola.
An asymptotical cone of two-sheeted hyperboloid of revo-
lution is defined by an implicit equation:

A hyperboloid of revolution is a quadric surface.

(2) Explicit equation (Fig. 2):

=+
a

(3) Parametrical equations (Fig. 1):

x = x(u,v) = ashucosv, y=y(u,v) = ashusinv,

z = *cchu.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A? = d®ch’u + *sh’u,

F =0, B=ashu,
L:i%, M=0,

N = j:%shzu,
klzi%, kzzii.

Coordinate lines u, v are the lines of principal curvatures.

(4) Parametrical equations (Fig. 1):

x=x(z,f) = rsinf,

B Surface of Conjugation of Two Coaxial Cylinders of
Different Diameters

A surface of conjugation of two coaxial cylinders of different
diameters may be included as a component of the two
classes of surfaces. These are a class of cyclic surfaces and a
class of surfaces of revolution.

The surface is formed by rotation of the sinusoid about a
common axis of two conjugated cylinders (Fig. 1).

Parametrical equations of the surface of conjugation are
(Figs. 1 and 2).
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y=(z, ) = rcos

a
7=z, where r=—-+72 — %
c

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A=V1+r? F=0, B=r(2),
1 v’ 1 1
R, (1 + r’2)\ Ry p\/1 417

where the first and second derivatives of r with respect to
parameter z are denoted by primes.

(5) A parametrical form of definition with the help of polar
coordinates of the meridians (Fig. 1):

x=x(¢, ) = psin gsin

y =y(¢o,B) = psingcos f,
Z

=2z(¢p) = pcos ¢,
where
2 2
a a
p = P y P=—7, €= l+_27
1 —ecos¢ c c
0<p<m+6, cosh=-.
e

Additional Literature

Vasil’ev AN. Stability of anisotropic two-sheeted hyperbo-
loid of revolution with filling material. Kazan: KFEI, 1991;
14 p., 6 ref., Dep. v VINITI 08.07.91, No. 2887-B91.
Gritskevich OV, Meshcheryakov NA, Pod’yapol’skii YuV,
Precision laser processing of curved surfaces of revolution,
QUANTUM ELECTRON. 1996; 26 (7), p. 644-646.
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Coefficients of the fundamental forms of the surface and
its principal curvatures:
2
2 T 2 . T o B
A _1+2167(R2_R1) S E, F—O, B—r(oc),
Y (R2 —Rl) T B
L=———"——"cos—, M=0, N=—
807 52’ IR
TT (R2 —Rl) T 1
k,=kj=———-‘cos—, kpy=ky=—
= 82A>  op TR T A
. m*(Ry,—R;) ma
Flg. 2 —WCOSE,
He 7?(Ry — R1){R> — Ry — (Ry + Ry) cos[na/(2b)]} + 1617
x = x(a, f) = r(a)cos B,y =y(x,f) = r(a)sinp, - 32b2A3B '

z=a,

where
Rz—Rl oL
- cos™) + R
2 ( COSZb + Ry

Tl
= (R, — Ry)sin>— +R
(R, — Ry)sin TR

r=r(a) =

is a law of change of a radius of the studied surface of
conjugation along an axis Oz (an axis of rotation); R, > Ry;
0<a<2b; 2b is a length of a segment between two cylin-
ders of different diameters; S is the angle in the planes of
parallels taken from the axis Ox in the direction of the axis
Oy; 0<f<2m.

Two parallels placed in the cross sections z = 0 and
7= 2b are geodesic lines, because the tangent to the meridians
at the points of these parallels are parallel to the axis of rotation.

All meridians of the surface of revolution are geodesic
lines too.

B Surface of Revolution “Wellenkugel”

Information about a surface of revolution “Wellenkugel” is
presented in sites given in References. This surface has
parametrical equations:

Fig. 1

A curvilinear coordinate net is given in lines of principal
curvatures a, f. If R, > Ry, then the surface has a segment of
negative Gaussian curvature if 0 <o <) and of positive
Gaussian curvature if b <o <2b. In Fig. 2, the surface of
conjugation is shown with

R, =3Ry;; b=3R;; 0<a<2b; 0<p<2m

The surface in issue is a component of subclass “Cor-
rugated surface of revolution of a common sinusoid” con-
tained also in a class “Surface of revolution.” A surface of
conjugation degenerates into a cylindrical surface of revo-

lution if R; = R,.

Additional Literature

Gulyaev VI, Bazhenov VA, Gotzulyak EA, Gaydaychuk VV.
An Analysis of Shells of Complex Form. 1990; Kiev:
Budivelnik, 192 p.

x = ucos(cos u) cos v;
y = ucos(cos u) sin v;

z = usin(cos u).

In Fig. 1, the surface with 0 <u <14,5m; 0<v<1,5n
is shown.

References

1. Mathematics Museum (Japan). Introduction to Geometry,
Ibaraki University, 2002, http://mathmuse.sci.ibaraki.ac.jp/
MuseumE.html

2. Parametrische Flachen und Kd&rper.—http://www.3d-mei
er.de/tut3/Seite63.html


http://mathmuse.sci.ibaraki.ac.jp/MuseumE.html
http://mathmuse.sci.ibaraki.ac.jp/MuseumE.html
http://www.3d-meier.de/tut3/Seite63.html
http://www.3d-meier.de/tut3/Seite63.html
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M Surface of Conjugation of Coaxial Cylinder and Cone

A surface of conjugation of coaxial cylinder and cone is a
fragment of a corrugated surface of revolution of a common
sinusoid. It is formed by rotation of a curve

y = a[l — cos(2nz/c)] + R,

about an axis Oz. Having assumed two necessary conditions

2 2nb
na sin(—7I )=tan ¢ and
Cc C

27h
a[l - cos(n)] + Ry =Ry,
c

we may design a surface of conjugation of coaxial cylinder
with a radius R, and circular cone with the angle ¢ at the
vertex and with a base having a radius R, (Fig. 1). So,
having six constants Ry, Ry, a, b, ¢, and ¢, one may take four
constants as desired but two remaining geometrical constants
are derived from the system of two presented equations.
Moreover, it is necessary to take a < 0 when R > R,.

For example, let us consider that R;, R, ¢, and ¢ are
given, then the rest two parameters a and b can be obtained
with the help of formulas:

-1 (R —R)? N c? tan®
a= ;
R1 —R2 2 87‘52 ’
t
b= iarcsinczaﬂ if ¢ >0,

R, > R, (Flg 1) or o< 0, R, < R and

c c . ctan
= rc 4

b = - — —arcsin if <0, Ry>R; or
2 2=
® >0, Ry<R;.
y —
TR s
x 211
I [BEL
afiit]
o z 0

Fig. 1

Fig. 2

Forms of definition of the surface
(1) Parametrical equations:

x =x(z, ) =rcosf,
y =y(z, B) = rsin
1=z

where
r=r(z) = a[l — cos(2nz/c)] + Ry;

0<z<b;b<c; 0<f<2n (Figs. 1 and 2).
Coefficients of the fundamental forms of the surface:

n’a* . ,2mz
sin® —

A2=1+ , F=0, B=r(z),
C C
4an? 2nz r
L= —mCOST, M:O, N:Z
dan’* 2mz 1
kl = K; = 76.2?C057, k2 :kﬁ :E,
dan’*  2nz
= ——F——COS—
c2rA*

All meridians and also the parallels z = 0, z = ¢/2, and
z = c on surface of a coaxial cylinder and a cone are geodesic
lines. The surface of conjugation contains fragments of
positive Gaussian curvature in the limits of ¢/4 < z < 3c¢/4 if
a > 0 and fragments of negative Gaussian curvature in the
limits of 0 < z < ¢/4 and 3c/4 <z < cif a > 0.

The surface of conjugation shown in Fig. 1 has the fol-
lowing geometrical parameters: R, = 1.5R;, ¢ = 4R,, and
¢ = 7/6.

The surface of conjugation with R; = 1.5R,, ¢ = 4R,, and
@ = /6 is presented in Fig. 2.
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Fig. 5
Fig. 3
Fig. 6
(2) Parametrical equations:
x = x(z, f) = reos b,
y =¥z, ) =rsinf,
=2,
r=r(z) = a[l — cos(2nz/c)] + Ry;
a= R, — Ry,
where b = ¢/4; ¢ = 2mal tan ¢ if ¢ >0, a > 0 (Fig. 3) or ¢ <0,
a <0 (Fig. 4) and b = 3c/4; ¢ = —2maltan ¢ if 9 < 0,a >0
[ (Fig. 5) or ¢ > 0, a < 0 (Fig. 6).
Coefficients of the fundamental forms of the surface are
defined by the formulas given for the first variant.
The surfaces shown in Figs 1, 2, 3, 4, 5 and 6 are con-
structed when |p| = /6.
. Reference
Fig. 4

B Surface Formed by Rotation of a Meridian in the
Form of Semicubical Parabola

A surface is generated by rotation of a semicubical parabola
7 = bx*® (Neil’s parabola) about an axis Oz. This surface of
revolution has a singular point with coordinates (0, 0, 0).

Krivoshapko SN. Model surfaces of connecting fragments of
two pipe lines. Montazhn. i spetz. raboty v stroitelstve. 2005;
No.10, p. 25-29.

Forms of definition of the surface

(1) Explicit equation:

7=Dby/x2+y2.
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(2) Parametrical equations:

y=v, z:b(u6+v6)l/3.

(3) Parametrical equations (Fig. 1):

x=x(r, ) = rcosp,

y=y(r, ) = rsinp,

z=2z(r) =

2
73.

~

Coefficients of the fundamental forms of the surface and
its principal curvatures:

4 2

A2:1—|——9 r3, F=0,B=r,
2b 4 2b 2
L on” , M=0, N 3

B Surface of Revolution of a Hyperbola z = b/x About
the Oz Axis

Forms of Definition of the Surface

(1) Explicit equation:

b

Ve

A surface of rotation of a hyperbola z = b/x about the axis
Oz can be reckoned also in Tzitzéica’s surface with central
affine invariant equal to I = —4/(27b°).

(2) Parametrical equations (Fig. 1):

x=ux(r,p)=rcos B, y=y(r,p)=rsinp,

z=1z(r)=0b/r,

where x >0,y >0, r =b/r.
Coefficients of the fundamental forms of the surface and
its principal curvatures:

b2
A2:1+ﬁ, F=0, B=r,
L—2b M=0, N= b
AR - O Ar
L 2b b
Ve RETay
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Fig. 1

2b 4 2b _
——r 3 =_—r
3A

Wl

This is a surface of negative total curvature, i.e., K < 0.

Fig. 1

The surface of rotation of a hyperbola is a surface of
strictly negative Gaussian curvature. Not a single parallel
will be a geodesic line.

If we assume b =1, i.e., z = 1/x on [1, 00], then we have
Gabriel’s Horn, or Gabriel’s Trumpet, due to a highly
unusual and paradoxical trait. The volume of Gabriel’s Horn
is equal to  on [1, 00] and the area of lateral surface is equal
to infinity, i.e., A = 00, on [1l, ©0]. So, we have a surface
with infinitive surface area enclosing a finite volume.

Additional Literature
Tzitzéica G. Sur une nouvelle classe de surface. Comptes
Rendus, Acad. Sci. Paris. 1907; 144, p. 1257-1259.
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B Parabolic Humming-Top

A surface “Parabolic humming-top” has a parabola, as a
meridian, the axis of which is perpendicular to the axis of
rotation but a peak of the parabola is lying at the axis of
rotation, i.e., on an axis z (Fig. 1).

