
Chapter 2
Stochastic Optimal Control Problems
and Markov Decision Processes
with Infinite Time Horizon

The aim of this chapter is to develop methods and algorithms for determining the
optimal solutions of stochastic discrete control problems and Markov decision prob-
lems with an infinite time horizon. We denote such methods and algorithms on the
bases of the results from the previous chapter and classical optimization methods.
The set of states of the system in the considered problems is finite and the starting
state is fixed. We study the stochastic discrete processes that may be controlled in
some dynamical states. The average and the expected total discounted costs opti-
mization principles for such processes are applied and new classes of a stochastic
control model are formulated. Based on such a concept we study a class of stochastic
discrete control problems that emphasis Markov decision problems and determinis-
tic optimal control problems with an infinite time horizon. We obtain the stochastic
versions of classical discrete control problems assuming that the dynamical system
in the control process may admit dynamical states in which the vector of control
parameters is changing in a random way according to given distribution functions of
the probabilities on given feasible sets. So, in the considered control problems we
assume that the dynamics of the system may contain controllable states as well as
uncontrollable states. These problems are formulated on networks and polynomial
time algorithms for determining their optimal solutions are proposed. In the case
that the dynamical system contains only controllable states the proposed algorithms
become algorithms for determining the optimal stationary strategies of the classical
deterministic control problems with an infinite time horizon. The proposed methods
and algorithms are extended to Markov decision processes.

We develop a linear programming approach to Markov decision processes and
show how to use the duality theory for determining solutions of the decision problems
with average and expected total discounted optimization criteria. Based on such
an approach we describe algorithms for solving new classes of stochastic discrete
optimization problems. Polynomial time algorithms for Markov decision problems
with average and expected total discounted costs optimization criteria are proposed
and formulated.

Furthermore, some numerical examples are given and the computational com-
plexity aspects of the described methods and algorithms are analyzed.
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2.1 Problem Formulation and the Main Concept of Optimal
Control Models with Infinite Time Horizon

The infinite horizon decision problem can be regarded as approximation model for
decision problems with an finite time horizon in the case of a large sequence of deci-
sions. Often, it is easier to solve the infinite horizon problem and to use the solution
of this to obtain a solution of the finite horizon problem with a large number of deci-
sions. The Markov decision processes and the classical control problems with infinite
time horizon are related to such kind of models that are widely used for studying
and solving many practical finite horizon decision problems. Below we formulate a
class of stochastic discrete optimal control problems with average and expected total
discounted costs optimization criteria that combine the statements of deterministic
optimal control problems with infinite time horizon and Markov decision processes
[5, 114]. We start with a formulation of the stochastic optimal control problem that
represents a generalization of the following deterministic control model.

Let a discrete dynamical systemLwith a finite set of states X ⊂ Rn be given where
at every time-step t = 0, 1, 2, . . ., the state of the systemL is x(t) ∈ X . At the starting
moment of time t = 0 the state of the dynamical system L is x(0) = x0. Assume
that the dynamics of the system L is described by the system of difference equations

x(t + 1) = gt (x(t),u(t)), t = 0, 1, 2, . . . (2.1)

where

x(0) = x0 (2.2)

and

u(t) = (u1(t),u2(t), . . . ,um(t)) ∈ Rm

represents the vector of the control parameters (see [6, 11, 132]). For any time step t
and an arbitrary state x(t) ∈ X the feasible set Ut (x(t)) of the vector u(t) of control
parameters is given, i.e.,

u(t) ∈ Ut (x(t)), t = 0, 1, 2, . . . . (2.3)

We assume that in (2.1) the vector functions

gt (x(t),u(t)) = (g1
t (x(t),u(t)), g2

t (x(t),u(t)), . . . , gn
t (x(t),u(t)))

are determined uniquely by x(t) and u(t) at every time step t = 0, 1, 2, . . .. So,
x(t + 1) is determined uniquely by x(t) and u(t).

Additionally, we assume that at each moment of time t the cost

ct (x(t), x(t + 1)) = ct (x(t), gt (x(t),u(t)))

of the system’s transition from the state x(t) to the state x(t + 1) is known.
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Let

x0 = x(0), x(1), x(2), . . . , x(t), . . .

be a trajectory generated by given vectors of the control parameters

u(0),u(1), . . . ,u(t − 1), . . . .

Then after a fixed number of transitions τ of the dynamical system we can calculate
the integral-time cost (total cost) which we denote by Fτ

x0
(u(t)), i.e.,

Fτ
x0

(u(t)) =
τ−1∑

t=0

ct (x(t), gt (x(t),u(t))). (2.4)

In [6, 11] the following discrete optimal control problem with finite time horizon has
been considered: Find for given τ the vectors of control parameters

u(0),u(1),u(2), . . . ,u(τ − 1)

which satisfy the conditions (2.1)–(2.3) and minimize the functional (2.4). The solu-
tion of this optimal control problem can be found by using dynamic programming
techniques [6, 79].

Here we consider the infinite horizon control model. We assume that τ is not
bounded, i.e., τ → ∞. It is evident that if τ → ∞ then the integral-time cost

lim
τ→∞

τ−1∑

t=0

ct (x(t), gt (x(t),u(t)))

for a given control may not exist. Therefore, we study in this case the asymptotic
behavior of the integral-time cost Fτ

x0
(u(t)) by a trajectory determined by a feasible

or an optimal control. To estimate this value we apply the concept from [5, 6], i.e.,
for a fixed control u if τ is too large we estimate Fτ

x0
(u(t)) asymptotically using the

function φu(τ ) = Kϕ(τ ) such that

lim
τ→∞

1

ϕ(τ )

τ−1∑

t=0

ct (x(t), gt (x(t),u(t))) = K , (2.5)

where K is a constant.
So, in control problems with an infinite time horizon we are seeking for a control

u∗ with a suitable limiting function φu∗(τ ).
Based on the asymptotic approach mentioned above we may conclude that for a

given control, if τ is too large, the value Fτ
x0

(u(t)) can be approximated by Kϕ(τ ).
Moreover, we can see that for the stationary case of the control model with the costs

that do not depend on time the function φu(τ ) is linear. This means that ϕ(τ ) = τ
and Fτ

x0
(u(t)) for a large τ can be approximated by φu(τ ) = K τ .
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In the following we study only stationary control problems. For such problems
the vector functions gt and the feasible sets Ut (x(t)) do not depend on time, i.e.,
gt (x,u) = g(x,u) and Ut (x) = U (x), ∀x ∈ X , t = 0, 1, 2, . . .. Moreover, the con-
trol at every discrete moment of time depends only on the state x ∈ X and the cost
of the system’s transition from the state x ∈ X to the state y ∈ Y does not depend
on time, i.e., ct (x(t), x(t + 1)) = c(x, y), ∀x, y ∈ X and every t = 0, 1, 2, . . . if
x = x(t), y = x(t + 1).

Thus, for the considered stationary control problems the integral-time cost by
a trajectory during τ transitions can be asymptotically expressed as Fτ

x0
(u(t)) =

Kϕ(τ ), where ϕ(τ ) = τ . In this case for the dynamical system L the constant K in
(2.5) expresses the average cost per transition along a trajectory determined by the
control u(t). Therefore, for the infinite horizon optimal control problem the objective
function which has to be minimized is defined as follows:

Fx0(u(t)) = lim
τ→∞

1

τ

τ−1∑

t=0

c(x(t), g(x(t),u(t))). (2.6)

In [5] it is shown that for the stationary case of the problem the optimal control u∗
does not depend on time or on the starting state and it can be found in the set of
stationary controls.

Another class of control problems with an infinite time horizon which is widely
used for practical problems is characterized by a discounting objective cost
function [8]

F̂x0(u(t)) =
∞∑

t=0

γt ct (x(t), gt (x(t),u(t))). (2.7)

Here γ is a discount factor that satisfies the condition 0 < γ < 1 and F̂x0(u(t))
is called the total discounted cost. In a control problem with such an optimization
criterion we are seeking for the control which minimizes the functional (2.7).

In [28, 114, 129, 140] it is shown that if 0 < γ < 1 and the costs ct (x(t),
gt (x(t),u(t))) are bounded then for the stationary case of the control problem with
a discounted objective optimization criterion the optimal stationary control exists.

The problems formulated above correspond to deterministic models in which
the decision maker is able to fix the vector of control parameters u(t) from a given
feasible set Ut (x(t)) in each dynamical state x(t); the states x(t) ∈ X in these models
are called controllable states.

The main results we describe in the following are related to stochastic versions
of the control problems formulated above. We consider the control models in which
the dynamical system in the control process may admit dynamical states x(t) where
the corresponding vector of control parameters u(t) is changed in a random way
according to given distribution functions

p : Ut (x(t)) → [0, 1],
k(x(t))∑

i=1

p
(
ui

x(t)

) = 1 (2.8)
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on the corresponding dynamical feasible set Ut (x(t)). Here k(x(t)) = |Ut (x(t))|,
i.e., we consider the control models with finite feasible sets.

We regard each dynamical state x(t) of the system in the considered control
problem as a position (x, t) and we assume that the set of positions

Z = {(x, t) = x(t)
∣∣x(t) ∈ X, t = 0, 1, 2, . . .}

is divided into two subsets

Z = ZC ∪ Z N , ZC ∩ Z N = ∅

such that ZC corresponds to the set of controllable states and Z N corresponds to the
set of uncontrollable states. This means that for the stochastic control problems we
have the following behavior of the dynamics in the control process: If the starting state
x(0) belongs to the set of controllable states ZC then the decision maker fixes the
vector of control parameters u(0) from the feasible set U0(x(0)) and we obtain
the next state x(1); if the state x(0) belongs to the set Z N then the system passes to
the next state x(1) in a random way. If at the moment of time t = 1 the state x(1)

belongs to the set of controllable states ZC then the decision maker fixes the vector
of control parameters u(1) from U1(x(1)) and we obtain the next state x(2); if x(1)

belongs to the set of uncontrollable states Z N then the system passes to the next state
x(2) in a random way and so on indefinitely.

It is evident that for a fixed control the average cost per transition and the dis-
counted total cost in this process represent the random variables induced by the
distribution functions on feasible sets in the uncontrollable states and the control in
the controllable states.

To define the expected average cost per transition and expected discounted total
cost in the considered stochastic control problems for a fixed control we will apply
the concept of Markov decision processes in the following way:

Let u′(t) ∈ Ut (x(t)) be the given feasible vectors in the controllable states x(t) ∈
ZC . Then we may assume that we have the following distribution functions

p : Ut (x(t)) → {0, 1} for x(t) ∈ ZC

where p(u′(t)) = 1 and p(u(t)) = 0, ∀u(t) ∈ Ut (x(t))\{u′(t)}.
These distribution functions in the controllable states together with the distribution

functions (2.8) in the uncontrollable states determine a Markov process. For this
Markov process with transition probabilities pz,v and transition costs cz,v for (z, v) ∈
Z × Z we can determine the expected average and the expected discounted total costs
which we denote, respectively, by Fx0(u(t)) and F̂x0(u(t)). In such a way we obtain
the corresponding optimization problems in which we are seeking for the controls
that minimize the expected average and discounted total costs, respectively.

Thus, we shall use the combined concept of deterministic and stochastic control
models from [36, 81–94, 96, 108, 109], and will develop algorithms for determining
optimal strategies of the considered problems. Mainly, we will study the stationary
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versions of the control problems with a finite set of states for the dynamic system
and will describe algorithms based on linear programming. In the general case, for
non-stationary control problems, the optimal control may not exist. Some special
classes of non-stationary problems may admit the solution and the optimal control
can be found by using a special calculation procedure.

2.2 An Optimal Stationary Control with an Average Cost
Criterion and Algorithms for Solving Stochastic Control
Problems on Networks

In this section we consider the stationary stochastic discrete optimal control problem
with average cost criterion. We formulate this problem on networks and describe
polynomial time algorithms for determining the optimal control by using a linear
programming approach.

2.2.1 Problem Formulation

Let a discrete dynamical system L with a finite set of states X be given, where
|X | = n. At every discrete moment of time t = 0, 1, 2, . . . the state of L is x(t) ∈ X .
The dynamics of the system is described by a directed graph of states’ transitions
G = (X, E) where the set of vertices X corresponds to the set of states of the
dynamical system and an arbitrary directed edge e = (x, y) ∈ E expresses the
possibility of the system L to pass from the state x = x(t) to the state y = x(t + 1)

at every discrete moment of time t . So, a directed edge e = (x, y) in G corresponds
to a stationary control of the system in the state x ∈ X which provides a transition
from x = x(t) to y = x(t + 1) for every discrete moment of time t . We assume
that graph G does not contain deadlock vertices, i.e., for each x there exists at least
one leaving directed edge e = (x, y) ∈ E . In addition, we assume that to each edge
e = (x, y) ∈ E a quantity ce is associated which expresses the cost (or the reward
[47]) of the system L to pass from the state x = x(t) to the state y = x(t) for every
t = 0, 1, 2, . . . .

The cost ce for an arbitrary edge e = (x, y) is denoted by cx,y . A sequence
of directed edges E ′ = {e0, e1, e2, . . . , et , . . .} where et = (x(t), x(t + 1)),
t = 0, 1, 2, . . . determines in G a control of the dynamical system with a fixed
starting state x0 = x(0). An arbitrary control in G generates a trajectory x0 =
x(0), x(1), x(2), . . . for which the average cost per transition can be defined in the
following way

f (E ′) = lim
t→∞

1

t

t−1∑

τ=0

ceτ .



2.2 An Optimal Stationary Control with an Average Cost Criterion . . . 109

In [5] it is shown that this value exists and | fx0(E ′)| ≤ maxe∈E ′ |ce|. Moreover,
in [5] it is shown that if G is strongly connected then for an arbitrary fixed starting
state x0 = x(0) there exists the optimal control E∗ = {e∗

0, e∗
1, e∗

2 . . .} for which

f (E∗) = min
E ′ lim

t→∞
1

t

t−1∑

τ=0

ceτ

and this optimal control does not depend either on the starting state or on time.
Therefore, the optimal control for this problem can be found in the set of stationary
strategies S. A stationary strategy in G is defined as a map:

s : x → y ∈ X (x) for x ∈ X,

where X (x) = {y ∈ X
∣∣ e = (x, y) ∈ E}.

Let s be a stationary strategy. Denote by Gs = (X, Es) the subgraph of G gener-
ated by edges of the form e = (x, s(x)) for x ∈ X . Then it is easy to observe that
in Gs there exists a unique directed cycle Cs which can be reached from x0 through
the directed edges from Es . Moreover, we can see that the mean cost of this cycle
is equal to the average cost per transition of the dynamical system by the trajectory
generated by the stationary strategy s. Thus, if G is a strongly connected directed
graph then the problem of determining the optimal control on G is equivalent to the
problem of finding in G the cycle C∗

G for which

∑
e∈E(C∗

G ) ce

n(C∗
G)

= min
CG

∑
e∈E(CG ) ce

n(CG)
,

where E(CG) is the set of directed edges of the directed cycle CG in G that can be
reached from a starting vertex and n(CG) is the number of its edges. If the cycle C∗

G
is known then the optimal control for an given arbitrary starting state x0 = x(0) in G
can be found in the following way: We fix the transitions through the directed edges
of the graph in order to reach a vertex of the directed cycle C∗

G and then we preserve
transitions through the directed edges of this cycle.

Polynomial and strongly polynomial time algorithms for determining the optimal
average cost cycles in a weighted directed graph and the optimal stationary strategies
for control problems on networks have already been proposed in [53, 65, 79, 117].

In the following we will consider the stochastic version of the problem formulated
above. We assume that the set of states X of the dynamical system may admit states
in which the system L makes transitions to the next state in a random way according
to a given distribution function of probabilities on the set of possible transitions
from these states. So, the set of states X is divided into two subsets XC and X N

(X = XC ∪ X N , XC ∩ X N = ∅), where XC represents the set of states x ∈ X
in which the transitions of the system to the next state y can be controlled by the
decision maker at every discrete moment of time t and X N represents the set of states
x ∈ X in which the decision maker is not able to control the transition because the
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system passes to the next state y randomly. Thus, for each x ∈ X N a probability
distribution function px,y on the set of possible transitions (x, y) from x to y ∈ X (x)

is given, i.e.,

∑

y∈X (x)

px,y = 1, ∀x ∈ X N ; px,y ≥ 0, ∀y ∈ X (x). (2.9)

Here px,y expresses the probability of the system’s transition from the state x to the
state y for every discrete moment of time t . Note, that the condition px,y = 0 for
a directed edge e = (x, y) ∈ E is equivalent with the condition that G does not
contain this edge.

In the same way as for the deterministic problem here we assume that to each
directed edge e = (x, y) ∈ E a cost ce is associated.

We call the graph G with the properties mentioned above decision network and
denote it by (G, XC , X N , c, p, x0). So, this network is determined by the directed
graph G with a fixed starting state x0, the subsets XC , X N , the cost function c :
E → R and the probability function p : EN → [0, 1] on the subset of the edges
EN = {e = (x, y) ∈ E

∣∣ x ∈ X N , y ∈ X} where p satisfies the condition (2.9). If
the control problem is considered for an arbitrary starting state then we denote the
network by (G, XC , X N , c, p).

We define a stationary strategy for the control problem on networks as a map:

s : x → y ∈ X (x) for x ∈ XC .

Let s be an arbitrary stationary strategy. Then we can determine the graph Gs =
(X, Es ∪ EN ), where Es = {e = (x, y) ∈ E | x ∈ XC , y = s(x)}, EN = {e =
(x, y) | x ∈ X N , y ∈ X}. This graph corresponds to a Markov process with the
probability matrix Ps = (ps

x,y), where

ps
x,y =

⎧
⎨

⎩

px,y, if x ∈ X N and y ∈ X;
1, if x ∈ XC and y = s(x);
0, if x ∈ XC and y �= s(x).

In the considered Markov process for an arbitrary state x ∈ XC the transition (x, s(x))

from the states x ∈ XC to the states y = s(x) ∈ X is made with the probability
px,s(x) = 1 if the strategy s is applied. For this Markov process we can determine the
average cost per transition for an arbitrary fixed starting state xi ∈ X in such a way
as we have defined it in Sect. 1.7.2. Thus, we can determine the vector of average
costs ωs which corresponds to the strategy s. As we have shown in Sect. 1.7.2 the
vector ωs can be calculated according to the formula ωs = Qsμs , where Qs is the
limit matrix of the Markov process generated by the stationary strategy s and μs

is the corresponding vector of the immediate costs, i.e., μs
x = ∑

y∈X (x) ps
x,ycs

x,y .
A component ωs

x of the vector ωs represents the average cost per transition in our
problem with a given starting state x and a fixed strategy s, i.e.,

fx (s) = ωs
x .

http://dx.doi.org/10.1007/978-3-319-11833-8_1
http://dx.doi.org/10.1007/978-3-319-11833-8_1
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In such a way we can define the value of the objective function fx0(s) for the control
problem on a network with a given starting state x0 when the stationary strategy s is
applied.

The control problem on the network (G, XC , X N , c, p, x0) consists of finding a
stationary strategy s∗ for which

fx0(s
∗) = min

s
fx0(s).

In the next section we can see that the optimal stationary strategy in the consid-
ered problem does not depend on the starting state. We show that a polynomial time
algorithm for determining the optimal solution of this problem can be elaborated.
Moreover, we show that the proposed algorithm can be extended to Markov decision
processes.

2.2.2 A Linear Programming Approach for Determining
Optimal Stationary Strategies on Perfect Networks

We consider the stochastic control problem on the network (G, XC , X N , c, p, x0)

with XC �= ∅, X N �= ∅ and assume that G is a strongly connected directed graph.
Additionally, we assume that in G for an arbitrary stationary strategy s ∈ S the
subgraph Gs = (X, Es ∪ EN ) is strongly connected. This means that the Markov
chain induced by the probability transition matrix Ps is irreducible for an arbitrary
strategy s. We call the decision network with such a condition a perfect network. At
first we describe an algorithm for determining the optimal stationary strategies for the
control problem on perfect networks. Then we show that the proposed algorithm can
be extended for the problem if an arbitrary strategy s generates a Markov unichain.
For a unichain control problem the graph Gs induced by a stationary strategy may
not be strongly connected but it contains a unique strongly connected component
that is reachable from every x ∈ X .

So, in this section we consider the control problem that the average cost per
transition is the same for an arbitrary starting state, i.e.,

fx (s) = ωs, ∀x ∈ X.

We will consider in the next section the case of a multichain control problem, i.e., the
case that for different starting states the average cost per transition may be different.

Let s ∈ S be an arbitrary strategy. Taking into account that for every fixed x ∈ XC

we have a unique y = s(x) ∈ X (x) then we can identify the map s with the set of
boolean values sx,y for x ∈ XC and y ∈ X (x), where

sx,y =
{

1, if y = s(x);
0, if y �= s(x).
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For the optimal stationary strategy s∗ we denote the corresponding boolean values
by s∗

x,y .
Assume that the network (G, XC , X N , c, p, x0) is perfect. Then the following

lemma holds.

Lemma 2.1 A stationary strategy s∗ is optimal if and only if it corresponds to an
optimal solution q∗, s∗ of the following mixed integer bilinear programming problem:
Minimize

ψ(s, q) =
∑

x∈XC

∑

y∈X (x)

cx,ysx,yqx +
∑

z∈X N

μzqz (2.10)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

x∈XC

sx,yqx +
∑

z∈X N

pz,yqz = qy, ∀y ∈ X;
∑

x∈XC

qx +
∑

z∈X N

qz = 1;
∑

y∈X (x)

sx,y = 1, ∀x ∈ XC ;

sx,y ∈ {0, 1}, ∀x ∈ XC , y ∈ X; qx ≥ 0, ∀x ∈ X,

(2.11)

where

μz =
∑

y∈X (z)

pz,ycz,y, ∀z ∈ X N .

Proof Denote μx = ∑
y∈X (x) cx,ysx,y for x ∈ XC . Then μx for x ∈ XC and μz

for z ∈ X N represent, respectively, the immediate cost of the system in the states
x ∈ XC and z ∈ X N if the strategy s ∈ S is applied. Indeed, we can treat the values
sx,y for x ∈ XC and y ∈ X (x) as probability transitions from the state x ∈ XC to
the state y ∈ X (x).

Therefore, for fixed s the solution qs = (qs
xi1

, qs
xi2

, . . . , qs
xin

) of the system of
linear equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

x∈XC

sx,yqx +
∑

z∈X N

pz,yqz = qy, ∀y ∈ X;
∑

x∈XC

qx +
∑

z∈X N

qz = 1;
(2.12)

corresponds to the vector of limit probabilities in the ergodic Markov chain deter-
mined by the graph Gs = (X, Es ∪ EN ) with the probabilities px,y for (x, y) ∈ EN

and px,y = sx,y for (x, y) ∈ EC (EC = E\EN ). Therefore, for given s the value
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ψ(s, qs) =
∑

x∈XC

μx qx +
∑

z∈X N

μzqz

expresses the average cost per transition for the dynamical system if the strategy s
is applied, i.e.,

fx (s) = ψ(s, qs), ∀x ∈ X.

So, if we solve the optimization problem (2.10), (2.11) on a perfect network then we
find the optimal strategy s∗. ��
Remark 2.2 In the case of a perfect network the objective function ψ(s, q) on the
feasible set of solutions of the system (2.11) depends only on s, because qx for x ∈ X
can be uniquely expressed via sx,y (x ∈ XC , y ∈ X) according to (2.12). Moreover,
for perfect networks the condition qx ≥ 0 for x ∈ X in (2.11) holds if sx,y ≥ 0,
∀x ∈ XC , y ∈ X . Therefore, the condition qx ≥ 0 for x ∈ X in (2.11) is redundant
and can be omitted. This condition is essential only for multichain control problems.

In the following for an arbitrary vertex y ∈ X we will denote by X−
C (y) the set of

vertices from XC which contain directed leaving edges e = (x, y) ∈ E that end
in y, i.e., X−

C (y) = {x ∈ XC | (x, y) ∈ E}; in an analogues way we define the set
X−(y) = {x ∈ X | (x, y) ∈ E}.

Based on the lemma above we can prove the following result.

Theorem 2.3 Let α∗
x,y (x ∈ XC , y ∈ X), q∗

x (x ∈ X) be a basic optimal solution
of the following linear programming problem:
Minimize

ψ(α, q) =
∑

x∈XC

∑

y∈X (x)

cx,yαx,y +
∑

z∈X N

μzqz (2.13)

subject to ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

x∈X−
C (y)

αx,y +
∑

z∈X N

pz,yqz = qy, ∀y ∈ X;
∑

x∈XC

qx +
∑

z∈X N

qz = 1;
∑

y∈X (x)

αx,y = qx , ∀x ∈ XC ;

αx,y ≥ 0, ∀x ∈ XC , y ∈ X; qx ≥ 0, ∀x ∈ X.

(2.14)

Then the optimal stationary strategy s∗ on a perfect network can be found as
follows:

s∗
x,y =

{
1, if α∗

x,y > 0;
0, if α∗

x,y = 0,
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where x ∈ XC , y ∈ X (x). Moreover, for every starting state x ∈ X the optimal
average cost per transition is equal to ψ(α∗, q∗), i.e.,

fx (s
∗) =

∑

x∈XC

∑

y∈X (x)

cx,yα
∗
x,y +

∑

z∈X N

μzq∗
z

for every x ∈ X.

Proof To prove the theorem it is sufficient to apply Lemma 2.1 and to show that
the bilinear programming problem (2.10), (2.11) with boolean variables sx,y for
x ∈ XC , y ∈ X can be reduced to the linear programming problem (2.13), (2.14).
Indeed, we observe that the restrictions sx,y ∈ {0, 1} in the problems (2.10), (2.11)
can be replaced by sx,y ≥ 0 because the optimal solutions after such a transformation
of the problem are not changed. In addition, the restrictions

∑

y∈X (x)

sx,y = 1, ∀x ∈ XC

can be changed by the restrictions

∑

y∈X (x)

sx,yqx = qx , ∀x ∈ XC

because for the perfect network it holds qx > 0, ∀x ∈ XC .
Based on the properties mentioned above in the problem (2.10), (2.11) we may

replace the system (2.11) by the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

x∈X−
C (y)

sx,yqx +
∑

z∈X N

pz,yqz = qy, ∀y ∈ X;
∑

x∈XC

qx +
∑

z∈X N

qz = 1;
∑

y∈X (x)

sx,yqx = qx , ∀x ∈ XC ;

sx,y ≥ 0, ∀x ∈ XC , y ∈ X; qx ≥ 0, ∀x ∈ X.

(2.15)

Thus, we may conclude that problem (2.10), (2.11) and problem (2.10), (2.15) have
the same optimal solutions. Taking into account that for the perfect network qx > 0,
∀x ∈ X we can introduce in problem (2.10), (2.15) the notations αx,y = sx,yqx

for x ∈ XC , y ∈ X (x). This leads to the problem (2.13), (2.14). It is evident that
αx,y �= 0 if and only if sx,y = 1. Therefore, the optimal stationary strategy s∗ can
be found according to the rule given in the theorem. ��
Remark 2.4 In Theorem 2.3 the linear programming problem (2.13), (2.14) can be
changed by the following equivalent linear programming problem:
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Minimize

ψ(α, q) =
∑

x∈XC

∑

y∈X (x)

cx,yαx,y +
∑

z∈X N

μzqz (2.16)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

x∈X−
C (y)

αx,y −
∑

x∈X (y)

αy,x +
∑

x∈X N

px,yqx = 0, ∀y ∈ XC ;
∑

x∈X−
C (y)

αx,y − qy +
∑

x∈X N

px,yqx = 0, ∀y ∈ X N ;
∑

x∈XC

∑

y∈X (x)

αx,y +
∑

x∈X N

qx = 1;

αx,y ≥ 0, ∀x ∈ XC , y ∈ X; qx ≥ 0, ∀x ∈ X N .

(2.17)

This problem is obtained from (2.13), (2.14) if we take into account Remark 2.2 and
eliminate qx for x ∈ XC from (2.14). If we solve this problem then we should take
into account that αx,y = sx,yqx , ∀x ∈ XC , y ∈ X (x), where qx = ∑

y∈X (x) αx,y ,
∀x ∈ XC .

So, if the network (G, XC , X N , c, p, x0) is perfect then we can find the optimal
stationary strategy s∗ by using the following algorithm.

Algorithm 2.5 Determining the Optimal Stationary Strategy on Perfect
Networks

(1) Formulate the linear programming problem (2.13), (2.14) and find a basic optimal
solution α∗

x,y (x ∈ XC , y ∈ X), q∗
x (x ∈ X).

