
Chapter 2
Modern Cryptography

The art of cryptographic algorithms is an ever evolving field. Initiating from prehis-
toric times, the main objective of cryptographic algorithms have been to protect and
allow usage of information in a legal manner. Encryption is a process of converting a
plaintext message into a piece of random-looking text, often called ciphertext. The ci-
phertext, ideally, should contain or transfer no information to the curious third party,
often referred to as the adversary. In order to allow the intended receiver to obtain
back the message from the ciphertext, every encryption algorithm is reversible. Thus,
the inverse operation of obtaining back the plaintext from the ciphertext, is called
decryption. According to the wisdom in cryptography, the algorithms for encryption
and decryption are always published and known to even the adversary. Then what
does the security rely on? The mappings (from plaintext to ciphertext and vice versa)
depends on an information called the key, which is hidden from the attacker. While
the goal of cryptography is to design and construct such ciphering algorithms, the
objective of cryptanalysis is to develop techniques to obtain the key more efficiently
than making a random guess on the key. There are different classes of cryptographic
algorithms, depending on their objectives. While secrecy is the obvious require-
ment, there are other important goals too; for example, algorithms to guarantee the
integrity of information, or methods to ensure that one cannot deny a commitment
to a transaction (often called the property of nonrepudiation). Then there are algo-
rithms which ensures that authenticity is maintained in a communication, and legal
parties can trust with whom they are communicating. In this book we mainly target
cryptographic algorithms, with respect to secrecy of data. But often these construc-
tions can be used for achieving the other requirements, namely authentication and
nonrepudiation. Hash functions, which are used for integrity checks are not in the
scope of this book.

2.1 Types of Encryption Algorithms

For ciphers, there is an encryption key (Ka) and a decryption key (Kb), which are
equal for certain classes of algorithms (called symmetric-key ciphers) and different
for the other class (called asymmetric-key ciphers). The scenario of a cryptographic

© Springer International Publishing Switzerland 2015 13
C. Rebeiro et al., Timing Channels in Cryptography,
DOI 10.1007/978-3-319-12370-7_2



14 2 Modern Cryptography

Eavesdropper

Message
Source

Encryption

Key
Source

Insecure Channel

Secure Channel

Decryption Message
Destination(Ka)

(Kb)

Fig. 2.1 Secret key cryptosystem model

communication is illustrated in Fig. 2.1. The encryptor uses a key Ka and the decryp-
tor a key Kb, where depending on the equality of Ka and Kb there are two important
classes of cryptographic algorithms. More precisely, the two classes of ciphers are:

• Private-key (or symmetric) ciphers: These ciphers have the same key shared
between the sender and the receiver. Thus, referring to Fig. 2.1 Ka = Kb.

• Public-key (or asymmetric) ciphers: In these ciphers we have Ka �= Kb. The
encryption key and the decryption keys are different.

As in symmetric-key or private-key algorithms both the encryptor and decryptor use
the same key, it must somehow be securely exchanged before secret key commu-
nication can begin. The key exchange is a major bottleneck and for n-parties in a
network, the number of key exchanges required can grow quite fast (nC2 ways).
However, these algorithms are often fast and are used for bulk data encryption. Two
important subclasses of symmetric-key algorithms are block ciphers and stream ci-
phers. Block ciphers, as the name suggest operates on fixed blocks or chunks of data,
while stream ciphers operate on bits or few bits of data (thus the encryption takes
place like a stream!). The Advanced Encryption Standard (AES) is a very popular
block cipher, while Trivium is a popular stream cipher.

Public-key algorithms, on the other hand, provide a nice solution to the key-
exchange problem. In such algorithms, as we discussed the encryption and decryption
keys are different. The algorithms have a key pair, consisting of (i) Public key, which
can be freely distributed and is used to encrypt messages. In Fig. 2.1, this is denoted
by the key Ka , and (ii) Private key, which must be kept secret and is used to decrypt
messages. The decryption key is denoted by Kb in the Fig. 2.1.

In the public key or asymmetric ciphers, the two parties—often called Alice and
Bob—are communicating with each other and have their own key pair. They distribute
their public keys freely. Mallory (or the adversary) has the knowledge of not only
the encryption function, the decryption function, and the ciphertext, but also has the
capability to encrypt the messages using Bob’s public key. However, she is unaware
of the secret decryption key, which is the private key of the algorithm. The security



2.2 Block Ciphers: An Important Family of Symmetric-Key Ciphers 15

of these classes of algorithms rely on the assumption that it is computationally hard
or complex to obtain the private key from the public information. Doing so would
imply that the adversary solves a mathematical problem which is widely believed
to be difficult. It may be noted that we do not have any proofs for their hardness;
however, we are unaware of any efficient techniques to solve them. The elegance of
constructing these ciphers lies in the fact that the public keys and private keys still
have to be related in the sense, that they perform the invertible operations to obtain
the message back. This is achieved through a class of magical functions, which are
called one-way functions. These functions are easy to compute in one direction,
while computing the inverse from the output is believed to be a difficult problem.
RSA is a famous public-key algorithm for this class of ciphers.