This surface called also “Der Kreisel” can be given by
parametrical equations (Fig. 2):

—h)?
x:—<|Z|2 )cosﬁ,
P
—n?
y:(|Z|2p ) sin f3,

=1z,

where £ is a height of one sheet of the surface; h*/(2p) is a
radius of the equator of the surface of revolution (Fig. 1);
—h<z<h; 0<f<2mn. The peaks of two generatrix
parabolas are placed in the points with coordinates (0;
0; + h). This surface contains two segments of a surface of
rotation of a parabola (Page 123).

M Surface of Revolution of an Astroid

A surface of revolution of an astroid can be generated by the

rotation of a astroid x> + 72 = ¢®? about its axis Ox or Oz
(Fig. 1).

Forms of definition of the surface

(1) Explicit equation:

Fig. 1

Fig. 1

Fig. 2

The surface has two singular points in the poles of the
surface with the coordinates x = y = 0, z = £a and an edge
of regression that is the parallel » = a when z = 0.

(2) Parametrical equations:
x=x(r,f) =r cosp,

y =y(r, B) = r sin f,
2=+ (@3 = PRy,

where 0 <r<a.
Coefficients of the fundamental forms of the surface and
its principal curvatures:

1/3
A=(%)", F=0 B=r,
r
a'3 Va3 —r2/3

L=—rreorr—, M=0, N=——""pi—r
3rvVa2l3 — 237 ’ al/3 ’
L 1 L 23 — 23
: 3(an) V@B =B S TE
1
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(3) Parametrical equations:
x=x(t,f) = asin*rcos f, y=y(t, ) = asin’sin f,
z=2z(t) = acos’t.

M Astroidal Torus

A surface of the rotation of an astroid is formed by an
astroid

23 2B 23

rotating about any of two its axes Ox or Oz. If an astroid

3

x =x(u) = acos’ u, 3

z=z(u) = asin’u
is placed at the r distant from the axis of rotation, then we
will have an astroidal torus. An inner area bounded by an
astroid is

3
A= gnaz.

A length of full astroid is 6a. It can be noted that an
astroid is an evolute of the ellipse. The evolute of an astroid
is another astroid.

An astroidal torus can be defined by parametrical
equations:

X =X(u,v) = [r+ x(u) cos 0 — z(u) sin 6] cos v;
Y(u,v) = [r + x(u) cos 0 — z(u) sin 0] sin v;
Z =Z(u) = x(u) sin 0 + z(u) cos 0,

= |
= |

where 6 is the angle of rotation of local axes x, z of the
generatrix astroid in the vertical plane containing the axis
The local coordinate system is rotated counter-clockwise if
the 6 angle has positive value.

An astroidal torus degenerates into an astroidal surface
of revolution when r = 0, 6 = 0 (Fig. 1).

In Fig. 1, the astroidal torus is given when a = 1 m,
r=2m,0=0,0<v<2nm;, —n<u<m.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A =3asintcost, F=0, B=asin’t,
L =3asintcost, M =0, N = —asin’rcost,
2 cost
1 :4_7 k2 = — . 3.0 K<O.
3asin 2t asin’t

Fig. 1

Fig. 2

Fig. 3

The astroidal torus with 8 = 0, 0<v<2n, —n<u<m,
a =r=1mis given in Fig. 2.

The right astroidal torus is represented in Fig. 3 when
a=1mr=2m,0=0257,0<v<2m —n<u<m.

Additional Literature
Weisstein EW. Astroid from MathWorld.
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B Surface of Revolution of the Agnesi Curl

The meridians of a surface of revolution of the Agnesi curl
about its asymptote intersect the plane z = 0, perpendicular to
the rotation axis, at angle of 90° (Fig. 1). An implicit
equation of an Agnesi curl is

7y = 4d*(2a—y).
The circle with a radius 2« lies in the cross section of this

surface of revolution by the plane z = 0. This parallel is a
geodesic line.

Forms of definition of the surface

(1) Implicit equation:

2
e ),
VX2 + 32

(2) Parametrical equations (Fig. 1):

x=x(r,f) =rcosf, y=y(r,p)=rsinf,
z=2(r) = 2a(2a/r—1)".

Coefficients of the fundamental forms of the surface and
its principal curvatures:

B Deformed Sphere

Surface of revolution “Deformed Sphere” is a closed surface
consisting of two parts one of which is a surface of positive
Gaussian curvature but another one is of negative Gaussian
curvature. These parts of the surface are jointed along the
plane circle with parabolic points.

“Deformed Sphere” has the following parametrical
equations (Fig. 1):

x(u,v) = cosucosv,
y = y(u,v) = cosusinv,
z

z=2z(u) = sin(u — a)

2 Surfaces of Revolution

Fig. 1
4a*
A’=14+———— F=0, B=
+r4(2a/rf 1)’ ’ "
_ 2d*(3a—2r) B B 24
At (2a/r — 1) 7 Arv2a—1’
L N
kl:kr:ﬁ’ k2:kﬂ2ﬁ<0

So, K>0ifr>1.5a; K<0if r<1.5a and K =0 on the
parallel r = 1.5a.

where a is a constant
0<v<2m.

A “Deformed Sphere” is degenerated into a sphere when
a=0anda ==

Coefficients of the fundamental forms of the surface and
its principal curvatures:

parameter, —7n/2<u<m/2,

A% =sin*u + cos’(u —a), F =0, B=cosu,

p_cosa L g N_cosucos(u—a)
- A ) - b - A b
cosda cos(u — a)
k = k =
PTar Acosu
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a=1,25 a=Tm/2 a=1,7

Fig. 1

M Surface of Revolution of a Parabola

A paraboloid of revolution is formed by rotation of a
parabola about its axis of symmetry, i.e., about the axis of
the parabola. A surface of revolution of a parabola is gen-
erated by rotation of a parabola about a straight line that is
perpendicular to the axis of the parabola, i.e., is parallel to
the directrix of the parabola. A parabola has the only one
directrix which is p away from its focus.

The general surface of revolution of a parabola is
obtained when a parabolic arc is rotated about an arbitrary
axis. In the encyclopedia, this surface is called a surface of
revolution of a parabola of arbitrary position.

(a>0)

Fig. 1
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17
S\

oY1 17755 L
N7

Fig. 2

Forms of the definition of the surface

(1) Parametrical equations (Fig. 1):

x=x(r, ) = rcospf,
y=y(r, ) =rsinp,
z=12z(r) = /2p(r — a),

where r = a is the radius of the waist circle, p is a distance
the focus from the directrix of the parabolic meridian,
|x| >a, |y|>a, 0<p<2n The surface of revolution is
formed by the rotation of a parabola z* = 2p(x — a) about the
z axis. The surface of revolution with @ > 0 is shown in
Fig. 1. If one takes a = 0, then he will design the surface
represented in Fig. 2.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

P
A2 =1 F=0,B=
r—a) P
R S
Alp(r— )’
pr
M=0,N=—+
A\/2p(r —a)
p2
=k = ———————s,
A2p(r — a)?
by = ky = P K <0.

Ary/2p(r—a)’

A surface of revolution of a parabola belongs to surfaces
of negative Gaussian curvature if @ = 0. A directrix of the
family of meridians becomes the axis of rotation when a = p.

(b>0)

Fig. 3

(2) Parametrical equations (Figs. 1 and 2):
x=x(z B) = [a+2/(2p)] cos B,

y=y(zB) = [a+2/(2p)] sin B,
=2

Coefficients of the fundamental forms of the surface and
its principal curvatures:

2 2
A=1+>, F=0, B=r=a+-—,
p 2
L*1 M=0 N-= B
_pA’ - - A7
1 1
1 Z pA37 2 B AB;
1
~ pA“B

(3) Parametrical equations (Figs. 3 and 4):

2

x=x(z, f) = [é—p - b} cos f,

2

y=y(zp) = [;—p - b} sin 3,

=2



2 Surfaces of Revolution

125

Fig. 4

where b > 0 is the distance the peak of the parabola
from the axis of rotation. The surface shown in Fig. 2 is

B Parabolic-and-Logarithmic Surface of Revolution

A parabolic-and-logarithmic surface of revolution of posi-
tive Gaussian curvature is formed by rotation of a plane
curve

r=r(z) = avcz+bln(cz + b)

about the z axis.

Forms of definition of the surface
(1) Parametrical equations (Fig. 1):

x =x(z, f) = r(z) sin f,
y=¥(z, ) = r(z) cos f,

=2

The indeterminacy in the form of O - co existing at the
point z,, (cz, + b = 0) is disclosed and leads to an equality r
(z,) = 0. The parallel, lying in the plane z = 0, has a radius
r, = ab'? Inb.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

AP =1+

a*c* [In(cz + b)
cz+b 2
B =r(z) = aVcz+ bln(cz + b),

2
1|, F=o

formed when b = 0. In Fig. 3, the surface with b > 0 is
presented.

Having assumed b > 0 and —+/2pb <z<+/2pb, we can
design a barrel-shaped surface of revolution (Fig. 4).

In several works, the surfaces shown in Figs 1, 2, 3 and 4
were called a parabolic torus.

Additional Literature

Darevskiy VM. A method of stability analysis of shells of
revolution subjected to torsion. Izv. AN SSSR, MTT. 1989;
No. 6, p. 169-176.

Nedeshev YuB, Popov AYu. A method of determination of
particular dimensions of shells of revolution. Izv. AN SSSR,
MTT. 1991; No. 3, p. 118-126.

Fig. 1

2] b
L% n(cz—|—33, M=o, N:r(z)7
4A(cz + b)Y a
ac*In(cz + b)
1= —————7,
443 (cz + b)**
1 c?
h=——— K=—% <.
> r(2A 4A%(cz+ b)’

Additional Literature

Nazarov GI, Puchkov AA. An equilibrium of a parabolic-
and-logarithmic surface of revolution. Prikl. Mat. i Mehan-
ika (Moscow). 1991; 55, No. 5, p. 867-869.
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B Hyperbolic-and- Logarithmic Surface of Revolution

A hyperbolic-and-logarithmic surface of revolution of neg-
ative Gaussian curvature has meridians:

r=r(z) =a(z+b)’In(z+b),

where a > 0 is a constant characterizing the form of the
surface (Fig. 1). A constant b does not influence on the form
of the surface but the position of the beginning of coordi-
nates depends on the parameter b. The beginning of a system
of Cartesian coordinates is placed at the peak of the surface
of revolution when b = 0. The axis Oz is an axis of rotation.
The indeterminacy in the form of O - co existing at the peak
when z = —b is disclosed due to de I’Hopitale rule. So, one
will obtain:

Fig. 1

Hl Bullet Nose

“Bullet Nose” is rotation of a curve:

formed by
x = *az / V/b* + 72 (Figs. 1 and 2) about a coordinate axis z.

Forms of definition of the surface

(1) Parametrical equations (puc. 3):

x = x(u,v) = acosvcosu,

y = y(u,v) = acosvsinu,

2 Surfaces of Revolution

Parametrical equations of the studied surface of revolu-
tion can be written as (Fig. 1):

x =x(z, f) = r(z) sin f,
y=y(z, B) = r(z) cos
Z=2Z.