(2) Fix a stationary strategy s∗ where s∗
x,y = 1 for x ∈ XC , y ∈ X (x) if α∗

x,y > 0;
otherwise put s∗

x,y = 0.

Below an example for determining the optimal control problem on networks by using
linear programming is given.

Example Consider a stochastic control problem for which the network is represented
in Fig. 2.1, i.e.,

G = (X, E), X = {1, 2, 3, 4}, XC = {1, 2}, X N = {3, 4},
E = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4), (4, 2), (4, 3)}.

The transition cost for directed edges from E and the transition probabilities for
directed edges originating in the vertices 3 and 4 are given by:

c1,3 = 1, c2,3 = 3, c3,1 = 2, c4,2 = 1,

c1,4 = 2, c2,4 = 1, c3,4 = 4, c4,3 = 3,

p3,1 = 0.5, p3,4 = 0.5, p4,2 = 0.5, p4,3 = 0.5 .
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1

3

4

2

Fig. 2.1 The perfect network for the control problem

We are seeking for the optimal stationary strategy s∗ which gives the solution of the
problem for an arbitrary starting state x ∈ X .

It is easy to see that the network is perfect and, therefore, we can determine the
optimal strategy by solving the linear programming problem (2.13), (2.14).

For this example we have

ψ(α, q) = c1,3α1,3 + c1,4α1,4 + c2,3α2,3 + c2,4α2,4 + μ3q3 + μ4q4,

where

μ3 = p3,1c3,1 + p3,4c3,4 = 0.5 · 2 + 0.5 · 4 = 3,

μ4 = p4,2c4,2 + p4,3c4,3 = 0.5 · 1 + 0.5 · 3 = 2.

So, to determine the optimal stationary strategy s∗ we need to solve the linear pro-
gramming problem:
Minimize

ψ(α, q) = α1,3 + 2α1,4 + 3α2,3 + α2,4 + 3q3 + 2q4

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5q3 = q1,

0.5q4 = q2,

α1,3 + α2,3 + 0.5q4 = q3,

α1,4 + α2,4 + 0.5q3 = q4,

α1,3 + α1,4 = q1,

α2,3 + α2,4 = q2,

q1 + q2 + q3 + q4 = 1,

qi ≥ 0, i = 1, 2, 3, 4; αi, j ≥ 0, i, j = 1, 2, 3, 4.

It is easy to check that the optimal solution of this problem is
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1

3

4

2

s∗
1,3 = 1

s∗
2,4 = 1

Fig. 2.2 The network induced by the optimal strategy

α∗
1,4 = 0, α∗

2,3 = 0, α∗
1,3 = 1

6
, α∗

2,4 = 1

6
,

q∗
1 = 1

6
, q∗

2 = 1

6
, q∗

3 = 2

6
, q∗

4 = 2

6
and ϕ(α∗, q∗) = 2.

So, s∗
1,4 = 0, s∗

2,3 = 0, s∗
1,3 = 1, s∗

2,4 = 1.
In Fig. 2.2 a network is presented which corresponds to an optimal stationary

strategy s∗
1,3 = 1, s∗

2,4 = 1.

2.2.3 Remark on the Application of the Unichain Linear
Programming Model for an Arbitrary Network

The linear programming problem (2.13), (2.14) can be solved on an arbitrary decision
network (G, XC , X N , c, p). A basic optimal solution α∗, q∗ determines the strategy

s∗
x,y =

{
1, if α∗

x,y > 0;
0, if α∗

x,y = 0,

and a subset X∗ = {x ∈ X | qx∗ > 0}, where s∗ provides the optimal average cost per
transition for the dynamical system L when it starts transitions in the states x0 ∈ X∗.

This means that for an arbitrary network Algorithm 2.5 determines the optimal
stationary strategy of the problem only in the case if the system starts transitions in
the states x ∈ X∗. So, in the general case the algorithm finds a strategy s∗ and a
distinct positive recurrent class X∗ in X with the minimal average cost per transition
of the system L for an arbitrary starting state x0 ∈ X∗.

For a unichain control problem Algorithm 2.5 determines the strategy s∗ and the
recurrent class X∗. In this case the remaining states x ∈ X\X∗ in X correspond to
transient states and the optimal stationary strategies in the states x ∈ X\X∗ can be
chosen in order to reach X∗. Therefore, the linear programming model (2.13), (2.14)
can be used for determining the optimal stationary strategy for an arbitrary unichain
control problem.
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2.2.4 Determining the Solutions for an Arbitrary Unichain
Control Problem and for the Deterministic Case

As we have noted the linear programming model (2.13), (2.14) can be used for
studying the control problem on a network of arbitrary structure. Here we show
how to use the linear programming model (2.13), (2.14) for determining the optimal
stationary strategies of the control problem in the following two cases:

(1) the network is not perfect but for an arbitrary stationary strategy s the matrix Ps

corresponds to a recurrent Markov chain;
(2) the network contains only controllable states, i.e., X N = ∅.

First let us analyze the problem in the case (1). In this case an arbitrary strategy s in
G generates a graph Gs with unique strongly connected components G ′

s = (X ′
s, E ′

s)

that can be reached from any vertex x ∈ X . The optimal stationary strategy s∗ in G
can be found from a basic optimal solution by fixing s∗

x,y = 1 for the basic variables.
This means that in G we can find the optimal stationary strategy as follows:

We solve the linear programming problem (2.13), (2.14) and find a basic optimal
solution α∗, q∗. Then we find the subset of vertices X∗ = {x ∈ X | q∗

x > 0} which in
G corresponds to a strongly connected subgraph G∗ = (X∗, E∗). On this subgraph
we determine the optimal solution of the problem using the algorithm described in
the previous section. It is evident that if x0 ∈ X∗ then we obtain the solution of the
problem with fixed starting state x0. To determine the solution of the problem for an
arbitrary starting state we may select successively vertices x ∈ X\X∗ which contain
outgoing directed edges that end in X∗ and will add them at each time to X∗ using
the following rule:

• if x ∈ XC ∩ (X\X∗) then we fix an directed edge e = (x, y), put s∗
x,y = 1 and

change X∗ by X∗ ∪ {x};
• if x ∈ X N ∩ (X\X∗) then change X∗ by X∗ ∪ {x}.
Thus, in the case (1) we can determine the optimal stationary strategy of the control
problem on the network (G, XC , X N , c, p, x0).

In the case (2) (X N = ∅) we have a deterministic model and the linear program-
ming problem (2.13), (2.14) becomes the linear programming problem from [65,
117]. Thus, the linear programming model generalizes the deterministic model from
[65, 117] and from Theorem 2.3 we obtain the following result.

Lemma 2.6 Let G = (X, E) be a strongly connected directed graph with X N = ∅
and let α∗

x,y , (x, y) ∈ E be the basic optimal solution of the linear programming
problem:
Minimize

ψ(α) =
∑

x∈XC

∑

y∈X (x)

cx,yαx,y (2.18)
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subject to
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

x∈X−(y)

αx,y −
∑

z∈X (y)

αy,z = 0, ∀y ∈ X;
∑

x∈X

∑

y∈X (x)

αx,y = 1;

αx,y ≥ 0, ∀(x, y) ∈ E .

(2.19)

Then the subgraph G ′ = (X ′, E ′) generated by the directed edges (x, y) ∈ E with
α∗

x,y > 0 has a structure of a directed cycle and an optimal stationary strategy s∗
for the control problem on G with a given starting state x0 can be found as follows:

• fix a simple directed path which connects x0 with the directed cycle G ′ and find
the set of edges E ′′ of this directed path;

• fix the stationary strategy s∗ where s∗
x,y = 1 if (x, y) ∈ E ′ ∪ E ′′; otherwise put

s∗
x,y = 0.

Proof If X N = ∅ then problem (2.13), (2.14) is transformed into the following
problem:
Minimize (2.18) subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

x∈X−(y)

αx,y = qy, ∀y ∈ X;
∑

x∈X

qy +
∑

z∈X N

qz = 1;
∑

y∈X (x)

αx,y = qx , ∀x ∈ X;

αx,y ≥ 0, ∀x, y ∈ X; qx ≥ 0, ∀x ∈ X.

(2.20)

After the elimination of qx and qy from the system (2.20) we obtain the system (2.19).
In such a way we obtain that (2.18), (2.19) becomes the mean cost cycle problem on
G and the algorithm from the lemma above determines the optimal solution of the
problem. ��
Based on the lemma above we can propose the following algorithm for finding the
solution of the problem in the case X N = ∅.

Algorithm 2.7 Determining the Optimal Solution for the Deterministic Control
Problem

1. Formulate the linear programming problem (2.18), (2.19) and find a basic optimal
solution α∗

x,y and the corresponding directed graph G ′ = (X ′, E ′) which has the
structure of a directed cycle;

2. Fix a simple directed path which connects x0 with the directed cycle G ′ and find
the set of edges E ′′ of this directed path;
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3. Fix a stationary strategy s∗ where s∗
x,y = 1 if (x, y) ∈ E ′ ∪ E ′′; otherwise put

s∗
x,y = 0.

So, the deterministic control problem can be efficiently solved on an arbitrary network
if X N = ∅.

2.2.5 Dual Linear Programming for the Unichain Control
Problem and an Algorithm for Determining
the Optimal Strategies

For the linear programming model (2.16), (2.17) we consider the following dual
problem:
Maximize

ψ ′(ε,ω) = ω (2.21)

subject to

⎧
⎨

⎩

εx − εy + ω ≤ cx,y, ∀ x ∈ XC , y ∈ X (x);
εx − ∑

z∈X
px,zεz + ω ≤ μx , ∀ x ∈ X N .

(2.22)

Remark 2.8 The conditions qy ≥ 0, ∀x ∈ X N in the unichain primal linear pro-
gramming problem are redundant. Therefore, the constraints 2.22 in the problem
(2.21), (2.22) can be replaced by the following constraints

⎧
⎨

⎩

εx − εy + ω ≤ cx,y, ∀ x ∈ XC , y ∈ X (x);
εx − ∑

z∈X
px,zεz + ω = μx , ∀ x ∈ X N . (2.23)

The optimal stationary strategies of the unichain control problem correspond to basic
optimal solutions of this problem and can be found by using the following theorem.

Theorem 2.9 An arbitrary optimal solution ε∗
x (x ∈ X), ω∗ of the problem (2.21),

(2.22) for a unichain control model on the network (G, XC , X N , c, p) possesses the
following property:

(1) min
y∈X(x)

{cx,y + ε∗
y − ε∗

x − ω∗} = 0, ∀x ∈ XC ;
(2) μx + ∑

z∈X (x)

px,zε
∗
z − ε∗

x − ω∗ = 0, ∀x ∈ X N ;
(3) a stationary strategy s∗ : XC → X is optimal if and only if (x, s∗(x)) ∈ E∗

C ,
∀x ∈ XC , where
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E∗
C = {e = (x, y) ∈ EC | cx,y + ε∗

y − ε∗
x − ω∗ = 0}.

The value ω∗ is equal to the optimal average cost in the unichain control problem
on the network (G, XC , X N , c, p).

Proof The properties (1) and (2) of the theorem represent the optimality conditions
for the dual linear programming problem (2.21), (2.22). If α∗

x,y , (x ∈ XC , y ∈
X (x)), q∗

x (x ∈ X) is a basic solution of the primal problem (2.16), (2.17), where
α∗

x,y = s∗
x,yq∗

x , q∗ = ∑
y∈X (x) αx,y, then we can take s∗

x,y = 1 for (x, y) ∈ EC that
satisfies the conditions (1), (2) and sx,y = 0 in the other case. This means that an
optimal stationary strategy in G is determined by the map s∗ : XC → X for which
(x, s∗(x)) ∈ E∗

C , ∀x ∈ XC . ��
Corollary 2.10 Each subset Es∗ = {e = (x, s∗(x)) ∈ E∗

C | x ∈ XC } in G generates
a subgraph Gs∗ = (X, Es∗ ∪ EC ) that corresponds to a Markov unichain, i.e., Gs∗
contains a unique strongly connected component that is reachable from every x ∈ X.
The values of the boolean variable s∗

x,y, x ∈ X, y ∈ X (x) that correspond to an
optimal solution of the problem can be found by fixing

s∗
x,y =

{
1, if (x, y) ∈ Es∗ ;
0, if (x, y) /∈ Es∗ .

Corollary 2.11 Let s be an arbitrary strategy for the control problem on the network
(G, XC , X N , c, p) and Ps = (ps

x,y) be the transition probability matrix induced by
this strategy,

ps
x,y =

⎧
⎨

⎩

px,y, if x ∈ X N and y ∈ X;
1, if x ∈ XC and y = s(x);
0, if x ∈ XC and y �= s(x).

Then in the Markov process induced by this transition probability matrix it holds

qs
x

(
μs

x + εs
x −

∑

z∈X

ps
x,zε

s
z − ωs

)
= 0 ∀x ∈ X,

where qs
x is a limiting probability in the state x ∈ X and μs

x = ∑
y∈X (x) ps

x,ycx,y .

From Theorem 2.9 we can make the following conclusions. For an arbitrary unichain
control problem there exist a function ε∗ : X → R and a value ω∗ that satisfy the
conditions

(1) cx,y = cx,y + ε∗
y − ε∗

x − ω∗ ≥ 0, ∀x ∈ XC , ∀y ∈ X (x);

(2) min
y∈X

cx,y = 0, ∀x ∈ XC ;

(3) μx = μx + ∑
y∈X

px,yε
∗
x − ε∗

x − ω∗
x = 0, ∀x ∈ X N .
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If in the decision network (G, XC , X N , c, p) we change the cost function c by
c then we obtain a new control problem on the network (G, XC , X N , c, p). Such
a transformation of the cost function in the control problem does not change the
optimal stationary strategies. In the new control problem the cost function c satisfies
the conditions miny∈X (x) cx,y = 0, ∀x ∈ XC and μx = 0, ∀x ∈ X N . For this
problem the optimal average cost ω∗

x for every x ∈ X is equal to zero and an
optimal stationary strategy can be found by fixing an arbitrary map s∗ such that
(x, s∗(x)) ∈ E∗

C , where E∗
C = {(x, y) ∈ EC | cx,y = 0}.

We call the cost function cx,y = cx,y + ε∗
y − ε∗

x − ω∗, (x, y) ∈ E a potential
transformation induced by the potential function ε∗ : X → R and the values ω∗

x
for x ∈ X . Furthermore, we call the new problem with the cost function c a control
problem in canonical form.

2.2.6 The Potential Transformation and Optimality
Conditions for Multichain Control Problems

The aim of this section is to formulate and prove the optimality conditions for an aver-
age multichain stochastic control problem. For this reason we extend the notions of
the potential function and potential transformation for a multichain control problem
and study their main properties. Based on these properties we prove the optimality
conditions and show how to reduce the average multichain control problem to an
auxiliary one in canonical form for which the optimal solutions can easily be found.
We show that such a transformation of the control problem into an auxiliary problem
in canonical form always exists. Finally, we show that the problem of determining
optimal stationary strategies in a multichain control problem can be formulated as a
linear programming problem.

We define the decision network in canonical form (G, XC , X N , c, p) for a mul-
tichain control problem on the network (G, XC , X N , c, p) by using the potential
transformation

cx,y = cx,y + εy − εx − hx , ∀x ∈ X, ∀y ∈ X (x), (2.24)

where the function ε : X → R and the values hx for x ∈ X satisfy the conditions:

(1) cx,y = cx,y + εy − εx − hx ≥ 0, ∀x ∈ XC , y ∈ X (x);

(2) min
y∈X

cx,y = 0, ∀x ∈ XC ;

(3) μx = μx + ∑
y∈X

px,yεy − εx − hx = 0, ∀x ∈ X N ;

(4) hx = min
y∈X (x)

hy, ∀x ∈ XC , ∀y ∈ X (x);
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(5) hx = ∑
y∈X

px,yhy, ∀x ∈ X N

(6) Eh(x) ∩ Ec(x) �= ∅, where

Eh(x) =
{

(x, y) ∈ EC | y ∈ argmin
z∈X (x)

{hz}
}

, x ∈ XC

and

Ec(x) =
{

(x, y) ∈ EC | y ∈ argmin
z∈X (x)

{cx,z}
}

, x ∈ XC .

In general, the potential transformation (2.24) can also be considered for an arbitrary
network. However, the optimal stationary strategies in the control problem after such
a potential transformation may differ from the optimal stationary strategies in the
initial network. The potential transformation with the properties mentioned above
preserves the optimal strategy of the multichain control problem.

If the decision network in canonical form is known then the optimal stationary
strategy for the stochastic multichain control problem can be found in a similar way
as for the unichain case of the problem, i.e., we fix a strategy s∗ : XC → X such that
(x, s∗(x)) ∈ E∗

c . Moreover, the potential transformation c that satisfies the conditions
(1)–(6) gives the values of the optimal average costs ω∗

x = hx in the states x ∈ X for
a multichain control problem on the network (G, XC , X N , c, p).

In the following we show that for an arbitrary network (G, XC , X N , c, p) that
there exists a network in canonical form (G, XC , X N , c, p) that obtains the optimal
stationary strategy s∗ and the optimal average costs ω∗

x for x ∈ X . We ground all
these results on the basis of the following optimality principle for a multichain control
problem.

Theorem 2.12 For an arbitrary decision network (G, XC , X N , c, p) there exists a
potential transformation

cx,y = cx,y + ε∗
y − ε∗

x − h∗
x , ∀x ∈ X, y ∈ X (x)

of the cost function c that satisfies the following conditions:

(1) cx,y = cx,y + ε∗
y − ε∗

x − h∗
x ≥ 0, ∀x ∈ XC , y ∈ X (x);

(2) min
y∈X

cx,y = 0, ∀x ∈ XC ;

(3) μx = μx + ∑
y∈X

px,yε
∗
y − ε∗

x − h∗
x = 0, ∀x ∈ X N ;

(4) h∗
x = min

y∈X (x)
h∗

y, ∀x ∈ XC , ∀y ∈ X (x);
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(5) h∗
x = ∑

y∈X
px,yh∗

y, ∀x ∈ X N ;

(6) E∗
h∗(x) ∩ E∗

c (x) �= ∅, ∀x ∈ XC , where

E∗
h∗(x) =

{
(x, y) ∈ EC | y ∈ argmin

z∈X (x)

{hz}
}

, x ∈ XC

and

E∗
c (x) =

{
(x, y) ∈ EC | y ∈ argmin

z∈X (x)

{cx,z}
}

, x ∈ XC .

The values ε∗
x for x ∈ X correspond to a basic solution of the system of linear

equations

⎧
⎨

⎩

cx,y + εy − εx − h∗
x = 0, ∀x ∈ XC , (x, y) ∈ E∗

h∗(x);
μx + ∑

y∈X
px,yεy − εx − h∗

x = 0, ∀x ∈ X N
(2.25)

and determines the decision network in canonical form (G, XC , X N , c, p) for the
control problem on the network (G, XC , X N , c, p), where cx,y = cx,y +ε∗

y −ε∗
x −h∗

x ,
∀x ∈ X, y ∈ X (x).

The values h∗
x for x ∈ X coincide with the corresponding optimal average costs ω∗

x
for x ∈ X and an optimal stationary strategy for the control problem on the network
can be found by fixing an arbitrary map s∗ : XC → X such that (x, s∗(x)) ∈
E∗

h∗(x) ∩ E∗
c (x), ∀x ∈ XC .

This theorem is tightly connected with the existence of the solutions for the bias
equations in average Markov decision processes (see [115, 140]). In the terms of
bias equations this theorem can be formulated in the following way:

Theorem 2.13 The system of equations

⎧
⎪⎨

⎪⎩

εx + hx = min
y∈X

{cx,y + εy}, ∀x ∈ XC ;
εx + hx = μx + ∑

y∈X
px,yεy, ∀x ∈ X N

(2.26)

has solutions with respect to εx for x ∈ X under the set of solutions of the following
system of equations

⎧
⎪⎨

⎪⎩

hx = min
y∈X (x)

hy, ∀x ∈ XC ;
hx = ∑

y∈X (x)

px,yhx , ∀x ∈ X N .
(2.27)
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If ε∗
x , h∗

x (x ∈ X) is the solution of these equations then h∗
x for x ∈ X coincides with

the optimal average costs ω∗
x .

To prove Theorem 2.12 we need some auxiliary results.
Let s : X → X be a feasible strategy for the control problem on the decision

network (G, XC , X N , c, p) and Ps = (ps
x,y) be the transition probability matrix of

the Markov chain induced by the strategy s, i.e.,

ps
x,y =

⎧
⎨

⎩

px,y, if x ∈ X N and y = X (x);
1, if x ∈ XC and y = s(x);
0, if x ∈ XC and y �= s(x).

(2.28)

Denote by Qs = (qs
x,y) the limit matrix in the Markov chain with probability tran-

sition matrix Ps and by Xs
1, Xs

2, . . . , Xs
k the corresponding irreducible sets in this

Markov chain.

Lemma 2.14 Let ωs
x be the average cost per transition of the system for a fea-

sible strategy s : XC → X of the control problem on the decision network
(G, XC , X N , c, p). Then for an arbitrary potential function ε : X → Rand arbitrary
real values hx for x ∈ X the average cost per transition ωs

x of the system on the
potential transformed network (G, XC , X N , p, c) satisfies the condition

ωs
x = ωs

x −
∑

z∈X

qs
x,zhz, ∀x ∈ X. (2.29)

Proof Let s be a feasible stationary strategy of the control problem. Consider a
potential transformation cx,y = cx,y + εy − εx − hx , (x, y) ∈ E determined by an
arbitrary function ε : X → R and arbitrary real values hz for z ∈ X . Then after the
potential transformation the average cost ωs

x for an arbitrary x ∈ X can be calculated
as follows:

ωs
x =

∑

z∈X

μs
zqs

x,z =
∑

z∈X

∑

y∈X (z)

ps
z,ycz,yqs

x,z

=
∑

z∈X

∑

y∈X (z)

ps
z,y(cz,y + εs

y − εs
z − hz)q

s
x,z =

∑

z∈X

∑

y∈X (z)

ps
z,ycz,yqs

x,z

+
∑

z∈X

qs
x,z

∑

y∈X (z)

ps
z,yε

s
y −

∑

z∈X

qs
x,z

∑

y∈X (z)

ps
z,yε

s
z −

∑

z∈X

qs
x,zhz

∑

y∈X (z)

ps
z,y

= ωs
x +

∑

z∈X

qs
x,z

( ∑

y∈X (z)

ps
z,yεy −

∑

y∈X (z)

ps
z,yεz

)
−
∑

z∈X

qs
x,zhz,

i.e., we have

ωs
x = ωs

x +
∑

z∈X

qs
x,z

( ∑

y∈X (x)

ps
z,yε

s
y − εs

z

)
−
∑

z∈X

qs
x,zhz, ∀x ∈ X. (2.30)
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Now we show that for an arbitrary strategy s it holds

∑

z∈X

qs
x,z

( ∑

y∈X (z)

ps
z,yε

s
y − εs

z

)
= 0, ∀x ∈ X. (2.31)

Let Xs
1, Xs

2, . . . , Xs
k be the corresponding irreducible sets in the Markov chain

induced by the strategy s. Then in the graph Gs = (X, Es ∪ EN ) each subset Xs
i

of X generates a strongly connected graph that corresponds to a distinct irreducible
Markov chain and in each irreducible set the average costs for an arbitrary starting
state is the same.

If we denote by ωs,i the average cost for the corresponding states in the irreducible
sets Xs

i then we have

∑

z∈X

qs
x,z

( ∑

y∈X (z)

ps
z,yε

s
y − εs

z

)

=
∑

z∈X

qs
x,z

((
μs

z +
∑

y∈X (z)

ps
z,yε

s
y − εs

z − ωs
z

)
+ (ωs

z − μs
z)

)

=
k∑

i=1

∑

z∈Xs
i

qs
x,z

((
μs

z +
∑

y∈X (z)

ps
z,yε

s
y − εs

z − ωs,i
)

+ (ωs,i − μs
z)

)

=
k∑

i=1

∑

z∈Xs
i

qs
x,z

(
μs

z +
∑

y∈X (z)

ps
z,yε

s
y − εs

z − ωs,i
)

+
k∑

i=1

∑

z∈Xs
i

qs
x,z(ω

s,i − μs
z).

Here, according to Corollary 2.11 it holds

μs
z +

∑

y∈X (z)

ps
z,yε

s
y − εs

z − ωs,i = 0, ∀z ∈ Xs
i , i = 1, 2, . . . , k.

Therefore, we obtain

∑

z∈X

qs
x,z

( ∑

y∈X (z)

ps
z,yε

s
y − εs

z

)
=

k∑

i∈1

∑

z∈Xs
i

qs
x,z(ω

s,i − μs
z)

=
k∑

i=1

ωs,i
∑

z∈Xs
i

qs
x,z −

k∑

i=1

∑

z∈Xs
i

qs
x,zμ

s
z =

k∑

i=1

ωs,i −
k∑

i=1

ωs,i = 0.

So, condition (2.31) holds.
If we introduce (2.31) in (2.30) then we obtain (2.29). ��
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Corollary 2.15 Let s be an arbitrary feasible strategy for the control problem on the
network (G, XC , X N , c, p) and Qs = (qs

x,y) be the matrix of limiting probabilities in
the Markov chain induced by the strategy s. Then for an arbitrary potential function
ε : X → R the following condition holds

∑

z∈X

qs
x,z

( ∑

y∈X (x)

ps
z,yε

s
y − εs

z

)
= 0, ∀x ∈ X. (2.32)

If in (2.24) we fix hx = h, ∀x ∈ X then we obtain the following potential transfor-
mation

cx,y = cx,y + εy − εx − h, ∀x ∈ X, ∀y ∈ X (x), (2.33)

In this case from Lemma 2.14 we obtain the following result.

Corollary 2.16 Let ωs
x be the average cost per transition of the system for a

feasible strategy s : XC → X of the control problem on the decision network
(G, XC , X N , c, p). Then for an arbitrary potential function ε : X → R and h ∈ R

the average cost per transition ωs
x of the system on the potential transformed network

(G, XC , X N , c, p) satisfies the condition

ωs
x = ωs

x − h, ∀x ∈ X, ∀s. (2.34)

Corollary 2.16 shows that an arbitrary control problem with average cost criterion can
be transformed into a similar one where the transition cost function c is nonnegative
or positive. Indeed, if we take an arbitrary function ε : X → R and h = −M , where
M ≥ max(x,y)∈E |cx,y |, then the cost function c in the control problem becomes
nonnegative or positive.

Lemma 2.17 Assume that for a fixed strategy s the values hs
x , x ∈ X satisfy the

condition

hs
x −

∑

y∈X (x)

ps
x,yhs

y = 0, ∀x ∈ X. (2.35)

Then for an arbitrary potential function ε : X → R the average cost ωs
x in the

control problem on the network (C, XC , X N , c, p) with a transformed potential cost
function

cx,y = cx,y + εy − εx − hs
x , ∀x ∈ X, ∀y ∈ X (x)

can be calculated using the following formula

ωs
x = ωs

x − hs
x , ∀x ∈ X. (2.36)
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If hs
x for x ∈ X satisfies the condition

hs
x −

∑

y∈X (x)

ps
x,yhs

y ≤ 0, ∀x ∈ X, (2.37)

then

ωs
x ≥ ωs

x − hs
x , ∀x ∈ X. (2.38)

If hs
x for x ∈ X satisfies the condition

hs
x −

∑

y∈X (x)

ps
x,yhs

y ≥ 0, ∀x ∈ X, (2.39)

then

ωs
x ≤ ωs

x − hx , ∀x ∈ X, ∀s ∈ S. (2.40)

Proof According to Lemma 1.25 (see Eqs. (1.55), (1.56)) the condition (2.35) implies

hs
x =

∑

y∈X (x)

qs
x,yhs

y, ∀x ∈ X. (2.41)

If we introduce (2.41) in (2.29) then we obtain (2.35). In the case if hs
x for x ∈ X

satisfies (2.37) we obtain hs
x ≤ ∑

y∈X (x) ps
x,yhs

y . This implies (2.38). If hs
x for x ∈ X

satisfies (2.39) then we obtain hs
x ≥ ∑

y∈X (x) ps
x,yhs

y . This implies (2.40). ��
Lemma 2.18 Let s be an arbitrary stationary strategy for the control problem on
the network (G, XC , X N , c, p) and Ps = (ps

x,y) be the probability transition matrix
induced by the strategy s, i.e., the elements ps

x,y of this matrix are defined according
to (2.28). Then the system of linear equations

⎧
⎪⎨

⎪⎩

μs
x + ∑

y∈X
ps

x,yε
s
y − εs

x − hs
x = 0, ∀x ∈ X;

hs
x − ∑

y∈X (x)

ps
x,yhs

y = 0, ∀x ∈ X; (2.42)

has solutions. Moreover, if

hs
x −

∑

y∈X (x)

ps
x,yhs

y ≤ 0, ∀x ∈ X (2.43)

then
μs

x +
∑

y∈X

px,yε
s
y − εs

x − hs
x ≥ 0, ∀x ∈ X; (2.44)

http://dx.doi.org/10.1007/978-3-319-11833-8_1
http://dx.doi.org/10.1007/978-3-319-11833-8_1
http://dx.doi.org/10.1007/978-3-319-11833-8_1
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if

hs
x −

∑

y∈X (x)

ps
x,yhs

y ≥ 0, ∀x ∈ X (2.45)

then

μs
x +

∑

y∈X

px,yε
s
y − εs

x − hs
x ≤ 0, ∀x ∈ X. (2.46)

Proof We shall use the vector representation of the system (2.42). Denote by μ, h
and ε the vectors with the corresponding components μx , hx and εx for x ∈ X .
Additionally, assume that the matrix Ps is represented in canonical form as it is
defined in Sect. 1.1.3, i.e.,

Ps =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Ps
1 0 . . . 0 0

0 Ps
2 . . . 0 0

. . . . . . .