Example 2.1 This cipher is called the famous RSA algorithm (Rivest Shamir Adle-
man). Let n = pq, where p and q are properly chosen and large prime numbers. Here
the proper choice of p and q are to ensure that factorization of n is mathematically
complex. The plaintexts and ciphertexts are P = C = Zn, the keys are Ka = {n, a}
and Kb = {b, p, q}, such that ab ≡ 1 mod φ(n). The encryption and decryption
functions are defined as, ∀x ∈ P , eKa

(x) = y = xa mod n and dKb
(y) = yb mod n.

Both symmetric-key ciphers and asymmetric-key ciphers are widely studied. We
provide a quick overview on some facts, which we use in the book.

2.2 Block Ciphers: An Important Family of Symmetric-Key
Ciphers

The book develops a general theory for time-driven cache attacks on block ciphers.
The theory can be applied to any cipher with an iterative structure that is imple-
mented with look-up tables. To test the theory we selected few ciphers, like AES,
CAMELLIA, and CLEFIA. AES was chosen because it is the world wide standard.
It has a substitution permutation network (SPN) structure and the implementation
generally used has 5 large tables of 1024 bytes. The first four tables are invoked 36
times per 128-bit encryption, while the last table is invoked 16 times. Many of the
latest CPUs support dedicated instructions for AES [1], on which cache attacks fail.
Besides SPN, most cipher designs follow the Feistel structure (Fig. 2.2). The figure
shows the rth round of a Feistel block cipher. The block is divided into two parts, Lr

(Left) and Rr (Right), which are recursively computed as Lr = Rr−1 ⊕ F(Lr−1, kr ),
and Rr = Lr−1. The transformation F is composed of several nonlinear transforma-
tions or S-Boxes, and combine the round key kr with a portion of the block. The
reversibility of the round does not depend on whether the nonlinear layer F is in-
vertible or not. The rounds are repeated for certain number of iterations to ensure
sufficient security margin against known attacks.

We chose CAMELLIA as a representative of these ciphers. The third cipher we
chose is CLEFIA, which has a generalized Feistel structure [2] and a round function
which is conceptually similar to that ofAES. Further, unlike theAES implementation
considered, CLEFIA and CAMELLIA implementations used small tables of 256
bytes. This section provides a brief description of each cipher algorithm.



16 2 Modern Cryptography

Fig. 2.2 Feistel structure of a
block cipher

Lr−1

kr

Rr−1

F

Lr Rr

2.2.1 AES

In 2001, the National Institute of Standards and Technology (NIST) recommended
the use of Rijndael as the AES [3]. AES is a symmetric-key block cipher and can
use key sizes of either 128, 192, or 256 bits to encrypt and decrypt 128-bit blocks.
We summarize the AES-128 standard, which uses a key size of 128 bits. The input
to AES-128 is arranged in a 4 × 4 matrix of bytes called state. The state undergoes
a series of transformations in ten rounds during the encryption process.

Algorithm 2.1 presents the AES-128 algorithm. The first operation on the input is
the AddRoundKeys, which serves to provide the initial randomness by mixing the
input key. The state is then subjected to nine rounds to further increase the diffusion
and confusion in the cipher [4]. Each round comprises four operations on the state:
SubBytes, ShiftRows, MixColumns, and AddRoundKeys. The state is then sub-
jected to a final round, which has all operations except the MixColumns operation.

The four AES operations are defined as follows:



2.2 Block Ciphers: An Important Family of Symmetric-Key Ciphers 17

• AddRoundKeys : Each element in the state is subjected to a bitwise ex-or with
a 128-bit round key. The round key is generated from the secret key by a key
expansion algorithm as in Algorithm 2.2 [4].

• SubBytes : Each element in the state is replaced by an affine transformation of
its inverse in the field GF (28). For a byte si in the state, this operation is denoted
by S(si).

• ShiftRows : Provides a cyclic shift of the ith row in the state by i bytes toward
the left (where 0 ≤ i ≤ 3). That is, each byte in the ith row is cyclically shifted
to the left by i bytes.

• MixColumns : Provides a column-wise linear transformation of the state matrix.
Each column of the state matrix is considered as a polynomial of degree 3 with
coefficients in GF (28) and multiplied by the polynomial {03}α3 + {01}α2 +
{01}α + {02} mod (α4 + 1). The combination of ShiftRows and MixColumns
provide the necessary diffusion for the cipher.

Key Expansion Algorithm [3] takes the secret key as input and generates round
keys for 11 AddRoundKeys operations performed in AES. Key expansion as in
Algorithm 2.2 uses two operations ROTWORD and SUBWORD which performs
cyclic shift and substituition of four bytes (B0, B1, B2, B3) as

ROTWORD(B0, B1, B2, B3) = (B1, B2, B3, B0) (2.1)
and

SUBWORD(B0, B1, B2, B3) = (SubBytes(B0), SubBytes(B1), SubBytes(B2),

SubBytes(B3)) (2.2)



18 2 Modern Cryptography

In addition to this, AES involves a round constant term that is defined as
RCon[1], · · · , RCon[10] as constants in hexadecimal before the key expansion
Algorithm 2.2.