Coefficients of the fundamental forms of the surface and
its principal curvatures:
A2 =1+d*(z+b)*[1 +2In(z + b))%,
F=0, B=r(z) =a(z+b)*In(z+b),

al2In(z + b) + 3] r(z)
L=———" - = M=0,N=—2
A ) ) A )
al2In(z +b) + 3] 1
kf=——""7F""— k= ,
A3 r(z)A
3421 b
K=- +2 nz+b) <0.
(z+b)"In(z + b)A*

In Fig. 1, the hyperbolic-and-logarithmic surface of rev-
olution is shown when a = 0.5; b = 0; 0.1<z<4 m;
Fmax = 11.09 m if z =4 m.

Additional Literature

Nazarov GI, Puchkov AA. An inverse problem for a shell of
revolution of negative Gaussian curvature. Izv. Vuzov:
Stroit. 1 Arhitectura. 1990; No. 12, p. 22-24.

z=12z(v) = —b/ tanv,
x<a;y<a; 0<u<2m; 0<v<m/2.
(2) Implicit equation

(b2+22)(x2 +y2) :a2z2



2 Surfaces of Revolution

127

Fig. 1

Ml The Fourth-Order Paraboloid of Revolution

The fourth-order paraboloid of revolution is formed by
rotation of biquadratic parabola x* = ¢z about an axis
z (Fig. 1). This surface is also called a quartoid.

Forms of definition of the surface

(1) Explicit equation:
7= (x2 +y2)2.
Having assumed ¢ = a’, we can get a poweroid (Jackway
and Deriche).

In the cross section of the surface of revolution by the
planes z = h = const, circles with radii

r=vhe
are placed; h > 0.

(2) Parametrical equations (Figs. 1 and 2):

x=x(r,) =r cospf,
y=y(r,B) =r sin,
z=z(r)=r*/c.

Fig. 2

Fig. 1

Fig. 2
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Coefficients of the fundamental forms of the surface and
its principal curvatures:

/6
A2:1+16_27F:O7B:r7
c
122 47
L=—— M=0 N=—
cA’ ’ cA’
1242 472
kr:k :7,]{ :k =—,
Y R

K748r4>0 H72r2 1+3
C2A% T A A?)’

The studied surface of revolution is given in the lines of
principal curvatures r and . A paraboloid of revolution of
the fourth order is a surface of positive total curvature. The
surface has zero Gaussian and mean curvatures (K = H = 0)
only at one point r = 0. So, the peak of a paraboloid of
revolution of the fourth order is a plane point.

(3) Parametrical equations (Figs. 1 and 2):

x = x(z, ) = V/czcos
y = y(z, B) = Vezsin B,

=2

Coefficients of the fundamental forms of the surface and
its principal curvatures:

c2

AP=14+——7>, F=0,

, B = /cz,
16(cz)*/? Ve

B Surface of Revolution with Damping Circular Waves

Having researched damped natural vibrations, one seeks the
amplitude-time dependence in the form of a function

z=2z(x) = ae™™ sin(wx + @).

A surface of revolution with damping circular waves is
traced by a curve z = z(x) in the process of its rotation about
an axis Oz.

Forms of definition of the surface

(1) Parametrical equations (Fig. 1):
x =x(r,u) = rcosu,
y=y(r,u) = rsinu,
z=12z(r) = ae”" sin(wr + ¢),

where w = ma/b, m is a number of integral half-waves, placed
at the straight line segment with the b length; ¢ = const.

2 Surfaces of Revolution

3¢2 B
L=——_ M=0, N=-,
16AB7 A
3¢2 1
<M T reasp PR T Ap
3¢? 48z

K = =
6A'BS (et 1622

The obtained values of the coefficients of the fundamental
forms of surface show that the surface of rotation of a
biquadratic parabola is given in lines of principal curvatures
z and S but the fourth-order paraboloid of revolution is a
surface of positive total curvature and only in one point
z = 0, the surface has zero Gaussian and mean curvatures.

Additional Literature

Sun Bo-Hua, Zhang Wei, Yeh Kai-Yuan, Rimrott FPJ.
Exact displacement solution of arbitrary degree paraboloi-
dal shallow shell of revolution made of linear elastic
materials. Int. J. Solids and Struct. 1996; 33, No. 16,
p- 2299-2308 (14 ref.).

Fan S.C., Luah MH. New spline element for analysis of
shell of revolution. J. Eng. Mech. 1990; 116, No. 3, p. 709-
726.

Jackway PT. and Deriche M. Scale-space properties of the
multiscale morphological dilation-erosion. Trans. on Pattern
Analysis and Machine Intelligence. 1996; 18(1), p. 38-51.
Palm G. Robust segmentation of human cardiac contours
from spatial magnetic resonance images. Diss. zur Erlan-
gung des Doct. (Dr. rer.nat.), der Fakultét fiir Informatik der
Universitat Ulm.; 2004; 130 p.

Fig. 1
Coefficients of the fundamental forms of the surface:
A2 = 1 4 de ¥ [—nsin(or + @) + o cos(or + ¢)]?,
F=0, B=r,

L = ae ™ [(n* — o) sin(wr + @) — 2nw cos(wr + ¢)] /A,
M = 0,N = rae™" [—nsin(wr + @) + w cos(wr + ¢)]/A.

In Fig. 1, the surface of revolution with m = 6, b = 6 m;
a=4m;n=0.50<r<b; p =0 is shown.
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M Kiss Surface

A “Kiss Surface” is an algebraic surface of the fifth order

(Fig. 1). Sometimes this surface is called a “Falling Drop.”

It is traced by a curve x = x(z) = 22(1 — 2)"* in the process of

its rotation about an axis Oz.

Forms of definition of the surface
(1) Implicit form of the definition:

K +y? = (1 —2)7*, where —co<z< 1.

(2) Explicit form of the definition:

x=+(1—2)z* =y~

Fig. 1
(3) Parametrical equations (Fig. 1):
a ¢ L 2(1-2)2
x=x(u,2) = 22V1 —zcosu, y=y(u,z)=2z*v1—zsinu, \/4(1 )+ 24 —52)° ’
=12z N 1572 — 24z + 8 7
2(1 = 2)/4(1 — 2) + 2(4 — 52)°
Coefficients of the fundamental forms of the surface: ( 4(21)5\/2 ( 24Z)+ 8; ( 2)
- — 24z
= 2
A =F1-z), F=0 2[4(1 - 2) +2(4 - 52)]
4(1 — 2(4 — 57)?
gl rREos?

The surface contains the parts of positive and negative
Gaussian curvatures. Parabolic points with K = 0 are placed at
the cross section of the surface by a plane z = 0.8 — 0.4(2/3)"?
= 0.473. In Fig. 2, the surface is shown when —1 <z<1;

41 —2) ’

0<u<22m.

B Soucoupoid
Forms of Definition of the Surface
(1) Parametrical equations (Fig. 1):

x=x(u,v) =acosucosv, y=y(u,v)=acosusinv,

z=z(u) = bsin’ u,
where coordinate lines u, v (meridians and parallels) are the Fig. 1
lines of principal curvatures; a, b are constants; Reference

—n/2<u<n/2,0<v<2m Encyclopédie Des Formes Mathematiques Remarquables

(2) Implicit equation: 72 = (1 _ %)3 Surfaces.—http://mathcurve.com/surfaces/surfaces.shtml
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B Globoid (Toroid) A
z

A globoid is a surface formed by rotation of an arc of the
circle m about an axis z lying at the plane of this arc. A
method of generation of a surface of a globoid shows that we
have a segment of the circular torus which has a negative
Gaussian curvature (Fig. 1). A line on the globoid generated
by uniform motion of a point along the axis of the globoid
with simultaneous steady rotation of the globoid about its
axis is called a globoidal helical line.

A globoidal worm gearing is an example of application of
globoid in the technique.

Forms of definition of the surface b

(1) Parametrical equations (Fig. 2):

x =x(u,v) = (a+ bcosv)cosu,
y =y(u,v) = (a+ bcosv)sinu,
= z(v) = bsinv, Fig. 1

where a is a radius of centers of generatrix circles; b is a
radius of the generatrix circle, 0 <u <2m, 1/2 <v<(3/2)x.
In Fig. 3, a fragment of the surface bounded by the lines of
principal curvatures is shown; 0 <u <7 and 7 <v < (3/2)x.
Coefficients of the fundamental forms of the surface:

A=a+bcosv, F=0, B=hb,
L=—(a+bcosv)cosv, M =0, N=-b,

cos v 1
ku:kl:_ A kv:k2:_57 Fig. 2
cos v
K = .
bA

(2) Parametrical equations:

a( a2—|—ﬁ2—b>
x=x(u,p) = cosu,
a(\/m—b> _
y=y(u,p) = N sinu,
_ B
az—l—ﬁZ’

where f = a tan a; a is the angle of a straight, connecting the
center of generatrix circle with a radius b with an arbitrary

point of the torus, with a plane z = 0. Positive direction is A= /@ + B » F=0, ) +p*’
counted off anticlockwise; —7/2 < a < 7/2. ) 5 )
. a*(vVa*+ p~—b) a*b
Coefficients of the fundamental forms of the surface and L=— 5 5 , M=0, N= . VR
its principal curvatures: a+p (@ + %)
1 1
ki =k, = k =k, =
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Coordinate lines u, v and u, § are the lines of principal z = athy, —co<y< + 00,
curvatures. They coincide with the meridians and the par-
allels of surface of revolution. The globoid has a degenerated point with coordinates (0,

0, 0) or when y = 0; a = b.
(3) Parametrical equations:

a(chy — 1) Additional Literature
x=x(y,v) = chy %V Blachut J and Jaiswal OR. Instabilities in torispheres and
a(chy — 1) toroids under suddenly applied external pressure. Int.
y=y(,v) = oy sin v, J. Impact. Eng. 1999; 22 (5), p. 511-530 (16 ref.).
B Surface of Revolution of a Usual Cycloid Coefficients of the fundamental forms of the surface and

its principal curvatures:
A surface of revolution of a usual cycloid is formed by the

rotation of an usual cycloid !

t
A =2asin-, F=0, B:c+2asin2§,

Ze=at— asint, X, = a — acost A 2 AB
LZE’ M =0, N:2—7
about the axis z., where ¢ is a real parameter, corresponding 1 1 “
to the angle through which the rolling circle has rotated, ky =k = A" dasini’
measured in radians. For given ¢, the circle’s center lies at 2 .
Z. = at, x. = a. kszﬁzi:Li_z’
A usual cycloid is generated by a point that is apart from 2aB (C + 2asin %)
a center of the circle with a radius q, rolling without sliding _ R _ 1 -0
on the axis z., at the distance of a. 4aB  4a(c+2a sin? o) '
Let us study a general case when a cycloid is rotated
about the axis z which is parallel to the axis z. and is apart Coordinate lines f and ¢ (parallels and meridians) are the
from it at the distance of c. lines of principal curvatures.

A length of a meridian from a parallel ¢ = O till a parallel
t = const is calculated by a formula:

Forms of definition of the surface

(1) Parametrical equations (Fig. 1): ¢
s = 4a(1 - COSE)'
x=ux(t,f) = (a+c —acost)cos f,

y=y(tp) = (a+c—acost)sinfj, In Fig. 2, the fragment of the surface bounded by the
z=z(t) = at — asint. parallels ¢ = 0, = 27 and by the meridians f =0, f = 7 is
presented.

In Fig. 3, three sections of the surface of the rotation of a
usual cycloid with ¢ = 0 are given; but in Fig. 4, the surface
with ¢ > 0 is shown, 0 <t <S5m.

