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Abstract In this chapter, we consider the deconvolution modified Leray alpha (ML-
α-deconvolution) model with fractional filter acting only in one variable A3,θ =
I + α2θ

3 (−∂3)2θ , where 0 ≤ θ ≤ 1 controls the degree of smoothing in the filter.
We study the global existence and uniqueness of solutions to the vertical ML-α-
deconvolution model on a bounded product domain of the type D = Ω × (−π ,π ),
where Ω is a smooth domain with homogeneous Dirichlet boundary conditions on
the boundary ∂Ω × (−π ,π ), and with periodic boundary conditions in the vertical
variable. To present the model, we define the vertical N th Van Cittert deconvolution
operator by DN ,θ = ∑N

i=0 (I − A
−1
3,θ )

i . The vertical ML-α-deconvolution model is
then defined by replacing the nonlinear term in the Navier–Stokes equations (v · ∇)v
by (v · ∇)DN ,θ (v) where v is the velocity, and v = A

−1
3,θ (v) is the smoothed velocity.

We adapt the ideas from (H. Ali, Approximate Deconvolution Model in a bounded
domain with a vertical regularization. J Math Anal Appl 408, 355–363 (2013)) to
prove that the vertical ML-α-deconvolution model which is derived by using A3,θ ,
has a unique weak solution for any θ > 1

2 .

1 Introduction

In this chapter, we consider the deconvolution modified Leray alpha (ML-α-
deconvolution) model with fractional filter acting only in one variable

A3,θ := I + α2θ
3 (−∂3)2θ , 0 ≤ θ ≤ 1, (1)

where θ controls the degree of smoothing in the filter.
This filter is less memory consuming than the classical one (see, e.g., [3, 5, 7, 8]).

Moreover, there is no need to introduce artificial boundary conditions for Helmholtz
operator. It was shown in [4] that the Large Eddy Simulation models which are
derived by using A3,θ for any θ > 1

2 , are well posed. Motivated by this work [4],
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we study the global existence and uniqueness of solutions to the vertical ML-α-
deconvolution model on a bounded product domain of the type D = Ω × (−π ,π ),
where Ω is a smooth domain with homogeneous Dirichlet boundary conditions on
the boundary ∂Ω × (−π ,π ), and with periodic boundary conditions in the vertical
variable. To present the model, we define the vertical N th Van Cittert deconvolution
operator by

DN ,θ =
N∑

i=0

(I − A
−1
3,θ )

i . (2)

The vertical ML-α-deconvolution model is then defined, for some fixed θ > 0, with
a filtering radius α3 > 0, a kinematic viscosity ν > 0, a deconvolution orderN ≥ 0,
and an initial velocity v0 as follows,

∂tv + (v · ∇)DN ,θ (v) − νΔv + ∇p = f , (3)

∇ · v = 0, (4)

v(0) = v0, (5)

where v and p are the velocity and the pressure, v = A
−1
3,θ (v) is the smoothed velocity,

and f is a forcing term.
For simplicity, we consider the domainD={x ∈R

3, x2
1 + x2

2 <d , −π <x3<π}
with 2π periodicity with respect to x3. Therefore, the deconvolution model in this
chapter is chosen to model the flow through a cylinder or a pipe with periodic bound-
ary conditions with respect to x3. We note that the filter is acting only in the vertical
variable, that is why it is possible to require the periodicity only in x3. Moreover, we
consider the unfiltered function with homogeneous Dirichlet boundary conditions
on the boundary ∂D = ∂Ω × (−π ,π ). These boundary conditions of the unfiltered
function are supposed to be the same as the filtered ones, in order to prevent from
introducing artificial boundary conditions. In order to state our main result, let us
define the following spaces:

L2(D) := {v ∈ L2(D)3, 2π -periodic in x3
}
, (6)

H := {v ∈L2(D), such that ∇ · v = 0 and v · n= 0 on ∂Ω × (−π ,π )
}
, (7)

V := {v ∈ H , such that ∇v ∈ L2(D) and v = 0 on ∂Ω × (−π ,π )
}
. (8)

Next, we give a definition of what is called a weak solution to the vertical ML-α-
deconvolution model.

Definition 1 Letf ∈ L2(0, T ;H ) and v0 ∈ H . For any 0 ≤ θ ≤ 1 and 0 ≤ N <∞,
the couple (v,p) is called a weak solution to (3)–(5) if

v ∈ Cw(0, T ;H ) ∩ L2(0, T ;V ), (9)
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and the couple (v,p) fulfills

∫ T

0
〈∂tv,ϕ〉 − 〈DN ,θ (v) ⊗ v,∇ϕ〉 + ν〈∇v,∇ϕ〉 + 〈∇p,ϕ〉 dt

=
∫ T

0
〈f ,ϕ〉 dt for all ϕ ∈ C∞

c ([0, T ] ×D).
(10)

Moreover,

v(0) = v0. (11)

Our main result is the following.