Starting from the 4 × 4 byte state, Fig. 2.3 shows the transformation it undergoes
in a round (for 1 ≤ r ≤ 9).

2.2.1.1 Software Implementations of AES

Of all operations, the SubBytes is the most difficult to implement. On 8-bit micro-
controllers, a 256-byte look-up table is ideal to perform this operation. The table
provides the necessary flexibility in terms of content, small footprint, and speed. For
32-bit platforms, more efficient implementations can be built using larger tables. We
give a brief description of this method, which is known as T -table implementations.
T -table implementations were first proposed in [5] and has been adopted by several
crypto-libraries such as OpenSSL1.

Consider four look-up tables defined as follows:

T0[z] =

⎡

⎢⎢⎢⎢⎢⎣

02 • S(z)

S(z)

S(z)

03 • S(z)

⎤

⎥⎥⎥⎥⎥⎦
; T1[z] =

⎡

⎢⎢⎢⎢⎢⎣

03 • S(z)

02 • S(z)

S(z)

S(z)

⎤

⎥⎥⎥⎥⎥⎦
; T2[z] =

⎡

⎢⎢⎢⎢⎢⎣

S(z)

03 • S(z)

02 • S(z)

S(z)

⎤

⎥⎥⎥⎥⎥⎦
;

T3[z] =

⎡

⎢⎢⎢⎢⎢⎣

S(z)

S(z)

03 • S(z)

02 • S(z)

⎤

⎥⎥⎥⎥⎥⎦
(2.3)

Each table is of 1024 bytes mapping a byte z of the state to a 32-bit value. Using
these tables, the first nine AES rounds can be expressed as follows

s(r+1) =T0[s(r)
0 ] ⊕ T1[s(r)

5 ] ⊕ T2[s(r)
10 ] ⊕ T3[s(r)

15 ] ⊕ [k(r)
0 k

(r)
1 k

(r)
2 k

(r)
3 ]T ‖

T0[s(r)
4 ] ⊕ T1[s(r)

9 ] ⊕ T2[s(r)
14 ] ⊕ T3[s(r)

3 ] ⊕ [k(r)
4 k

(r)
5 k

(r)
6 k

(r)
7 ]T ‖ (2.4)

T0[s(r)
8 ] ⊕ T1[s(r)

13 ] ⊕ T2[s(r)
2 ] ⊕ T3[s(r)

7 ] ⊕ [k(r)
8 k

(r)
9 k

(r)
10 k

(r)
11 ]T ‖

T0[s(r)
12 ] ⊕ T1[s(r)

1 ] ⊕ T2[s(r)
6 ] ⊕ T3[s(r)

11 ] ⊕ [k(r)
12 k

(r)
13 k

(r)
14 k

(r)
15 ]T

A byte of the state in the current round (s(r)) is denoted s
(r)
i and the next round state

is denoted s(r+1), where 0 ≤ r ≤ 9 and 0 ≤ i ≤ 15. The final round cannot use these
tables due to the absence of the MixColumns operation.

1 http://www.openssl.org.



2.2 Block Ciphers: An Important Family of Symmetric-Key Ciphers 19

Fig. 2.3 Transformations of
the state in a round of AES
(1 ≤ r ≤ 9)

S(s15)

S(s14)

S(s13)

S(s12)S(s0)

S(s1)

S(s2)

S(s5)

S(s4) S(s8)

S(s9)

S(s10)

S(s11)

S(s6)

S(s7)S(s3)

S(s11)

S(s6)

S(s1)

S(s12)S(s0)

S(s5)

S(s10)

S(s15)

S(s9)

S(s4) S(s8)

S(s13)

S(s2)

S(s7)

S(s14)

S(s3)