. . . . . . .

. . . . . . .
0 0 . . . Ps

k 0
W s

1 W s
2 . . . W s

k W s
k+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

where Ps
r , r = 1, 2, . . . , k represent the submatrices of Ps that corresponds to

the ergodic classes Xs
r of the Markov multichain and W s

r represent the submatrices
of Ps that give the probability transitions from the states x ∈ X\(⋃k

r=1 Xs
r ) to

the states Xs
r ; the elements of the matrix W s

k+1 represent the probability transitions

px,y between the states x, y ∈ ⋃k
r=1 Xs

r . For each class Xs
r we shall use the vectors

μs,r , hs,r and εs,r with the corresponding components μs,r
x , hs,r

x and εs,r
x for x ∈ Xs

r .
Using these notations we can write the system (2.42) as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μs,r − (I r − Ps
r )εs,r − hs,r = 0, r = 1, 2, . . . , k;

μs,k+1 −
k∑

r=1

(I k+1 − W s
r )εs,r + (I k+1 − W s

k+1)ε
s,k+1 − hs,k+1 = 0;

(I r − Ps
r )hs,r = 0, r = 1, 2, . . . , k;

k∑
r=1

(I r − W s
r )hs,r + (I k+1 − W s

k+1)h
s,r = 0.

(2.47)

In this system each equation

μs,r − (I r − Ps
r )εs,r − hs,r = 0

that corresponds to the class Xs
r , r ∈ {1, 2, . . . , k} has a solution. This solution

can be found on the bases of Theorem 2.9. According to this theorem we obtain

http://dx.doi.org/10.1007/978-3-319-11833-8_1
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hs,r
x = ωs,r , ∀x ∈ Xs

r , where ωs,r is the average cost of the ergodic class Xs
r .

In (2.47) each equation

(I r − Ps
r )hs,r = 0, r ∈ {1, 2, . . . , k}

is redundant and therefore can be deleted. Thus, from the last equation of (2.47) we
can determine

hs,r = −(I k+1 − Wk+1)
−1

k∑

r=1

(I r − W s
r )hs,r .

Note that for (I k+1 −Wk+1) there always exists the inverse matrix (see [7, 21, 115]).
If we introduce this expression in the equation

μs,k+1 −
k∑

r=1

(I k+1 − W s
r )εs,r + (I k+1 − W s

k+1)ε
s,k+1 − hs,k+1 = 0

of the system (2.47) then we can determine uniquely εs,k+1. So, the system (2.42)
obtains solutions.

The second part of the lemma follows from the procedure given above to determine
the solution of the system (2.42).

The condition (2.43) implies

μs,k+1 −
k∑

r=1

(I k+1 − W s
r )εs,r + (I k+1 − W s

k+1)ε
s,k+1 − hs,k+1 ≥ 0

and the condition (2.45) implies

μs,k+1 −
k∑

r=1

(I k+1 − W s
r )εs,r + (I k+1 − W s

k+1)ε
s,k+1 − hs,k+1 ≤ 0.

In (2.42) the solution of the system of equations

μs,r − (I r − Ps
r )εs,r − hs,r = 0, r = 1, 2, . . . , k

does not depend on the conditions (I r − Ps
r )hs,r ≤ 0 and (I r − Ps

r )hs,r ≥ 0. So, the
lemma holds. ��
Corollary 2.19 For an arbitrary stationary strategy s on the decision network
(G, XC , X N , c, p) there exist εs

x and hs
x for x ∈ X that satisfy the conditions

(1) cx,y + εs
y − εs

x − hs
x = 0, ∀x ∈ XC , y = s(x);
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(2) μx + ∑
y∈X (x)

px,yε
s
y − εs

x − hx = 0, ∀x ∈ X N ;

(3) hs
x = hs

y, ∀x ∈ XC , y = s(x);
(4) hs

x = ∑
y∈X (x)

px,yhs
y, ∀x ∈ X N .

If hs
x for x ∈ X satisfies the conditions

hs
x ≤ hs

y for x ∈ XC , y = s(x) and hs
x ≤

∑

y∈X (x)

px,yhs
y f or x ∈ X N

then
cx,y + εs

y − εs
x − hs

x ≥ 0, ∀x ∈ XC , y = s(x);

μx +
∑

y∈X (x)

px,yε
s
y − εs

x − hx ≥ 0, ∀x ∈ X N .

If hs
x for x ∈ X satisfies the conditions

hs
x ≥ hs

y for x ∈ XC , y = s(x) and hs
x ≥

∑

y∈X (x)

px,yhs
z f or x ∈ X N

then

cx,y + εs
y − εs

x − hs
x ≤ 0, ∀x ∈ XC , y = s(x);

μx +
∑

y∈X (x)

px,yε
s
y − εs

x − hx ≤ 0, ∀x ∈ X N .

If in Lemma 2.18 we vary the strategy s then as a consequence from this lemma we
obtain the following result.

Lemma 2.20 Let (G, XC , X N , c, p) be an arbitrary decision network. Then there
exist a function ε∗ : X → R and the values h∗

x for x ∈ X such that for an arbitrary
stationary strategy s of the control problem on the network it holds

⎧
⎪⎨

⎪⎩

μs
x + ∑

y∈X
ps

x,yε
∗
y − ε∗

x − h∗
x ≥ 0, ∀x ∈ X;

h∗
x − ∑

y∈X (x)

ps
x,yh∗

y ≤ 0, ∀x ∈ X; (2.48)

Moreover, there exists a stationary strategy s∗ such that

h∗
x − ∑

y∈X (x)

ps∗
x,yh∗

y = 0, ∀x ∈ X, (2.49)
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where ε∗
x for x ∈ X represents a solution of the system of the equation

μs∗
x +

∑

y∈X

ps∗
x,yεy − εx − h∗

x = 0, ∀x ∈ X. (2.50)

Corollary 2.21 For an arbitrary decision network (G, XC , X N , c, p) there exist the
values ε∗

x , h∗
x for x ∈ X that represent the solution of the system of linear inequalities

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cx,y + ε∗
y − ε∗

x − h∗
x ≥ 0, ∀x ∈ XC , ∀y ∈ X (x);

μx + ∑
y∈X (x)

px,yε
∗
y − ε∗

x − h∗
x ≥ 0, ∀x ∈ X N ;

h∗
x − h∗

y ≤ 0, ∀x ∈ XC , ∀y ∈ X (x);
h∗

x − ∑
y∈X (x)

px,yh∗
y ≤ 0, ∀x ∈ X N ,

(2.51)

where h∗
x for x ∈ X satisfy the condition

⎧
⎨

⎩

min
y∈X (x)

{h∗
y − h∗

x } = 0, ∀x ∈ XC ;
h∗

x − ∑
y∈X (x)

px,yh∗
y = 0, ∀x ∈ X N

(2.52)

and ε∗
x for x ∈ X represents a solution of the system of linear equations

⎧
⎨

⎩

cx,y + εy − εx − h∗
x = 0, ∀(x, y) ∈ E∗

h∗;
μx + ∑

y∈X (x)

px,yεy − εx − h∗
x = 0, ∀x ∈ X N , (2.53)

where E∗
h∗ = {

(x, y) ∈ EC | x ∈ XC , y ∈ argminz∈X (x) h∗
z

}
.

Proof of Theorem 2.12. According to Lemma 2.20 and Corollary 2.21 for the deci-
sion network (G, XC , X N , c, p) there exist the function ε∗ : X → R and the values
h∗

x for x ∈ X that satisfy the conditions (2.51)–(2.53). Thus, we can determine as a
basic solution of the system (2.51) and the potential transformation

cx,y = cx,y + ε∗
y − ε∗

x − h∗
x , ∀x ∈ XC , ∀y ∈ X (x)

that corresponds to the network (G, XC , X N , c, p) in canonical form. We obtain an
optimal stationary strategy s∗ for the problem on this network if for every x ∈ X we
fix s∗(x) = y∗, where y∗ satisfies the condition cs∗

x,y∗ = 0. Based on Lemma (2.17)
we have

0 = ωs∗
x = ωs∗

x − h∗
x , ∀x ∈ X,

and for an arbitrary other strategy s it holds ωs
x − h∗ ≥ 0. So, ω∗

x = h∗
x , ∀x ∈ X .
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2.2.7 Linear Programming for Multichain Control Problems
and an Algorithm for Determining Optimal Stationary
Strategies

We develop the linear programming approach for a multichain control problem on
the bases of the optimality criterion established in Theorem 2.12 and Corollary 2.21.
If the vectors h

∗
and ε∗ with the corresponding components h∗

x and ε∗
x satisfy the

condition (2.52), then we obtain the vector of optimal average costs ω∗. Consequently
we have to determine the “maximal” h

∗
that satisfies (2.51). This means that we have

to maximize the positive linear combination of components of h
∗

that satisfy (2.51).
Thus, we can determine ε∗ and ω∗ if we solve the following linear programming

problem:
Maximize

ψ ′(ε,ω) =
∑

x∈X

θxωx (2.54)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εx − εy + ωx ≤ cx,y,∀x ∈ XC , ∀y ∈ X (x);
εx − ∑

y∈X (x)

px,yεy + ωx ≤ μx , ∀x ∈ X N ;

ωx − ωy ≤ 0, ∀x ∈ XC , ∀y ∈ X (x);
ωx − ∑

y∈X (x)

px,yωy ≤ 0, ∀x ∈ X N ;
(2.55)

where θx > 0, ∀x ∈ X and
∑

x∈X θx = 1.
Note that in this model in the case of the unichain control problem the restrictions

ωx − ωy ≤ 0 for x ∈ XC , y ∈ X (x) and ωx − ∑
y∈X (x) px,yωy ≤ 0 for x ∈ X N

become redundant in (2.55), because here we can take ωx = ωy, ∀x, y ∈ X .
Thus, this model generalizes the linear programming model (2.21), (2.22). Using
this model we can propose the following algorithm for determining the solution of
the multichain control problem.

Remark 2.22 In (2.55) the inequalities that correspond to the states x ∈ X N can be
changed by equalities, i.e., the constraints (2.55) in the problem (2.54), (2.55) can
be replaced by the constraints

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εx − εy + ωx ≤ cx,y, ∀x ∈ XC , ∀y ∈ X (x);
εx − ∑

y∈X (x)

px,yεy + ωx = μx , ∀x ∈ X N ;

ωx − ωy ≤ 0, ∀x ∈ XC , ∀y ∈ X (x);
ωx − ∑

y∈X (x)

px,yωy = 0, ∀x ∈ X N .

(2.56)
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Thus, the optimal solutions of the problems (2.54), (2.55) and (2.54), (2.56) are the
same.

Algorithm 2.23 Determining the Optimal Stationary Strategies for the
Multichain Control Problem

(1) Formulate the linear programming problem (2.54), (2.55) and determine an opti-
mal solution ε∗, ω∗ that satisfies the conditions (2.52), (2.53).

(2) Formulate the potential transformation

cx,y = cx,y + ε∗
y − ε∗

x − ω∗
x , ∀(x, y) ∈ E .

(3) Determine the set

E∗
c (x) =

{
(x, y) ∈ EC

∣∣∣∣∣ y ∈ argmin
z∈X (x)

cx,z

}
, ∀x ∈ XC ;

E∗
ω∗(x) =

{
(x, y) ∈ EC

∣∣∣∣∣ y ∈ argmin
z∈X (x)

ω∗
z

}
, ∀x ∈ XC ;

(4) Fix a strategy s∗ : XC → X such that s∗(x) = y for every x ∈ X , where
(x, y) ∈ Ec∗(x) ∩ E∗

ω∗(x).

Below we illustrate Algorithm 2.23 based on the following example.

Example Consider the stochastic control problem on network (G, X1, X2, c, p) with
the structure of the graph G = (X, E) given in Fig. 2.3.

In this graph the vertices are represented by circles and squares. The vertices
represented by circles correspond to the controllable states of the dynamical system
and the vertices represented by squares correspond to uncontrollable states.

3

54 6

21

4
(3, 0.4) (1, 1)

(8, 0.6)

(3, 0.4)

(2, 0.2)

(1, 0.4)

(4, 0.5)

3

1

(4, 0.5) 2

Fig. 2.3 The structure of the graph G = (X, E)
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So,
X = {1, 2, 3, 4, 5, 6}; XC = {1, 5}; X N = {2, 3, 4, 6};

E = {(1, 2), (1, 4), (2, 1), (2, 3), (2, 5), (3, 3), (4, 4), (4, 5),

(5, 5), (5, 4), (6, 3), (6, 5)};
EC = {(1, 2), (1, 4), (5, 5), (5, 4)};
EN = {(2, 1), (2, 3), (2, 5), (3, 3), (4, 4), (4, 5), (6, 3), (6, 5)}.

The values of the cost function c : E → R and of the transition probability function
p : E → R are written close to the edges in the picture. For the edges e = (x, y) ∈
EN these values are written in parentheses, where the first quantity expresses the
cost and the second one represents the probability transition from the state x to the
state y. For the edges e = (x, y) ∈ EC only the costs are given which are written
also close to the edges. Thus, for this example we obtain:

c1,2 = 4, c1,4 = 1, c2,1 = 1, c2,3 = 3, c2,5 = 2, c3,3 = 1,

c4,4 = 4, c4,5 = 4, c5,5 = 2, c5,4 = 3, c6,3 = 8, c6,5 = 3;
p2,1 = 0.4, p2,3 = 0.4, p2,5 = 0.2, p3,3 = 1, p4,4 = 0.5,

p4,5 = 0.5, p6,3 = 0.6, p6,5 = 0.4.

We apply Algorithm 2.23. Afterwards, we solve the linear programming problem:
Maximize

Ψ
′
(ε,ω) = θ1ω1 + θ2ω2 + θ3ω3 + θ4ω4 + θ5ω5 + θ6ω6

subject to ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1 − ε2 + ω1 ≤ c1,2;
ε1 − ε4 + ω1 ≤ c1,4;
ε5 − ε4 + ω5 ≤ c5,4;
ε5 − ε5 + ω5 ≤ c5,5;
ε2 − (p2,1ε1 + p2,3ε3 + p2,5ε5) + ω2 ≤ μ2;
ε3 − p3,3ε3 + ω3 ≤ μ3;
ε4 − (p4,4ε4 + p4,5ε5) + ω4 ≤ μ4;
ε6 − (p6,3ε3 + p6,5ε5) + ω6 ≤ μ6;
ω1 − ω2 ≤ 0, ω1 − ω4 ≤ 0;
ω5 − ω5 ≤ 0, ω5 − ω4 ≤ 0;
ω2 − (p2,1ω1 + p2,3ω3 + p2,5ω5) ≤ 0;
ω3 − p3,3ω3 ≤ 0;
ω4 − (p4,4ω4 + p4,5ω5) ≤ 0;
ω6 − (p6,3ω3 + p6,5ω5) ≤ 0.

Here

θ1 = θ2 = θ3 = θ4 = θ5 = θ6 = 1

6
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and

μ2 = 2, μ3 = 1, μ4 = 4, μ6 = 6.

If we introduce these data in the linear programming model above then we obtain
the problem:
Maximize

Ψ
′
(ε,ω) = 1

6
ω1 + 1

6
ω2 + 1

6
ω3 + 1

6
ω4 + 1

6
ω5 + 1

6
ω6

subject to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1 − ε2 + ω1 ≤ 4;
ε1 − ε4 + ω1 ≤ 1;
ε5 − ε4 + ω5 ≤ 3;

ω5 ≤ 2;
ε2 − 0.4ε1 − 0.4ε3 − 0.2ε5 + ω2 ≤ 2;

ω3 ≤ 1;
ε4 − 0.5ε4 − 0.5ε5 + ω4 ≤ 4;
ε6 − 0.6ε3 − 0.4ε5 + ω6 ≤ 6;
ω1 − ω2 ≤ 0, ω1 − ω4 ≤ 0, ω5 − ω4 ≤ 0;
ω2 − 0.4ω1 − 0.4ω3 − 0.2ω5 ≤ 0;
ω4 − 0.5ω4 − 0.5ω5 ≤ 0;
ω6 − 0.6ω3 − 0.4ω5 ≤ 0.

The optimal solution of this problem that satisfies the conditions (2.52), (2.53) is:

ε∗
1 = 0, ε∗

2 = −8

3
, ε∗

3 = −25

3
, ε∗

4 = 4, ε∗
5 = 0, ε∗

6 = −2

5
;

ω∗
1 = 4

3
, ω∗

2 = 4

3
, ω∗

3 = 1, ω∗
4 = 2, ω∗

5 = 2, ω∗
6 = 7

5
.

If we determine the potential transformation

cx,y = cx,y + ε∗
y − ε∗

x − ω∗
x , ∀(x, y) ∈ E

then we obtain

c1,2 = 0, c1,4 = 11

3
, c2,1 = 7

3
, c2,3 = −4, c2,5 = 10

3
,

c3,3 = 0, c4,5 = −2, c4,4 = 2, c5,4 = 5, c5,5 = 0, c6,3 = −4

3
, c6,5 = 2;

μ2 = 0, μ3 = 0, μ4 = 0, μ6 = 0.
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(7/3, 0.4)
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Fig. 2.4 The network (G, XC , X N , c, p) in canonical form

The network (G, XC , X N , c, p) in canonical form is represented by Fig. 2.4.
This network satisfies the conditions:

(1) min{c1,1, c1,4} = 0, min{c5,5, c5,4} = 0;

(2) μ2 = 0, μ3 = 0, μ4 = 0, μ6 = 0.

For a given optimal solution ε∗
x , ω∗

x for x ∈ X we have E∗
h∗(1) = Ec(1) = {(1, 2)}

and E∗
h∗(5) = Ec(5) = {(5, 5)}.

Therefore, if we fix s∗(1) = 2; s∗(5) = 5 then we obtain the optimal stationary
strategy s∗ : 1 → 2; 5 → 5. The corresponding network induced by the optimal
stationary strategy s∗ is represented by Fig. 2.5.
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Fig. 2.5 The network induced by the optimal strategy
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Another optimal solution of the linear programming problem for this example is:

ε∗
1 = 0, ε∗

2 = −8

3
, ε∗

3 = −13

2
, ε∗

4 = 1

3
, ε∗

5 = −11

3
, ε∗

6 = − 7

15
;

ω∗
1 = 4

3
, ω∗

2 = 4

3
, ω∗

3 = 1, ω∗
4 = 2, ω∗

5 = 2, ω∗
6 = 7

5
.

If we calculate cx,y and μx that correspond to this optimal solution then we obtain

c1,2 = 0, c1,4 = 0, c5,4 = 3, c5,5 = 0, μ2 = 0, μ3 = 0, μ4 = 0, μ6 = 0.

It is easy to observe that in this case E∗
c (x) �= E∗

h∗(x) for x = 1. However, we can
determine the optimal solution s∗(1) = 2, s∗(5) = 5 if we fix the strategy s∗ such
that (x, s∗(x)) ∈ E∗

c (x) ∩ E∗
h∗(x) for x = 1 and x = 2, i.e., we obtain the same

optimal stationary strategy as in the previous case.

Remark 2.24 If for a multichain control problem it is necessary to determine the
optimal stationary strategy s∗ only for a fixed starting state x0 then it is sufficient to
solve the linear programming problem:
Maximize

ψ ′(ε,ω) = ωx0 (2.57)

subject to (2.54). The optimal strategy for the considered problem can be found
using Algorithm 2.23 if in the item 1 we exchange the problem (2.54), (2.55) by the
problem (2.55), (2.57).

If in the example above we fix x0 = 1 and solve the linear programming problem
(2.55), (2.57) then we obtain the optimal solution ε∗, ω∗, where

ε∗
1 = 0, ε∗

2 = −8

3
, ε∗

3 = −25

3
, ε∗

4 = 4, ε∗
5 = 0;

ω∗
1 = 4

3
, ω∗

2 = 4

3
, ω∗

3 = 1, ω∗
4 = 2, ω∗

5 = 2

and ε∗
6, ω∗

6 are arbitrary values that satisfy the conditions

ε∗
3 − 0.6ε∗

3 − 0.4ε∗
5 + ω∗

6 ≤ 6, ω∗
6 − 0.6ω∗

3 − 0.4ω∗
5 ≤ 0.

Here ε∗
6 may differ from −2/5 and ω∗

6 may differ from 7/5. In this case we obtain
the same optimal strategy s∗ : 1 → 2; 5 → 5 but we do not obtain ε∗

6 and ω∗
6 . If we

solve the problem (2.55), (2.57) for x0 = 6 then we obtain

ε∗
6 = −25

3
, ω∗

6 = 7

5
, ε∗

3 = 0, ω∗
3 = 1, ε∗

5 = 0, ω∗
5 = 2.

The remaining variables may be arbitrary.
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2.2.8 Primal and Dual Linear Programming Models
for the Multichain Problem

The problem (2.54), (2.55) generalizes the unichain dual linear programming model
(2.21), (2.22). Therefore, we can regard (2.54), (2.55) as the dual problem of a
primal multichain linear programming model. If we dualize (2.54), (2.55) then we
obtain a problem which generalizes the problem (2.16), (2.17). This problem can be
formulated as follows:
Minimize

ψ(α,β,λ, q) =
∑

x∈XC

∑

y∈X (x)

cx,yαx,y +
∑

z∈X N

μzqz (2.58)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

x∈X−
C (y)

αx,y −
∑

x∈X (y)

αy,x +
∑

x∈X N

px,yqx = 0, ∀y ∈ XC ;
∑

x∈X−
C (y)

αx,y − qy +
∑

x∈X N

px,yqx = 0, ∀y ∈ X N ;
∑

y∈X (x)

αx,y +
∑

y∈X

βx,y −
∑

y∈X−
C (x)

βy,x −
∑

y∈X−
N (x)

py,xλy = θx ,∀x ∈ XC ;

qx + λx −
∑

y∈X−
N (x)

py,xλx = θx , ∀x ∈ X N ;

αx,y,βx,y ≥ 0, ∀x ∈ XC , y ∈ X (x); qx ,λx ≥ 0, ∀x ∈ X N .

(2.59)
It is easy to see that this linear programming model generalizes the unichain linear
programming model (2.16), (2.17). The last two restrictions (equalities) in (2.59)
generalize the constraint

∑

x∈XC

∑

y∈X (x)

αx,y +
∑

x∈X N

qx = 1.

In the following we shall regard the linear programming problem (2.54), (2.55).

2.2.9 An Algorithm for Solving the Multichain Control Problem
Using a Dual Unichain Model

For multichain control problems the optimal average costs in different states may
be different. Therefore, the set of states X can be divided into several subsets
X1, X2, . . . , Xk such that each subset Xi , i ∈ {1, 2, . . . , k} contains the states
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with the same optimal average costs and there are no states from different subsets
with the same optimal average costs.

Let ωi be the corresponding optimal average cost of the states x ∈ Xi ,
i = 1, 2, . . . , k and assume that ω1 < ω2 < · · · < ωk. In this section we show that
the average costs ωi and the corresponding subsets Xi can be found successively by
solving k unichain linear programming problems (2.21), (2.22).

At the first step of the algorithm we solve the linear programming problem:
Maximize

ψ ′(ε, h) = h (2.60)

subject to

⎧
⎨

⎩
εx − εy + h ≤ cx,y, ∀x ∈ XC , y ∈ X (x);
εx − ∑

z∈X
px,zεz + h ≤ μx , ∀x ∈ X N . (2.61)

Let ε1
x (x ∈ X), h1 be an optimal solution of this problem on the network

(G, XC , X N , c, p). Then this solution satisfies the conditions:

(1) c1
x,y = cx,y + ε1

y − ε1
x − h1 ≥ 0, ∀x ∈ XC , y ∈ X (x);

(2) μ1
x = μx + ∑

y∈X (x)

px,yε
1
y − ε1

x − h1 ≥ 0, ∀x ∈ X N ;
(3) There exists a nonempty subset X1 from X where

min
y∈X (x)

c1
x,y = min

y∈X1(x)
c1

x,y = 0, ∀x ∈ X1 ∩ XC ;
μ1

x = 0, ∀x ∈ X1 ∩ X N ,

and X1 is a maximal subset in X with such a property.

If in the network (G, XC , X N , c, p) we make the potential transformation

c1
x,y = cx,y + ε1

y − ε1
x − h1, ∀x ∈ X, y ∈ X (x)

then we obtain the network (G, XC , X N , c1, p) with a new cost function c1 on E .
According to Lemma 2.14 and Corollary 2.16 the optimal stationary strategies of the
control problem on this network are the same as the optimal stationary strategies on
the network (G, XC , X N , c, p). Moreover, we have here

ω1
x = ωx − h1, ∀x ∈ X,

where ωx for x ∈ X represents the corresponding optimal average costs of the states
x ∈ X in the primal problem and ω1

x are the optimal average costs of the states in
the control problem on the network with transformation potential function c1.

Thus, after the first step of the algorithm we obtain the subset X1, the value of
the optimal average cost ω1 = h1 for the states x ∈ X1, the function ε1 : X → R
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and the network (G, XC , X N , c1, p) with a new cost function c1, where the optimal
average costs ω1

x in the problem with the new network satisfy the condition:

ω1
x = 0, ∀x ∈ X1; ω1

x = ωx − h1 > 0, ∀x ∈ X\X1.

At the second step of the algorithm we solve the linear programming problem:
Minimize the objective function (2.60) subject to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εx − εy + h ≤ c1
x,y, ∀x ∈ XC\X1, y ∈ X (x);

εx − ∑
z∈X

px,zεz + h ≤ μ1
x , ∀x ∈ X N \X1;

εx − εy ≤ c1
x,y, ∀x ∈ X1 ∩ XC , y ∈ X (x);

εx − ∑
z∈X)

px,zεz ≤ μ1
x , ∀x ∈ X1 ∩ X N .

(2.62)

This system is obtained from (2.61) by changing cx,y and μx by cx,y and μx , and
setting h = 0 in the inequalities that correspond to the states x ∈ X1.

Let ε2
x (x ∈ X), h2 be an optimal solution of this problem on the network

(G, XC , X N , c1, p). Then this solution satisfies the conditions:

(1) c2
x,y = cx,y + ε2

y − ε2
x − h2 ≥ 0, ∀x ∈ XC , y ∈ X (x);

(2) μ2
x = μx + ∑

y∈X (x)

px,yε
2
y − ε2

x − h2 ≥ 0, ∀x ∈ X N ;

(3) There exists a nonempty subset X2 from X where

min
y∈X (x)

c2
x,y = min

y∈X2(x)
c2

x,y = 0, ∀x ∈ X2 ∩ XC ;

μ2
x = 0, ∀x ∈ X2 ∩ X N ,

and X2 is a maximal subset in X with such a property.

After that we make the potential transformation

c2
x,y = c1

x,y + ε2
y − ε2

x − h2, ∀x ∈ X, y ∈ X (x)

in the network (G, XC , X N , c1, p) and we obtain the network (G, XC , X N , c2, p)

with a new cost function c2 on E . According to Lemma 2.14 and Corollary 2.16 the
optimal stationary strategies of the control problem on this network are the same as
the optimal stationary strategies on the network (G, XC , X N , c1, p). Moreover, here
we have

ω2
x = ω1

x − h2, ∀x ∈ X\X1,

where ω1
x for x ∈ X\X1 represent the corresponding optimal average costs of the

states in the problem before the potential transformation is made and ω2
x are the



142 2 Stochastic Optimal Control Problems . . .

optimal average costs of the states x ∈ X\X1 in the control problem after the
potential transformation is made.