Fig. 1 Fig. 2
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Fig. 3

Fig. 4

M Pseudo-Catenoid

A catenoid is formed by the rotation of a catenary
x =acosh(z/a)

about an Oz axis (Fig. 1). A catenoid is the only minimal
surface of revolution, i.e., mean curvature of its surface is
equal to zero at all points of the surface. It is the first
minimal surface to be discovered.

Fig. 1

Two sections of the surface presented in Fig. 3 belong to
a category of closed surfaces of revolution because the
beginning and the end of a not closed rotated usual cycloid is
placed at the rotation axis.

An area of a surface of rotation of a segment of the
meridian (fp <7 <t;) in the form of a usual cycloid can be
defined by a formula:

tn tn

2
A = 8an [3& 00535 —(c+ 2a) cosy

}, 0<p<2m.

fo fo

For example, an area of one closed section of the surface
shown in Fig. 3 is

B 64a*n

Al 3 )

0<t<2m, 0<f<2n.

Additional Literature

Barra Mario. The cycloid. Educ. Stud. Math. 1975; 6, No. 1,
p- 93-98.

Churkin GM. The property of points of a cycloid. In-t him.
Kinet. I goreniya SO AN SSSR, Novosibirsk, 1989; 10 p., 3
ref., Dep v VINITI 06.01.89, No. 156-B89.

Wells D. (1991). The Penguin Dictionary of Curious and
Interesting Geometry. New York: Penguin Books. 1991;
p- 445-47.

A pseudo-catenoid is generated by the rotation of a curve
x = bcosh(z/a)

about an Oz axis. A pseudo-catenoid is a surface of rigorously
negative Gaussian curvature but it is not a minimal surface.

Forms of definition of the surface
(1) Explicit equation:

z = aAr coshy/(x? + y?)/b.

(2) Parametrical equations (Figs. 2 and 3):

x=x(r, B) = rcospf,
y=y(r, f) =rsinp,
z=z(r) = £ aArcosh(r/b),
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(a>Db)

Fig. 2

Fig. 3

where £ is the angle taken from the axis Ox in the directions
of the Oy axis.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

M Surface of Revolution “Pear”

A surface of revolution called “Pear” is generated by
rotating curve

by =7 (a—7z)
about its coordinate axis Oz.

Forms of definition of the surface

(1) Parametrical form of the definition (Fig. 1):

x = x(z, ) = r(z) sin f;
y =¥(z, B) = r(z) cos f;

7=12,

where r=r(z) =zy/z(a—z)/b; a and b are arbitrary
constants; 0 < z < a;

2 _ 22
AZ:#, F=0B=r
2 —
B —ar
(r2 = b2)Vr? ¥ a2’
ra
M=0,N=—o
V2 _Rta
—ar a
“ :(rZ—bz—Faz)S/z’ k2:r\/r2—b2+a2’
2
—a
K=——7——> <0,
(2 — b2+ a2
o a(a* — b?)

2r(r2 — b% + a2)3/2 '

Coordinate lines r and f (parallels and meridians) are the
lines of principal curvatures (Figs. 1, 2 and 3). In Fig. 2, the
pseudo-catenoid has a > b. The surface of revolution shown
in Fig. 3 was created when a < b. And a pseudo-catenoid
becomes a minimal surface if a = b (Fig. 1) and this surface
can be called a catenoid.

Substituting a = b in the formulae for the determination
of coefficients of the fundamental forms of surface, it is
possible to obtain corresponding values of these coefficients
for catenoid.

Additional Literature

Krivoshapko SN. On mistakes in the terminology on theory
of surfaces and geometric modelling. Present Problems of
Geometric Modelling: Proc. of Ukraine-Russian Scientific-
and-Practical Conf. April 19-22, 2005. Kharkov, 2005;
p- 82-87.

Fig. 1
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0 < r < 3v3d2 /(16b). It means that the studied surface “Pear” is an algebraic
- surface of the fourth order.

A parallel z = 3a/4 with

Additional Literature
= rmax = 3V/3a*/(16b)

Gustavo Gordillo. A collection of famous plane curves.
http://curvebank.calstatela.edu/famouscurves/famous.htm.

is a geodesic line. August 14, 2001,

(2) Implicit equation:
D(a—z)—b*(F+y*) =0.

M Surface of Revolution of a General Sinusoid )
[ _annt o nar
. . . AR? R’
A surface of revolution of a general sinusoid ant nmr
M=0, N=———rsin—
z=a sin(nnx/R + 1/2) = acos (nnx/R) ’ AR R’
b — & an’n®  nmr
. . . . . o =k, = ———cos—
about an axis Oz is used in technics. General sinusoid in P A3R? R’
contrast to usual sinusoid (z = sin x) is elongated |a| times ky = kg = —@Sinﬂ,
along the axis Oz and contracted R/(nz) times along the axis 5 33 AR R
. . . . . . an’m’ | 2nmr
Ox, where n is an integer, R is a dimension of an integer n of K=—"_sin=—
2rA*R? R

half-waves of the sinusoid, and is shifted to the left by a
straight-line segment R/(2n). A period of the function is
T =2R/n. The points of intersection of the sine function with
the Ox axis have the coordinates [(k + Y2)R/n, 0]. A surface
of revolution of a general sinusoid has the parts of positive ~ (2) Parametrical equations (Fig. 2):

and negative Gaussian curvatures. This surface can be x=x(r,) =rcosB, y=y(r,f)=rsinp,

reckoned in a subclass of waving or corrugated surfaces. nmr
z=2z(r) = asin—-.

The curvilinear coordinate net is put down to lines of
principal curvatures.

Forms of definition of the surface

The general generating sinusoid in contrast to usual
sinusoid (z = sinx) is elongated |a| times along the axis Oz
x=x(r,f) =rcosB, y=y(r,p)=rsinf, and contracted R/(nx) times along the axis Ox, where n is an

z=2(r) = acos iy integer, R is a dimension of an integer n of half-waves of the
sinusoid. A period of the function is T = 2R/n. The points of
intersection of the sine function with the Ox axis have the
coordinates [kR/n, 0].

2 9 o The presented surface of revolution can be given in an

A1+ ;2” sinz%, explicit form (Fig. 3):

. (nm
F=0,B=r, z=asm<?\/x2+y2>.

(1) Parametrical equations (Fig. 1):

Coefficients of the fundamental forms of the surface and
its principal curvatures:

Fig. 1 Fig. 2
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Fig. 3

The surface shown in Fig. 3 is called “Die Sinuswelle” in
the German language scientific literature.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

2,22
an°m nmr
AP =1+ 72 00527,
F=0,B=r,
an*n* | nmr
L=———>F-sin—,
AR? R

B Corrugated Surface of Revolution of a General Sinusoid

A corrugated surface of revolution of a general sinusoid
. nmg
X = asin B +c

about the axis Oz contains circular parts of both positive
and negative curvatures.

General sinusoid in contrast to usual sinusoid (x = sin z) is
elongated |a| times along the axis Ox and contracted b/(nr)
times along the axis Oz, where n is an integer, b is a
dimension of an integer n of half-waves of the sinusoid.

A period of the function is T = 2b/n.

A volume of a body bounded by a surface of revolution
of the half-wave of a usual sinusoid x = sin z is equal to 7°/2.

Forms of definition of the surface
(1) Explicit equation:

b X+ y:—c
7 = —arcsin Y—————
nm

135
anT nmnr
M=0, N=—rcos—,
AR R
2.2
an~m- . nmnr
hi=h=—"Gg g
anT nmnr
k :k = — R
2T T AR R
an’m® | 2nmr

T T2 R

The parallels f and meridians r of the surface of revo-
lution of a general sinusoid coincide with lines of principal
curvatures.

(3) Explicit equation:
nm
7= acos(f VX2 +y2).

Additional Literature
http://samoucka.ru/document22180.html

(2) Implicit equation:
2
X4y — (asin%+c) =0.

(3) Parametrical equations (Fig. 1):

where r = r(z) = asin* + c.
Coefficients of the fundamental forms of the surface and
its principal curvatures:

2.2 2
A2:1+a7;27[ 2%, F=0, B:r(z),
an*n* | nnz r(z
LZiAbz smT, M =0, N:%,
an’t* _ n 1
kl—kz—A3b2 smb , kzzk/;—ﬁ,
an®*n?
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The curvilinear coordinate net is put down to lines of
principal curvatures f and z.

In Fig. 1, the corrugated surface of revolution of a general
sinusoid is shown when a < c¢. Having assumed ¢ > a, we
can obtain a corrugated cylinder (Wolfram Demonstrations
Project) or a sinusoidal cylinder (SpringerImages).

In Fig. 2, the surface of revolution has a > c; in Fig. 3, it
is ¢ = 0, and in Fig. 4, the surface of revolution has a = c.

The surface of revolution represented in Fig. 1 is called
“Isolator.”

The surfaces of revolution shown in Figs. 1, 2, and 4 have
the parts of both positive and negative Gaussian curvatures.



2 Surfaces of Revolution

137

The surface of revolution represented in Fig. 3 is a sur-
face of positive Gaussian curvature.

Additional Literature

Krivoshapko AN, Halabi SM, Se Tsyan. Analytical surfaces
with a sine generatrix. Vestnik RUDN. “Engineering
Researches”. 2005; No. 1 (11), p. 115-120.

B Surface of Revolution of a Parabola of Arbitrary
Position

A surface of revolution of a parabola of an arbitrary
position is formed by rotation of a parabola Y(¢) = c#* with
the axis Y, turned relatively to an axis of rotation Oz at the 6
angle, about the axis Oz. A peak of the parabola lies at the
distance a from the axis of rotation (Fig. 1).

Forms of definition of the studied surface
(1) Parametrical equations (Fig. 1):

x(u,t) = (a + tcos 0 + ct* sin 0) cos u;
y(u,t) = (a+ tcos 0 + ct* sin 0) sin u;
Z(u,t) = —tsin 0 + ct* cos 0.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

A= (a+tcos0+ct*sin0);
F=0; B> =1+4cr;
2ctcos O —sin 0
B )
2 . 2C
M=0;N= (a+tcos€+ct sm@)E;

L= (a—|—tcosO—|—ctzsin0)

2ctcos O — sin 0
k, = ki Y
2c

kk =k, = B

In Fig. 2, the surface of revolution of positive Gaussian
curvature is shown when ¢ = 0.8 m; ¢ = 2 m ' 6=02r

In Fig. 3, the studied surfaces of revolution of negative
Gaussian curvature are presented. Here, the surface given in
Fig. 3ahas 8 =72, a=0,c =1 mfl, but the surface in
Fig. 3bhas 0= —n/2,a=0.8 m; c =1 m~'. These surfaces
are studied in the section “Surface of revolution of a
parabola” of the Chap. “2. Surfaces of revolution”.

In Fig. 4, two types of the studied surfaces of revolution
are presented some more.

Zhulaev VP, Sultanov BZ. Screw pumping stations for
recover of oil: Manual. Ufa: Izd-vo UShU, 1997; 43 p.
2014 Wolfram Demonstrations Project: http://demonstrati
ons.wolfram.com/SinusoidalBellows/

Springerlmages:  http://www.springerimages.com/Images/
RSS/1-10.1007_s00348-005-0981-9-0

Fig. 1

a=08m;c=2m!;0=027n

Fig. 2


http://demonstrations.wolfram.com/SinusoidalBellows/
http://demonstrations.wolfram.com/SinusoidalBellows/
http://www.springerimages.com/Images/RSS/1-10.1007_s00348-005-0981-9-0
http://www.springerimages.com/Images/RSS/1-10.1007_s00348-005-0981-9-0
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(b)

y SRR
Y

a=0;c=1m;0=n/2 a=08m;c=1m;0=-x/2

Fig. 3

Assume a slope angle of the axis of a parabola to an axis
of rotation equal to zero (f = 0) and the distance a peak of
the parabola from the rotation axis equal to zero (a = 0) too,
then the studied surface of revolution will degenerate into a
paraboloid of revolution that is considered in section
“Paraboloid of revolution”.