2s12 ⊕ 3s1⊕
s6 ⊕ s11

3s6 ⊕ s11

s12 ⊕ 2s1⊕

s12 ⊕ s1⊕
2s6 ⊕ 3s11
3s12 ⊕ s1⊕
s6 ⊕ 2s11

2s8 ⊕ 3s13⊕
s2 ⊕ s7

3s2 ⊕ s7

s8 ⊕ 2s13⊕

s8 ⊕ s13⊕
2s2 ⊕ 3s7
3s8 ⊕ s13⊕
s2 ⊕ 2s7

2s0 ⊕ 3s5⊕
s10 ⊕ s15

3s10 ⊕ s15

s0 ⊕ 2s5⊕

s0 ⊕ s5⊕
2s10 ⊕ 3s15
3s0 ⊕ s5⊕
s10 ⊕ 2s15

2s4 ⊕ 3s9⊕
s14 ⊕ s3

3s14 ⊕ s3

s4 ⊕ 2s9⊕

s4 ⊕ s9⊕
2s14 ⊕ 3s3
3s4 ⊕ s9⊕
s14 ⊕ 2s3

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

2s8 ⊕ 3s13⊕
s2 ⊕ s7 ⊕ k8

3s2 ⊕ s7 ⊕ k9

s8 ⊕ 2s13⊕

s8 ⊕ s13⊕
2s2 ⊕ 3s7 ⊕ k10

3s8 ⊕ s13⊕
s2 ⊕ 2s7 ⊕ k11

2s4 ⊕ 3s9 ⊕ s14
⊕s3 ⊕ k4

⊕s3 ⊕ k5

s4 ⊕ 2s9 ⊕ 3s14

s4 ⊕ s9 ⊕ 2s14
⊕3s3 ⊕ k6

3s4 ⊕ s9 ⊕ s14
⊕2s3 ⊕ k7

2s12 ⊕ 3s1⊕
s6 ⊕ s11 ⊕ k12

3s6 ⊕ s11 ⊕ k13

s12 ⊕ 2s1⊕

s12 ⊕ s1⊕
2s6 ⊕ 3s11 ⊕ k14

3s12 ⊕ s1⊕
s6 ⊕ 2s11 ⊕ k15

2s0 ⊕ 3s5⊕
s10 ⊕ s15 ⊕ k0

3s10 ⊕ s15 ⊕ k1

s0 ⊕ 2s5⊕

s0 ⊕ s5⊕
2s10 ⊕ 3s15 ⊕ k2

3s0 ⊕ s5⊕
s10 ⊕ 2s15 ⊕ k3

SubByte

ShiftRows

MixColumns

si for 0 ≤ i ≤ 15 is the elements of the state

where ki for 0 ≤ i ≤ 15 is the round key

AddRoundKey

where si = S(si) for 0 ≤ i ≤ 15



20 2 Modern Cryptography

2.2.2 CLEFIA

CLEFIA is a 128-bit block cipher developed by Sony [6] and is currently incorporated
in ISO/IEC 29192-2 as a light-weight block cipher standard. The specification [6, 7]
defines three key lengths of 128, 192, and 256 bits. This book considers 128-bit keys
though the results are valid for the other key sizes also. The structure of CLEFIA
is shown in Fig. 2.4. The input has 16 bytes, P0 to P15, grouped into four byte
words. There are 18 rounds, and in each round, the first and third words are fed into
nonlinear functions F0 and F1 respectively. The output of F0 and F1 are ex-ored
with the second and fourth words. Additionally, the second and fourth words are also
whitened at the beginning and end of the encryption. The F functions take four input
bytes and four round keys. The nonlinearity in the F functions are due to two 256
element s-boxes S0 and S1. Matrices M0 and M1 diffuse the outputs of the s-boxes.
They are defined as follows:

M0 =

⎛

⎜⎜⎜⎜⎜⎝

1 2 4 6

2 1 6 4

4 6 1 2

6 4 2 1

⎞

⎟⎟⎟⎟⎟⎠
M1 =

⎛

⎜⎜⎜⎜⎜⎝

1 8 2 A

8 1 A 2

2 A 1 8

A 2 8 1

⎞

⎟⎟⎟⎟⎟⎠
(2.5)

The design of the s-boxes S0 and S1 differs. S0 is composed of four s-boxes SS0,
SS1, SS2, and SS3; each of 16 bytes. The output of S0 is given by :

βl = SS2[SS0[αl] ⊕ 2 · SS1[αh]]

βh = SS3[SS1[αh] ⊕ 2 · SS0[αl]] (2.6)

where β = (βh|βl), α = (αh|αl), and β = S0[α]. The output of S1 for the input byte
α is given by g((f (α))−1), where g and f are affine transforms and the inverse is
found in the field GF (28).

The CLEFIA encryption algorithm has four whitening keys WK0, WK1, WK2,
and WK3; and 36 round keys RK0, . . . , RK35. Key expansion is a two-step process.
First, a 128-bit intermediate key L is generated from the secret key K using a GFN

function [7]. From this, the round keys and whitening keys are generated as shown
below:

Step 1: WK0|WK1|WK2|WK3 ← K

Step 2: For i ← 0 to 8

T ← L ⊕ (CON24+4i |CON24+4i+1|CON24+4i+2|CON24+4i+3)

L ← Σ(L)

if i is odd: T ← T ⊕ K

RK4i|RK4i + 1|RK4i + 2|RK4i + 3 ← T



2.2 Block Ciphers: An Important Family of Symmetric-Key Ciphers 21

M0

k2 k1 k0k3

z0

z1

z2

z3S1

S0

S1

S0
w0

w1

w2

w3

x0

x1

x2

x3

8

8

8

8

8

8
8

8 8 8

8

8

S0

S1

S0

S1
w0

w1

w3

x0

x1

x2

x3

k3 k2 k1 k0

w2

z0

z1

z2

z3

8 88 8

8

8

8

8
8

8

8

8

M1

Function F0

Function F1

F 0X0-1 Z0-1

P0 − P3

32

P4 − P7

32 32

P8 − P11 P12 − P15

RK00−3

RK20−3

RK40−3

Z0-2

X0-3 Z0-3

X0-18 Z0-18

F 0

F 0

F 0

WK00−3

RK340−3

C0 − C3 C4 − C7

WK20−3

32

WK10−3RK10−3

X1-1 Z1-1

RK30−3

X0-2 X1-2

RK50−3

X1-3

Z1-18X1-18

WK30−3

C8 − C11 C12 − C15

F 1

F 1

F 1

F 1

RK350−3

Z1-2

Z1-3

Fig. 2.4 CLEFIA block diagram

Fig. 2.5 A round of CLEFIA

F 0 F 1

32 32 32 32

Xi,0 − Xi,3
RKi0−3 RKi + 10−3

Xi,0 − Xi,3 Xi+1,0 − Xi+1,3 Xi+1,0 − Xi+1,3

Yi+1,0 − Yi+1,3Yi+1,0 − Yi+1,3Yi,0 − Yi,3Yi,0 − Yi,3

The function Σ , known as the double swap function, rearranges the bits of L.