Thus, after the second step of the algorithm we obtain the subset X2, the value
of the optimal average cost h2 for the states x ∈ X2, the function ε2 : X → R and
the network (G, XC , X N , c2, p) with a new cost function c2, where for the optimal
average costs ω2

x in the problem we may set:

ω2
x = 0, ∀x ∈ X1 ∪ X2; ω2

x = ω1
x − h2 > 0, ∀x ∈ X\(X1 ∪ X2).

At the next step of the algorithm we solve the linear programming problem:
Minimize the objective function (2.60) subject to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εx − εy + h ≤ c2
x,y, ∀x ∈ XC\(X1 ∪ X2), y ∈ X (x);

εx − ∑
z∈X

px,zεz + h ≤ μ2
x , ∀x ∈ XC\(X1 ∪ X2);

εx − εy ≤ c2
x,y, ∀x ∈ (X1 ∪ X2) ∩ XC ;

εx − ∑
z∈X

px,zεz ≤ μ2
x , ∀x ∈ (X1 ∪ X2) ∩ X N .

(2.63)

This system is obtained from (2.62) by exchanging c1
x,y and μ1

x by c2
x,y and μ2

x ,
and setting h = 0 in the inequalities that corresponds to the states x ∈ X2.

After a finite number of steps we obtain the subsets

X1, X2, . . . , Xk (X = X1 ∪ X2 ∪ · · · ∪ Xk),

the potential functions εi : X → R, i = 1, 2, . . . , k and the values h1, h2, . . . , hk,
where

ωi =
i∑

j=1

h j , j = 1, 2, . . . , k.

If we find ε∗
x = ∑k

i=1 εi
x and fix ω∗

x = ωi∗ for x ∈ Xi then we determine the potential
transformation

cx,y = cx,y + ε∗
y − ε∗

x − ω∗
x , ∀x ∈ X, y ∈ X (x),

that satisfies the conditions (1) – (6) of Theorem 2.12. This means that we determine
the network (G, XC , X N , c, p) and the optimal stationary strategy s∗.

Example Consider the stochastic control problem on the network with the data from
the example given in the previous section. The network is represented by Fig. 2.3,
where X = XC ∪ X N , XC = {1, 5}, X N = {2, 3, 4, 6}, and the costs and transition
probabilities are written again along the edges.
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We apply the algorithm described above. At the first step of the algorithm we
solve the linear programming problem:
Minimize

ψ ′(ε, h) = h

subject to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1 − ε2 + h ≤ 4;
ε1 − ε4 + h ≤ 1;
ε5 − ε4 + h ≤ 3;
ε5 − ε5 + h ≤ 2;
ε2 − 0.4ε1 − 0.4ε3 − 0.2ε5 + h ≤ 2;
ε3 − ε3 + h ≤ 1;
ε4 − 0.5ε4 − 0.5ε5 + h ≤ 4;
ε6 − 0.6ε3 − 0.4ε5 + h ≤ 6.

An optimal solution of this problem is h1 = 1, ε1
1 = 0, ε1

2 = 0, ε1
3 = 0, ε1

4 =
0, ε1

5 = 0, ε1
6 = 0 = 1. We calculate c1

x,y and μ1
x using the formula

c1
x,y = cx,y + ε1

y − ε1
x − h1, ∀x ∈ X1, y ∈ X (x);

μ1
x = μx +

∑

y∈X (x)

px,ycx,y − ε1
x − h1, x ∈ X2

and determine c1
1,2 = 3, c1

1,4 = 0, c1
5,4 = 2, c1

5,5 = 1; μ1
2 = 1, μ1

3 = 0, μ1
4 =

3, μ1
6 = 5. After the first step of the algorithm we obtain:

X1 = {3}; h1 = 1; ε1
1 = 0, ε1

2 = 0, ε1
3 = 0, ε1

4 = 0, ε1
5 = 0, ε1

6 = 0.

At the second step of the algorithm we solve the linear programming problem:
Minimize

ψ ′(ε, h) = h

subject to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1 − ε2 + h ≤ 3;
ε1 − ε4 + h ≤ 0;
ε5 − ε4 + h ≤ 2;
ε5 − ε5 + h ≤ 1;
ε3 − ε3 ≤ 0;
ε2 − 0.4ε1 − 0.4ε3 − 0.2ε5 + h ≤ 1;
ε4 − 0.5ε4 − 0.5ε5 + h ≤ 3;
ε6 − 0.6ε3 − 0.4ε5 + ω ≤ 5.
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An optimal solution of this problem is

h2 = 1

3
, ε2

1 = 0, ε2
2 = −8

3
, ε2

3 = −25

3
, ε2

4 = 4, ε2
5 = 0, ε2

6 = −2

5
.

We calculate c2
x,y and μ2

x using formula

c2
x,y = c1

x,y + ε2
y − ε2

x − h2; μ2
x = μ1

x +
∑

z∈X

px,yεz − h2

and find

c2
1,2 = 0, c2

1,4 = 2

3
, c2

5,4 = 17

3
, c2

5,5 = 2

3
, μ2

2 = 0, μ2
3 = 0, μ2

4 = 2

3
, μ2

6 = 1

15
.

After the second step of the algorithm we obtain: X2 = {1, 2};

h2 = 1

3
, ε2

1 = 0, ε2
2 = −8

3
, ε2

3 = −25

3
, ε2

4 = 4, ε2
5 = 0, ε2

6 = −2

5
.

At the third step of the algorithm we solve the linear programming problem:
Minimize

ψ ′(ε, h) = h

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1 − ε2 ≤ 0;
ε1 − ε4 ≤ 11

3
;

ε5 − ε4 + h ≤ 17

3
;

ε3 − ε3 ≤ 0;
ε5 − ε5 + h ≤ 2

3
;

ε2 − 0.4ε1 − 0.4ε3 − 0.2ε5 ≤ 2

3
;

ε4 − 0.5ε4 − 0.5ε5 + h ≤ 2

3
;

ε6 − 0.6ε3 − 0.4ε5 + h ≤ 1

15
.

An optimal solution of this problem is

h3 = 1

15
, ε3

1 = 0, ε3
2 = 0, ε3

3 = 0, ε3
4 = 0, ε3

5 = 0, ε6 = 0.
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Using this solution we find

c3
1,2 = 0, c4

1,4 = 11

3
, c3

5,5 = 3

5
, c3

5,4 = 26

5
, μ3

2 = 0, μ3
3 = 0, μ3

4 = 3

5
, μ3

6 = 0.

After this step we obtain:

X3 = {6}; h3 = 1

15
, ε3

1 = 0, ε3
2 = 0, ε3

3 = 0, ε3
4 = 0, ε3

5 = 0, ε6 = 0.

At the fourth step of the algorithm we solve the linear programming problem:
Minimize

ψ ′(ε, h) = h

subject to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1 − ε2 ≤ 0;
ε1 − ε4 ≤ 11

3
;

ε5 − ε4 + h ≤ 28

5
;

ε3 − ε3 ≤ 0;
ε5 − ε5 + h ≤ 3

5
;

ε2 − 0.4ε1 − 0.4ε3 − 0.2ε5 ≤ 2

3
;

ε4 − 0.5ε4 − 0.5ε5 + h ≤ 3

5
;

ε6 − 0.6ε3 − 0.4ε5 ≤ 0.

An optimal solution of this system is h4 = 3/5, ε3
1 = 0, ε3

2 = 0, ε3
3 = 0, ε3

4 = 0,
ε3

5 = 0, ε6 = 0. Using this solution we find c4
1,2 = 0, c4

2,4 = 11/3, c4
5,4 = 5,

c4
5,5 = 0, μ4

2 = 0, μ4
3 = 0, μ4

4 = 0, μ4
6 = 0. After this step we obtain X4 = {4, 5}

and h4 = 3/5.
Thus, finally we have X = X1 ∪ X2 ∪ X3 ∪ X4, where

X1 = {3}, X2 = {1, 2}, X3 = {6}, X4 = {4, 5},

and

ω1 = h1, ω2 = h1 + h2, ω3 = h1 + h2 + h3, ω4 = h1 + h2 + h3 + h4,

i.e.,

ω1 = 1, ω2 = 4

3
, ω3 = 7

5
, ω4 = 2.
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In addition we can find

ε∗
1 = ε1

1 + ε2
1 + ε3

1 + ε4
1 = 0; ε∗

2 = ε1
2 + ε2

2 + ε3
2 + ε4

2 = −8

3
;

ε∗
3 = ε1

3 + ε2
3 + ε3

3 + ε4
3 = −25

3
; ε∗

4 = ε1
4 + ε2

4 + ε3
4 + ε4

4 = 4;
ε∗

5 = ε1
5 + ε2

5 + ε3
5 + ε4

5 = 0; ε∗
6 = ε1

6 + ε2
6 + ε3

6 + ε4
6 = −2

5
.

If we make the potential transformation of the cost function c for ω∗ and ε∗ found
above then we obtain the network in canonical form (G, XC , X N , c, p) represented
by Fig. 2.4 that gives the optimal stationary strategies.

2.2.10 An Approach for Solving the Multichain Control Problem
Using a Reduction Procedure to a Unichain Problem

We consider the stochastic control problem on the network (G, XC , X N , c, p, x0)

with fixed starting state x0 and describe an approximation algorithm for determining
the optimal solutions which is based on a reduction procedure of the multichain
problem to the unichain case.

We describe the reduction procedure in the case if the graph G satisfies the con-
dition that for an arbitrary vertex x ∈ XC each outgoing directed edge e = (x, y)

ends in X N , i.e., we assume that

EC = {e = (x, y) ∈ E | x ∈ XC , y ∈ X N }.

If the graph G does not satisfy this condition then the considered control problem
can be reduced to a similar control problem on an auxiliary network (G ′, X ′

C , X ′
N ,

c′, p′, x0), where the graph G ′ satisfies the condition mentioned above. Graph G ′ =
(X ′, E ′) is obtained from G = (X, E), where each directed edge e = (x, y) ∈ EC

is changed by the following two directed edges e1 = (x, xe) and e2 = (xe, y).
We include each vertex xe in X ′

N and to each edge e′ = (xe, y) we associate the
cost c′

xe,y = cx,y and the transition probability p′
xe,y = 1. To the edges e′ = (x, xe)

we associate the cost c′
x,xe

= c(x,y), where e = (x, y). For the edges e ∈ EN

in the new network we preserve the same costs and transition probabilities as in
the initial network, i.e., the cost function c′ on EN and on the set of edges (x, xe)

for x ∈ XC , e ∈ EC is induced by the cost function c. Thus, in the auxiliary
network the graph G ′ is determined by the set of vertices X ′ = X ′

C ∪ X ′
N and the

set of edges E ′ = E ′
C ∪ E ′

N , where X ′
C = XC ; X ′

N = X N ∪ {xe, e ∈ EC };
E ′

C = {e′ = (x, xe) | x ∈ XC , e = (x, y) ∈ EC }; E ′
N = EN ∪ {e′ = (xe, y) | e =

(x, y) ∈ EC , y ∈ X}. It is evident that there exists a bijective mapping between the
set of strategies in the states x ∈ XC of the network (G, XC , X N , c, p, x0) and the
set of strategies in the states x ∈ XC of the network (G ′, X ′

C , X ′
N , c′, p′, x0) that

preserves the average costs of the problems on the corresponding networks.



2.2 An Optimal Stationary Control with an Average Cost Criterion . . . 147

Thus, without loss of generality we may consider that G possesses the property
that for an arbitrary vertex x ∈ XC each outgoing directed edge e = (x, y) ends
in X N . Additionally, let us assume that the vertex x0 in G is reachable from every
vertex x ∈ X N . Then an arbitrary strategy s in the considered problem induces a
transition probability matrix Ps = (ps

x,y) that corresponds to a Markov unichain
with a positive recurrent class X+ that contains the vertex x0.

Therefore, if we solve the control problem on the network then we obtain the
solution of the problem with fixed starting state x0. So, we obtain such a solution
if the network satisfies the condition that for an arbitrary strategy s the vertex x0
in Gs is attainable for every x ∈ X N . Now let us assume that this property does
not take place. In this case we can reduce our problem to a similar problem on a
new auxiliary network (G ′′, X ′′

C , X ′′
N , p′′, c′′, x0) for which the property mentioned

above holds. This network is obtained from the initial one by the following way: We
construct the graph G ′′ = (X, E ′′) which is obtained from G = (X, E) by adding
new directed edges e′′

x0
= (x, x0) from x ∈ X N \{x0} to x0, if for some vertices

x ∈ X N \{x0} in G there are no directed edges e = (x, x0) from x to x0. We define
the costs of directed edges (x, y) ∈ E ′′ in G ′′ as follows: If e′′ = (x, y) ∈ E then
the cost c′′

e′′ of this edge in G ′′ is the same as in G, i.e., c′′
e′′ = ce′′ for e′′ ∈ E ; if

e′′ = (x, x0) ∈ E ′′\E then we put c′′
e′′ = 0. The probabilities p′′

x,y for (x, y) ∈ E ′′
where x ∈ X N we define by using the following rule: We fix a small positive value
ε and put p′′

x,y = px,y − εpx,y if (x, y) ∈ E ′′\E, y �= x0 and in G there is no
directed edge e = (x, x0) from x to x0; if in G for a vertex x ∈ X\{x0} there exists
a leaving directed edge e = (x, x0) then for an arbitrary outgoing directed edge
e = (x, y), y ∈ X (x) we put p′′

x,y = px,y ; for the directed edges (x, x0) ∈ E ′\E
we put p′′

x,x0
= ε.

Let us assume that the probabilities px,y for (x, y) ∈ E are given in the form of
irreducible decimal fractions px,y = ax,y/bx,y .

Additionally, assume that ε ≤ 2−2L−2, where

L =
∑

(x,y)∈E

log(ax,y + 1) +
∑

(x,y)∈E

log(bx,y + 1)

+
∑

e∈E

log(|ce| + 1) + 2 log(n) + 1.

Here L is the length of the binary-coded data of the matrix P and of the cost vector
c with integer components; each probability px,y is given by the integer couple
ax,y, bx,y . Then, based on the results from [57, 58] for our auxiliary optimization
problem (with approximated data) we can conclude that the solution of this problem
will correspond to the solution of our initial problem.

If we consider the control problem on the auxiliary network (G ′, X ′
C , X ′

N , c′,
p′, x0) then we can observe that an arbitrary optimal basic solution of the linear
programming problem (2.13), (2.14) satisfies the condition q∗

x0
> 0 and therefore

we can determine the optimal stationary strategy s′∗ for the auxiliary problem using
Algorithm 2.5. In addition we can observe that if for our stochastic control problem
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on the network there exists the optimal stationary strategy s∗ then it coincides with
an optimal stationary strategy s′∗ of the stochastic control problem on the auxiliary
network, i.e., s∗ = s′∗. Moreover, the optimal values of the objective functions
fx0(s

∗) can be obtained from the optimal value of the objective function f ′
x0

(s′∗) in the
auxiliary problem using the approximation procedure. So, to find the optimal solution
of the problem on the network (G, XC , X N , c, p, x0) it is necessary to construct
the auxiliary network (G ′, X ′

C , X ′
N , c′, p′, x0) where for each vertex x ∈ X ′

N an
arbitrary directed edge e′ = (x, y) ends in X N . Then we construct the network
(G ′′, X ′′

C , X ′′
N , c′′, p′′, x0) and the auxiliary stochastic optimal control problem on

this network. If the optimal stationary strategy s′∗ in the auxiliary problem is found
then we fix s∗ = s′∗ on XC .

Example Consider the multichain control problem on the network (G, XC , X N , c,
p, x0) represented by Fig. 2.6. In this network the vertices represented by circles
correspond to the controllable states of the dynamical system and the vertices repre-
sented by squares correspond to uncontrollable states. To each edge that originates
in the vertices which correspond to the controllable states the associated cost is writ-
ten along the edge. To each edge that originates in the vertices that correspond to
uncontrollable states the associated cost and the transition probability are written in
parentheses. The starting state x0 is fixed and it corresponds to vertex 2, i.e., x0 = 2.

For this network we have XC = {1, 4, 6}, X N = {2, 3, 5} and there exist two
edges (1, 1), (1, 4) which start in XC and end in XC . The corresponding network
(G ′, X ′

C , X ′
N , c′, p′, x0) is represented on Fig. 2.7. This network is obtained from

the network on Fig. 2.7 by adding two new vertices 1′ and 1′′ on the edges (1, 1) and
(1, 4).

The network (G ′′, X ′′
C , X ′′

N , c′′, p′′, x0) is represented in Fig. 2.8. This network
is obtained from the network in Fig. 2.7 by adding the directed edges (x, x0) that
start in the vertices x ∈ X ′′

N = {1′, 1′′, 5, 3} and end in x0 = 2, where cx,x0 = 0

3

54 6

21

3

(2, 0.4) (1, 1)

3

3

(2, 0.4)

(2, 0.2)

3

(2, 0.5)

(2, 0.5)

3

3

Fig. 2.6 The network (G, XC , X N , c, p, x0)
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3

54 6

21 (1, 1)(2, 0.4)

(2, 0.2)

33

(3, 1)

(2, 0.5)

3
3

(3, 1)

3(2, 0.4)

(2, 0.5)

3

1

1

Fig. 2.7 The network (G ′, X ′
C , X ′

N , c′, p′, x0)

3

3
54 6

21

3(2, 0.4)

(2, 0.5 - 0.5)

3

1

1 (1, 1 - )

3

(3, 1 - )

(3, 1 - )

3

(2, 0.2)

3

(2, 0.5 - 0.5)

(2, 0.4)

(0, )

(0, )

(0, )

(0, )

Fig. 2.8 The network (G ′′, X ′′
C , X ′′

N , c′′, p′′, x0)

and px,x0 = ε. The corresponding probabilities px,y for the directed edges (x, y)

for x ∈ X ′′
N are defined as follows: p′′

x,y = px,y − px,yε. The control problem on
the auxiliary network possesses the property that an arbitrary strategy s′′ generates
a Markov unichain. Therefore, for this problem we can use the linear programming
model (2.13), (2.14) or the linear programming model (2.21), (2.22) with ε = 10−4.
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In both cases we determine the same optimal stationary strategy

s∗′′ : 1 → 2; 4 → 5; 6 → 3.

This means that the optimal solution for the initial problem is

s∗ : 1 → 2; 4 → 5; 6 → 3.

In the following we show that the linear programming models for the stochastic
control problem can be extended for Markov decision processes which lead to the
linear programming models from [25, 45, 46, 51, 115].

2.3 A Linear Programming Approach for Markov Decision
Problems with an Average Cost Optimization Criterion

We extend now the linear programming approach and algorithms from the previous
section for the Markov decision problem with an average cost optimization criterion.
We show that an arbitrary Markov decision problem can be transformed into a sto-
chastic control problem on a network and vice versa, an arbitrary stochastic control
problem on a network can be formulated as a Markov decision problem. Thus, the
considered problems are equivalent and therefore the linear programming approach
can be developed and specified for Markov decision problems.

2.3.1 Problem Formulation

A Markov decision process [4, 115] is determined by a tuple (X, A, p, c), where
X is a finite state space, A is a finite set of actions, p is a nonnegative real function
p : A × X × X → R+ that satisfies the condition

∑
y∈X pa

x,y = 1, ∀a ∈ A and
c : A × X × X → R is a real function. The function p for a fixed action a ∈ A
and arbitrary x, y ∈ X determines the probability pa

x,y of the system’s transition
from the state x ∈ X at the moment of time t to state y at the moment of time
t + 1 for every t = 0, 1, 2, . . .. For a fixed action a ∈ A and arbitrary x, y ∈ X the
function c determines the cost ca

x,y of the system’s transition from the state x = x(t)
to the state y = x(t + 1) for t = 0, 1, 2, . . .. In the considered Markov process
the functions p and c do not depend on time, i.e., we have a stationary Markov
decision process. If in each state x ∈ X we fix an action from a ∈ A then we
obtain a Markov process induced by these actions. The problem with an average
cost optimization criterion for the Markov decision process (X, A, p, c) with given
starting state x0 consists in determining the actions in the states of the system that
provide the minimal (or maximal) average cost per transition for the Markov process
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induced by the chosen actions. In the following we will study this problem in terms
of stationary strategies.

We define a stationary strategy s for Markov decision process as a map

s : x → a ∈ A(x) for x ∈ X,

where A(x) represents the set of actions in the state x ∈ X . An arbitrary stationary
strategy s induces a simple Markov process with the transition probability matrix
Ps = (ps

x,y) and the transition cost matrix Cs = (cs
x,y). For this Markov process

with probability and cost matrices Ps, Cs we can determine the expected average
cost per transition ωs

x0
if the dynamical system starts transitions in the state x0 at the

moment of time t = 0. We denote this quantity by fx0(s), i.e.,

fx0(s) = ωs
x0

.

We consider the Markov decision problem with an average cost criterion, i.e., we are
seeking for a strategy s∗ for which

fx0(s
∗) = min

s
fx0(s).

For an arbitrary Markov decision problem we may assume that the action sets in
different states are different, i.e., A(x) �= A(y). However, it is easy to observe that
an arbitrary problem can be reduced to the case |A(x)| = |A(y)| = |A|, ∀x, y ∈ X
introducing some copies of the actions in the states y ∈ X if for two different states
x, y ∈ X it holds |A(y)| < |A(x)|.

In the case |A(x)| = |A(y)| = |A|, ∀x, y ∈ X a Markov decision process can
be given by 2|A| matrices Pak = (pak

x,y), Cak = (cak
x,y), k = 1, 2, . . . , |A|, where∑

y∈X pak
x,y = 1, ∀ak ∈ A,∀x ∈ X .

A fixed strategy s : x → ak ∈ A(x) for x ∈ X generates a Markov process with
the probability transition matrix Ps and the transition cost matrix Cs induced by the
rows of the corresponding matrices Pak and Cak , k = 1, 2, . . . , |A|, respectively.

Using the matrix representation of the Markov decision processes we can show
that the stochastic control problem with average cost criterion can be represented as
a Markov decision problem. Indeed, the matrix representation of the control problem
corresponds to the case if X = XC ∪ X N , XC ∩ X N = ∅, where for an arbitrary
state xi ∈ XC the probabilities pak

xi ,y are equal to 0 or 1 and for an arbitrary state
xi ∈ X N the corresponding i − th rows in the matrices Pa1 , Pa2 , . . . , Pa|A| and
Ca1, Ca2 , . . . , Ca|A| are the same. This means that an arbitrary stochastic control
problem can be transformed into a Markov decision problem.

In the next section we show that an arbitrary Markov decision problem with
average cost criterion can be reduced to a stochastic control problem on an auxiliary
network. We can observe that the mentioned reduction procedure can be realized in
polynomial time. Thus, the considered problems are equivalent from a computational
point of view. Using the reduction procedure of the Markov decision problem to a
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stochastic control problem we can extend the algorithms from the previous section
for determining the optimal solution for Markov decision problems.

2.3.2 Reduction of Markov Decision Problems to Stochastic
Control Problems

Let us show that the problem of determining the optimal stationary strategies s∗ in a
Markov decision process (X, A, p, c) with average cost criterion can be reduced to
the problem of determining the optimal stationary strategy in the control problem on
a network (G ′, X ′

C , X ′
N , p′, c′, x ′

0), where G ′ = (X ′, E ′), X ′
C , X ′

N , p′, c′ and x0
are defined in the following way: The set of vertices X ′ = X ′

C ∪ X ′
N contains (|A|+

1)|X | vertices, where |X ′
C | = |X | and |X ′

N | = |A||X |. So, the set of controllable
states in the control problem consists of a copy of the set of states X and the set of
uncontrollable states X ′

N consists of |A| copies of the set of states X . Therefore, we
define X ′

C and X N as follows:

X ′
C = {x ′ = x | x ∈ X}; X ′

N =
⋃

a∈A

Xa,

where

Xa = {xa = (x, a) | x ∈ X} for a ∈ A.

We also represent the set of directed edges E ′ as a couple of two disjoint subsets
E ′ = E ′

C ∪ E ′
N , where E ′

C is the set of outgoing edges from x ′ ∈ X ′
C and E ′

N is the
set of outgoing edges from xa ∈ X ′

N . The states E ′
C and E ′

N are defined as follows:

E ′
C = {(x, (x, a)) | x ∈ X ′

C ; (x, a) ∈ X ′
N , a ∈ A};

E ′
N = {((x, a), y) | (x, a) ∈ X ′

N , y ∈ X ′
C , pa

x,y > 0, a ∈ A}.

On the set of directed edges E ′ we define the cost function c′ : E ′ → R, where

c′
e′ = 0, ∀e′ = (x, (x, a)) ∈ E ′

C ;

c′
e′ = 2 ca

x,y for e′ = ((x, a), y) ∈ E ′
N (x, y ∈ X, a ∈ A).

On E ′
2 we define the transition probability function p′ : E ′

N → [0, 1], where p′
e′ =

pa
x,y for e′ = ((x, a), y) ∈ E ′

N .
It is easy to observe that between the set of stationary strategies S in the Markov

decision process and the set of strategies S′ in the control problem on the network
(G ′, X ′

C , X ′
N , c′, p′, x0) there exists a bijective mapping that preserves the average

cost per transition. Therefore, if we find the optimal stationary strategy for the control
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problem on the network then we can determine the optimal stationary strategy in the
Markov decision process.

The network constructed above gives a graphical interpretation of the Markov
decision process via the structure of the graph G, where the actions and all pos-
sible transitions for an arbitrary fixed action are represented by arcs and nodes. A
more simple graphical interpretation of the Markov decision process may be given
using the graph of probability transitions G p = (X, E p), which is induced by the
probability function p : X × X × A → [0, 1]. This graph may contain parallel
directed edges where each directed edge corresponds to an action. The set of vertices
X corresponds to the set of states and the set of edges E p consists of |A| subsets

E1
p, E2

p, . . . , E |A|
p

(
E p = ⋃|A|

i=1 Ei
p

)
, where Ei

p = {eai = (x, y)ai | pai
x,y >

0}, i = 1, 2, . . . , |A(x)|.
An example how to construct the graph G p = (X, E p) and how to determine

the solution of the Markov decision problem using the reduction procedure to an
auxiliary control problem on the network is given below.

Example Consider a Markov decision process (X, A, p, c) where X = {1, 2}, A =
1, 2 and the possible values of the corresponding probability and cost functions
p : X × X × A → [0, 1], c : X × X × A → R are defined as follows:

pa1
1,1 = 0.7, pa1

1,2 = 0.3, pa1
2,1 = 0.6, pa1

2,2 = 0.4,

pa2
1,1 = 0.4, pa2

1,2 = 0.6, pa2
2,1 = 0.5, pa2

2,2 = 0.5;
ca1

1,1 = 1, ca1
1,2 = 0, ca1

2,1 = −2, ca1
2,2 = 5,

ca2
1,1 = 0, ca2

1,2 = 4, ca2
2,1 = 2, ca2

2,2 = −3.

We consider the problem of finding the optimal stationary strategy for the corre-
sponding Markov decision problem with minimal average costs and an arbitrary
fixed starting state.

The data concerned with the actions in the considered Markov decision problem
can be represented in a suitable form using the probability matrices

Pa1 =
(

0.7 0.3
0.6 0.4

)
, Pa2 =

(
0.4 0.6
0.5 0.5

)

and the matrices of transition cost

Ca1 =
(

1 0
−2 5

)
, Ca2 =

(
0 4
2 −3

)
.

In Fig. 2.9 this Markov process is represented by the multigraph G p = (X, E p) with
the set of vertices X = {1, 2}.

The set of directed edges E p contains parallel directed edges that correspond to
probability transitions from one state to another for different actions. We call this
graph multigraph of the Markov decision process.
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Fig. 2.9 The graph of the Markov decision process

1

(2,1)

2

(2,2)

(1,2)

(1,1)

0.7

0.4

0.6

0.5
0.5

0.4

0.6

0.3

Fig. 2.10 The graph G ′ for the control problem

In Fig. 2.10 the graph G ′ = (X ′, E ′) is represented. In G ′ the sets X ′
C , X ′

N , E ′
C , E ′

N
are defined as follows:

X ′
C = {1, 2}, X ′

N = X1 ∪ X2 = {(1, 1), (1, 2), (2, 1), (2, 2)}

where

X1 = {(1, 1), (1, 2)}, X2 = {(2, 1), (2, 2)}

and

E ′
C = {(1, (1, 1)), (1, (1, 2)), (2, (2, 1)), (2, (2, 2))},

E ′
N = {((1, 1), 1), ((1, 1), 2), ((2, 1), 1), ((2, 2), 1),

((1, 2), 1), ((1, 2), 2), ((2, 1), 2), ((2, 2), 2)}.