B Surface of Revolution of a Biquadrate Parabola

A paraboloid of revolution of the fourth order is generated
by a rotating biquadrate parabola about its axis of symmetry,
i.e., about the axis of the parabola.

A surface of revolution of a biquadrate parabola is
formed in the process of rotation of a biquadrate parabola
about a straight that is perpendicular to the parabola axis.

Forms of definition of the surface of revolution

(1) Parametrical equations (Fig. 1):

x=x(r,f) =rcosf,
2= 2(r) = {/cr—a),

y=y(r,B) = rsinp,

Fig. 1

SN\ [ /7ZZ=

RSS20

a=05m;c=1ml;0=-x/5 a=08m;c=1m!;0=-27/5

Fig. 4

Additional Literature

Ivanov VN. Geometry and design of shells on the base of
surfaces with a system of curvilinear coordinate lines in the
pencil of planes. Spatial Structures of Buildings and Erec-
tions: Collected articles. Moscow: OOO “Devyatka Print”.
2004; vol. 9, p. 26-35 (13 ref.).

Weisstein Eric W. “Parabola”. From MathWorld — A Wol-
fram Web Resource. http://mathworld.wolfram.com/
Parabola.html

where r = a is a radius of the waist circle, |x| > a, |y| > a,
0 < 8 <2x. The surface is formed by rotation of a parabola
of the fourth order

= c(x—a)

about the axis z. In Fig. 1, the surface of rotation of the
biquadrate parabola is shown when a > 0.

Having assumed a = 0, we can design the surface of
revolution presented in Fig. 2. If @ > 0, then the surface of
revolution of the biquadrate parabola belongs to a class of
surfaces of negative Gaussian curvature.

Fig. 2
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Fig. 3

Coefficients of the fundamental forms of the surface and
its principal curvatures:

\/:

A2:1+7, F=0, B=r,
16(r—a)3/2
3_1/4 1/4
L=-—r"—5 M=0, N= - r34’
16A(r — a) / 4A(r — a) /
30174 cl/A
klzkr:_—mv ky = = 3/4)
16A3(r — a) 4Ar(r — a)
3
K= Ve <0

At (r—a)?

(2) Parametrical equations (Figs. 3 and 4):

x=x(z,p) = E— b] cos

y=yzp) = {Z—— b] sin f,

C

=12,

M Ellipsoid of Revolution

An ellipsoid of revolution is a surface formed by rotating of
an ellipse
P2
Z + ke 1
about its axis of symmetry Oz. An ellipsoid of revolution is
a closed quadric surface. Older literature uses “spheroid’ in
place of “ellipsoid of revolution.” An oblate spheroid
(oblate ellipsoid of revolution) is formed by rotation of the
ellipse about its minor axis (Fig. 1a). A special case arises
when a = b, then the surface is a sphere and the intersection
with any plane passing through it is a circle (Fig. 1b).
A prolate spheroid (prolate ellipsoid of revolution) is

(b>0)

Fig. 4

where b 2 0 is a distance between a peak of the parabola and
the axis of rotation.

If b = 0, then we can produce the surface shown in Fig. 2.
In Fig. 3, the surface is shown when b > 0. Having assumed
b > 0 and—bc<z*<bc, we can have a barrel-shaped
surface of revolution of positive Gaussian curvature (Fig. 4).
A surface of revolution of a biquadrate parabola has two
conical points:

x=y=0, z= :I:(cb)l/4.

If 7* > |bc|, then a surface of revolution of a biquadrate
parabola becomes a surface of negative Gaussian curvature.

Coefficients of the fundamental forms of the surface and
its principal curvatures:

1222 B
L=—">, M=0 N=-
CA’ ) A’
2 2
Z 1 12z
ki =k =-12"~, kh=ky=—, K=—
Pk A T T A cA*B

formed by rotation of the ellipse about its major axis
(Fig. 1c).

An ellipsoid of revolution lies inside the rectangular
parallelepiped bounded by the sides
—a<— <a; —b <z<b. The geodesic line coincides with
the equator parallel of an ellipsoid of revolution. The geo-
desic line passing through a pole point of an ellipsoid passes
through an opposite pole point too. A volume contained
inside the surface of ellipsoid of revolution is

—a<x<a;

4
V= gnazb.

In cartography, the Earth is often approximated by an
oblate spheroid instead of a sphere. The current World
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Fig. 1 a The oblate ellipsoid of revolution (@ > b). b The sphere (a = b). ¢ The prolate ellipsoid of revolution (a < b)

Geodetic System model uses a spheroid whose radius is
6,378.137 km at the equator and 6,356.752 km at the poles.

Forms of definition of the surface
(1) The standard equation of an ellipsoid of revolution

centered at the origin of a Cartesian coordinate system
and aligned with the axes is:

(2) Parametrical equations (Fig. 1):

(e

<oa<2m —m/2<p<m/2.
Coefficients of the fundamental forms of the surface:

A=acos B, F=0;B>=d*sin’ f + b* cos® f;
L =ab cos’ f/B;M = O;N = —ab/B.

Coordinate lines o and f (parallels and meridians) are
lines of principal curvatures.

(3) Parametrical equations (Fig. 2):

x =x(u,v) = psinucosv,

x
y(u,v) = psinusinv,
z

z=z(u) = pcosu,

b P

where p = ;
- 2
V1 + wsin?ucos? v a

Fig. 2 The ellipsoid of revolution with the elliptical opening,
U, <u<m

Coefficients of the fundamental forms of the surface and
its principal curvatures:

2
A:p\/l + (%p%inZucosZV) i F=0;

w 2 \2
B = psinu 1+(—p23in2vsin u) ;
2a?

b
Ky = a

. ) 327
[bz + w(psinucosv) }

1
ky = .
p\/l — (1 — a*/b*) sin® ucos? v

Coordinate lines u, v form the geographic system of
coordinates but they are not lines of principal curvatures.

Additional Literature

Krivoshapko SN. Research on general and axisymmetric
ellipsoidal shells used as domes, pressure vessels, and tanks.
Applied Mechanics Reviews (ASME). 2007; vol. 60, No. 6,
p- 336-355.

“Ellipsoid” by Jeff Bryant, Wolfram Demonstrations Project,
2007.
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B Ding-Dong Surface
A surface of revolution “Ding—Dong Surface” is like a
surface of revolution “Kiss surface.”

Forms of definition of the surface

(1) TImplicit equation: x* + y* = (1 — 2)7*

So, the studied surface of revolution is an algebraic sur-
face of the third order. It is obtained by rotating curve

x = x(z) = z(1—2)"?

about an axis Oz.

(2) Parametrical equation (Fig. 1):
x =x(u,v) =r(v)cosu, y = y(u,v) = r(v) sinu,

z=12z(v) =v,

where r(v) = vvV/1 —v; —co<v<1; 0<u<2nm.

W “Eight Surface”

A surface of revolution “Eight Surface” is generated by
rotation of a curve

x=x(z) =2z(1 —zz)l/z

about the axis Oz. The surface pictured in Fig. 1 is called an
eight surface because it is a surface of revolution of a figure
eight.

Forms of definition of the surface

(1) Implicit equation:

X +y2 = 4(1 —zz)zz.

Hence, the studied surface is an algebraic surface of the
fourth order.
(2) Parametrical equations (Fig. 1):

x = x(u,v) = cosusin2v, y=y(u,v)=sinusin2v,

z=1z(v) = sinv,

Fig. 1

Additional Literature

Hauser H. The Hironaka theorem on resolution of singu-
larities. Bull. Amer. Math. Soc. 2003; vol. 40, No. 3, p. 323-
403.

Fig. 1

where —7/2 <v <m/2; 0 <u<2n. The surface comes to a
point at its very center.

Reference
The Eight Surface: http://www.math.hmc.edu/~ gu/math
142/mellon/curves_and_surfaces/surfaces/eightsurf.html


http://www.math.hmc.edu/~gu/math142/mellon/curves_and_surfaces/surfaces/eightsurf.html
http://www.math.hmc.edu/~gu/math142/mellon/curves_and_surfaces/surfaces/eightsurf.html
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B Surface of Revolution “Egg” of the Fourth Order

Eggshell is one of the perfect natural forms. Having
researched closed two-focus curves of the fourth order, one
can obtain an equation of mathematical model of the
meridian cross section of an eggshell. G.V. Brandt consid-
ered that an egg form can be described by an implicit
equation of the fourth order:

24y = 3x(2a — x)|1 —cz/(x—&—a)2 /4,

where 2a is a length of major axis (an axis of rotation); c is the
interfocus distance; (a — ¢)/2 is the distance the origin of a
Cartesian coordinates from the first focus of meridional curve.

Parametrical equations of a surface of revolution “Egg”
can be written in the form:

y = y(x, @) = r(x) cos @,
7= z(x, @) = r(x) sin @,

X=X,

B Surface of Revolution “Egg” of the Third Order

It is known also a surface of revolution “Egg” which is
given by an implicit equation of the third order:

Ky =2z —a)(z—b),

where a, b, ¢ are constant parameters determining the form
of a surface. Parametrical equations of the third-order sur-

face of revolution “Egg” (Fig. 1) can be given as
x =x(u,v) = cy/ulu —a)(u—b)sinv,

) = cy/u(u —a)(u — b) cos v,

IS
i
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where a < = b, then 0 <v<2n, 0 <u<a.

M Piriform Surface

This surface of revolution resembles a coming to the surface
soft capacity with load. In English language literature, this
surface is called “Piriform Surface”.

Parametrical equations are

x = x(u,v) = blcosv(r + sinv)] cos u,

Fig. 1

where r(x) = \/%x(Za —X) [1 - (;i/:)z} , B = c/ais a coeffi-

cient characterized a form of the meridian. A surface “Quail
Egg” with f = 0.75 is presented in Fig. 1.

Reference

Brandt GV. The research of an equation of a shell formed by
the two-focus curve. Sb. tr. VZPI: “Stroitelstvo i Arhitek-
tura”. Moscow: VZPI. 1973; p. 76-86.

a=1cm;b=1.5cm;
2=0.852cm™!

Fig. 1

y=y(v) = a(r +sinv),
z = z(u,v) = b[cos v(r + sinv)] sinu,

where 0 <u <27, —n/2<v<m/2; a, b, and r are constant
coefficients defining the form of the surface (Fig. 1).
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Fig. 1

. “Drop”

Assuming certain values of constant parameters entering into
parametrical equations of a surface of revolution “Drop,”
one can obtain the form of a drop in the process of falling.

Parametrical equations of the surface can be given as
(Figs. 1 and 2):

x = x(u,v) = a(b — cosu) sinucos v,

a=08;b=08;r=0

vy =y(u,v) = a(b — cosu) sinusinv,

7z = z(u) = cosu,

where 0 <u<m, 0<v<2m; a and b are constant coeffi-
cients defining the form of the surface.