Σ(L) ← L(7···63)|L(121···127)|L(0···6)|L(64···120) (2.7)

In the later part, thirty-six 32-bit constant values CONi (24 ≤ i < 60) are used.
Just like AES, CLEFIA can be implemented with T -tables. The T -table imple-

mentation for CLEFIA is in the Sect. 2.2.2.1.

2.2.2.1 T-Table Implementation of CLEFIA

A round of CLEFIA has 128-bit input and produces 128-bit output. Each input and
output is grouped as four words as shown in Fig. 2.5. The function F0 is defined as



22 2 Modern Cryptography

follows,

F0 :

⎡

⎢⎢⎢⎢⎢⎣

Zi,0

Zi,1

Zi,2

Zi,3

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

1 2 4 6

2 1 6 4

4 6 1 2

6 4 2 1

⎤

⎥⎥⎥⎥⎥⎦
×

⎡

⎢⎢⎢⎢⎢⎣

S0(Xi,0 ⊕ RKi,0)

S1(Xi,1 ⊕ RKi,1)

S0(Xi,2 ⊕ RKi,2)

S1(Xi,3 ⊕ RKi,3)

⎤

⎥⎥⎥⎥⎥⎦

where S0 and S1 are CLEFIA’s 8 × 8 s-boxes. Xi,k and Zi,k represent a byte of the
input and output word respectively (0 ≤ k ≤ 3), while RKi,k is a byte of the round
key. The matrix multiplication is in a finite field.

Consider four look-up tables as follows which map an input byte (x) to a 32-bit
word.

T0[x] ← (6 · S0(x)|4 · S0(x)|2 · S0(x)|1 · S0(x))

T1[x] ← (4 · S1(x)|6 · S1(x)|1 · S1(x)|2 · S1(x))

T2[x] ← (2 · S0(x)|1 · S0(x)|6 · S0(x)|4 · S0(x))

T3[x] ← (1 · S1(x)|2 · S1(x)|4 · S1(x)|6 · S1(x)).

Then,

(Zi,3|Zi,2|Zi,1|Zi,0) =T0[Xi,0 ⊕ RKi,0] ⊕ T1[Xi,1 ⊕ RKi,1]

⊕ T2[Xi,2 ⊕ RKi,2] ⊕ T3[Xi,3 ⊕ RKi,3]

The function F1 is defined as follows:

F1 :

⎡

⎢⎢⎢⎢⎢⎣

Zi+1,0

Zi+1,1

Zi+1,2

Zi+1,3

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

1 8 2 A

8 1 A 2

2 A 1 8

A 2 8 1

⎤

⎥⎥⎥⎥⎥⎦
×

⎡

⎢⎢⎢⎢⎢⎣

S1(Xi+1,0 ⊕ RKi+1,0)

S0(Xi+1,1 ⊕ RKi+1,1)

S1(Xi+1,2 ⊕ RKi+1,2)

S0(Xi+1,3 ⊕ RKi+1,3)

⎤

⎥⎥⎥⎥⎥⎦

The function F1 can be implemented using four tables as shown below. Each table
maps the 8-bit input x to a 32-bit output.

T4[x] ← (A · S1(x)|2 · S1(x)|8 · S1(x)|1 · S1(x))

T5[x] ← (2 · S0(x)|A · S0(x)|1 · S0(x)|8 · S0(x))

T6[x] ← (8 · S1(x)|1 · S1(x)|A · S1(x)|2 · S1(x))

T7[x] ← (1 · S0(x)|8 · S0(x)|2 · S0(x)|A · S0(x))



2.2 Block Ciphers: An Important Family of Symmetric-Key Ciphers 23

Then,

(Zi+1,3|Zi+1,2|Zi+1,1|Zi+1,0) =T4[Xi+1,0 ⊕ RKi+1,0]

⊕ T5[Xi+1,1 ⊕ RKi+1,1]

⊕ T6[Xi+1,2 ⊕ RKi+1,2]

⊕ T7[Xi+1,3 ⊕ RKi+1,3].

The output of the round is

(Yi,0 · · · Yi,3) ← (Zi,0 · · · Zi,3) ⊕ (X
′
i,0 · · · X′

i,3)

(Y
′
i,0 · · · Y ′

i,3) ← (Xi+1,0 · · · Xi+1,3)

(Yi+1,0 · · · Yi+1,3) ← (Zi+1,0 · · · Zi+1,3) ⊕ (X
′
i+1,0 · · · X′

i+1,3)

(Y
′
i+1,0 · · · Y ′

i+1,3) ← (Xi,0 · · · Xi,3).

In a similar manner, all rounds of CLEFIA can be implemented. Thus reducing
the implementation to a series of memory accesses intertwined with ex-ors.