Theorem 1 Assume f ∈ L2(0, T ;H ) and v0 ∈ H . let 0 ≤ N <∞ be a given and
fixed number and let θ > 1

2 . Then problem (3)–(5) has a unique weak solution.
This result holds also true on the whole space R

3 and on the torus T3. The vertical
ML-α-deconvolution withN = 0 becomes the modified Leray alpha (ML-α) model
of turbulence [2, 6] with filter acting only in one variable. Consequently, Theorem
1 gives us also existence and uniqueness of solutions to the vertical ML-α model of
turbulence on the bounded domain D. Other α models, with partial filter, will be
reported in a forthcoming paper.

2 Notation and Auxiliary Result

In this section, we introduce relevant function spaces and we recall an auxiliary result
used in the proof of the main result.

Let 1 < p ≤ +∞ and 1 < q ≤ +∞.We denote by LqvL
p

h (D) = Lq((−π ,+π );
Lp(Ω)) the space of functions g such that (

∫ +π
−π (
∫
Ω
|g(x1, x2, x3)|pdx1dx2)q/pdx3)1/q

< +∞.
We denote by ‖v‖2 := ∫

D
v · v dx the usual norm in L2(D)3.

The following lemma will play an important role [4].

Lemma 1 There exists a positive constant C > 0 such that, for any s > 1
2 and for

any smooth enough divergence-free vector fields u, v, and w, the following estimate
holds,

|((u · ∇)v, w)| ≤ C‖u‖ 1
2
2 ‖∇u‖ 1

2
2

(
‖∇v‖1− 1

2s
2 ‖∂s3∇v‖ 1

2s
2 + ‖∇v‖2

)
‖w‖ 1

2
2 ‖∇w‖ 1

2
2 .

3 The Vertical Filter and the Vertical Deconvolution Operator

In this section, we record some properties of the vertical filter and of the
vertical deconvolution operator. Let v be a smooth function of the form
v = ∑

k3∈Z\{0} ck3 (x1, x2)ei k3x3 . The action of the vertical filter on v(x) =
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∑
k3∈Z\{0} ck3 (x1, x2)ei k3x3 can be written as A3,θ (v) = ∑k3∈Z\{0} Aθ (k3)ck3 (x1, x2)

ei k3x3 , where the symbol with respect to x3 of the vertical filter is given by

Aθ (k3) = (1 + α2θ |k3|2θ
)
. (12)

Therefore, by using the Parseval’s identity with respect to x3 we get,

‖A

1
2
3,θv‖2

2 = ‖v‖2
2 + α2θ‖∂θ3 v‖2

2 = (A3,θv, v
)
. (13)

The deconvolution operator DN ,θ = ∑N
i=0 (I − A

−1
3,θ )

i is constructed by using the
vertical filter with fractional regularization (1). For a fixed N > 0 and for θ = 1, we
recover a vertical operator form from the Van Cittert deconvolution operator.

A straightforward calculation yields

DN ,θ

⎛

⎝
∑

k3∈Z\{0}
ck3 (x1, x2)ei k3x3

⎞

⎠ =
∑

k3∈Z\{0}
DN ,θ (k3)ck3 (x1, x2)ei k3x3 , (14)

where for k3 ∈ Z \ {0} and θ ≥ 0, DN ,θ (k3) verifies:

D0,θ (k3) = 1, (15)

1 ≤ DN ,θ (k3) ≤ N + 1 for each N > 0, (16)

and DN ,θ (k3) ≤ A3,θ for a fixed α > 0. (17)

From the previous hypothesis, one can prove the following Lemma by adapting the
results summarized in the isotropic case in [1]:

Lemma 2 For all s ≥ −1, θ ≥ 0, k3 ∈ Z \ {0} and for each N > 0, there exists a
constant C > 0 such that for all v sufficiently smooth we have

‖v‖s,2 ≤ ‖DN ,θ (v) ‖s,2 ≤ (N + 1)‖v‖s,2, (18)

‖A3,θ
− 1

2D
1
2
N ,θ (v)‖s,2 ≤ ‖v‖s,2, (19)

‖A
− 1

2
3,θ (v)‖2

s,2 = ‖v‖2
s,2 + α2θ

3 ‖∂θ3 v‖2
s,2. (20)

4 Sketch of the Proof of the Main Result

We briefly present the main ideas of the proof of Theorem 1. The proof follows from
the following a priori estimates with a Galerkin method.

For further information, we refer the reader to [1, 4] and the references therein.