References
Parametrische Flachen und Korper. - http://www.3d-meir.de/
tut3/Seite44.html
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Middle Surfaces of Bottoms of Shells
of Revolution Made by Winding of One
Family of Threads Along the Lines

of Limit Deviation

2.1

Shells of revolution made by winding of one family of
threads along the lines of limit deviation are used in
pressure vessels from composite materials. They consist of
a cylindrical fragment and two bottoms that are jointed
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pages of the Chap. “2. Surfaces of Revolution”.

smoothly just between themselves along the edges. The
bottoms end by the pole openings with metal flange for the
fixing of the cover. A pressure vessel from composed
materials made by a method of winding of high-strength
threads is more adaptable to streamlined production and
gives a reduction of 30-50 % in weight in comparison
with metal analogies.

Inner forces appearing in the bottom under inner pressure
must be oriented along the threads in its every point.
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An equation of a middle surface of bottoms of shells of
revolution made by winding of one family of threads along
the lines of limit deviation is derived from the decision of a
nonlinear ordinary differential equation:

g

1

y 2r

yl(l +y/2) r2 —t2 r

obtained on the base of a momentless theory of analysis of
shells made of threads. The following conventions are used
in the formula: y = f1(r) is an equation of a meridian of the
middle surface of the bottom of revolution; r is a radial
coordinate of a generatrix line of the bottom (meridian); the
primes mean the differentiation with respect to a coordinate
r; ¢ is an angle of the thread with a meridian of the surface of
the bottom. In every point of the shell surface, a tread with
an angle +¢ corresponds the thread with the angle —¢; a
parameter ¢ is equal to zero for the pole opening closed by
the cover or to the radius 7, of the opening in the cover.

Trajectories of the threads of the shell must satisfy a
condition of fechnological realizably, i.e., absolute value of
tangent of the angle between the normal to the trajectory of a
thread and the normal to the surface must not go over the
coefficient of friction k of the thread on the surface in the
process of winding. It can be written as

ro’ cos ¢ + sin ¢
ry” cos? @
l+y’2

<k.

+ y'sin? ¢

For shell of revolution made by winding of one family of
threads along the lines of limit deviation, an equation of
generatrix surface y = f1(r) and an equation of the trajecto-
ries of the threads ¢ = f>(r) are calculated numerically from
the solution of Augustin Louis Cauchy problem for a system
of two differential equations that are the equation of gener-
atrix curve of the surface of revolution and the equation of
technological realizably with a sign of an equality in the
right part and with a meaning ko < k. An angle ¢ of a thread
at the pole must be equal to 90° due to a condition of con-
tinuity of automatized winding.

The given differential equations give an opportunity to
find a form of generatrixes of a surface of bottoms and the
trajectory of threads of pressure vessels with maximally
differing radiuses of pole openings.

References

Vasil’ev VV, Protasov VD, Bolotin VV et al. Composite
Materials. Reference book. Moscow: ‘“Mashinostroenie”,
1990; 512 p.

Obraztzov IF, Vasil'ev VV, Bunakov VA. Optimal Design of
Shells of Revolution from Composite Materials. Moscow:
“Mashinostroenie”, 1977; 144 p.
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2.2  Middle Surfaces of Bottoms of Shells
of Revolution Made by Plane Winding

of Threads

Shells of revolution made by plane winding are used in
pressure vessels from composite materials. They consist of a
cylindrical fragment and two bottoms that are jointed
smoothly just between themselves along the edges. The
bottoms end by the pole openings with metal flange for the
fixing of the cover. A pressure vessel from composed
materials made by a method of winding of high-strength
threads is more adaptable to streamlined production and
gives a reduction of 30-50 % in weight in comparison with
metal analogies.

Inner forces appearing in the bottom of the shell under
action of inner pressure must be oriented along the threads in
its every point. An equation of the generatrix of the middle
surface of bottoms of shells of revolution made by plane
winding of threads is derived from the decision of a non-
linear ordinary differential equation:

Y 2ty
r2—p r

obtained on the base of a momentless theory of analysis of
shells made of threads. The following conventions are used
in the formula: y = y(r) is an equation of a meridian of the
middle surface of the bottom of revolution; r is a radial
coordinate of a generatrix curve of the surface of revolution
of bottom. The primes mean the differentiation with respect
to a coordinate r; ¢ is an angle of the thread with a meridian
of the surface of revolution of the bottom. In every point of
the shell surface, a tread with an angle +¢ corresponds the
thread with the angle —¢; a parameter 7 is equal to zero for
the pole opening closed by the cover or to the radius r,, of the
opening in the cover.

The threads of plane winding are placed on the surface of
revolution in the planes tangent to the pole openings of the
both bottoms in conformity with an equation

ry =y
V1 +y2/retg?y —y2 ’

where y is the angle of the plane with a thread with the axis
of rotation of a surface of the bottom. An angle ¢ of a thread
at the pole must be equal to 90° due to a condition of con-
tinuity of winding.

An equation of a meridian of the middle surface y = y(r) for
a shell of revolution made by plane winding is turn up from the
solution of A.L. Cauchy problem for a nonlinear ordinary
differential equation

tgp =
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B (' =)
2= (14 y?)(rkctg?y —y?)’

v 2
Y (1 +y?)

which is obtained by equating corresponding parts of two
given above differential equations. The given differential
equations give an opportunity to find a form of generatrix
curves of middle surfaces of bottoms and the trajectory of
threads of pressure vessel both with equal and different
radiuses of pole openings of two bottoms.

2.3 Middle Surface of Bottoms of Shell
of Revolution Made by Winding
of Threads Along Geodesic Lines

Pressure vessels from composed materials made by a method
of winding of high-strength threads along geodesic lines are
more adaptable to streamlined production and give a reduction
of 30-50 % in weight in comparison with metal analogies.

The laying of threads on a surface along geodesic lines
maintains a stable position of threads in the process of
their winding in conformity with A. Clairaut equation:
r sin ¢ = ro, where ¢ is the angle of the thread with the
generatrix curve of a surface of revolution. In every point
of the middle surface of a shell of revolution, a tread with
an angle +¢ corresponds the thread with the angle —g; ry is
the radius of the pole opening. The form of a generatrix
curve y = y(r) of the middle surface of revolution of the
bottom ensures the direction of inner forces, appearing in
the shell of the bottom under action of inner pressure,
along the threads. A generatrix of the surface of bottom
with a flange is computed as a result of consistent solution
of two differential equations:

dy: _ r(r* — t2)m
e -y @ - 2P - @ - B)(? - P)

where b <r<a,

r(0? — )@ —rg)(r — 1)

Va2 ®? )@ — R — 2 — ) — i3 (a — 1)

dy: _
dr

ro <r < b,y =y(r)is a axial coordinate of a generatrix curve
of the bottom; a is the radius of the cylindrical segment of
the shell of revolution; b is the maximal radius of the flange;
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The calculated trajectory of laying of the thread in the
process of winding must satisfy a condition of technological
realizably, i.e., absolute value of tangent of the angle
between the normal to the trajectory of a thread and the
normal to the surface must not go over the coefficient of
friction k of the thread on the surface in the process of
winding. This condition is presented in the previous section.

Reference

Vasil’ev VV, Protasov VD, Bolotin VV et al. Composite
Materials. Reference book. Moscow: “Mashinostroenie”,
1990; 512 p.

a parameter ¢ is equal to zero for the pole opening closed by
the cover or to the radius 7, of the opening in the cover.
A.L. Cauchy problem for the first differential equation is
solved with a initial condition that is y; = 0 if r = a. For the
second differential equation, an initial condition is y, = y; i¢
r = b. The first and the second equation can be solved in
elliptical integrals. Maximal radius of the flange for the
convex surface of the bottom must satisfy a condition:

The form of the studied middle surface is shown in
Fig. 1. An equation of the meridian y = y(r) was derived
numerically with the help of presented differential equations.
A problem was solved for a surface of revolution with the
following parameters: a =3 m; b =13 m;rg=1m, t=0.
The surface of revolution runs smoothly into the cylindrical
segment of the pressure vessel.

Fig. 1
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2.4 Middle Surfaces of Shells of Revolution
with Given Properties

Many scientific works devote to discovering form of a
meridian of the middle surface of thin-walled shell of
revolution with given properties in advance. It is known
the following criterions of selection of optimal form of
shell of revolution: a cost of a shell, minimal weight [1],
the absence of bending moments and tensile normal for-
ces [2], the given stress state for acting external load [3],
the given bearing capacity for optimal slope [4], maximal
external load; minimal weight under limitation for value
of the natural frequency and maximal displacements [5];
the absence of bending moments with taking into account
inner pressure, dead weight and centrifugal forces [6];
maximal critical load [7, 8] or the selection of a form
with taking into consideration another set of presented
demands.

A condition of equi-strength of thin-walled shell of res-
ervoir is assumed as a basis of analysis of drop-shaped
reservoir for the liquid products [9]. Geometry of the middle
surface of a shell is chosen on condition that tensile
meridional and circular forces will be equal to each other
and constant (N; = N, = N = const) under an action of
designed load. It means that a condition

1/Ri +1/Ry = y(h +y)/N =pN,

must be satisfied. This equation follows from the condition
of equilibrium of a shell element (Laplace formula). Here R,
and R, are radiuses of principle curvatures correspondingly
in meridional and circular directions. The key designed load
(inner pressure)

p=yh+y)

is a sum of hydrostatical pressure of liquid and uniform
redundant pressure; y is the distance the peak from a con-
sidered point of the shell in the vertical direction; y is a density
of the product; / is a height of designed column of liquid.
In a paper [10], problems of existence of optimal forms
of thin-walled shells possessing minimal mass and satisfy-
ing to corresponding geometrical limitations and satisfying
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Obraztzov IF, Vasil’ev VV, Bunakov VA. Optimal Design of
Shells of Revolution from Composite Materials. Moscow:
“Mashinostroenie”, 1977; 144 p.

to restrictions on acceptable number of cycles of external
cyclical load were studied. In this paper, an equilibrium
stress state of a membrane shell of revolution loaded by
axisymmetric loads g,, g¢ was described by the following
equations:

d(roNy)/do — NgR; cos o + roR gy, =0,
Nx/Rl +N9/R2 ={n,

ro = R, sin a. The symbolism is shown in Fig. 1 at Page 100.

E. Annaberdyev [11] offers a method of selection of the
single surface of revolution passing through given parallels
and having the given magnitudes of coefficients of the first
fundamental form in the theory of surfaces

ds? = Edu® + Gdv2.

We cannot design a surface of revolution when a finite
number of its parallels is taken. A meridian of surface of
revolution can be formed if we shall give the common
tangents at the joints of the parallels for maintaining
smoothness of the meridian.
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[3]. Bodunov AK, Bodunov NA. Some cases of integration of
the differential equation defining a form of the meridian of
axi-symmetrical momentless shell. Raschet Prostran. Stroi-
teln. Konstruktziy. Kuybyshev: KGU, 1977; 7, p. 47-52.
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[10]. Banichuk NV, Ivanova SYu, Makeev EB, Sinitzin AV.
Some problems of optimal design of shells with paying
attention to accumulation of damages. Problemy Prochnosti i
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B Surfaces of Revolution with Geometrically Optimal
Rise

In applied geometry of surfaces, interest to methods of opti-
mization of geometrical form of surfaces of revolution with
given properties in advance arose time and again. It was
considered that the most actual problem is the following: it is
necessary to obtain a form of the surface with minimal area
S covering the maximal volume V. It gives the lesser
expenditure of materials and the lesser weight of the shell.
The special criterion

n=V/S

was introduced into practice (Fig. 1).