2.3 A Linear Programming Approach for Markov Decision Problems . . . 155

The probabilities p′
e = p′

(x,a),y = pa
x,y for directed edges ((x, a), y) ∈ E ′

N are
written along the edges in Fig. 2.10 and the costs of the directed edges from E ′ are
defined in the following way:

c′
1,(1,1) = c′

1,(1,2) = 0, c′
2,(2,1) = c′

2,(2,2) = 0,

c′
(1,1),1 = 2, c′

(1,1),2 = 0, c′
(2,1),1 = −4, c′

(2,2),1 = 4,

c′
(1,2),1 = 0, c′

(1,2),2 = 8, c′
(2,1),2 = 10, c′

(2,2),2 = −6.

The set of possible stationary strategies for this Markov decision process consists
of four strategies, i.e., S = {s1, s2, s3, s4} where

s1 : 1 → a1, 2 → a1;
s2 : 1 → a1, 2 → a2;
s3 : 1 → a2, 2 → a1;
s4 : 1 → a2, 2 → a2.

A fixed strategy s in the Markov decision process generates a simple Markov process
with transition costs, where the corresponding matrices Ps, Cs are formed from the
rows of the matrices Pai and Cai , i = 1, 2. As an example, if we fix the strategy
s2 then we obtain a simple Markov process with transition costs generated by the
following matrices Ps2 and Cs2 :

Ps2 =
(

0.7 0.3
0.5 0.5

)
, Cs2 =

(
1 0
2 −3

)
.

It is easy to check that this Markov process is ergodic and the limit matrix of this
process is

Qs2 =
⎛

⎜⎝

5

8

3

8
5

8

3

8

⎞

⎟⎠ .

We can determine the components of the vector of immediate costs μs2 =
(

μs2
1

μs2
2

)

using formula μs2
i = ps2

i,1 cs2
i,1 + ps2

i,2 cs2
i,2, i = 1, 2, i.e., μs2

1 = 0.7 and μs2
2 = 0.5.

In such a way we determine f1(s2) = f2(s2) = 1/4. Analogously, it can be cal-
culated by f1(s1) = f2(s1) = 22/30, f1(s3) = f2(s3) = 16/10 and f1(s4) =
f2(4) = 9/11. We can see that the optimal stationary strategy for the Markov
decision problem with minimal average cost criterion is s2. This strategy can be
found by solving the following linear programming problem on the auxiliary net-
work (G ′, X ′

C , X ′
N , p′, c′):
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Minimize

ψ(α, q) = 1.4q1,1 + 4.8q1,2 + 1.6q2,1 − q2,2

subject to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.7q1,1 + 0.4q1,2 + 0.6q2,1 + 0.5q2,2 = q1,

0.3q1,1 + 0.6q1,2 + 0.4q2,1 + 0.5q2,2 = q2,

α1,(1,1) = q1,1,

α1,(1,2) = q1,2,

α2,(2,1) = q2,1,

α2,(2,2) = q2,2,

α1,(1,1) + α1,(1,2) = q1,

α2,(2,1) + α2,(2,2) = q2,

q1,1 + q1,2 + q2,1 + q2,2 + q1 + q2 = 1,

α1,(1,1), α1,(1,2), α2,(2,1), α2,(2,2) ≥ 0,

q1,1, q1,2, q2,1, q2,2, q1, q2 ≥ 0.

The optimal solution of this problem is

q∗
1 = 5

16
, q∗

2 = 3

16
, q∗

1,1 = 5

16
, q∗

2,2 = 3

16
, q∗

1,2 = 0, q∗
2,1 = 0,

α∗
1,(1,1) = 5

16
, α∗

2,(2,2) = 3

16
, α∗

1,(1,2) = 0, α∗
2,(2,1) = 0

and the optimal value of the objective function is ψ(α∗, q∗) = 1/4.
The optimal strategy s∗ on G ′ we can find using Theorem 2.3, i.e., we fix

s∗
1,(1,1) = 1, s∗

1,(1,2) = 0, s∗
2,(2,1) = 0, s∗

2,(2,2) = 1.

This means that the optimal stationary strategy for the Markov decision problem is

s∗ : 1 → a1, 2 → a2

and the average cost per transaction is f1(s∗) = f2(s∗) = 1/4.
The auxiliary graph with distinguished optimal strategies in the controllable states

x1 = 1 and x2 = 2 is represented in Fig. 2.11. The unique outgoing directed edge
(1, (1, 1)) from vertex 1 that ends in vertex (1, 1) corresponds to the optimal strategy
1 → a1 in the state x = 1 and the unique outgoing directed edge (2, (2, 2)) from
vertex 2 that ends in vertex (2, 2) corresponds to the optimal strategy 2 → a2 in the
state x = 2.
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Fig. 2.11 The graph induced by the optimal strategy in the control problem

2.3.3 A Linear Programming Approach for the Average Markov
Decision Problem and an Algorithm for Determining the
Optimal Strategies

In the previous sections we have shown that the optimal stationary strategies for
Markov decision processes can be found by constructing an auxiliary stochastic con-
trol problem and applying the linear programming algorithm for the control problem
on an auxiliary network. Below we show how to apply a linear programming algo-
rithm directly to the Markov decision problem with an average cost optimization
criterion without constructing the auxiliary stochastic control problem.

At first we describe the linear programming algorithm for a special class of Markov
decision processes.

We consider Markov decision processes with the property that an arbitrary sta-
tionary strategy s : X → A generates an ergodic Markov chain, i.e., we assume
that the graph Gs

p = (X, Es
p) of the matrix of probability transitions Ps = (ps

x,y) is
strongly connected. In general, we can see that the linear programming approach can
be used for an arbitrary Markov decision problem where an arbitrary stationary strat-
egy generates a unichain. We call such Markov decision processes perfect Markov
decision processes. It is easy to observe that if for an arbitrary strategy s : A → X
in the Markov decision process each row of the matrix Ps = (ps

x,y) contains at least

[(|X | + 1) /2] + 1 nonzero elements then the corresponding graph Gs
p =

(
X, Es

p

)

contains a unique strongly connected component that can be reached from every
x ∈ X [19], i.e., in this case the matrix Ps corresponds to a Markov unichain.
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Let s : X → A be an arbitrary strategy (s ∈ S) for a Markov decision process.
Then for every fixed x ∈ X we have a unique action a = s(x) ∈ A(x) and therefore
we can identify the map s with the set of boolean values sx,a for x ∈ X and a ∈ A(x),
where

sx,a =
{

1, if a = s(x);
0, if a �= s(x).

In a similar way for the optimal stationary strategy s∗ we shall proceed with the
boolean values s∗

x,a .
Assume that the Markov decision process is perfect. Then the following lemma

holds.

Lemma 2.25 A stationary strategy s∗ is optimal if and only if it corresponds to an
optimal solution of the following mixed integer bilinear programming problem:
Minimize

ψ(s, q) =
∑

x∈X

∑

a∈A(x)

μx,asx,a qx (2.64)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

x∈X

∑

a∈A(x)

pa
x,ysx,aqx = qy, ∀y ∈ X;

∑

x∈X

qx = 1;
∑

a∈A(x)

sx,a = 1, ∀x ∈ X;

sx,a ∈ {0, 1}, ∀x ∈ X, a ∈ A(x); qx ≥ 0, ∀x ∈ X,

(2.65)

where

μx,a =
∑

y∈X

ca
x,y pa

x,y

is the immediate cost in the state x ∈ X for a fixed action a ∈ A(x).

Proof For a fixed strategy s the system (2.65) has a unique solution with respect
to qx , x ∈ X which represents the limiting probabilities of the recurrent Markov
chains with the matrix of probability transition Ps . The value of the objective function
(2.64) for this solution expresses the average cost per transition for an arbitrary fixed
starting state. Therefore, for a fixed strategy s we have fx (s) = ψ(s, qs), ∀x ∈ X.

This means that if we solve the optimization problem (2.64), (2.65) for the perfect
Markov decision process then we obtain the optimal stationary strategy s∗. ��
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Remark 2.26 For a perfect Markov decision processes the objective function ψ(s, q)

on the set of feasible solutions depends only on sx,a for x ∈ X, a ∈ A(x). Moreover,
the conditions qx ≥ 0 for x ∈ X in (2.65) hold if sx,a ≥ 0, ∀x ∈ X, a ∈ A(x) and
therefore in the case of perfect Markov processes can be omitted. The conditions
qx ≥ 0, ∀x ∈ X in (2.65) are essential for non perfect Markov processes.

Based on Lemma 2.25 we can prove the following result.

Theorem 2.27 Let α∗
x,a (x ∈ X, a ∈ A(x)), q∗

x (x ∈ X) be a basic optimal
solution of the following linear programming problem:
Minimize

ψ(α, q) =
∑

x∈X

∑

a∈A(x)

μx,aαx,a (2.66)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

x∈X

∑

a∈A(x)

pa
x,y αx,a = qy, ∀y ∈ X;

∑

x∈X

qx = 1;
∑

a∈A(x)

αx,a = qx , ∀x ∈ X;

αx,a ≥ 0, ∀x ∈ X, a ∈ A(x); qx ≥ 0, ∀x ∈ X,

(2.67)

where

μx,a =
∑

y∈X

ca
x,y pa

x,y for x ∈ X.

Then the optimal stationary strategy s∗ for a perfect Markov decision process can
be found as follows:

s∗
x,a =

{
1, if α∗

x,a > 0;
0, if α∗

x,a = 0,

where x ∈ X, a ∈ A(x).
Moreover, for every starting state x ∈ X the optimal average cost per transition

is equal to ψ(α∗, q∗), i.e.,

fx (s
∗) =

∑

x∈X

∑

a∈A(x)

μx,aα∗
x,a

for every x ∈ X.
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Proof The proof of this theorem is similar to the proof of Theorem 2.3. Applying
Lemma 2.25 we obtain that the bilinear programming problem (2.64), (2.65) with
boolean variables sx,a for x ∈ X, a ∈ A(x) can be reduced to the linear programming
problem (2.66), (2.67). We observe that the restriction sx,a ∈ {0, 1} in the problem
(2.64), (2.65) can be replaced by sx,a ≥ 0 because the optimal basic solutions after
such a transformation of the problem are not changed. In addition the restrictions

∑

a∈A(x)

sx,a = 1, ∀x ∈ X

can be changed by the restrictions

∑

a∈A(x)

sx,a qx = qx , ∀x ∈ X

because the condition qx > 0, ∀x ∈ X for the perfect Markov process holds. This
means that the system (2.65) in the problem (2.64), (2.65) can be replaced by the
following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

x∈X

∑

a∈A(x)

pa
x,y sx,a qx = qy, ∀y ∈ X;

∑

x∈X

qx = 1;
∑

a∈A(x)

sx,a qx = qx , ∀x ∈ X;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x); qx ≥ 0, ∀x ∈ X.

(2.68)

In such a way we may conclude that problem (2.64), (2.65) and problem (2.64), (2.68)
have the same optimal solutions. Taking into account that for the perfect network we
have qx > 0, ∀x ∈ X then in problem (2.64), (2.68) we can introduce the notations
αx,a = sx,a qx for x ∈ X, a ∈ A(x), i.e., we obtain the problem (2.66), (2.67). It
is evident that αx,a �= 0 if and only if sx,y = 1. Therefore, the optimal stationary
strategy s∗ can be found according to the rule formulated in the theorem. ��
It is easy to observe that qx in the system (2.67) can be eliminated if we take into
account that

∑

a∈A(x)

αx,a = qx , ∀x ∈ X.

Then theorem 2.27 can be formulated in the following way.

Theorem 2.28 Let α∗
x,a (x ∈ X, a ∈ A(x)), be a basic optimal solution of the

following linear programming problem:
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Minimize

ψ(α) =
∑

x∈X

∑

a∈A(x)

μx,aαx,a (2.69)

subject to
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

a∈A(y)

αy,a −
∑

x∈X

∑

a∈A(x)

pa
x,y αx,a = 0, ∀ y ∈ X;

∑

x∈X

∑

a∈A(x)

αx,a = 1;

αx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(2.70)

Then the optimal stationary strategy s∗ for the perfect Markov decision process can
be found as follows:

s∗
x,a =

{
1, if α∗

x,a > 0;
0, if α∗

x,a = 0,

where x ∈ X, a ∈ A(x). Moreover, for every starting state x ∈ X the optimal
average cost per transition is equal to ψ(α∗, q∗), i.e.,

fx (s
∗) =

∑

x∈X

∑

a∈A(x)

μx,a α∗
x,a

for every x ∈ X.

Thus, based on theorems proven above the optimal stationary strategy for the
Markov decision problem can be found using the following algorithm.

Algorithm 2.29 Determining the Optimal Stationary Strategies for the Perfect
Markov Decision Problem

(1) Formulate the linear programming problem (2.66), (2.67) and find a basic optimal
solution α∗

x,y, q∗
x , q∗

z of this problem;
(2) Fix s∗

x,a = 1 for (x, a) that corresponds to the basic components of the optimal
solution and set s∗

x,a = 0 for the remaining components.

Example Consider the Markov decision problem with an average cost criterion from
Sect. 2.3.2. The corresponding multigraph of the Markov decision process is repre-
sented in Fig. 2.9.

The optimal stationary strategy s∗ of this problem can be found by solving the
linear programming problem (2.66), (2.67), i.e.:
Minimize

ψ(α, q) = 0.7α1,1 + 2.4α1,2 + 0.8α2,1 − 0.5α2,2
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Fig. 2.12 The graph induced by the optimal strategy in Markov decision problem

subject to
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.7α1,1 + 0.6α2,1 + 0.4α1,2 + 0.5α2,2 = q1,

0.3α1,1 + 0.4α2,1 + 0.6α1,2 + 0.5α2,2 = q2,

q1 + q2 = 1,

α1,1 + α1,2 = q1,

α2,1 + α2,2 = q2,

α1,1, α1,2, α2,1, α2,2 ≥ 0, q1, q2 ≥ 0.

The optimal solution of this problem is

q∗
1 = 5

8
, q∗

2 = 3

8
, α∗

1,1 = 5

8
, α∗

2,2 = 3

8
, α∗

1,2 = 0, α∗
2,1 = 0

and the corresponding average cost is equal to 1/4 , i.e., ψ(α∗, q∗) = 1/4.
The optimal solution of the problem corresponds to the optimal stationary strategy

s∗
1,1 = 1, s∗

1,2 = 0, s∗
2,1 = 0, s∗

2,2 = 1 i.e. s∗ : 1 → a1, 2 → a2.

So, the optimal stationary strategy s∗ determines the Markov process with the
following probability and cost matrices

Ps∗ =
(

0.7 0.3
0.5 0.5

)
, Cs∗ =

(
1 0
2 −3

)
.

The graph of transition probabilities of this Markov process is represented in
Fig. 2.12.

The result described above shows that the Markov decision problem with an aver-
age cost criterion can be transformed into a stochastic optimal control problem on
the auxiliary network (G ′, XC , X N , p′, c′, x0). This means that the linear program-
ming algorithm proposed in the previous sections can be developed and specified
for Markov decision problems with an average and discounted costs optimization
criteria.
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2.3.4 A Dual Linear Programming Model for an Average Markov
Decision Problem

Consider the linear programming problem (2.69), (2.70) for an arbitrary unichain
Markov decision process. As we have shown the solution of this problem always
exists. If we dualize (2.69), (2.70) then we obtain the following problem:
Maximize

ψ′(ε,ω) = ω (2.71)

subject to

εx −
∑

y∈X

pa
x,yεy + ω ≤ μx,a, ∀x ∈ X, ∀a ∈ A. (2.72)

Based on duality theory of linear programming we obtain the following result.

Theorem 2.30 The linear programming problem (2.71), (2.72) has solutions and an
arbitrary optimal solution ε∗, ω∗ of the problem possesses the following property:
For each x ∈ X there exists an action a∗ ∈ A(x) that satisfies the condition

min
a∈A(x)

{
μx,a∗ +

∑

y∈X

pa∗
x,yε

∗
y − ε∗

x − ω∗
}

= 0, ∀x ∈ X. (2.73)

The action a∗ in each state x ∈ X determines the optimal stationary strategy s∗(x) =
a∗ and ω∗ is equal to the optimal value of the average cost in the Markov decision
process.

This theorem represents the optimization criterion for unichain Markov decision
problems with average expected cost. Based on this criterion we can determine the
optimal stationary strategies of the problem in the unichain case using the following
algorithm.

Algorithm 2.31 Determining the Optimal Solution of a Unichain Markov
Decision Problem Using a Dual Linear Programming Model

(1) Formulate the linear programming problem (2.71), (2.72) and find an optimal
solution ε∗, ω∗ of this problem;

(2) For each x ∈ X fix s∗(x) = a∗, where a∗ ∈ A(x) satisfies condition (2.73).
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2.3.5 Optimality Conditions for Multichain Decision Problems
and a Linear Programming Approach

The optimality conditions for a multichain Markov decision problem with an average
optimization cost criterion can be derived from the optimality conditions for an aver-
age multichain control problem if we take into account the mentioned relationship
between Markov decision processes and stochastic control models. Based on Theo-
rem 2.13 and the results from Sect. 2.3.2 we can formulate the following optimality
principle for an average multichain decision problem.

Theorem 2.32 Let a Markov decision process (X, A, p, c) be given. Then the system
of equations

εx + ωx = min
a∈A(x)

{
μx,a +

∑

y∈X

pa
x,yεy

}
, ∀x ∈ X; (2.74)

has a solution under the set of solutions of the system of equations

ωx = min
a∈A(x)

{∑

y∈X

pa
x,yωx

}
, ∀x ∈ X, (2.75)

i.e., the system of equations (2.75) has such a solution ω∗
x , x ∈ X for which there

exists a solution ε∗
x , x ∈ X of the system of equations

εx + ω∗
x = min

a∈A(x)

{
μx,a +

∑

y∈X

pa
x,yεy

}
, ∀x ∈ X. (2.76)

The values ω∗
x for x ∈ X coincide with the optimal average costs ωx , x ∈ X for the

Markov decision problem and an optimal stationary strategy

s∗ : x → a ∈ A(x) for x ∈ X

for an average Markov decision problem can be found by fixing a map s∗(x) = a ∈
A(x) such that

a ∈ argmin
a∈A(x)

{∑

y∈X

pa
x,yω

∗
x

}

and

a ∈ argmin
a∈A(x)

{
μx,a +

∑

y∈X

pa
x,yε

∗
y

}
.
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Note that the Lemmas 2.14, 2.20 are valid also for average Markov decision problems
if the strategies s and s∗ we treat as strategies s : X → A; s∗ : X → A for the
Markov decision problem.

Then from these lemmas we obtain the proof of Theorem 2.32. The proof of this
theorem also follows from the Theorems 2.12, 2.13 and the reduction procedure from
Markov decision problem to stochastic control problem described in Sect. 2.3.2.

From Theorem 2.32 we can make the following conclusion. To determine a solu-
tion of the Markov decision problem it is necessary to determine ωx for x ∈ X
that satisfies (2.75) and for which there exists εx for x ∈ X that satisfies (2.74).
This is equivalent with the problem of determining the “maximal” vector ω with the
components ωx for x ∈ X that satisfies the conditions

εx + ωx ≤ μx,a +
∑

y∈X

pa
x,yεy, ∀x ∈ X, ∀a ∈ A(x);

ωx ≤
∑

y∈X

pa
x,yωx , ∀x ∈ X, ∀a ∈ A(x).

Thus, we have to maximize a positive linear combination of components of ω
under the restrictions given above, i.e., we obtain the following linear programming
problem:
Maximize

ψ′(ε,ω) =
∑

x∈X

θxωx (2.77)

subject to

⎧
⎪⎨

⎪⎩

εx + ωx ≤ μx,a + ∑
y∈X

pa
x,yεy, ∀x ∈ X, ∀a ∈ A(x);

ωx ≤ ∑
y∈X

pa
x,yωx , ∀x ∈ X, ∀a ∈ A(x)

(2.78)

where θ > 0, ∀x ∈ X and
∑

x∈X θx = 1.
From Theorem 2.32 we obtain the following result.

Corollary 2.33 For an arbitrary strategy s : X → A the following system of linear
equations

⎧
⎪⎪⎨

⎪⎪⎩

εx + ωx = μx,s(x) + ∑
y∈X

ps(x)
x,y εy, ∀x ∈ X;

ωx = ∑
y∈X

ps(x)
x,y ωx , ∀x ∈ X

(2.79)

has a solution.
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2.3.6 Primal and Dual Linear Programming Models for a
Multichain Markov Decision Problem

We can regard the linear programming model (2.77), (2.78) as a dual model for a
primal multichain linear programming problem. So, if we consider the dual model
or (2.77), (2.78) then we obtain the following linear programming problem:
Minimize

ψ(α) =
∑

x∈X

∑

a∈A(x)

μx,aαx,a (2.80)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

a∈A(y)

αy,a −
∑

x∈X

∑

a∈A(x)

pa
x,y αx,a = 0, ∀y ∈ X;

∑

a∈A(y)

αy,a +
∑

a∈A(y)

βy,a −
∑

x∈X

∑

a∈A(x)

pa
x,yβx,a = θy, ∀y ∈ X;

αx,a ≥ 0, βy,a ≥ 0, ∀x ∈ X, a ∈ A(x),

(2.81)

where θ > 0, ∀y ∈ X and
∑

y∈X θy1.
This problem generalizes the unichain linear programming problem (2.69), (2.70)
from Sect. 2.3.3. In (2.81) the restrictions

∑

a∈A(y)

αy,a +
∑

a∈A(y)

βy,a −
∑

x∈X

∑

a∈A(x)

pa
x,yβx,a = θy, ∀y ∈ X (2.82)

with the condition
∑

y∈X θy = 1 generalize the constrain

∑

x∈X

∑

a∈A(y)

αy,a = 1 (2.83)

in the unichain model. It is easy to check that by summing (2.82) over y, we obtain
the equality (2.83).

2.4 Iterative Algorithms for Markov Decision Processes
and Control Problems with an Average Cost Criterion

As we have shown the Markov decision problem and optimal control problems with
average cost criterion can be solved using the linear programming approach. Here we
show that these problems can be solved using iterative algorithms. These algorithms
are based on the optimization criteria proved in previous sections. We can observe
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that the optimization criterion for a stochastic control problem in the case XC = ∅
leads to the equation which can be derived directly from formula (1.59).

Indeed, using formula (1.59) we can write the following two equivalent equations

σ(t) = tω + ε + ε(t),

σ(t − 1) = (t − 1)ω + ε + ε(t − 1),

where ε(t) and ε(t −1) tend to zero if t tends to infinity. If we introduce the expression
of σ(t) and σ(t − 1) in the recursive formula

σ(t) = μ + Pσ(t − 1)

then we obtain

tω + ε + ε(t) = μ + P((t − 1)ω + ε + ε(t − 1).

Through rearrangement we get

ε + tω − (t − 1)Pω = μ + Pε + Pε(t − 1) − ε(t).

Here ω = Pω. In addition for a Markov unichain all components of the vector ω
are the same, i.e., ω1 = ω2 = · · · = ωn = ω (here ωi = ωxi ). So, if t → ∞ then
ε(t), ε(t − 1) → 0 and we obtain

εi + ω = μxi + [Pε]i , i = 1, 2, . . . , n. (2.84)

This is the system of equations for a unichain Markov process. It is well known that
in the case of unichain processes the rank of the matrix (I − P) is equal to n − 1
(see [98]). Based on this fact in [98] it has been shown that the system of equations
(2.84) has a unique solution once it is setting εi = 0 for some i . This means that two
different vectors ε′ and ε′′ which represent the solutions of this equation differ only
by some constant for each component. Therefore, the system of equations (2.84)
allows us to determine the average cost per transition in unichain Markov processes
with transition costs. The existence of the solution of this system of equations (2.84)
also follows from Theorem 2.30.

The system of equations for the decision problem in the case of unichain processes
is the following

εi + ω = min
a∈A(xi )

(
μxi ,a + [Paε]i

)
, i = 1, 2, . . . , n. (2.85)

According to Theorem 2.30 the system of equations (2.85) has solutions. The solution
of this system of equations and the optimal stationary strategy for unichain Markov
decision problems can be found using the following iterative algorithm.

http://dx.doi.org/10.1007/978-3-319-11833-8_1
http://dx.doi.org/10.1007/978-3-319-11833-8_1
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Algorithm 2.34 Determining the Solution of a Unichain Markov Decision
Problem

Preliminary step (Step 0): Fix an arbitrary stationary strategy

s0 : xi → a ∈ A(xi ) for xi ∈ X.

General step (Step k, k > 0): Calculate

μxi ,ak−1 =
∑

y∈X (xi )

psk−1(xi )
xi ,y csk−1(xi )

xi ,y

for every xi ∈ X . Then solve the system of linear equations

εk−1
i + ωk−1 = μxi ,sk−1(xi )

+ [Psk−1
εk−1]i , i = 1, 2, . . . , n,

εk−1
n = 0,

and find εk−1
1 , εk−1

2 , . . . , εk−1
n−1 and ωk−1. After that determine a new strategy

sk : xi → a ∈ A(xi ) for xi ∈ X,

where

sk(xi ) = argmin
a∈A(xi )

(
μxi ,a + [Paεk−1]i

)
, i = 1, 2, . . . , n.

Check if the following condition holds

sk(xi ) = sk−1(xi ), ∀xi ∈ X. (2.86)

If the condition (2.86) holds then fix

s∗ = sk, ω∗ = ωk

as the optimal solution of the problem; otherwise go to the next step k + 1.
The correctness and the convergence of this algorithm follow from the results

described above and the results from [115, 118–120, 140].
The algorithm described above can be specified for determining the optimal sta-

tionary strategies in the stochastic control problem with an average cost optimization
criterion.

Algorithm 2.35 Determining the Solution for a Stochastic Control Problem

Let the average control problem on a perfect network determined by the graph of
state’s transition G = (X, E) with the set of controllable states XC , the set of
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uncontrollable states X N , the probability function p : EN → [0, 1] which satisfies
the condition from Sect. 2.3 and the cost function c : E → R be given.

Preliminary step (Step 0): Fix an arbitrary stationary strategy

s0 : xi → x j ∈ X (xi ) for xi ∈ XC .

General step (Step k, k > 0): Determine the probability matrix Psk−1 = (
psk−1

xi ,x j

)
,

where

psk−1

xi ,x j
=
⎧
⎨

⎩

pxi ,x j , if xi ∈ X N and (xi , x j ) ∈ E2;
1, if xi ∈ XC and x j = sk−1(xi );
0, if xi ∈ XC and x j �= sk−1(xi ).

Then calculate

μxi ,sk−1(xi )
=

∑

x j ∈X (xi )

psk−1(xi )
xi ,x j

cxi ,x j

for every xi ∈ X . After that solve the system of linear equations

εk−1
i + ωk−1 = μxi ,sk−1(xi )

+ [Psk−1
εk−1]i , i = 1, 2, . . . , n,

εk−1
n = 0,

and find εk−1
1 , εk−1

2 , . . . , εk−1
n−1 and ωk−1. Then determine a new strategy

sk : xi → x j ∈ X (xi ) for xi ∈ XC ,

where

sk(xi ) = argmin
x j ∈X (xi )

(
cxi ,x j + εk−1

j

)
, ∀xi ∈ XC .

Check if the following condition holds

sk(xi ) = sk−1(xi ), ∀xi ∈ XC . (2.87)

If the condition (2.87) holds then fix

s∗ = sk, ω∗ = ωk

as the optimal solution of the problem; otherwise go to the next step k + 1.
In the case X N = ∅ this algorithm is transformed into the algorithm for solving a

deterministic control problem. In this case the algorithm correctly finds the solution of
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the problem if each stationary strategy in G generates a subgraph Gs which contains
a unique directed cycle.

The algorithms described above determine the optimal stationary strategies for a
Markov decision problem and a stochastic optimal control problem if an arbitrary
strategy in these problems generates a unichain process.

For the multichain case of the problem the algorithm uses the multichain bias
equations (2.74)–(2.76).

Algorithm 2.36 Determining the Solution of a Multichain Markov Decision
Problem

Preliminary step (Step 0): Fix an arbitrary stationary strategy

s0 : xi → a ∈ A(xi ) for xi ∈ X.