Proof Multiplying (3) with DN ,θ (v) integrating over time from 0 to t , for all t ∈
[0, T ], and using standard manipulations lead to the a priori estimate

1

2
‖A

− 1
2

θ D
1
2
N ,θ (v)‖2

2 + ν
∫ t

0
‖∇A

− 1
2

θ D
1
2
N ,θ (v)‖2

2 ds

=
∫ t

0
〈A− 1

2
θ D

1
2
N ,θ (f ), A

− 1
2

θ D
1
2
N ,θ (v)〉 ds + 1

2
‖A

− 1
2

θ D
1
2
N ,θ (v0)‖2

2.

(21)
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By using the duality norm combined with Young inequality and inequality (19), we
conclude from (21) that

sup
t∈[0,T ]

‖A
− 1

2
θ D

1
2
N ,θ (v)‖2

2 + ν
∫ T

0
‖∇A

− 1
2

θ D
1
2
N ,θ (v)‖2

2 dt

≤ ‖v0‖2
2 + C

ν

∫ T

0
‖f ‖2

2 dt.

(22)

We deduce from (22) and (20) that

v and ∂θ3 v ∈ L∞(0, T ;H ) ∩ L2(0, T ;V ). (23)

Thus, it follows from (18) that

DN ,θ (v
n) and ∂θ3DN ,θ (v

n) ∈ L∞(0, T ;H ) ∩ L2(0, T ;V ). (24)

Multiplying (3) with v we conclude that

1

2

d

dt
‖v‖2

2 + ν‖∇v‖2
2 ≤ ∣∣((v · ∇)DN ,θ (v), v

)∣∣+ |〈f , v〉| . (25)

For θ > 1
2 we have

∣∣((v · ∇)DN ,θ (v), v
)∣∣ ≤ C‖v‖2‖∇v‖2

×
(
‖∇DN ,θ (v)‖1− 1

2θ
2 ‖∂θ3 ∇DN ,θ (v)‖ 1

2θ
2 + ‖∇DN ,θ (v)‖2

)

≤ C
(
‖∇DN ,θ (v)‖2− 1

θ

2 ‖∂θ3 ∇DN ,θ (v)‖ 1
θ

2 + ‖∇DN ,θ (v)‖2
2

)

× ‖v‖2
2 + ν

4
‖∇v‖2

2, (26)

where we have used Lemma 1 and the Young inequality.
The second term in right hand side of (25) is estimated by

|〈f , v〉| ≤ C‖f ‖2‖∇v‖2 ≤ C‖f ‖2
2 + ν

4
‖∇v‖2

2. (27)

Thus, (26) and (27) lead to the conclusion that

d

dt
‖v‖2

2 + ν‖∇v‖2
2 ≤

C

(
‖∇DN ,θ (v)‖2− 1

θ

2 ‖∂θ3 ∇DN ,θ (v)‖ 1
θ

2 + ‖∇DN ,θ (v)‖2
2

)
‖v‖2

2 + C‖f ‖2
2.

(28)

Integrating (28) over time from 0 to T and using Gronwall’s Lemma and (24) lead
to the following estimate

sup
t∈[0,T ]

‖v‖2
2 + ν

∫ T

0
‖∇v‖2

2 dt ≤ C. (29)
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We deduce from (29) that

v ∈ L∞(0, T ;H ) ∩ L2(0, T ;V ). (30)

Finally, we check the question of the uniqueness of the solution. Let θ > 1
2 and

let (v1,p1) and (v2,p2) be any weak solutions of (3)–(5) on the interval [0, T ], with
initial values v1(0) and v2(0). Let us denote by δv = v2 − v1 and δDN ,θ (v) =
DN ,θ (v2) − DN ,θ (v1). We subtract the equation for v1 from the equation for v2 and
test it with δv, we formally get:

d

dt
‖δv‖2

2 + ν‖∇δv‖2
2

≤ C‖∇DN ,θ (v1)‖2− 1
θ

2 ‖∂θ3 ∇DN ,θ (v1)‖ 1
θ

2 ‖δv‖2
2 + C‖v2‖2

2‖∇v2‖2
2‖δv‖2

2

(31)

where we have used Lemma 1, theYoung inequality and the fact that ‖∇δDN ,θ (v)‖2 ≤
C‖∇δv‖2 and ‖∇∂θ3 δDN ,θ (v)‖2 ≤ C‖∇δv‖2.

Since ‖∇DN ,θ (v1)‖2− 1
θ

2 ‖∂θ3 ∇DN ,θ (v1)‖ 1
θ

2 + ‖v2‖2
2‖∇v2‖2

2 ∈ L1([0, T ]), we con-
clude by using Gronwall’s inequality the continuous dependence of the solutions on
the initial data in the L∞(0, T ;H ) norm. In particular, if δv0 = 0 then δv = 0 and
the solutions are unique for all t ∈ [0, T ]. �
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