An area S of the second-order surface and a volume
covered by this surface can be defined with the help of the
general formulas:

h h

S = 2n/x 1+ x(2) ’2dz, an/x 24z,

0 0

where x = x(z) is an equation of a meridian; /% is the rise of a
surface, i.e., maximal rise of a surface over the plane xOy.
A meridian is rotated about the axis Oz.

For concrete surfaces of revolution, these formulas give:

(1) a truncated sphere:

x=x(z) = \/a2 - (z—l—ﬂ)z;
a= /(R — 12— PP 4) + R

nh h?
SZnah;V2<R2+3+r2);
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[11]. Annaberdyev E. On one method of determination of the
single surface of revolution passing through two given cir-
cles. Kibernetika Grafiki i Prikl. Geom. Poverhnostey.
Moscow: MAI, 1971; Vol. VIII, Iss. 231, p. 47-48 (2 ref.).
[12]. Krivoshapko SN., Mamieva IA. Drop-shaped surfaces
in architecture of buildings, reservoirs and products. Vestnik
RUDN: Eng. Researches. 2011; No. 3, p. 24-31.

[13]. Tzvetkova EG. Construction of optimal spatial figures
by methods of nonlinear programming. PhD Thesis. Tver.
2009; 16 p.

[14]. Zhang H, Wong KKY, Mendonca PRS. Reconstruction
of surface of revolution from multiple. The 6th Asian Conf.
on Computer Vision (ACCV2004), Jeju, Korea, 27-30 Jan-
uary 2004. In Proc. of the 6th Asian Conference on Com-
puter Vision, 2004; vol. 1, p. 378-383.

Fig. 1

h(R* + h*/3 +1?)
Nsph.segm. — )
2\/(R2 — 2 —12)* + 4h2R?
R
3

Nsphere =

(2) a truncated cone:

=R—(R—r)z/h;
r)2 + hZ;

x = x(z)
S=nR+r)\/(R—-
V:%h(R2+r2+rR);

h(R? + r? +R)

Ny e = ;
3R+ 1)/ (R—r) +h?
hR
ne = ————;
C VR TR
(3) a circular cylinder:
S =2nRh; V =nR*h; ne.=R/2.
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(4) a truncated paraboloid of revolution:

x=x(z) = \/R? — z(R? — r?) /
32
S 4rh R4 (R? — r2)2 /
3R - ) an
32
2+(R2*”2)2 ! .
" an ’
h R
VZZ(RZ""”Z);nar.: & >
2 P 3/2
[(4h2 +R)Y - R3]
3(RY — %)

SR r r2)2/(4h2)]3/2—8 [+ (R - r2)2/(4h2)]3/27

(5) a truncated ellipsoid of revolution:

v x@) = o — (S VTR

a>R; m* =a* — R

)

€ k= h
a Va2 —r2 —Va —
(h+km)®  km?
V=n|adh T T
¢ W 3|
LoV
tr.el.—S7

where for an oblate ellipsoid with semi-axes a > ¢ (k < 1);

pr=1- kz, one has

h+ km /k4a2 a?
a2 h+km+ \/ k*a?/b* + (h + km)*
+ 1 ;

—F—In
b k(m + /a?]b* —

B Middle Surface of Non-Bending Shell of Revolution
Under Uniform Pressure

Under action of uniform pressure with corresponding
boundary conditions, not only spherical and circular cylin-
drical shells deform without bending but also endless two-
parametrical family of shells of revolution which includes a
sphere and a cylinder as a particular case. In the process of
axisymmetrical deformation, all normals to a middle surface
do not turn, i.e., their angle of turn in the meridional plane is
equal to zero. Besides, the angles of shearing between the
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0.6

Fig. 2

for a prolate ellipsoid with semi-axes a < ¢ (k> 1); P=k-
1 > 0, one has

h+bkm |a?k*
k? 12

h+ kmt . mt
————1t —arcsin— | |.
ak? ak

Curves showing a change of the ratio n = V/S with a
change of a rise & give an opportunity to choose optimal
parameters of the meridian for the given shell form
(Fig. 2).

S=mnt

Reference

Krivoshapko SN. Emel ’'yanova YuV. On a problem of surface
of revolution with geometrically optimal rise. Montazh. i
Spetz. Raboty v Stroit. 2006; 2, p. 11-14.

meridians and parallels are equal to zero too and the angles
between them remain equal to 7/2.

Having assumed these propositions and using the first
condition of Peterson-Codazzi

dR, cos 0
o = (R —Ro) sin 0’

V.I. Gurevich and V.S. Kalinin derived a condition of
absence of bending in shells of revolution in forces in the
form:
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Ry d(N; — vN1) cos 0

PR UL

sin 0

where R; and R, are the principal radiuses of curvatures of
the meridian and the parallels accordingly; € is the angle of a
normal to the meridian with an axis of rotation; v is Pois-
son’s ratio in theory of elasticity; Ny and N, are the normal
tensile or compressive forces reckoned per unit of curvilin-
ear coordinates’ length acting in the tangent plane of middle
surface of the shell of revolution,

PR> Ry
N =—=, N, = 0.5pR,(2 — ).
1 ) s LV2 D. 2( Rl)

A condition of absence of bending is correctly for shells
of revolution subjected to any axisymmetrical loading.
Substituting the values of normal forces in this condition, we
can obtain its new interpretation:

Ry\ dR, d /R,
2| =R — (=) =
(3 R1> o "do (R1> ’

defining radiuses of principal curvatures of shell of revolu-
tion deforming without bending under action of uniform
pressure.

Itis obviously that not only radiuses of principal curvatures
of sphere and cylinder satisfy this condition but shells with
constant ratio Ro/R| = 3 too. In this case, N; = N,. Assume that
z = fix) is an equation of unknown meridian, then

(14,22

X xy/1+f72
R = — , Rp=——= .

£ *Tsin0 f

After substituting of values R; = R{(f) and R, = R>(f) into
the differential equation of absence of bending, we can derive
an equation of left branch of the meridian in the form of an
integral:

f(x) / 2C1C2x3dx
7= = —
2 \/ (C1 — Cax2)* — 4C2C2x6

which does not express itself in terms of elementary func-
tions. Here, C; is constant.

In Fig. 1, taken from a paper of V.I. Gurevich and V.S.
Kalinin, the meridians of non-bending shells of revolution
having an angle 6 = #/2 when x = £ry, i.e., R, = r|, where r;
is the radius of the support circle, are presented.

The surfaces represented in Fig. 1 divide by a sphere into
closed and unclosed at the peak. Unclosed surfaces divide by
a circular cylinder into the surfaces of negative and positive
Gaussian curvatures near the support part.
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Meridians were constructed under the condition that
R, Ry

! rl(rl —3R1)7 2 V%(}"l —Rl)

Dissertation of N.V. Cherdyntzev is devoted to seeking of
forms of shells of revolution and differential equations of
stress-strain state of non-bending shell of revolution under
uniform external pressure are presented. An integral defining
a form of the shell was reduced to a sum of two elliptical
integrals and was presented also in the form of power series.

Additional Literature
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Surfaces of Revolution with Extreme
Properties

25

Let a plane curve r = r(z) (Fig. 1) passing through the given
points has the given length L and revolving about an axis Oz,
forms a surface of revolution of the given area S. Besides this,
the volume V bounded by this surface and by two planes that
are perpendicular to the axis of revolution must have the
greatest value. This is a classical variational problem about
conditional extremum: if a curve r = r(z) gives an extremum to

an integral
V= / n-ridr

D

under conditions

L:/\/l+r’2dz and S:/an\/l+r’2dz
D D

then the constants Ay, A, and A, (Lagrange multipliers) exist
and the curve r = r(z) gives the extremum to an integral

:/Hdz
D

where
H = Jonr* 4+ 2/ 1 4+ 12 4+ 21/ 1 + 2.
PE
o |
r=r)f | "
ry
o
o
Fig. 1
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Taking into consideration that this problem due to a
reciprocity principle is equivalent to other two problems
about conditional extremum:

(1) Obtain a plane curve r = r(z) of a given length L which
rotating about an axis Oz forms a surface of the mini-
mal area bounding the given volume V.

(2) Obtain a plane curve r = r(z) of the minimal length
L which rotating about an axis Oz forms a surface of the
given area S bounding the given volume V.

An Euler equation for the functional H is

OH

"o = ©

because the function H does not depend explicitly on z, i.e.,
H = H(r,r).

After transformation, we can derive an equation z = z(r)
in the integral form:

- A0r2)d

=/
\/4 )1 +)2r — (C—ior2)2

In general case, this integral can be expressed with the
help of elliptical integrals. But having specific values of A,
A, Ao, and C, it is possible to integrate in the elementary
functions. In this case, we shall obtain a sphere and a torus

+ 7.

when A7 — C/3 = 0.
So, a sphere and a torus satisfy to all extremal conditions.
The expressions for Gaussian and mean curvatures of
extreme surfaces have the following form:

(C — Jor?) (aC + Aglar? + 22017)
4r( + /lzr)3
J(C = 32r%) — 240/07°
2r(A + )»2;’)2

K =

)

2H =

Giving different values to Lagrange constants, we can
obtain different forms of surfaces possessing by extreme
properties. There are well-known surfaces such as cylindri-
cal surface, sphere, torus, catenoid, little known and
insufficiently studied surfaces such as nodoid and unduloid,
and recently presented surfaces such as “Penka” and a
surface of catenoidal type, among them.

One paper is devoted to investigation of extremal surfaces
of rotation for area-type functional. The solutions of differ-
ential Euler—Lagrange equation are obtained. Also, the sym-
metry property of this surface is proved; the examples of
functionals are demonstrated and their corresponding solu-
tions are given.
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A theorem of existence for nonholonomic rotation sur-
faces of zero total curvature of the second kind was proved
in a paper of O.V. Vasil’eva . An example of a nonholo-
nomic surface of this class was constructed.

Additional Literature

Pul’pinskiy YaS. Equations of generate shells or revolu-
tion of optimal forms. Architecture of Shells and Strength
Analysis of Thin-Walled Building and Machine-Building
Structures of Complex Form. Proc. Intern. Scient. Conf.,
Moscow, Jine 4-8, 2001. Moscow: Izd-vo Peoples
Friendship University of Russia, 2001; p. 342-347
(3 ref).

B Surface of Catenoidal Type
Substitute 4, = 0, 4] # 0, 25 # 0 into general equation for
generatrix curves

/ (C* — 25r)dr
Z =
VAU + i) — (= i)

+9

of surfaces of revolution possessing by extremal properties
then we can formulate a problem in the following form:
determine a surface formed by rotation of a curve r = r
(z) about an axis Oz limited by two planes, that are perpen-
dicular to the axis of rotation, and having the least area of the
surface with given length of a generatrix meridian r = r(z).

Due to reciprocity theorem, such surface is equivalent to a
surface of given area formed by rotation of a line z = z(r) with
the least length about an axis Oz. Then an expression for
generatrix curves, represented before, will have the following
form:

Cdr
D \/4(21 +r)2 — C2

where we introduced the following symbolisms:
A *
—de=os
2 225

=

s

Having fulfilled the specific manipulations, one can
obtain an equation of the meridian r = r(z) expressed in
elementary functions:
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Fig. 1

=7

r = C - cosh

— 1.

The equation obtained is an equation of a catenary that is
parallel transferred along an axis Oz at a distance of ;.