General step (Step k, k ≥ 1): Determine the matrix Psk−1
and μsk−1

that corresponds
to the strategy sk−1. Find ωsk−1

and εsk−1
which satisfy the conditions

{
(Psk−1 − I )ωsk−1 = 0;
μsk−1 + (Psk−1 − I )εsk−1 − ωsk−1 = 0.

Then find a strategy sk such that

sk ∈ argmin
s

{
Psωsk−1

}

and set sk = sk−1 if

sk−1 ∈ argmin
s

{
Psωsk−1

}
.

After that check if sk = sk−1? If sk = sk−1 then go to next step k + 1; otherwise
choose the strategy sk such that

sk ∈ argmin
s

{
μs + Psεsk−1

}

and set sk = sk−1 if

sk−1 ∈ argmin
s

{
μs + Psεsk−1

}
.

After that check if sk = sk−1? If sk = sk−1 then STOP and set s∗ = sk−1; otherwise
go to the next step k + 1.

The convergence of the algorithms based on iterative procedures are proved in
[115, 121–123]. In a similar way as for the unichain case of the problem the algorithm
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described above can be specified for a multichain stochastic control problem on
networks. The computational complexity of the Markov decision problems in the
general case is studied in [106].

2.5 A Discounted Stochastic Control Problem and Algorithms
for Determining the Optimal Strategies on Networks

Now we consider the infinite horizon discounted stochastic control problem. Follow-
ing the concept from the previous sections we formulate the discounted stochastic
control problem on networks and describe algorithms for determining the optimal
stationary strategies using a linear programming approach. Then we extend this
approach for Markov decision problems with an expected total discounted cost opti-
mization criterion.

2.5.1 Problem Formulation

Let a time-discrete system L with finite set of states X be given and assume that
the dynamics of the system is described by a directed graph of states’ transitions
G = (X, E) with the vertex set X and edge set E . Thus, an arbitrary directed edge
e = (x, y) ∈ E expresses the possibility of the system to pass from the state x = x(t)
to the state y = x(t) at every discrete moment of time t = 0, 1, 2, . . .. On an edge
set E a cost function c : E → R is defined that indicates a cost ce to each directed
edge e = (x, y) ∈ E if the system makes a transition from the state x = x(t) to the
state y = x(t + 1) for every t = 0, 1, 2, . . .. We define the stationary control for the
system L in G as a map

s : x → y ∈ X (x) for x ∈ X,

where X (x) = {y ∈ X | (x, y) ∈ E}.
Let s be an arbitrary stationary control. Then the set of edges of the form (x, s(x))

in G generates a subgraph Gs = (X, Es) where each vertex x ∈ X contains one
leaving directed edge. So, if the starting state x0 = x(0) is fixed then the sys-
tem makes transitions from one state to another through the corresponding directed
edges es

0, es
1, es

2, . . . , es
t , . . . , where es

t = (x(t), x(t + 1)), t = 0, 1, 2, . . .. This
sequence of directed edges generates a trajectory x0 = x(0), x(1), x(2), . . . which
leads to a unique directed cycle. For an arbitrary stationary strategy s and a fixed
starting state x0 the discounted expected total cost σ

γ
x0(s) is defined as follows

σγ
x0

(s) =
∞∑

t=0

γt ces
t
,

where γ, 0 < γ < 1, is a given discount factor.
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Based on the results from [47, 114] it is easy to show that for an arbitrary sta-
tionary strategy s there exists σ

γ
x0(s). If we denote by σγ(s) the column vector with

components σ
γ
x (s) for x ∈ X then σ

γ
x0(s) can be found by solving the system of

linear equations

(I − γPs)σγ(s) = cs, (2.88)

where cs is the vector with corresponding components cx,s(x) for x ∈ X , I is the
identity matrix and Ps the matrix with elements ps

x,y for x, y ∈ X defined as follows:

ps
x,y =

{
1, if y = s(x);
0, if y �= s(x).

It is well known that for 0 < γ < 1 the rank of the matrix I − γPs is equal to |X |
and the system (2.88) has solutions for arbitrary cs (see [114, 140]). Thus, we can
determine σ

γ
x0(s

∗) for an arbitrary starting state x0.
In the considered deterministic discounted control problem on G we are seeking

for a stationary control s∗ such that

σγ
x0

(s∗) = min
s

σγ
x0

(s).

We formulate and study this problem in a more general case considering its stochastic
version. We assume that the dynamical system may admit states in which the vector
of control parameters is changed in a random way. So, the set of states X is divided
into two subsets X = XC ∪ X N , XC ∩ X N = ∅, where XC represents the set of
states in which the decision maker is able to control the dynamical system and where
X N represents the set of states in which the dynamical system makes transitions
to the next state in a random way. This means that for every x ∈ X on the set of
feasible transitions E(x) the distribution function p : E(x) → R is defined such that∑

e∈E(x) pe = 1, pe ≥ 0, ∀e ∈ E(x) and the transitions from the states x ∈ X N to
the next states are made randomly according to these distribution functions. Here,
in a similar way as for the deterministic problem we assume that to each directed
edge e = (x, y) ∈ E a cost ce of system’s transition from the state x = x(t) to
the state y = x(t + 1) for t = 0, 1, 2, . . . is associated. In addition we assume that
the discount factor γ, 0 < γ < 1, and the starting state x0 are given. We define a
stationary control on G as a map

s : x → y ∈ X (x) for x ∈ XC .

Let s be an arbitrary stationary strategy. We define the graph Gs = (X, Es ∪ EN ),
where Es = {e = (x, y) ∈ E | x ∈ XC , y = s(x)}, EN = {e = (x, y) | x ∈
X N , y ∈ X}. This graph corresponds to a Markov process with the probability
matrix Ps = (ps

x,y), where
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ps
x,y =

⎧
⎨

⎩

px,y, if x ∈ X N and y ∈ X;
1, if x ∈ XC and y = s(x);
0, if x ∈ XC and y �= s(x).

For this Markov process with associated costs ce, e ∈ E we can define the expected
total discounted cost σ

γ
x0(s) as we have introduced in Chap. 1. We consider the

problem of determining the strategy s∗ for which

σγ
x0

(s∗) = min
s

σγ
x0

(s).

Without loss of generality we may consider that G has the property that an arbitrary
vertex in G is reachable from x0; otherwise we can delete all vertices that could not
be reached from x0.

2.5.2 A Linear Programming Approach for a Discounted Control
Problem on Networks

We develop a linear programming approach for the discounted stochastic control
problem on the network (G, X, E, c, p, x0) with a given discount factor γ using the
same logical scheme as in Sect. 2.2. We identify an arbitrary stationary strategy s in
G with the set of boolean variables sx,y for x ∈ XC and y ∈ X (x), where

sx,y =
{

1, if y = s(x);
0, if y �= s(x).

(2.89)

In the following we will simplify the notations and instead σ
γ
x we shall use σx .

Lemma 2.37 For a fixed strategy s the values σ
γ
x , x ∈ X determine the unique

optimal basic solution of the following linear programming problem:
Maximize

ϕs
x0

(σ) = σx0 (2.90)

subject to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σx − γ
∑

y∈X (x)

sx,y σy ≤
∑

y∈X (x)

cx,y sx,y , ∀x ∈ XC ;

σx − γ
∑

y∈X (x)

px,y σy ≤ μx , ∀x ∈ X N ;
(2.91)

http://dx.doi.org/10.1007/978-3-319-11833-8_1
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where

μx =
∑

y∈X (x)

cx,y px,y, ∀x ∈ X N

and

∑

y∈X (x)

sx,y = 1, ∀x ∈ XC ; sx,y ∈ {0, 1}, ∀x ∈ XC , y ∈ X.

Proof If for a fixed strategy s we treat the values sx,y as the transition probabilities
from the states x ∈ X to the states y ∈ X then the condition (2.88) in the extended
form can be written as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σx − γ
∑

y∈X (x)

sx,y σy =
∑

y∈X (x)

cx,y sx,y , ∀x ∈ XC ;

σx − γ
∑

y∈X (x)

px,y σy = μx , ∀x ∈ X N .
(2.92)

This system determines uniquely the values σx for x ∈ X . Therefore, for fixed s the
linear programming problem (2.90), (2.92) has a solution and the optimal value of
the objective function is equal to σx0 .

It is evident that if in this system we change the costs cx,y by new costs c′
x,y such

that c′
x,y ≤ cx,y then we obtain a new linear programming problem for which the

corresponding optimal value σ′
x0

of the objective function is less or equal to σx0 .
Thus, if we change the system of linear equations (2.92) by the following system of
linear inequalities

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σx − γ
∑

y∈X (x)

sx,y σy ≤
∑

y∈X (x)

cx,y sx,y , ∀x ∈ XC ;

σx − γ
∑

y∈X (x)

px,y σy ≤ μx , ∀x ∈ X N ,
(2.93)

then for a fixed strategy s we obtain a new linear programming problem (2.90), (2.93)
with the optimal solution σx0 . So, the lemma holds. ��

Now we consider the optimization problem (2.90), (2.93) in the case if sx,y are
arbitrary boolean variables and correspond to the possible stationary strategies. So,
if we add the condition sx,y ∈ {0, 1}, ∀x ∈ XC , y ∈ X to (2.93) then we obtain the
mixed integer bilinear programming problem in which we have to maximize with
respect to σx and minimize with respect to s.

Based on Lemma 2.37 we can prove the following result.
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Theorem 2.38 Let α∗
x,y (x ∈ XC , y ∈ X), β∗

x (x ∈ X) be an optimal solution of
the following linear programming problem:
Minimize

φx0(α,β) =
∑

x∈XC

∑

y∈X (x)

cx,y αx,y +
∑

x∈X N

μxβx (2.94)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βy − γ
∑

x∈X−
C (y)

αx,y − γ
∑

x∈X−
N (y)

px,y βx = 1, y = x0;

βy − γ
∑

x∈X−
C (y)

αx,y − γ
∑

x∈X−
N (y)

px,y βx = 0, ∀y ∈ X\{x0};
∑

y∈X (x)

αx,y = βx , ∀x ∈ XC ;

βx ≥ 0, ∀x ∈ X; αx,y ≥ 0, ∀x ∈ XC , y ∈ X (x),

(2.95)

where

μx =
∑

y∈X (x)

cx,y px,y, ∀x ∈ X N .

Then

α∗
x,y

β∗
x

∈ {0, 1}, ∀y ∈ X (x),∀y ∈ X∗
C ,

where X+
C = {x ∈ XC | βx > 0} and an optimal stationary strategy for the

discounted stochastic control problem on the network can be found as follows:

• if x ∈ X+
C then fix

s∗
x,y = α∗

x,y

β∗
x

,∀x ∈ X (x);

• if x ∈ X\X+
C then fix an arbitrary sx,y ∈ {0, 1} for every y ∈ X (x) such that

∑

y∈X (x)

sx,y = 1.

Proof According to Lemma 2.37 for a fixed strategy s the values σx , x ∈ X can be
found by solving the linear programming problem (2.90), (2.91).
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Considering the dual problem for (2.90), (2.91) with respect to σx for a fixed
strategy s we obtain the following optimization problem:
Minimize

φs
x0

(β) =
∑

x∈XC

∑

y∈X (x)

cx,y sx,y βx +
∑

x∈X N

μxβx (2.96)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

βy − γ
∑

x∈X−
C (y)

sx,y βx − γ
∑

x∈X−
N (y)

px,y βx = 1, y = x0;

βy − γ
∑

x∈X−
C (y)

sx,y βx − γ
∑

x∈X−
N (y)

px,y βx = 0, ∀y ∈ X\{x0};

βx ≥ 0, ∀x ∈ X.

(2.97)

In this system sx,y for x ∈ XC , y ∈ X (x) the following condition is satisfied:
⎧
⎪⎨

⎪⎩

∑

y∈X (x)

sx,y = 1, ∀x ∈ XC ;

sx,y ≥ 0, ∀x ∈ X, y ∈ X (x).

(2.98)

Then, an optimal strategy s∗ of the control problem on G corresponds to an extreme
point of the set of solutions of system (2.98). It is easy to observe that system (2.97)
is consistent for an arbitrary feasible solution of system (2.97), and therefore, an
optimal stationary strategy s∗ can be determined by minimizing (2.96) with respect
to sx,y and βx subject to (2.97), (2.98). Thus, if we add condition (2.98) to condition
(2.97) (and after that we minimize (2.96) with respect to sx,y and βx ), then we obtain
the following nonlinear programming problem:
Minimize

φx0(s,β) =
∑

x∈XC

∑

y∈X (x)

cx,ysx,yβx +
∑

x∈X N

μxβx (2.99)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βy − γ
∑

x∈X−
C (y)

sx,y βx − γ
∑

x∈X−
N (y)

px,y βx = 1, y = x0;

βy − γ
∑

x∈X−
C (y)

sx,y βx − γ
∑

x∈X−
N (y)

px,y βx = 0, ∀y ∈ X\{x0};
∑

y∈X (x)

sx,y = 1, ∀x ∈ XC ;

βx ≥ 0, ∀x ∈ X; sx,y ≥ 0, ∀x ∈ X, y ∈ X (x).

(2.100)
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This is a bilinear programming problem however it can be easily reduced to a linear
programming problem (2.96), (2.97) using the following elementary transformations:

We change in (2.100) the restrictions
∑

y∈X (x) sx,y = 1, ∀x ∈ XC by
∑

y∈X (x)

sx,y βy = βy, ∀x ∈ XC and then we introduce the notations

αx,y = sx,y βy, ∀x ∈ X, y ∈ X (x). (2.101)

It is easy to observe that if α∗
x,y (x ∈ XC , y ∈ X), β∗

y (y ∈ X) is a basic optimal

solution of problem (2.94), (2.95) then for each x ∈ X+
C among α∗

x,y, y ∈ X (x)

only one it is different from zero and it is equal to β∗
x . Moreover, if α∗

x,y (x ∈
XC , y ∈ X), β∗

y (y ∈ X) is a basic optimal solution of the problem (2.94), (2.95)

then α∗
x,y = 0, ∀x ∈ X\X+

C ,∀y ∈ X) and therefore for x ∈ X\X+
C , y ∈ X (x) in

the optimal solution of problem (2.99), (2.100) we can fix arbitrary s∗
x,y ∈ {0, 1} for

y ∈ X (x) such that
∑

y∈X (x) sx,y = 1. So, we can determine the optimal stationary
strategy for the control problem on network according to the rule formulated in the
theorem. ��

Note that in the considered control problem with fixed stating state x0 the vertices
x ∈ X+

c of the graph G correspond to the states in which the decision person makes
the optimal control. The vertices x ∈ X\X+

C of graph G correspond to the states of
the dynamical system that couldn’t be reached in the process of the optimal control
made by the decision person. Therefore for the optimal solution of the control problem
on G with fixed starting state x0 we can set s∗

x,y = 0,∀x ∈ X\X+
C ,∀y ∈ X (x).

This does not affect the sense of the control problem on networks.
From Theorem 2.38 in the case X = XC (i.e. X N = ∅) we obtain conditions for

determining the optimal stationary strategies of the deterministic discounted control
problem.

Corollary 2.39 Let X = XC and α∗
x,y (x ∈ X, y ∈ X), β∗

x (x ∈ X) be an optimal
solution of the following linear programming problem:
Minimize

φx0(α,β) =
∑

x∈X

∑

y∈X (x)

cx,y αx,y (2.102)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βy − γ
∑

x∈X−(y)

αx,y = 1, y = x0;

βy − γ
∑

x∈X−(y)

αx,y = 0, ∀y ∈ X\{x0};
∑

y∈X (x)

αx,y = βx , ∀x ∈ X;

βx ≥ 0, ∀x ∈ X; αx,y ≥ 0, ∀x ∈ X, y ∈ X (x).

(2.103)
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Then the optimal stationary strategy s∗ of the discounted stochastic control problem
on network can be found by fixing

s∗
x,y = α∗

x,y

β∗
x

, ∀x ∈ X+
C , y ∈ X (x)

and arbitrary s∗
x,y ∈ {0, 1} for x ∈ X\X+

C such that
∑

y∈X (x) sx,y = 1;
Based on Theorem 2.38 we can propose the following algorithm for determining

the optimal solution of the discounted control problem on the network.

Algorithm 2.40 Determining the Optimal Stationary Strategy for the
Discounted Stochastic Control Problem

(1) Formulate the linear programming problem (2.96), (2.97);
(2) Determine an optimal solution α∗

x,y (x ∈ XC , y ∈ X), β∗
y (y ∈ X) of the

problem (2.96), (2.97) and fix

s∗
x,y = α∗

x,y

β∗
x

, ∀x ∈ XC , y ∈ X (x)

and an arbitrary s∗
x,y ∈ {0, 1} for every x ∈ X\X+

C such that
∑

y∈X (x) sx,y = 1.

The results described above allow us to determine the stationary strategy for the
problem with a fixed starting state x0. In the general case, if it is necessary to find
the optimal stationary strategy for an arbitrary starting state x ∈ X then we can use
the following results.

Lemma 2.41 For a fixed strategy s the values σ
γ
x , x ∈ X determine the unique

optimal basic solution of the following linear programming problem:
Maximize

ϕs(σ) =
∑

x∈X

σx (2.104)

subject to (2.91).

The proof of this lemma is identical to the proof of Lemma 2.37. Based on this
lemma we can prove the following theorem.

Theorem 2.42 Let α∗
x,y (x ∈ XC , y ∈ X), β∗

x (x ∈ X) be a basic optimal solution
of the following linear programming problem:
Minimize

φ(α,β) =
∑

x∈XC

∑

y∈X (x)

cx,y αx,y +
∑

x∈X N

μxβx (2.105)
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subject to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

βy − γ
∑

x∈X−
C (y)

αx,y − γ
∑

x∈X−
N (y)

px,y βx = 1, ∀y ∈ X;
∑

y∈X (x)

αx,y = βx , ∀x ∈ XC ;

βx ≥ 0, ∀x ∈ X; αx,y ≥ 0, ∀x ∈ X, y ∈ X (x).

(2.106)

If in the graph G = (X, E) each vertex x ∈ X contains at least one leaving directed
edge then β∗

x > 0, ∀x ∈ XC and

α∗
x,y

β∗
x

∈ {0, 1}, ∀x ∈ XC , y ∈ X (x).

The optimal stationary strategy s∗ of the discounted stochastic control problem on
the network can be found by fixing

s∗
x,y = α∗

x,y

β∗
x

, ∀x ∈ XC , y ∈ X (x).

The proof of this theorem is similar to the proof of Theorem 2.38 and the solution of
the problem can be found by using the linear programming problem (2.105), (2.106).
Based on this theorem we determine the optimal stationary strategies for an arbitrary
starting state x ∈ X .

In the problem (2.105), (2.105) we can eliminate βy from those restrictions
that correspond to vertices y ∈ XC if we take into account the relation βy =∑

x∈X (y) αy,x for y ∈ XC . After that from Theorem 2.42 we obtain the follow-
ing corollary:

Corollary 2.43 Let α∗
x,y (x ∈ XC , y ∈ X), β∗

x (x ∈ X) be a basic optimal solution
of the following linear programming problem:
Minimize

φ(α,β) =
∑

x∈XC

∑

y∈X (x)

cx,y αx,y +
∑

x∈X N

μxβx (2.107)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

x∈X (y)

αy,x − γ
∑

x∈X−
C (y)

αx,y − γ
∑

x∈X−
N (y)

px,y βx = 1, y ∈ XC ;

βy − γ
∑

x∈X−
C (y)

αx,y − γ
∑

x∈X−
N (y)

px,y βx = 1, y ∈ X N ;

βx ≥ 0, ∀x ∈ X N ; αx,y ≥ 0, ∀x ∈ XC , y ∈ X (x),

(2.108)
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If in the graph G = (X, E) each vertex x ∈ X contains at least one leaving directed
edge then

∑
y∈X (x) α∗

x,y > 0, ∀x ∈ XC and

α∗
x,y∑

y∈X α∗
x,y

∈ {0, 1}, ∀x ∈ XC , y ∈ X (x).

The optimal stationary strategy s∗ of the discounted stochastic control problem on
the network can be found by fixing

s∗
x,y = α∗

x,y∑
y∈X (x) αx,y

, ∀x ∈ XC , y ∈ X (x).

2.5.3 Dual Linear Programming Models for a Discounted Control
Problem

If we dualize the linear programming problem (2.94), (2.95) then on the basis of
duality theory we obtain the following result.

Theorem 2.44 Let w∗
x (x ∈ XC ), σ∗

x (x ∈ X) be the optimal solution of the linear
programming problem:
Maximize

ϕx0(σ, w) = σx0 (2.109)

subject to

⎧
⎪⎪⎨

⎪⎪⎩

wx − γσy ≤ cx,y, ∀x ∈ XC , y ∈ X (x);
−wx + σx ≤ 0, ∀x ∈ XC ;
σx − γ

∑

y∈X (x)

px,yσy ≤ μx , ∀x ∈ X N .
(2.110)

Then w∗
x = σ∗

x , ∀x ∈ XC and σ∗
x0

is the optimal discounted expected total cost for
the problem on the network with the starting state x0. An optimal stationary strategy
can be found by fixing s∗ : XC → X such that (x, s∗(x)) ∈ E∗(x), ∀x ∈ XC , where
E∗(x) = {(x, y) | y ∈ X (x), σ∗

x − γσ∗
y − cx,y = 0}.

As a consequence from this theorem we obtain the following result.

Corollary 2.45 For an arbitrary discounted control problem on the network (G, XC ,

X N , c, p) with a given discount factor γ there exist the values σ∗
x for x ∈ X that

satisfy the following conditions:

(1) cx,y = cx,y + γσ∗
y − σ∗

x ≥ 0, ∀x ∈ XC , y ∈ X (x);
(2) min

y∈X (x)
{cx,y} = 0, ∀x ∈ XC ;
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(3) μx = μx + γ
∑

y∈X (z)

px,yσ
∗
y − σ∗

x = 0, ∀x ∈ X N .

An arbitrary stationary strategy s∗ : XC → X such that (x, s∗(x)) ∈ E∗(x),

∀x ∈ XC , where E∗(x) = {(x, y) | y ∈ X (x), cx,y = 0}, represents an optimal
stationary strategy for the discounted control problem.

In the case X N = ∅, from this corollary we obtain the optimality condition for
the deterministic discounted control problem. The conditions for determining the
optimal strategy and the value of the optimal cost for the problem with γ = 1 in the
case if this value exists can also be derived from Theorem 2.44 and Corollary 2.45.

The results formulated above can be extended to the problem of determining the
optimal stationary strategy with an arbitrary starting state x ∈ X . For the problem
(2.105), (2.106) we can construct the dual problem in a similar way and we then
obtain the following result.

Theorem 2.46 Let σ∗
x , w∗

x (x ∈ X) be the optimal solution of the linear program-
ming problem:
Maximize

ϕ(σ, w) =
∑

x∈X

σx (2.111)

subject to (2.110). Then σ∗
x for x ∈ X represents the optimal discounted expected

total costs for the problem on the network with starting states x ∈ X. An optimal
stationary strategy can be found by fixing s∗ : XC → X such that (x, s∗(x)) ∈
E∗(x), ∀x ∈ XC , where E∗(x) = {(x, y) | y ∈ X (x), σ∗

x − γσ∗
y − cx,y = 0}.

2.6 A Linear Programming Approach for a Discounted Markov
Decision Problem

Consider a Markov decision process (X, A, p, c) with a finite set of states X , a finite
set of actions A, the probability function p : A × X × X → [0, 1] that satisfies the
condition

∑
y∈X pa

x,y = 1, ∀a ∈ A and the cost function c : A × X × X → R. In
addition we assume that the discount factor γ, 0 ≤ γ < 1, and the starting state x0
are given.

Let us fix a stationary strategy

s : x → a ∈ A(x) for x ∈ X,

that induces a simple Markov process with a transition probability matrix Ps =
(ps

x,y) and a transition cost matrix Cs = (cx,y). Then we can determine the dis-
counted expected total costs σ

γ
x0(s) (in order to simplify the notation in the following

we shall use σx0(s) instead of σ
γ
x0(s)).
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We consider the problem of determining the strategy s∗ such that

σx0(s
∗) = min

s
σx0(s).

In a similar way as for the control problem, here we identify an arbitrary strategy
s : X → A with the set of the boolean variables sx,a for x ∈ X and a ∈ A, i.e.,

sx,a =
{

1, if a = s(x);
0, if a �= s(x).

(2.112)

Lemma 2.47 For a fixed strategy s the values σ
γ
x , x ∈ X determine the unique

optimal basic solution of the following linear programming problem:
Maximize

ϕs
x0

(σ) = σx0 (2.113)

subject to

σx − γ
∑

y∈X

∑

a∈A(x)

sx,a pa
x,y σy ≤

∑

a∈A(x)

sx,a μx,a, ∀x ∈ X; (2.114)

where

μx,a =
∑

a∈A(x)

ca
x,y pa

x,y, ∀x ∈ X

and

∑

a∈A(x)

sx,a = 1, ∀x ∈ X; sx,a ∈ {0, 1}, ∀x ∈ X, a ∈ A(x).

Proof For a fixed strategy s the solution of the system of linear equations

σx − γ
∑

y∈X

∑

a∈A(x)

sx,a pa
x,y σy =

∑

a∈A(x)

sx,a μx,a, ∀x ∈ X (2.115)

uniquely determines σx , ∀x ∈ X . Thus, the problem of maximization of the objective
function (2.113) subject to (2.115) for a fixed strategy s has a unique feasible solution
which is an optimal one. This implies that if for fixed s we consider the problem:
Maximize (2.113) subject to

σx − γ
∑

y∈X

∑

a∈A(x)

sx,a pa
x,y σy ≤

∑

a∈A(x)

sx,a μx,a, ∀x ∈ X (2.116)
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then it has the same optimal solution as the problem (2.113), (2.115). Moreover,
if in the problem (2.113), (2.116) we vary the boolean variables sx,y and take the
maximum with respect to σ and the minimum with respect to s then we obtain the
optimal strategy for the control problem. ��

Using the lemma above we can prove the following theorem.

Theorem 2.48 Let α∗
x,a, β∗

y (x ∈ X, a ∈ A) be a basic optimal solution of the
following linear programming problem:
Minimize

φx0(α,β) =
∑

x∈X

∑

a∈A(x)

μx,a αx,a (2.117)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βy − γ
∑

x∈X

∑

a∈A(x)

pa
x,y αx,a = 1, y = x0;

βy − γ
∑

x∈X

∑

a∈A(x)

pa
x,y αx,a = 0, ∀y ∈ X\{x0};

∑

a∈A(x)

αx,a = βx , ∀x ∈ X;

βy ≥ 0, ∀y ∈ X; αx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(2.118)

Then the optimal stationary strategy s∗ for the discounted Markov decision problem
is determined as follows:

s∗
x,a =

{
1, if α∗

x,a �= 0;
0, if α∗

x,a = 0.
(2.119)

Proof According to Lemma 2.47 the optimal stationary strategy s∗ corresponds to
the optimal solution of the problem (2.113), (2.114).

In a similar way as in the proof of Lemma 2.37 here we have that a stationary strat-
egy s corresponds to an extreme point of the set of solutions of the following system

⎧
⎪⎨

⎪⎩

∑

a∈A(x)

sx,a = 1, ∀x ∈ X;

sx,a ≥ 0, ∀x ∈ X, a ∈ A.

(2.120)

Therefore, if we dualize (2.113), (2.120) with respect to σx for a fixed strategy s then
we obtain the following optimization problem:
Minimize

φx0(s,β) =
∑

x∈X

∑

a∈A(x)

μx,asx,a βx (2.121)
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subject to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

βy − γ
∑

x∈X

∑

a∈A(x)

pa
x,y sx,a βx = 1, y = x0;

βy − γ
∑

x∈X

∑

a∈A(x)

pa
x,y sx,a βx = 0, ∀y ∈ X\{x0};

βy ≥ 0, ∀y ∈ X.