2.2.3 CAMELLIA

CAMELLIA is the 128-bit block cipher that was jointly developed by Mitsubishi
and NTT in 2000 [8]. Since the cipher has been made available under a royalty-free
license, it has been certified for use by the European Union and Japan. It has also
become part of the OpenSSL project, and incorporated in Mozilla’s Network Security
Services (NSS modules). Support for CAMELLIA has been added to several security
libraries as well as Mozilla’s popular web browser, Firefox.

The 128-bit block cipher CAMELLIA has a Feistel structure as shown in
Fig. 2.6. The 16 bytes plaintext input is grouped in two words of 8 bytes each:
x = (x1‖x2‖ · · · ‖x8) and y = (y1‖y2‖ · · · ‖y8). There are 18 rounds in all, broken
up into groups of 6 each. After the 6th and the 12th rounds, there are two FL/FL−1

function layers. In each round, there is an F function, which is a combination of key
addition, substitution (S), and permutation (P ). The substitution is done by using
four s-boxes, whereas, the P function is implemented by using a diffusion matrix.
Figure 2.7 shows the permutation operation and the diffusion matrix. The diffusion
matrix also has an inverse depicted in the figure.

Each round has an addition of a round key. The ith round uses the round key k(i).
Each of these round keys are of 64 bits. Additionally, whitening keys kw1 and kw2
are applied at the start of encryption, while kw3 and kw4 are applied at the end of
encryption.



24 2 Modern Cryptography

F

F

F

F

F

kw1
k (1)

k (2)

k (3)

k (4)

k (5)

kw2

x1 − x8 y1 − y8

64 64

S 1

S 4

S 3

S 2

S 4

S 3

S 2

S 1

64

64

64

64

64

Permutation

z

k (1)

x

64

w(1)
2

w(1)
3

w(1)
4

w(1)
5

w(1)
6

w(1)
7

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

w(1)
8

Function

6464

w(1)
1

Fig. 2.6 Structure of CAMELLIA

Fig. 2.7 CAMELLIA’s
diffusion layer and its inverse ⎛

⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2.3 Classical Cryptanalysis

A cryptanalytic attack is a procedure through which an attacker gains information
about the secret decryption key. Attacks are classified according to the level of a
priori knowledge available to the attacker.

A ciphertext-only attack is an attack where the cryptanalyst has access to cipher-
texts generated using a given key but has no access to the corresponding plaintexts
or the key. A known-plaintext attack is an attack where the cryptanalyst has access
to both ciphertexts and the corresponding plaintexts but not the key.



2.3 Classical Cryptanalysis 25

A chosen-plaintext attack (CPA) is an attack where the cryptanalyst can choose
plaintexts to be encrypted and has access to the resulting ciphertexts, again their
purpose being to determine the key.

A chosen-ciphertext attack (CCA) is an attack in which the cryptanalyst
can choose ciphertexts, apart from the challenge ciphertext and can obtain the
corresponding plaintext. The attacker has access to the decryption device.

In case of CPA and CCA, adversaries can make a bounded number of queries to
its encryption or decryption device. The encryption device is often called an oracle;
meaning it is like a black-box without details like in an algorithm of how an input is
transformed or used to obtain the output. Although this may seem a bit hypothetical,
but there are enough real life instances where such encryption and decryption oracles
can be obtained.

In the next section, we discuss one form of classical cryptanalysis of block ciphers,
namely differential attacks, which is used in developing some of the cache attacks
described in the book.

2.3.1 Classical Cryptanalysis of Block Ciphers

Block ciphers have been subjected to several forms of classical cryptanalysis; namely
linear cryptanalysis, differential cryptanalysis, impossible differential attacks, re-
lated key attacks, boomerang attacks, square attacks are some popular cryptanalysis
techniques. In this book, we study how microarchitectural features like cache memo-
ries and the accompanying hardware increases leakage when an encryption program
runs on this platform. These attacks, often called as side-channel attacks (SCA)
exploit additional leakage through timing information, and combine with classical
methods, like differential attacks to provide efficient attack techniques. In this sec-
tion, we provide a quick overview on the ideas of differential cryptanalysis, which
will be useful for other attacks. Interested readers may refer [9] for ideas on other
forms of cryptanalysis, which may (or may not) lead to more efficient cache attacks.

2.3.2 The Idea of Differential in Block Ciphers

Differential cryptanalysis is a chosen plain text attack and the attack is based on
the information of the ex-or of two inputs, and the ex-or of corresponding outputs.
Consider, a cipher expressed as c = m ⊕ k, where m, k, and c are the plaintext,
key, and the ciphertext blocks respectively, each of size b-bits. We know this is a
secured cipher if the key is randomly and uniquely chosen for every encryption. The
attacker has no information about the plaintext from the ciphertext. However, if the
key is used twice for two encryptions there is a leakage of information. It is trivial
to note, c0 ⊕ c1 = m0 ⊕ m1, thus showing that the differential (or, the difference
which is computed useing ex-ors between two blocks) does not depend on the key,
and thus the key (although unknown) does not hide the plaintext from the attacker!
The differential is often denoted by Δ(c) = c0 ⊕ c1. Thus, in brevity we can state



26 2 Modern Cryptography

+ ++  SBox   SBox m

K0 K1 K2

u v w x c

Fig. 2.8 Illustration of a differential attack on a toy cipher

Table 2.1 The S-Box description

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

s[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Δ(c) = Δ(m) for the above equality. It may be noted that if the key mixing was done
by some other reversible process (like modular integer addition), the differential
would be accordingly modified (by using modular integer subtraction). Let us see
how we can use this fact to cryptanalyze block ciphers with S-Boxes.