It should be noted that catenary is formed by a focus of a
parabola in the process of rolling of this parabola along an
axis Ox. The magnitude C is a parameter of the parabola. A
value y is defined by the initial position of the focus of the
parabola.

A classical catenoid is formed by rotation of a catenary
when this line is placed at the certain distance from the axis
of rotation. A surface of revolution formed by rotation of a
catenary displaced from this position will not be a minimal
surface because the sum of principal curvatures of this
surface is not equal to zero (Fig. 1).

Parametrical equations of a surface of catenoidal type
can be written in the following form:

x = x(z, ) = r(z)cos f,
y=y(z,B) =r(z)sinp,

=2
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Coefficients of the fundamental forms of the surface and
its principal curvatures:

A=ch’=2 F—=0,B=r
1 B
L=——, M=0, N=—
C7 ) A7
—1 1
ko=k = —— kg =k = —
cmh=mn =k =g
— _C?
K = 3= 5 <0,
CBA®  r(r+ 1)
C
2H = S0
r(r+41)

MW “Penka”

Assuming 49 # 0; A1 # 0; A, = 0 in the equation for gen-
eratrix curves of surfaces of revolution possessing extreme
properties

/ (C* — Jor?)dr
Z =
V4G + 7ar)=(C* — dgr?)?

+7

we can raise a problem in the following form: determine a
curve

r=r(z)

of the given length in the process of rotation of which about
an axis Oz, a surface of revolution is formed and together
with two planes, that are perpendicular to the axis Oz, it
envelops a maximal volume.

Assume A = 11/4g, C = C*//lo, then an integral expression
for the generatrix meridian of a surface of revolution has the

form:
C—r)d
Z:/ (C—r7)dr .
427 — (C - r2)?

In this case, Gaussian and mean curvatures, radiuses of
principal curvatures are

B (C—rz). _C—3r2_
k= 22 2H = 2%r
R A R — 2r
l_ra 2_(C_r2)'

Constants A and C are determined due to the boundary
conditions.

Additional Literature

Dao Chong Thi, Fomenko AT. Minimal surfaces and a
problem of Plato. Moscow: “Nauka”, 1987; 312 p
Pul’pinskiy YaS., Cherevatskiy VB. Modelling of extremum
surfaces by soap films. Materialy Mezhdunarodnoy Nauchn.
Konf. “Modelling as instrument of solving of technical and
pertaining to the humanities problem”. Part 1. Taganrog:
TRTU, 2002; p. 62-65 (4 ref.).

An equation of the generatrix meridian can be expressed
with the help of elliptical integrals with taking into account
the parameters A, C and the conditions at the edges:
z=2v :l:;“[E(ka (P) - E(k7 (PO)] +v ij’[F(IQ (P) - F(ka (pO)]7
r=+/|22 4% C|cos ¢,

or

_ \/ﬁ [F(k, ¢) — F(k, o]

+ V22 CI[E(k, ) — E(k, 9o)];

r=+/[24 £ C]\/1 —k2sin’ ¢,

Fig. 1
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where F(k; @) and E(k; @) are the elliptical integrals of the
first and second orders, k is a module but ¢ is an amplitude
of the elliptical integrals, ¢o is an initial amplitude corre-
sponding to r = a.

If A =+C/2 and C = 0 then the integral expression for
the generatrix curve is solved in quadrature: if A = £C/2,
then (Fig. 1).

C
z=1+4/=In
\[2 V2C+V2C =72 1}
— ZCfrf;

V2 \/2C = r? e
C+ C nor N yom:

;

if C =0, then

= % [r\/ (1)1 - ay/ (2/1)2—a2}

—2)2 [arcsin é — arcsin %} .

2.6 The Surfaces of Delaunay

In 1841, astronomer and mathematician C. Delaunay has
picked out some surfaces of revolution described by him in
his paper into an independent group.

In appendix of this paper, M. Sturm noted that the
determination of equations of Delaunay surfaces is a vari-
ational problem on a conditional extremum.

For example, for unduloid and nodoid, the crux of the
problem consists in the following: determine the functions y
(x), that are identified with meridians of surfaces of revo-
lution, the volume of which can be calculated by a formula

x|
Vi) =n / yidx,
Xo

under condition of extremum of areas of their lateral
surfaces

X1

S(y) = 2n/yds =27.

X0

It is supposed that the edges of a surface of revolution are
fixed.
This problem results in an equation of Euler—Lagrange:

2ay

S

that is connected with an integral

Y+ T =0,
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Having known the equation of a generatrix curve, it is
easy to construct the surface of revolution with extremum
properties with the help of parametrical equations:

x=x(r, ) = rcospf,
=y(r,B) = rsinp,
z=2(r).

A surface with A = +C/2 is called “PenKa” (Fig. 1).

Reference

Pul’pinskiy YaS. Equations of generate shells or revolution
of optimal forms. Architecture of Shells and Strength
Analysis of Thin-Walled Building and Machine-Building
Structures of Complex Form. Proc. Intern. Scient. Conf.,
Moscow, Jine 4-8, 2001. Moscow: Izd-vo Peoples Friend-
ship University of Russia, 2001; p. 342-347.

X1 X1
F(y) = n/ (y*dx + 2ayds) = 7'5/ (* 4 2ay\/1 + y?)dx.
X0 X0

Here, a is a corresponding real parameter; b is the second
parameter.

It is recognized that the Delaunay surfaces are surfaces of
revolution with constant mean curvature. With the excep-
tion of spheres, they are generated by roulettes in the pro-
cess of their rotation about a curve along which the
corresponding conics roll.

Roulettes are formed by focuses of parabola, ellipse, and
hyperbola rolling without sliding along a straight line that is
an axis of rotation.

Delaunay surfaces incorporate five surfaces of revolution
that are catenoids, unduloids, nodoids, spheres, and circular
cylindrical surfaces.

Let us present Euler—Lagrange equations for every type
of surfaces of revolution:

y

—————¢=0; c¢>0(catenoid);
V142
) 1 y 5 1 .
——————+b" =0, —— >b>0 (unduloid);
H l+y/2 2H
1
2__$_b2=0, b > 0 (nodoid);
H.\/1+y2
1 y
2
——————=0, H >0 (sphere);
H Ty (sphere)
1 1
2 Y =0, H>0,b> —
H 1+y/2 2H

(circular cylindrical surface).
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Fig. 1 Open parts of the bulb (leff) and the neck (right) segments
of the axially symmetric unduloid-like periodic surfaces of revo-
lution obtained with the help of parametric equations by Djondjo-
rov PA, et al

So, the Delaunay surfaces are included in a group of
“Surfaces of Revolution with Extreme Properties” (p. 72).
Axisymmetric surfaces of Delaunay’s unduloids provide
solutions of the shape equation in explicit parametric form.
This class provides the analytical examples of surfaces with
periodic curvatures studied by K. Kenmotsu and leads to

Nodoid and Unduloid Surfaces
of Revolution

2.6.1

Substituting 49 # 0, 4, =0, 4, # 0 into a general shape
equation for generatrix curves of surfaces of revolution
possessing extreme properties

\,Orz)d
—(C = 2r?)?

+7

Z_/\/4 m—i-/lzr

we can obtain an integral equation of the generatrix:

C lor )
C /107'2)

dr +y.

Z_/\/Hﬂ

This integral equation describes a family of curves of
Shturm. that are lines generated by a focus of a parabola or
hyperbola in the process of rolling of corresponding curves
along a straight.

In that case, we can state a problem in the following form:
find a plane curve r = r(z) that forms a body of rotation of
the given volume V. This curve rotates about an axis Oz but
the body must cover a minimal area S.

Due to the principle of mutuality, this problem is equiv-
alent to the following problem: determine a plane curve r = r
(z) rotating about an axis Oz that forms a body of minimal
volume V limited by the surface of the given area S (Fig. 1).

some unexpected relationships among Jacobian elliptic
functions and their integrals (Fig. 1).

Delaunay surfaces are used for description of processes in gas
dynamics, for research of surfaces of soap films and bubbles.
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r a cylindrical surface
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an unduloid asphere

Fig. 1

Constant mean curvature is a remarkable property of
nodoids and unduloids:

but

So, an unduloid, or onduloid, is a surface with constant
nonzero mean curvature obtained as a surface of revolution
of an elliptic catenary: that is, by rolling an ellipse along a
fixed line, tracing the focus, and revolving the resulting
curve around the line. A nodoid is a surface of revolution
with constant nonzero mean curvature obtained by rolling a
hyperbola along a fixed line, tracing the focus, and revolving
the resulting nodary curve about the line.



2 Surfaces of Revolution

In 1828, Poisson has shown that a surface of separation of
two mediums that are at balance is a surface of a constant
mean curvature. Butin this case, one neglects the dead weight.
These surfaces can be modeled by soap films. A physical
principle forming soap films, regulating their behavior, local
and global properties is rather simple. A physical system
keeps corresponding configuration only if the system cannot
change easily the configuration having captured a position
with less level of energy. An integral of general type is
reduced into elliptical integrals of the first and second types:

F(k prr
X:*_C ( ’(p)+rE(k/7q0)a =r 17k,2Sil'1§0,
where
k=" K=vVi-®

r

is an additional module of the integral. In ultimate cases, the
integral for the studied surfaces can be reduced to an
equation of sphere and circular cylindrical surface.

An analog of geometrical properties of shells of revolu-
tion under corresponding conditions is a condition of
matching in strength (the same strength), i.e., an equality of
circular and meridional forces in every cross section. A shell

B Nodoid Surface Connecting Two Circular Cones

It is necessary to know Lagrange multipliers A, 4,; Euler
constant C and a constant of integration y for the unambig-
uous determination of a curve defined by an equation:

C /1()7‘ )
— }vorz)z

+7

z—/\/4

These values can be obtained without using of integral
conditions for areas and volumes of the surface.

Let us construct a conjugation of two circular cones with
known radiuses r; and r, and with slopes a4, a, of rectilinear
generatrixes of the cones (Fig. 1). For this case, we shall use
a nodoidal surface. The length of the surface along an axis
Oz turns automatically.

The integral equation becomes

z—/\/4 C*_r)

where C* = £,
40

-dr—i—y,

r2)2
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of revolution will be in equal strength state under action of
inner pressure P and axial force P§ per unit length of the
circular edge if

Py
27nr;

= A Psin 0.
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Fig. 1

The values r; and r,, a; and a, must be connected
between themselves.

Let us study a soap bubble subjected to inner pressure
q. A contact of a soap film with the bases of the circular
cones takes place in the sections @ and b. In these sections,
surface tension forces are directed along rectilinear
generatrixes
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2 Surfaces of Revolution

These forces are
Fi = wly =2nrpand Fp = ply = 2nru,

where u is a coefficient of surface tension, [; are the lengths
of the contours of contact.
The conditions of equilibrium give

71 sinog = rp sin oo,

Using a Laplace formula for surface tension, we can get

Ap = 2Hpu.

So, we can design the surfaces both of positive and
negative mean curvatures.

For the determination of coefficients A and C, it is nec-
essary to use an expression for derivative:

\/4)V2r2 —(Cr— ;'2)2
e

r(2)

and boundary conditions: if z =0 then r = r; and ¥ = tan oy;
but if » = r, then ' = tan .
In addition, we have

)
. rn—r
2(rycosoy — rycosoy)’
o — riry(rycosay — rpcos o)

(rp cos oy — rpcos o)

In Fig. 2, copper nodoids are shown made by a method of
galvanoplastics.

Fig. 2
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