(2.122)

Now if we minimize (2.113) with respect to sx,a and βx and in (2.120) we take into
account the following restriction

∑

a∈A(x)

sx,a = 1, ∀x ∈ X; sx,a ≥ 0, ∀x ∈ X, a ∈ A(x)

then we obtain the problem:
Minimize

φx0(s,β) =
∑

x∈X

∑

a∈A(x)

μx,asx,a βx (2.123)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βy − γ
∑

x∈X

∑

a∈A(x)

pa
x,y sx,a βx = 1, y = x0;

βy − γ
∑

x∈X

∑

a∈A(x)

pa
x,y sx,a βx = 0, ∀y ∈ X\{x0};

∑

a∈A(x)

sx,a = 1, ∀x ∈ X;

βy ≥ 0, ∀y ∈ X; sx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(2.124)

This bilinear programming problem can be easily reduced to a linear program-
ming problem (2.117), (2.118) using the following elementary transformations: We
change in (2.124) the restrictions

∑
a∈A(x) sx,a = 1, ∀x ∈ X by

∑
a∈A(x) sx,a βx =

βx , ∀x ∈ X and then we introduce the notations

αx,a = sx,a βx , ∀x ∈ X, a ∈ A(x). (2.125)

If αa
x,y

∗, β∗
y (x, y ∈ X, a ∈ A) is a basic optimal solution of the linear pro-

gramming problem (2.117), (2.118) then by using (2.125) we obtain s∗
x,a according

to (2.119). ��
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Based on Theorem 2.48 we can propose the following algorithm for determining
the solution of the Markov decision problem.

Algorithm 2.49 Determining the Optimal Stationary Strategy for the
Discounted Markov Decision Problem

(1) Formulate the linear programming problem (2.117), (2.118);
(2) Determine a basic optimal solution α∗

x,a (x ∈ X, a ∈ A), β∗
y (y ∈ X) of the

problem (2.117), (2.118) and determine s∗
x,x according to (2.119).

The results described above allow us to determine the stationary strategy for the
discounted Markov decision problem in the case if the starting state x0 is fixed. In the
general case, if it is necessary to find the optimal stationary strategy for an arbitrary
starting state x ∈ X then we can use the following results.

Lemma 2.50 For a fixed strategy s the values σ
γ
x , x ∈ X determine the unique

optimal basic solution of the following linear programming problem:
Maximize

ϕs(σ) =
∑

x∈X

σx

subject to

σx − γ
∑

y∈X

∑

a∈A(x)

sx,a pa
x,y σy ≤

∑

a∈A(x)

sx,a μx,a, ∀x ∈ X,

where

μx,a =
∑

a∈A(x)

ca
x,y pa

x,y, ∀x ∈ X

and

∑

a∈A(x)

sx,a = 1, ∀x ∈ X; sx,a ∈ {0, 1}, ∀x ∈ X, a ∈ A(x).

The proof of this lemma is similar to the proof of Lemma 2.47.
Using this lemma we can prove the following theorem:

Theorem 2.51 Let α∗
x,a, β∗

y (x ∈ X, y ∈ X, a ∈ A) be a basic optimal solution of
the following linear programming problem:
Minimize

φ(α,β) =
∑

x∈X

∑

a∈A(x)

μx,aαx,a (2.126)
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subject to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

βy − γ
∑

x∈X

∑

a∈A(x)

pa
x,y αx,a = 1, ∀y ∈ X;

∑

a∈A(x)

αx,a = βx , ∀x ∈ X;

βy ≥ 0, ∀y ∈ X; αx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(2.127)

Then the optimal stationary strategy s∗ for the discounted Markov decision problem
is determined according to (2.119).

The proof of this theorem is identical to the prove of Theorem 2.48; here we have
to apply Lemma 2.50 instead of Lemma 2.47.

It is easy to observe that the constraints βy ≥ 0, ∀y ∈ X, in (2.127) are redundant.
Therefore, we can eliminate βx ,∀x ∈ X, from (2.127) introducing the expressions∑

a∈A(x) αx,a = βx for x ∈ X in the first group of the constraints. After that from
Theorem 2.51 we obtain the following corollary.

Corollary 2.52 Let α∗
x,a (x ∈ X, y ∈ X, a ∈ A) be a basic optimal solution of the

following linear programming problem:
Minimize

φ(α) =
∑

x∈X

∑

a∈A(x)

μx,aαx,a (2.128)

subject to
⎧
⎨

⎩

∑

a∈A(x)

αx,a − γ
∑

x∈X

∑

a∈A(x)

pa
x,y αx,a = 1, ∀y ∈ X;

αx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(2.129)

Then the optimal stationary strategy s∗ for the discounted Markov decision problem
is determined as follows:

sx,a =
{

1, if a = s(x);
0, if a �= s(x).

2.6.1 A Dual Linear Programming Model for the Discounted
Markov Decision Problem

We formulate the dual linear programming model for the discounted Markov decision
problem using the problem (2.128), (2.129). Applying the duality linear programming
theorems to this problem we obtain the following result:
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Theorem 2.53 Let σ∗
x (x ∈ X) be the optimal solution of the linear programming

problem:
Maximize

ϕ(σ) =
∑

x∈X

σx (2.130)

subject to

σx − γ
∑

y∈X

pa
x,yσy ≤ μx,a, ∀x ∈ X, a ∈ A(x). (2.131)

Then σ∗
x for x ∈ X represents the optimal discounted expected total costs for the

problem on the network with starting states x ∈ X. An optimal stationary strategy
can be found by fixing s∗ : X → A such that s∗(x) = a ∈ A∗(x), ∀x ∈ X, where
A∗(x) = {a ∈ A(x) | σx − γ

∑
y∈X pa

x,yσy = 0}.
Thus, the solution of the discounted Markov decision problem can be found by

solving the dual linear programming problem (2.130), (2.131).

2.7 An Iterative Algorithm for Discounted Markov Decision
Processes and Stochastic Control Problems

To determine the optimal discounted costs and the corresponding optimal strategy
in the Markov processes with discounted costs we shall use the following system of
equations with respect to σx1,σx2 , . . . ,σxn :

σxi = min
a∈A(xi )

[
μxi ,a + γ

∑

x j ∈X

pa
xi ,x j

σx j

]
, i = 1, 2, . . . , n.

According to Theorem 2.53 this system of equations has a solution. Below we
describe an iterative algorithm for determining the solution of this system of equa-
tions and finding the optimal stationary strategies of the discounted Markov decision
problem.

Algorithm 2.54 Determining the Optimal Stationary Strategies for the
Discounted Markov Decision Problem

Preliminary step (Step 0): Fix an arbitrary stationary strategy

s0 : xi → a ∈ A(xi ) for xi ∈ X.
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General step (Step k, k > 0): Calculate

μxi ,sk−1(xi )
=

∑

y∈X (xi )

psk−1(xi )

xi ,y csk−1(xi )
xi ,y

for every xi ∈ X . Then solve the system of linear equations

σxi = μxi ,sk−1(xi )
+ γ

∑

x j ∈X

psk−1(xi )
xi ,x j

σx j , i = 1, 2, . . . , n

and find the solution σk−1
x1

,σk−1
x2

, . . . ,σk−1
xn

. After that determine a new strategy

sk : xi → a ∈ A(xi ) for xi ∈ X,

where

sk(xi ) = argmin
a∈A(xi )

[
μxi ,a + γ

∑

x j ∈X

pa
xi ,x j

σk−1
xi

]
, i = 1, 2, . . . , n.

Check if the following condition holds

sk(xi ) = sk−1(xi ), ∀xi ∈ X. (2.132)

If the condition (2.132) holds then fix

s∗ = sk; σ∗
xi

= σk
xi

, ∀xi ∈ X

as the optimal solution of the problem; otherwise go to the next step k + 1.
This algorithm can be specified for a stochastic control problem with a discounted

cost criterion. The correctness and the convergence of this iterative algorithm can be
derived from the results described above and the results from [32, 112, 128, 136].

Algorithm 2.55 Determining the Optimal Stationary Strategies for the
Discounted Stochastic Control Problem

We consider the discounted control problem on the network (G, X1, X2, c, p) with a
given discount factor γ. The dynamics of the system is described by a directed graph
G = (X, E) with the set of controllable states XC and the set of uncontrollable states
X N . In addition we assume that the probability function p : E2 → [0, 1] and the
cost function c : E → R are given.
Preliminary step (Step 0): Fix an arbitrary stationary strategy

s0 : xi → x j ∈ X (xi ) for xi ∈ XC .
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General step (Step k, k > 0): Determine the probability matrix Psk−1 = (psk−1

xi ,x j
),

where

psk−1

xi ,x j
=
⎧
⎨

⎩

pxi ,x j , if xi ∈ X N and (xi , xi ) ∈ EN ;
1, if xi ∈ XC and x j = sk−1(xi );
0, if xi ∈ XC and x j �= sk−1(xi ).

Then calculate

μxi ,sk−1(xi )
=

∑

y∈X (xi )

psk−1(xi )
xi ,y csk−1(xi )

xi ,y

for every xi ∈ X and solve the system of linear equations

σxi = μxi ,sk−1(xi )
+ γ

∑

x j ∈X

psk−1(xi )
xi ,x j

σx j , i = 1, 2, . . . , n

and find the solution σk−1
x1

,σk−1
x2

, . . . ,σk−1
xn

. After that determine a new strategy

sk : xi → a ∈ A(xi ) for xi ∈ XC ,

where

sk(xi ) = argmin
a∈A(xi )

[
μxi ,a + γ

∑

x j ∈X

pa
xi ,x j

σk−1
xi

]
, ∀xi ∈ XC .

Check if the following condition holds

sk(xi ) = sk−1(xi ), ∀xi ∈ XC . (2.133)

If the condition (2.133) holds then fix

s∗ = sk; σ∗
xi

= σk
xi

, ∀xi ∈ X

as the optimal solution of the problem; otherwise go to the next step k + 1.
This algorithm finds the optimal stationary strategy for an arbitrary stochastic

control problem. In the case when X = XC (X N = ∅) we obtain an iterative
algorithm for deterministic discounted control problems.
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2.8 Determining the Optimal Expected Total Cost for Markov
Decision Problems with a Stopping State

The algorithms proposed in the previous sections determine the optimal stationary
strategies for discounted Markov decision problems in the case if the discount factor
γ satisfies the condition 0 < γ < 1. If γ = 1 then the expected total cost in these
problems may not exist. Here we study a class of unichain decision problems for
which γ may be equal to 1 and the expected total cost exists. Moreover, we can see that
for some problems γ may be an arbitrary positive value. For the considered problems
we show how to determine the optimal expected total cost using a linear programming
approach and iterative procedures. To ensure the existence of the expected total cost
in these problems we assume that for the dynamical system there exists a state in
which transitions stop as soon as this state is reached [89]. Furthermore, we describe
algorithms for determining optimal strategies in such problems.

2.8.1 Problem Formulation and a Linear Programming Approach

Let (X, A, p, c) be a Markov decision process with a finite set of states X , a finite set
of actions A, the probability function p : A×X×X → R

+ that satisfies the condition∑
y∈X pa

x,y = 1, ∀a ∈ A and the transition cost function c : A × X × X → R.
In addition a discount factor γ for the Markov decision process is given, where 0 <

γ ≤ 1. We consider the problem of determining the stationary strategy with minimal
expected total cost for unichain Markov processes in the case if the dynamical system
stops transitions in a given state z ∈ X . At first we assume that the Markov process
is perfect. Moreover, we assume that for an arbitrary fixed action in this decision
process the state z ∈ X is an absorbing state. Obviously, in this case for 0 < γ < 1
the optimal expected total costs σx and the optimal stationary strategy for an arbitrary
starting state x ∈ X\{z} can be found using the linear programming models (2.128),
(2.129) and (2.130), (2.131) considering ca

z,z = 0, ∀a ∈ A(z). If the optimal strategy
s∗ is found then we have only to fix s∗(x) for x ∈ X\{z} because z is the stopping
state. In this case the expected total cost for a given starting state σx0 can be found
by solving the linear programming problem (2.117), (2.118). Now we can see that
the considered linear programming models can be used for determining the solution
of the decision problem with an absorbing stopping state z ∈ X in the case γ = 1 if
ca

z,z = 0, ∀a ∈ A(x). Indeed, for a fixed strategy s the rank of the matrix (I − Ps) for
the unichain process is equal to |X |−1 and the system of equations (I − Ps)σ = μs

has a unique solution if we put σz = 0. Thus, for unichain processes with absorbing
state z ∈ X the system of equations

{
(I − Ps)σ = μs;

σz = 0

has a unique solution if ca
z,z = 0, ∀a ∈ A(z).
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The properties mentioned above allow us to conclude that for a unichain decision
problem with 0 < γ ≤ 1 the following lemma holds.

Lemma 2.56 A stationary strategy s∗ is optimal if and only if it corresponds to
an optimal solution σ∗, s∗ of the following mixed integer bilinear programming
problem:
Maximize

ϕx0(σ, s) = σx0 (2.134)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σx − γ
∑

y∈X

∑

a∈A(x)

sx,a pa
x,y σy ≤

∑

a∈A(x)

sx,a μx,a, ∀x ∈ X\{z};

σz = 0;
∑

a∈A(x)

sx,a = 1, ∀x ∈ X\{z};

sx,a ∈ {0, 1}, ∀x ∈ X\{z}, a ∈ A(x),

(2.135)

where

μx,a =
∑

y∈X

pa
x,y ca

x,y .

Note that in (2.134), (2.135) the boolean variables sx,a for x ∈ X\{z}, a ∈ A(x)

correspond to a strategy s : X\{z} → X , where sx,a = 1 if s(x) = a and sx,a = 0
if s(x) �= a. Based on this lemma, we can prove the following theorem.

Theorem 2.57 Let αx,a
∗, β∗

y (x ∈ X\{z}, y ∈ X\{z}, a ∈ A) be a basic optimal
solution of the following linear programming problem:
Minimize

φx0(α,β) =
∑

x∈X\{z}

∑

a∈A(x)

μx,a αx,a (2.136)

subject to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βy − γ
∑

x∈X\{z}

∑

a∈A(x)

pa
x,y αx,a ≥ 1, y = x0;

βy − γ
∑

x∈X\{z}

∑

a∈A(x)

pa
x,y αx,a ≥ 0, ∀y ∈ X\{x0, z};

∑

a∈A(x)

αx,a = βx , ∀x ∈ X\{z};

βy ≥ 0, ∀y ∈ X\{z}; αx,a ≥ 0, ∀x ∈ X\{z}, a ∈ A(x).

(2.137)
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Then the optimal stationary strategy s∗ for the discounted unichain decision problem
with absorbing state z ∈ X is determined as follows:

s∗
x,a =

{
1, if α∗

x,a �= 0;
0, if α∗

x,a = 0.
(2.138)

The proof of Theorem 2.57 is obtained in the same way as Theorem 2.48. Lemma 2.56
and Theorem 2.57 differ from Lemma 2.47 and Theorem 2.48, respectively, only in
a single restriction in the systems (2.135) and (2.137). These systems are obtained
from (2.114) and (2.114), respectively, by deleting the constraints that correspond to
the absorbing state z. In the proof of Theorem 2.57 we have only to assume that the
expected total cost for the problem with an absorbing stopping state exists.

Remark 2.58 The values σx , ∀x ∈ X for a unichain Markov decision problem with
stopping state z with ca

z,z = 0, ∀a ∈ A(z) and γ = 1 coincide with the values
εx , ∀x ∈ X for an zero average cost Markov decision problem.

Based on Theorem 2.57 the optimal stationary strategy of the problem with stopping
state can be found by using the following algorithm.

Algorithm 2.59 Determining the Optimal Stationary Strategy for a Markov
Decision Problem with Stopping State

(1) Formulate the linear programming problem (2.136), (2.137);
(2) Determine a basic optimal solution α∗

x,a (x ∈ X\{z}, a ∈ A), β∗
y (y ∈ X\{z})

of the problem (2.136), (2.137) and determine s∗
x,x according to (2.138).

Remark 2.60 Theorem 2.57 and Algorithm 2.59 are also valid for an arbitrary
Markov decision problem with a stopping state z in the case γ ≥ 1 if the cost
function c : X × X × A → R is strict positive and there exists a strategy s that
induces a unichain process with a stopping absorbing state z. Thus, Theorem 2.57 in
the case γ ≥ 1 gives necessary and sufficient conditions for determining the optimal
stationary strategies in the discounted decision problem with positive costs and given
stopping state z.

If in the considered decision problem it is necessary to determine the optimal station-
ary strategies for an arbitrary starting state x ∈ X\{z} then we can use the following
result.

Theorem 2.61 Let α∗
x,a (x ∈ X\{z}, a ∈ A) be a basic optimal solution of the

following linear programming problem:
Minimize

φ(α) =
∑

x∈X\{z}

∑

a∈A(x)

μx,aαx,a (2.139)
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subject to

⎧
⎪⎨

⎪⎩

∑

a∈A(y)

αy,a − γ
∑

x∈X\{z}

∑

a∈A(x)

pa
x,y αx,a ≥ 1, ∀y ∈ X\{z};

αx,a ≥ 0, ∀x ∈ X\{z}, a ∈ A(x).

(2.140)

Then the optimal stationary strategy s∗ for the discounted Markov decision problem
with an arbitrary starting state x ∈ X\{z} and given stopping state z is determined
as follows:

s∗
x,a =

{
1, if α∗

x,a �= 0;
0, if α∗

x,a = 0.

The proof of this theorem can be obtained by using the following lemma.

Lemma 2.62 A stationary strategy s∗ is optimal if and only if it corresponds to
an optimal solution σ∗, s∗ of the following mixed integer bilinear programming
problem:
Maximize

ϕ(σ, s) =
∑

x∈X

σx

subject to (2.135).

If for the linear programming problem (2.139), (2.140) we construct the dual model
in the same way as for the previous problems then we obtain the following result.

Theorem 2.63 Let σ∗
x (x ∈ X) be the optimal solution of the linear programming

problem:
Maximize

ϕ(σ) =
∑

x∈X

σx (2.141)

subject to

σx − γ
∑

y∈X

pa
x,yσy ≤ μx,a, ∀x ∈ X\{z}, a ∈ A(x), (2.142)

where 0 < γ ≤ 1. Then σ∗
x for x ∈ X represents the optimal discounted expected

total cost for the problem with starting states x ∈ X. An optimal stationary strategy
can be found by fixing s∗ : X\{z} → A such that s∗(x) = a ∈ A∗(x), ∀x ∈ X\{z},
where A∗(x) = {a ∈ A(x) | σx − γ

∑
y∈X pa

x,yσy = μx,a}.



194 2 Stochastic Optimal Control Problems . . .

We can obtain an iterative algorithm for the problems with a stopping state from
the algorithm for a discounted Markov decision problem from Sect. 2.7 if at each
iteration of the algorithm we solve the system of linear equations

⎧
⎨

⎩

σz = 0;
σxi = μxi ,sk−1(xi )

+ γ
∑

x j ∈X\{z}
psk−1(xi )

xi ,x j σx j , ∀xi ∈ X\{z}

instead of the system of linear equations

σxi = μxi ,sk−1(xi )
+ γ

∑

x j ∈X

psk−1(xi )
xi ,x j

σx j , ∀xi ∈ X.

Thus, if in the general step of the iterative algorithm from the previous section we
replace this system of the equations by the system of equations written above we
obtain the iterative algorithm for the problem with an absorbing state. Now let us
show how to solve the unichain Markov decision problem with a given stopping state
z ∈ x if z is not an absorbing state but is a positive recurrent state of the Markov
process induced by an arbitrary stationary strategy. In this case the problem can
be reduced to the case with an absorbing stopping state if we make the following
minor transformations in the unichain Markov decision process: For an arbitrary
action a ∈ A(z) we set pa

z,y = 0, ∀y ∈ X\{z}; pa
z,z = 1. Obviously, after such

a transformation of the unichain decision process we obtain the optimal stationary
strategies of the problem if the state z is reached.

2.8.2 Optimality Conditions for the Control Problem on Network
with a Stopping State

Consider a discounted control problem for the decision network (G, XC , X N , c, p)

with a given stopping state z ∈ X and a given discount factor γ, 0 < γ ≤ 1. Then
on the basis of Theorem 2.42 the following result can be proved.

Theorem 2.64 Assume that in G an arbitrary stationary strategy s : x → X (x)

for x ∈ XC generates a subgraph Gs = (X, Es ∪ EN ) where the vertex z can be
reached from arbitrary x ∈ X\{z}. Then the linear programming problem:
Minimize

φ(α,β) =
∑

x∈XC

∑

y∈X (x)

cx,y αx,y +
∑

x∈X N

μxβx (2.143)
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subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

x∈X (y)

αy,x − γ
∑

x∈X−
C (y)

αx,y − γ
∑

x∈X−
N (y)

px,y βx = 1, y ∈ XC\{z};

βy − γ
∑

x∈X−
C (y)

αx,y − γ
∑

x∈X−
N (y)

px,y βx = 1, y ∈ X N \{z};

βx ≥ 0, ∀x ∈ X N ; αx,y ≥ 0, ∀x ∈ XC , y ∈ X (x),

(2.144)

has a solution. If α∗,β∗ is an arbitrary basic solution of the problem (2.143), (2.144)
then the optimal stationary strategy s∗ for the discounted control problem with a
stopping state z can be found by fixing s∗

x,y = 1 for x ∈ XC , y ∈ X (x) if α∗
x,y > 0,

and sx,y = 0∗ in the other case.

It is easy to observe that the problem (2.143), (2.144) is obtained from the problem
(2.107), (2.108) by deleting the restriction that corresponds to a stopping state z.
Thus, if the conditions of the theorem hold then the problem has a solution for
arbitrary γ ∈ (0, 1].

The optimality conditions for control problems on networks with a stopping state
can be derived if we consider the dual model for the problem (2.143), (2.144) or
from Theorem 2.63. If we specify this theorem for the problem on networks then we
obtain the following result.

Theorem 2.65 Let (G, XC , X N , c, p) be a perfect decision network with a given
stopping state z and a given discount factor γ (0 < γ ≤ 1), where the function
c : E → R is strictly positive. Then the optimal expected discounted total cost σ∗

x
of the control problem on the decision network exists for an arbitrary fixed starting
state x ∈ X. The values σ∗

x , for x ∈ X\{z} can be found by solving the following
linear programming problem:
Maximize

ϕ(σ) =
∑

x∈X

σx (2.145)

subject to
⎧
⎪⎨

⎪⎩

σx − γσy ≤ cx,y, ∀x ∈ XC\{x}, y ∈ X (x);
σx − γ

∑

y∈X

px,yσy ≤ μx , ∀x ∈ X N \{z} (2.146)

and the optimal stationary strategy can be determined by fixing s∗ : X\{z} → A such
that s∗(x) = y ∈ X∗(x), ∀x ∈ XC\{z}, where X∗(x) = {y ∈ X (x) | σx − γσy =
cx,y}.
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Corollary 2.66 Let (G, XC , X N , c, p) be a perfect decision network that satisfies
the conditions of Theorem 2.65. Then for an arbitrary γ ∈ (0, 1] there exist the
values σ∗

x for x ∈ X that satisfy the conditions:

(1) cx,y + γσ∗
y − σ∗

x ≥ 0, ∀x ∈ XC\{x}, y ∈ X (x);
(2) min

y∈X (x)
(cx,y + γσ∗

y − σ∗
x ) = 0, ∀x ∈ XC ;

(3) μx + γ
∑

y∈X

px,yσ
∗
y − σ∗

x = 0, ∀x ∈ X N \{z};

An optimal stationary strategy of the optimal control problem on the network
(G, XC , X N , c, p) with stopping state z can be found by fixing s∗ : X\{z} → A
such that s∗(x) = y ∈ X∗(x), ∀x ∈ XC\{z}, where X∗(x) = {y ∈ X (x) | cx,y +
γσ∗

y − σ∗
x = 0}.

Remark 2.67 The control problem on the network with a given stopping state z in
the case X N = 0, γ = 1 becomes the problem of determining in G the minimum
cost paths from x ∈ X to z. If G is an acyclic graph with sink vertex then the problem
has a solution for an arbitrary γ > 0.

2.8.3 A Dynamic Programming Algorithm for Solving
Deterministic Non-stationary Control Problems on Networks

As we have noted the deterministic stationary control problem on networks with
fixed stopping state z corresponds to the case X N = ∅ and the solution can be found
by using linear programming models (2.143), (2.144) and (2.145), (2.146). In this
section we show that this problem can be solved for the non-stationary case using a
dynamic programming method. We describe an algorithm for finding the solution of
the deterministic control problem on the network when the costs on the edges may
depend on time. So, we assume that X N = ∅ and in the network to each directed edge
e = (x, y) ∈ E the cost function ce(t) that depends on t is associated. This means
that if the system makes a transition from the state x = x(t) to the state y = x(t +1)

then the cost is cx,y(t). Thus, the problem in this case is formulated in the following
way:

For a given time-moment t and fixed starting and stopping states x0, x f ∈ X it
is necessary to determine in G a sequence of the system’s transitions (x(0), x(1)),
(x(1), x(2)), . . ., (x(t − 1), x(t)), which transfers the system L from a starting state
x0 = x(0) to a stopping state x f = x(t) such that the total cost

Fx0x f (t) =
t−1∑

t=0

c(x(t),x(t+1))(t)

of the system’s transitions by a trajectory
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x0 = x(0), x(1), x(2), . . . , x(t) = x f

is minimal, where (x(t), x(t + 1)) ∈ E, t = 0, 1, 2, . . . , t − 1.

We describe the dynamic programming algorithm for solving this problem.
Denote by

F∗
x0,x f

(t) = min
x0=x(0),x(1),...,x(t)=x f

t−1∑

t=0

c(x(t),x(t+1))(t)

the minimal total cost of the system’s transition from x0 to x f with t stages, where
F∗

x0,x f
(0) = 0 in the case x0 = x f and F∗

x0x f
(t) = ∞ if x f cannot be reached from

x0 by using t transitions.
If we introduce the values F∗

x0x(t)(t) for t = 0, 1, 2, . . . , t − 1 then it is easy to
observe that for F∗

x0x(t)(t) the following recursive formula can be gained:

F∗
x0x(t)(t) = min

x(t−1) ∈ X−
G (x(t))

{
F∗

x0,x(t−1)(t − 1) + c(x(t−1),x(t))(t − 1)
}
,

where

F∗
x0,x(0)(0) = 0

and

X−
G(y) = {x ∈ X | e = (x, y) ∈ E}.

Based on this recursive formula we can tabulate the values F∗
x0x(t)(t), t = 1, 2, . . . , t

for every x(t) ∈ X . These values and the solution of the problem can be found using
O(|X |2t) elementary operations (here we do not take into account the number of
operations for calculating the values of the functions ce(t) for a given t).

The tabulation process should be organized in such a way that for every vertex
x = x(t) at a given moment in time t it is determined not only the cost F∗

x0x(t)(t) but
also the state x∗(t − 1) at the previous time-moments for which

F∗
x0,x(t)(t) = F∗

x0x∗(t−1) + c(x∗(t−1),x(t))(t − 1)

= min
x(t−1)∈X−

G (x(t))
{F∗

x0,x(t−1) + c(x(t−1),x(t))(t − 1)}.

So, if to each x at the time-moments t = 0, 1, 2, . . . , t we associate the labels
(t, x(t), F∗

x0x(t), x∗(t − 1)), then the corresponding table allows us to find the opti-
mal trajectory successively starting from the final position, x f = x∗(t), x∗(t −
1), . . . , x∗(1), x∗(0) = x0. In the example given below all possible labels for every
x and every t are represented in Table 2.1.
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Table 2.1 The values F∗
x0,x(t) and x∗(t − 1)

t x, F∗ 0 1 2 3 4 5

0 F∗
x0,x(0) 0 ∞ ∞ ∞ ∞ ∞

x∗(0 − 1) − − − − − −
1 F∗

x0,x(1) ∞ 1 ∞ 1 ∞ ∞
x∗(0) − 0∗ − 0 − −

2 F∗
x0,x(2) ∞ 3 2 ∞ 5 2

x∗(1) − 3 1∗ − 3 1

3 F∗
x0,x(3) ∞ ∞ 5 6 4 3

x∗(2) − − 1 2∗ 2 2

4 F∗
x0,x(4) ∞ 12 ∞ 11 8 6

x∗(3) − 3∗ − 2 2 2

5 F∗
x0,x(5) ∞ 19 16 ∞ 21 16

x∗(4) − 3 1 − 3 1∗

0 

4 3 

1 5 

2 

Fig. 2.13 The structure of the dynamic network

This problem can be extended to the case if the final state x f should be reached at
the moment of time t (x f ) from a given interval [t1, t2]. If t1 �= t2 then the problem
can be reduced to t2−t1+1 problems with t = t1, t = t1+1, t = t1+2, . . . , t = t2,
respectively; by comparing the minimal total costs of these problems we find the best
one and t (x f ).

An important case of the considered problem is if t1 = 0 and t2 = ∞. The
solution of the problem with such a condition if the network may contain directed
cycles has sense only for positive and non-decreasing cost functions ce(t) on the
edges e ∈ E . Obviously, for this case we obtain 0 ≤ t (x f ) ≤ |X | and the problem
can be solved in time O(|X |3) (the case with a free number of stages).