In the Fig. 2.8, a two round encryption is depicted where the plaintext m is
transformed by mixing (ex-oring) with the keys, k0, k1, and k2 along with substitution
which occurs due to the nonlinear S-Boxes. Let us denote the S-Box mapping by
S, and thus an input x is transformed to an output which is S[x]. The mapping we
choose for illustration is that of the block cipher PRESENT[10]. For convenience
we present the mapping in Table 2.1.

From the notion of differentials we know that ex-oring with the key has no effect
on the differential. However, the S-Box being a nonlinear layer prevents passing of
the ex-or differential. Thus, the attacker can guess k2 and obtain the value of x, for
two different encryptions. We denote this by saying that c0 gives x0, while c1 gives
x1. One can perform the inverse S-Boxes (which have to be invertible!), and obtain
w0 and w1. However, the uncertainty of k1 prevents us from computing the values
of v0 and v1. However, we know Δ(w) = w0 ⊕ w1 = v0 ⊕ v1 = Δ(v). Likewise, if
the attacker chooses Δ(m) = m0 ⊕ m1, she can compute Δ(u), however the S-Box
prevents from determining Δ(v).

So, differential cryptanalysis performs a differential analysis of the S-Box. Con-
sider, the Table 2.2, where the input differential i⊕j , for two inputs i and j , is chosen
to be F. The output differential, S[i] ⊕ S[j ] is computed, and its frequency is ob-
served. It may be seen that some values do not occur in the output differential. Good
design practice in the PRESENT S-Box ensures that the probability distribution is
uniform, meaning the differentials, namely E, 4, 1, and F which occurs in the output
occurs with the same probability, i.e., 1

4 . The attacker can thus choose the values
of m0 and m1, such that Δ(m) = F , and thus Δ(u) = F . Due to the differential
property of the S-Box we know that in 4 out of 16 cases, the output differentials can
be E, 4, 1, and F. Thus, Δ(w) is also any one of the above choices. The attacker also
guesses k2, and obtains the value of Δ(w) by inverting the S-Box on the values x0

and x1, obtained by guessing the key k3. It is clear that those guesses which provide
Δ(w) any other value, but E, 4, 1, F, can be eliminated as wrong keys. However, the
differential property of the S-Box cannot distinguish the keys which lead to Δ(w)



2.3 Classical Cryptanalysis 27

Table 2.2 Differential
analysis of the S-Box

i j S[i] S[j ] S[i] ⊕ S[j ]

0 F C 2 E

1 E 5 1 4

2 D 6 7 1

3 C B 4 F

4 B 9 8 1

5 A 0 F F

6 9 A E 4

7 8 D 3 E

8 7 3 D E

9 6 E A 4

A 5 F 0 F

B 4 8 9 1

C 3 4 B F

D 2 7 6 1

E 1 1 5 4

F 0 2 C E

equal to the above four values. This approximately eliminates 3/4 of the keys! This
simple example shows the power of differential cryptanalysis, and can be used to
distinguish the wrong keys from the correct ones.

In real life the block ciphers are cascades of substitution and permutations, and
thus often referred to as SPN (Substitution Permutation Network) ciphers. However,
the above discussion of differential cryptanalysis can be conceptually applied even
for such a construction. In such a case, for a four-round cipher as shown in Fig. 2.9,
an input–output differential is found for three rounds of the cipher which occurs with
a very high probability. It is often defined as a differential trail, Δi → Δo, where
Δi and Δo are the input differential and output differential after the third round. The
output differential also should ensure it is of low weight, meaning that it disturbs
or affects less number of S-Boxes of the final round. The attacker can then guess a
part of the last round key, corresponding to the disturbed S-Boxes, and then decrypt
a portion of the ciphertext to check the differential at the output of the third round.
It is expected that for the correct key the differential should be equal to Δo, with a
very high probability. It may be noted that the efficiency of such an attack compared
to a brute force attack is because it is a divide-and-conquer strategy, and thus can be
successful by guessing portions of the key.