Example Let the dynamic network determined by the graph G = (X, E) represented
in Fig. 2.13 be given. The cost functions are the following:
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c(0,1)(t) = c(0,3)(t) = c(2,5)(t) = 1;
c(2,3)(t) = c(3,1)(t) = 2t; c(3,4)(t) = 2t + 2;
c(1,2)(t) = c(2,4)(t) = c(1,5)(t) = t; c(4,5)(t) = 2t + 1.

We consider the problem of finding a trajectory in G from x(0) = x0 = 0 to
x f = 5, where T = 5.

Using the recursive formula described above we get Table 2.1 with values
F∗

x0x(t)(t) and x∗(t − 1).
Starting from the final state x f = 5 we find the optimal trajectory

5∗ ← 1∗ ← 3∗ ← 2∗ ← 1∗ ← 0∗

with total cost Fx0,x(5)(5) = 16.
The considered non-stationary control problem has been extended and general-

ized in [71, 79] as non linear minimum cost flow problems on dynamic networks.
Algorithms based on time-expanded network methods for such a class of problems
are described in [70, 71, 79, 93, 94].

2.9 Discrete Decision Problems with Varying Time of State’s
Transitions and Special Solution Algorithms

So far, in the control problems with average and discounted optimization cost criteria
we have considered that the time between transitions in the control process is constant
and it is equal to 1. We extend these problems and generalize these problems by
assuming that the time of system’s transition from one state to another in the decision
process vary and it may be different from 1. Such a problem statement may be useful
for studying and solving the decision models for the case of Semi-Markov processes.
In this section we show that the deterministic problem with varying time of states’
transitions can be reduced to the problem with a fixed unit time of system transitions
from one state to another.

2.9.1 Problem Formulation

At first we formulate the control problem with an average cost optimization criterion
when the transition time between the states is not constant.

Let the dynamical system L with a finite set of states X ⊆ R
n be given, where at

every discrete moment of time t = 0, 1, 2, . . . the state of L is x(t) ∈ X . Assume,
that the control of the system L at each time-moment t = 0, 1, 2, . . . for an arbitrary
state x(t) is realized by using the vector of control parameters u(t) ∈ R

m for which
a feasible set Ut (x(t)) is given, i.e., u(t) ∈ Ut (x(t)). For arbitrary t and x(t) on
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Ut (x(t)) it is defined an integer function

τx(t) : Ut (x(t)) → N

which represents to each control u(t) ∈ Ut (x(t)) an integer value τx(t) (u(t)). This
value expresses the time of system’s transition from the state x(t) to the state x

(
t +

τx(t) (u(t))
)

if the control u(t) ∈ Ut (x(t)) has been applied at the moment t for a
given state x(t).

The dynamics of the system L is described by the following system of difference
equations

⎧
⎪⎪⎨

⎪⎪⎩

t j+1 = t j + τx(t j )

(
u(t j )

) ;
x(t j+1) = gt j

(
x(t j ),u(t j )

) ;
u(t j ) ∈ Ut j

(
x(t j )

) ;
j = 0, 1, 2, . . . ,

where

x(t0) = 0, t0 = 0

is a given starting state of the dynamical systemL. Here we suppose that the functions
gt and τx(t) are known and t j+1 and x(t j+1) are determined uniquely by x(t j ) and
u(t j ) at each step j .

Let u(t j ), j = 0, 1, 2, . . ., be a control, which generates the trajectory x(0),
x(t1), x(t2), . . ., x(tk), . . .. For this control we define the mean integral-time cost by
a trajectory

Fx0 (u(t)) = lim
k→∞

∑k−1

j=1
ct j

(
x(t j ), gt j

(
x(t j ), u(t j )

) )

∑k−1

j=0
τx(t j )(u(t j ))

where ct j

(
x(t j ), gt j

(
x(t j ), u(t j )

) ) = ct j

(
x(t j ), x(t j+1)

)
represents the cost of the

system L to pass from the state x(t j ) to the state x(t j+1) at the stage [ j, j + 1].
We consider the problem of finding the time-moments t = 0, t1, t2, . . ., tk−1,

. . . and the vectors of control parameters u(0), u(t1), u(t2), . . ., u(tk−1), . . . which
satisfy the conditions mentioned above and minimize the functional Fx0 (u(t)).

In the case of τx(t)(u(t)) ≡ 1 for every t and x(t) this problem becomes the
control problem with unit time of states’ transitions. The problem of determining the
stationary control with unit time of states’ transitions has been studied in [5, 53, 65,
73, 117]. In the mentioned papers it is assumed that Ut (x(t)), gt and ct do not depend
on t , i.e., gt = g, ct = c and Ut (x) = U (x) for t = 0, 1, 2, . . .. Richard Bellman
showed in [5] that for the stationary case of the problem with unit time of states’
transitions there exists an optimal stationary control u∗(0), u∗(1), . . ., u∗(t), . . .
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such that

lim
k→∞

∑k−1

t=0
c
(
x(t), g

(
x(t),u∗(t)

) )

k

= inf
u(t)

lim
k→∞

∑k−1

t=0
c
(
x(t), g (x(t),u(t))

)

k
= λ < ∞.

Furthermore in [65, 117] it is shown that the stationary case of the problem can
be reduced to the problem of finding the optimal mean cost cycle in a graph of
states’ transitions of a dynamical system. Based on these results in [18, 53, 73, 117]
polynomial-time algorithms for finding the optimal stationary control are proposed.
This variant of the problem can be solved by using the linear programming problem
(2.18), (2.19) from Sect. 2.2.4.

Below we extend the results mentioned above to the general stationary case of
the problem with arbitrary transit-time functions τx . We show that this problem can
be formulated as the problem of determining the optimal mean cost cycles in the
graph of states’ transitions of the dynamical system for an arbitrary transition-time
function on the edges.

For the discounted control problem with varying time of states’ transitions the
dynamics is determined in the same way as for the problem above; but the objective
function which has to be minimized is defined as follows:

F̂x0(u(t)) =
∞∑

j=0

γt j c
(
x(t j ), g

(
x(t j ),u(t j )

) )
,

where γ, 0 < γ < 1, is a given discounted factor.

2.9.2 A Linear Programming Approach for the Problem with
Arbitrary Transition Costs

We consider the stationary case of the deterministic transition control problem, i.e.,
when gt , ct , Ut (x(t)), u(t) do not depend on t and the transition function τx(t)

depends only on the state x and on the control ux in the state x . So, gt = g, ct = c,
Ut (x) = U (x), τx(t) = τ (x,ux ) for u(t) = ux ∈ U (x), ∀x ∈ X, t = 0, 1, 2, . . ..

In this case it is convenient to study the problem on a network where the dynamics
of the system is described by the graph of states’ transitions G = (X, E). An arbitrary
vertex x of G corresponds to a state x ∈ X and an arbitrary directed edge e = (x, y) ∈
E expresses the possibility of the system L to pass from the state x(t) to the state
x(t + τe), where τe is the time of the system’s transition from the state x to the
state y through the edge e = (x, y). So, on the edge set E it is defined the function
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τ : E → R
+ which associates to each edge a positive number τe which means that if

the systemL at the moment of time t is in the state x = x(t) then the system can reach
the state y at the moment of time t + τe if it passes through the edge e = (x, y),
i.e., y = x(t + τe). In addition, on the edge set E it is defined the cost function
c : E → R, which associates to each edge the cost ce of the system’s transition from
the state x = x(t) to the state y = x(t + τe) for an arbitrary discrete moment of time
t . So, finally we have that to each edge e = (x, y) ∈ E the cost ce and the transition
time τe from x to y are associated.

In G an arbitrary edge e = (x, y) corresponds to a control in the initial problem
and the set of edges E(x) = {e = (x, y) | (x, y) ∈ E} originating in the vertex x
corresponds to the feasible set U (x) of the vectors of control parameters in the state
x . The transition time function τ in G is induced by the transition time function τx

for the stationary control problem.
It is easy to observe that the infinite horizon control problem with a varying time

of states’ transitions of the system on G can be regarded as the problem of finding
in G the minimal mean cost cycle C∗

G that can be reached from the vertex x0 where
the vertex x0 corresponds to the starting state x0 = x(0) of the dynamical system
L. Indeed, a stationary control in G corresponds to a fixed transition from a vertex
x ∈ X to another vertex y ∈ X through a directed edge e = (x, y) in G. Such a
strategy of states’ transitions of the dynamical system in G generates a trajectory
which leads to a directed cycle CG with the set of edges E(CG). Therefore, the
considered stationary control problem on G is reduced to the problem of finding the
minimal mean cost cycle that can be reached from x0, where in G to each directed
edge e = (x, y) ∈ E the cost ce and the transition time τe of the system’s transition
from the state x = x(t) to the state y = x(t + τe) are associated.

If the minimal mean cost cycle C∗
G in G is known then the stationary optimal

control for our problem can be found by the following way: In G we fix an arbitrary
simple directed path P(x0, xk) with the set of edges E(P(x0, xk)) which connects
the vertex x0 with the cycle C∗

G . After that for an arbitrary state x ∈ X we choose
a stationary control which corresponds to a unique directed edge e = (x, y) ∈
E(P(x0, xk)) ∪ E(C∗). For such a stationary control the following equality holds:

inf
u(t)

lim
k→∞

∑k−1

j=0
c
(
x(t0), g

(
x(t j ),u(t j )

) )

∑k−1

j=0
τx (u(t j ))

=
∑

e∈E(C∗)
ce

∑
e∈E(C∗)

τe

.

Note that the condition U (x) �= ∅, ∀x ∈ X , for the stationary case of the control
problem means that in G each vertex x contains at least one leaving directed edge e =
(x, y). We will assume that in G every vertex x ∈ X is attainable from x0; otherwise
we can delete vertices from X for which there are no directed paths P(x0, x) from
x0 to x . Moreover, without loss of generality, we may consider that G is a strongly
connected graph. Then the problem of finding the optimal stationary control for the
problem from Sect. 2.2.4 can be formulated as combinatorial optimization problem
on G in which it is necessary to find a directed cycle C∗

G such that
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∑

e∈E(C∗
G )

ce

∑

e∈E(C∗
G )

τe

= min
CG

∑

e∈E(CG )

ce

∑

e∈E(CG )

τe

.

The problem of determining the minimal mean cost cycle in a double weighted
directed graph has been studied in [19, 53, 63, 117]. In the cited works algorithms
based on linear programming and parametrical methods are proposed. For the prob-
lem with a unit time of states’ transitions in [53] a strongly polynomial time algorithm
is proposed.

In the following we describe an approach which is based on linear programming.
We can see that such an approach may be used for solving a more general class of
problems, as example, for the multi-criterion version of minimal mean cost cycle
problems [82].

We consider the following linear programming problem:
Minimize

z =
∑

e∈E

ceαe (2.147)

subject to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

e∈E+(x)

αe −
∑

e∈E−(x)

αe = 0, ∀x ∈ X;
∑

e∈E

τeαe = 1;

αe ≥ 0, ∀e ∈ E .

(2.148)

where E+(x) = {e = (x, y) ∈ E | y ∈ X}, E−(x) = {e = (y, x) ∈ E | y ∈ X}.
The following lemma holds.

Lemma 2.68 Let α = (
αe1,αe2 , . . . ,αem

)
be a feasible solution of the system

(2.148) and Gα = (Xα, Eα) be the subgraph of G, generated by the set of edges
Eα = {ei ∈ E | αei > 0}. Then an arbitrary extreme point α0 = (

α0
e1

,α0
e2

, . . . ,α0
em

)

of the polyhedron set determined by (2.148) corresponds to a subgraph Gα0 =
(Xα0 , Eα0) which has the structure of a simple directed cycle and vice versa,
i.e., if Gα0 = (Xα0 , Eα0) is a simple directed cycle in G then the solution
α0 = (

α0
e1

,α0
e2

, . . . ,α0
em

)
with

αo
ei

=

⎧
⎪⎪⎨

⎪⎪⎩

1
∑

e∈Eα0
τe

, if ei ∈ Eα0;

0, if ei /∈ Eα0
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corresponds to an extreme point of the set of solutions (2.148).

Proof Let α = (
αe1,αe2 , . . . ,αem

)
be an arbitrary feasible solution of the system

(2.148). Then it is easy to observe that Gα = (Xα, Eα) contains at least one directed
cycle. Indeed, for an arbitrary x ∈ Xα there exist at least one leaving edge e′ =
(x, y) ∈ Eα and at least one entering edge e′′ = (z, x) ∈ Eα; otherwise α does not
satisfy condition (2.148).

Let us show that if Gα is not a simple directed cycle then α does not represent
an extreme point of the set of solutions of the system (2.148). If Gα has not the
structure of a simple directed cycle then it contains a simple directed cycle C with
the set of edges E(CG) ⊂ Eα, i.e., m′ = |E(CG)| < m. Without loss of generality
we may consider that E(C) = {e1, e2, . . . , em′ }. Fix an arbitrary value θ such that
0 < θ < minei ∈E(C) αei and consider the following two solutions:

α1 = 1

1 − θ
∑m

i=1
τei

(
αe1 − θ, αe2 − θ, . . . , αem′ − θ, αem′+1

, . . . , αem

)
;

α2 = 1

θ
∑m

i=1
τei

(
θ, θ, . . . , θ︸ ︷︷ ︸

m′
, 0, 0, . . . , 0

)
.

It is easy to check that α1 and α2 satisfy the condition (2.148), i.e., α1 and α2

are feasible solutions of the problem (2.147), (2.148). If we chose θ such that 0 <

θ
∑m′

i=1 τei < 1 then we obtain that α can be represented as a convex combination
of feasible solutions α1 and α2, i.e.,

α =
(

1 − θ

m′∑

i=1

τe

)
α1 +

(
θ

m′∑

i=1

τe

)
α2. (2.149)

So, α is not an extreme point of the set of solutions (2.148). If Gα represents a simple
directed cycle then the representation (2.149) is not possible, i.e., the second part of
Lemma 2.68 holds. ��
Using Lemma 2.68 we can prove the following result.

Theorem 2.69 The optimal basic solution α∗ = (
α∗

e1
,α∗

e2
, . . . ,α∗

em

)
of problem

(2.147), (2.148) corresponds to a minimal mean cycle C∗
G = Gα∗ in G, i.e.,

α∗(ei ) =

⎧
⎪⎨

⎪⎩

1
∑

e∈E(C∗)
τe

, if e ∈ E(C∗);

0, if e /∈ E(C∗),

where E(C∗
G) is the set of edges of a directed cycle C∗

G.

Proof According to Lemma 2.68 an arbitrary extreme point α0 of the set of solutions
of system (2.148) corresponds in G to the subgraph Gα0 = (X0

α, E0
α) which has the
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structure of a directed cycle. Taking into account that the optimal solution of problem
(2.147), (2.148) is attained in an extreme point we obtain the proof of the theorem.��
The linear programming problem (2.147), (2.148) allows us to find the minimal
mean cycle in the graph G with positive values τe = τx,y, for e = (x, y) ∈ E .
More efficient algorithms for solving the problem can be obtained using the dual
problem (2.147), (2.148).

Theorem 2.70 If G is a strongly connected directed graph then there exists a func-
tion ε : X → R and the value λ such that:

(a) εy − εx + cx,y ≥ τx,y · λ, ∀(x, y) ∈ E;
(b) min

y∈O−(x)
{εy − εx + cx,y − τx,yλ} = 0, ∀x ∈ X;

(c) an arbitrary cycle C
∗ of the subgraph G0 = (X, E0) of G, generated by edges

(x, y) ∈ E for which εy − εx + cx,y − τx,y · λ = 0 determines a minimal mean
cycle in G.

Proof We consider the dual problem for (2.147), (2.148):
Maximize

W = λ

subject to

εx − εy + τx,yλ ≤ cx,y, ∀(x, y) ∈ E .

If p is the optimal value of the problem then by using duality properties of the solution
of the problem we obtain (a), (b) and (c). ��
Based on results described above we can make the following conclusions.

1. If λ = 0 then the values εx , x ∈ X can be treated as the cost of minimal paths
from vertices x ∈ X to a vertex x f which belongs to the minimal mean cycle
C∗

G (with λ = 0) in the graph G with given costs ce of edges e ∈ E . So, if x f is
known then the cycle C∗

G can be found in the following way. We construct the
tree of minimum cost directed paths from x ∈ X to x f and determine the values
εx , ∀x ∈ X . Then in G we make a transformation of the costs c′

x,y = εy−εx+cx,y

for (x, y) ∈ E and find the subgraph G0 = (X, E0) generated by edges (x, y)

with c′
x,y = 0. After that we fix in G0 a cycle C∗ with zero cost of the edges.

If the vertex x f is not known then we have to construct the tree of minimal cost
paths which respect to each x f ∈ X . So, in this case with respect to each tree we
find the subgraph G0 = (X, E0). Then at least for one of such a subgraph we
find a cycle C∗

G with zero cost (c′
x,y = 0) of the edges.

2. If λ �= 0 and λ is known then the minimal mean cost cycle C∗ can be found by the
following way. In G we change the costs cx,y of edges (x, y) ∈ E by cx,y −τx,yλ
and after that solve the problem with the new costs according to point 1.
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3. If λ �= 0 and it is not known then we find it using the bisection method on the
segment [h1

0, h2
0] where h1 = mine∈E ce, h2 = maxe∈E ce. At each step k of

the method we find the midpoint λk = (
h1

k + h2
k

)
/2 of the segment [h1

k, h2
k] and

check if in G with the cost ck
x,y − τx,yλk there exists the cycle with negative cost.

If at a given step there exists the cycle with negative cost then we fix h1
k+1 = h1

k,
h2

k+1 = λk; otherwise we put h1
k+1 = λk, h1

k+1 = h1
k. In such a way we find λ

with a given precision. After that the exact value of λ can be found from λk using
a special roundoff procedure from [58].

The algorithm described above allows us to determine the solution of the problem in
the case if τe ≥ 0,∀e ∈ E . In general this problem can be considered for arbitrary τe

and ce. In this case we may use the following fractional linear programming problem:
Minimize

z =
∑

e∈E
ceαe

∑
e∈E

τeαe

(2.150)

subject to
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

e∈E+(x)

αe −
∑

e∈E−(x)

αe = 0, ∀x ∈ X;
∑

e∈E

αe = 1;

αe ≥ 0, e ∈ E,

(2.151)

where E−(x) = {e = (y, x) ∈ E | y ∈ X}; E+(x) = {e = (x, y) ∈ E | y ∈ X}.
Of course, this model is valid if on the set of solutions of system (2.151) it holds∑
e∈E τeαe �= 0. In a similar way as for the linear programming problem here we

can show that an arbitrary optimal basic solution of the problem (2.150), (2.151)
corresponds to an optimal mean directed cycle in G.

Let α = (
αe1 ,αe2 , . . . ,αe|E |

)
be an arbitrary feasible solution of system (2.151)

and denote by Gα = (Xα, Eα) the subgraph of G generated by the set of edges
Eα = {e ∈ E | αe > 0}. In [73] it is shown that an arbitrary extreme point

α0 =
(
α0

e1
,α0

e2
, . . . ,α0

e|E |

)
of the set of solutions of system (2.151) corresponds

to a subgraph Gα0 = (Xα0 , Eα0) which has the structure of an elementary directed
cycle. Taking into account that for the problem (2.150), (2.151) there exists an opti-

mal solution α∗ =
(
α∗

e1
,α∗

e2
, . . . ,α∗

e|E |

)
which corresponds to an extreme point of

the set of solutions (2.151) we obtain that

max z =
∑

e∈Eα∗
ceα

∗
e

∑
e∈Eα∗

τeα
∗
e
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and the set of edges Eα∗ generates a directed cycle Gα∗ for which α∗
e = 1/|Eα∗ |,

∀e ∈ Eα∗ . Therefore,

max z =
∑

e∈Eα∗
ce

∑
e∈Eα∗

τe

.

So, an optimal solution of problem (2.150), (2.151) corresponds to the minimal mean
cost cycle in the directed graph of states’ transitions of the dynamical system.

This means that the fractional linear programming problem (2.150), (2.151) can
be used for determining the optimal solution of the problem in the general case.

2.9.3 Reduction of the Problem to the Case with Unit Time
of States’ Transitions

As we have shown the deterministic control problem with an average cost crite-
rion on the network can be solved for an arbitrary transition-time function using
a linear programming problem (2.147), (2.148) or a linear fractional programming
problem (2.150), (2.151). For the discounted control problem with varying time of
state transitions a similar linear programming model could not be derived. However,
both problems can be reduced to the corresponding cases of the problems with unit
time of states’ transitions of the system.

Below we describe a general scheme how to reduce the control problems with
varying time of states’ transitions to the case with unit time of states’ transition of
the system. We show that our problems can be reduced to the case with unit time
of states’ transitions on an auxiliary graph G ′ = (X ′, E ′) which is obtained from
G = (X, E) using a special construction. This means that after such a reduction we
can apply the linear programming approach described in Sect. 2.2.

Graph G ′ = (X ′, E ′) with unit transitions on directed edges e′ ∈ E ′ is obtained
from G where each directed edge e = (x, y) ∈ E with corresponding transition time
τe is changed by a sequence of directed edges

e′
1 = (x, xe

1), e′
2 = (xe

1, xe
2), . . . , e′

τe
= (xe

τe−1, y).

This means that we represent a transition from a state x = x(t) at the moment of
time t to the state y = x(t + τe) at the moment of time t + τe in G in G ′ as the
transition of a dynamical system from the state x = x(t) at the time-moment t to
y = x(t + τe) if the system makes transitions through a new fictive intermediate set
of states x ′

1, x ′
2, . . . , x ′

τ−1 at the corresponding discrete moments of time

t + 1, t + 2, . . . , t + τe − 1.
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x y

x=x(t)

τe

y=x(t+τe)

Fig. 2.14 The edge e = (x, y) with the associated transition time τe

• • •x x1 x2 xτe-1 y

τe edges

x(t) x(t+1) x(t+2) x(t+τe-1) x(t+τe)

Fig. 2.15 The intermediate states for the edge e = (x, y) in G ′

The graphical interpretation of this construction is represented in Figs. 2.14 and
2.15. In Fig. 2.14 it is represented an arbitrary directed edge e = (x, y) with the
corresponding transition time τe in G. In Fig. 2.15 it is represented the sequence of
directed edges e′

i and the intermediate states x1, x2, . . . , xτe−1 in G ′ that correspond
to a directed edge e = (x, y) in G. So, the set of of vertices X ′ of the graph G ′
consists of the set of states X and the set of intermediate states X E = {xe

i | e ∈
E, i = 1, 2, . . . , τe}, i.e., X ′ = X ∪ X E . Then the set of edges E ′ is defined as
follows:

E ′ =
⋃

e∈E

Ee, Ee = {(x, xe
1), (xe

1, xe
2), . . . , (xe

τe−1, y) | e = (x, y) ∈ E}.

We define the cost function c′ : E ′ → R in the following way:

c′
x,xe = cx,y, if e = (x, y) ∈ E;

c′
xe

1,xe
2

= cxe
2,xe

3
= · · · = cxτe−1,y = 0.

It is evident that between the set of stationary strategies

s : x → y ∈ X + (x) for x ∈ X

and the set of stationary strategies

s′ : x ′ → y′ ∈ X ′+(x ′) for x ′ ∈ X ′

there exists a bijective mapping such that the corresponding average and discounted
costs on G and on C ′ are the same. So, if s′∗ is the optimal stationary strategy of
the problem with unit transitions on G ′ then the optimal stationary strategy s∗ on
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G is determined by fixing s∗(x) = y if s′∗(x) = xe
1, where e = (x, y). For the

stochastic versions of the control problem on G = (X, E) the construction of the
auxiliary graph is similar. Here we should take into account that the set of vertices
(states) X are divided into two disjoint subsets XC and X N where XC correspond to
the set of controllable states and X N corresponds to the set of uncontrollable states.
Moreover, the probability function p : EN → [0, 1] on the set EN = {e = (x, y) ∈
E | x ∈ X N } is defined such that

∑
y∈X+(x) px,y = 1. The graph G ′ = (X ′, E ′) in

the case of stochastic control problems is constructed in the same way as above. Here
we have only to precise how to define the sets X ′

C , X ′
N and the probability function

p′ on the set E ′
N = {e′ = (x ′, y′) ∈ E ′ | x ′ ∈ X ′

N } in G ′. To obtain a bijective
mapping between the stationary strategies of the problems in the initial graph G and
the stationary strategies of the problem in the auxiliary graph it is necessary to take
X ′

C = XC , X ′
N = X ′\XC and to define the probability function p′ : E ′ → [0, 1] as

follows:

p′
x ′,y′ =

{
px,y, if x ′ = x, x ′ ∈ X N ⊂ X ′

N and y′ = x ′
1;

0, if x ′ ∈ X ′
N \X N .

The cost function on G ′ for the corresponding auxiliary stochastic control problems
is defined in the same way as for deterministic problems.

In the following we extend the approach described above to Semi-Markov decision
problems, which is valid for the stochastic control problem in its general form.

2.10 Determining the Optimal Strategies for Semi-Markov
Decision Problems

The average and discounted Markov decision problems can be extended to Semi-
Markov Decision Processes [113–115, 134, 140, 141]. A Semi-Markov decision
process is determined by a finite state space X , a finite set of actions A, a nonnegative
real function

p : A × X × X × {1, 2, . . . , t} → [0, 1]

that satisfies the condition

∑

y∈X

t∑

τ=1

pa
x,y,τ = 1, ∀a ∈ A

and the cost function

c : A × X × X × {1, 2, . . . , t} → R.
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Here the function p for a fixed action a ∈ A, arbitrary x, y ∈ X and a fixed τ ∈
{1, 2, . . . , t} determines the probability pa

x,y,τ of the system to pass from the state
x ∈ X to state y by using τ units of time. The function c for a fixed action a in the
state x ∈ X , a given y ∈ X and a fixed τ determines the cost ca

x,y,τ of the system
to pass from the state x to the state y using τ units of time. We define a stationary
strategy s in the Semi-Markov decision process as a map

s : x → a ∈ A(x) for x ∈ X,

where A(x) represents the set of actions in the state x ∈ X . An arbitrary stationary
strategy s induces a Semi-Markov process with the transition probabilitis ps

x,y,τ
and the transition costs cs

x,y,τ . For this Semi-Markov process with given transition
costs we can define the average cost per transition ωx0(s) and the expected total
discounted cost σ

γ
x0(s) if the system starts transitions in the state x0 at the moment

of time t = 0. The problems of determining stationary strategies with minimal
average and expected total discounted cost for Semi-Markov decision processes can
be formulated and studied in a similar way as for Markov decision processes.

Using the results from Sect. 1.9 we can reduce the considered decision problems to
the corresponding problems for an auxiliary Markov decision process. Indeed, for an
arbitrary action a ∈ A in a state x ∈ X , a given y ∈ X and fixed τ ∈ {1, 2, . . . , t} the
transition from x to y in Semi-Markov decision process we represent as a sequence
of τ transitions with unit time via τ fictive intermediate states

x → xa,τ
1 ,

xa,τ
1 → xa,τ

2 , . . . , xa,τ
τ−2 → xa,τ

τ−1,

xa,τ
τ−1 → y,

where the corresponding probabilities and transition costs are defined as follows:

px,xa,τ
1

= pa
x,y,τ ;

pxa,τ
1 ,xa,τ

2
= pxa,τ

2 ,xa,τ
3

= · · · = pxa,τ
τ−2,x

a,τ
τ−1

= pxa,τ
τ−1,y

= 1;
ca

x,xa,τ
1

= ca
x,y,τ ;

ca
xa,τ

1 ,xa,τ
2

= ca
xa,τ

2 ,xa,τ
3

= · · · = ca
xa,τ
τ−2,x

a,τ
τ−1

= ca
xa,τ
τ−1,y

= 0.

After that we consider a new Markov decision problem with a new set of states
X

′ = X ∪ X ′ obtained from X by adding the set of fictive intermediate states X ′
and new probability and cost functions defined above; the set of actions in the state
x ∈ X in the new problem are the same as for Semi-Markov decision problems and
in each added fictive state there is a unique action determined by a unique transition
to the next state with a probability equal to 1.

http://dx.doi.org/10.1007/978-3-319-11833-8_1
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It is evident that if s∗ is a optimal stationary strategy for the auxiliary decision
problem then an optimal stationary strategy s∗ of the Semi-Markov decision problem
(with average or discounted optimization criterion) can be found in the following
way:

s∗(x) = s∗(x) for x ∈ X.

In such a way we can reduce the Semi-Markov decision problem to the corresponding
auxiliary Markov decision problem.



http://www.springer.com/978-3-319-11832-1
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