28 2 Modern Cryptography

Fig. 2.9 The SPN block
cipher

 S11 S12  S13 S14

S24

     subkey K    Mixing 1  through exoring

     subkey K    Mixing through exoring 4

C1  16.   .   .              Ciphertext                  .    .    .     C

     subkey K    Mixing through exoring 5

S21 S22 S23

S31 S32 S33 S34

S41 S42 S43 S 44

     subkey K    Mixing through exoring 2

     subkey K    Mixing through exoring

               
1P  16.   .   .              Plaintext                     .    .    .     P

 3



2.5 RSA: An Asymmetric-Key Algorithm 29

2.4 Asymmetric-Key Ciphers

The book also deals with attacks on asymmetric-key ciphers also known as public-key
ciphers. These algorithms are often computation intensive and operate on large finite
fields. For efficient design several field operation algorithms have been developed for
supporting multiplication, inverse, exponentiation etc., and have been implemented
in software libraries. The next section provides a quick overview on some of the
commonly known techniques which are employed to realize the ciphers, and are
hence targeted for demonstrating timing attacks. We focus on RSA, as it is still one
of the most popular and utilized public-key algorithms. Further more, many of the
attack techniques that we discuss in the book can be extended to other well known
public-key algorithms, like elliptic curve cryptosystems.

2.5 RSA: An Asymmetric-Key Algorithm

RSA works by considering two keys: a public key is known to every one whereas a
private key is secret. Encryption of a message is performed using the public key, but
decryption requires the knowledge of the private key. All the operations are done mod
n, where n is the product of two large distinct prime numbers p and q. The values
of p and q are, however, private and hence not disclosed to all. The encryption
key, which is public is a value b, where 1 ≤ b ≤ φ(n) and φ(n) is the Euler’s
totient function. Very simply put, Euler’s totient function or phi function, φ(n), is an
arithmetic function that counts the positive integers less than or equal to n that are
relatively prime to n. The decryption key is a private value a, which is selected such
that ab ≡ 1 mod φ(n). The owner of the private key (p, q, a) publishes the value
(b, n), which is the public key.

The encryptor chooses a message x, where x ∈ Zn. It may be mentioned that Zn =
{0, 1, . . . , n − 1}. The encryption process is computing the cipher as y ≡ xb mod n

using the public key b. Since the decryptor knows the value of a, which is the private
key, he computes the value of x from y by computing ya ≡ (xb)a mod n ≡ x mod n.



30 2 Modern Cryptography

The security of RSA is based on the assumption that decryption can be performed
only by the knowledge of the private key b. However, to obtain the private information
from the public value a requires one to compute the modular inverse of a modulo
φ(n). It is believed that to obtain φ(n) from n requires the knowledge of the prime
factors of n, namely p and q. The security of RSA is thus based on the hardness
assumption of factorization of large n. Thus, the underlying operation to perform
RSA encryption and decryption is modular exponentiation, i.e., y ≡ xb mod n,
where b is typically 1024 bits or 2048 bits large. This is achieved by the popular
square and multiply algorithm.

2.5.1 Square and Multiply Algorithm to Perform Exponentiation

In this section, we present the square and multiply algorithm to perform modular
exponentiation. We present the decryption algorithm, which uses the decryption key,
denoted as k = a. We focus on the decryption algorithm as that is a natural target
for an attacker, as the secret key is involved in the computation. The key is an m-bit
key, denoted as k = (km−1, km−2 · · · k0), where km−1 = 1.

This algorithm, as we later elaborate in the book, is naturally vulnerable against
SCA. The reason being that the operations, namely squaring and multiplication,
have different fingerprints on the side-channel leakage. For example, with respect
to a timing attack, both requires different number of clock cycles to execute. We
can observe that if a key bit is one, then a multiplication is performed, else not. The
attacker hence tries to exploit this conditional property on the key bits to devise an
attack. In the literature, there are several ways of performing a square and multiply
algorithm to achieve exponentiation. One of the most popular techniques is called
Montgomery Ladder, which is explained in the Algorithm 2.4.

It may be observed that in the Montgomery’s Ladder, irrespective of the key bit,
a multiplication and squaring is always performed. Thus, the design is naturally
resistant against some SCA, which are possible over the naïve square and multiply
algorithm.



2.6 Confinement Problem and Covert Channels 31

Fig. 2.10 Lampson’s
confinement problem

Server

Secret

Client

Collaborator

Third Party

Intended Covert Channel

Unintended Covert Channel

Valid Communication

2.6 Confinement Problem and Covert Channels

Now that we have reviewed the essential components in cryptography, we move to
side channels and how they covertly leak information about an executing application.

Consider a client using the services of a server. The client provides an input which
is operated on by the server using some stored secret. In an untrusted environment, the
client should ensure that the server does not communicate its input to a collaborator
(the attacker), while the secret stored in the server should not be revealed to the
client. Additionally no third-party should gain any information about the transactions
between the client and server. This is the confinement problem as defined by Lampson
in 1973 [10] and pictorially represented in Fig. 2.10.

Generally, the system can ensure that the server does not communicate with
the collaborator by disabling writing to files, shared memories, and other inter-
process communication (IPC) protocols. The server’s secret can be protected by
implementing memory protection using schemes such as paging and access control.
In spite of these protection schemes, there still exists indirect paths by which data
can be communicated. These indirect paths are not meant for communication, hence
known as covert channels. They are of interest in the domain of computer security
because they allow programs to bypass security policies of the system. They are all
the more relevant in the cloud computing environments where such untrusting parties
sharing resources are common. Covert channels can either be intended (where a nexus
exists between the server and the collaborator) or unintended (where a third party
obtains information about the computations). Covert channels are generally noisy,
but information theory can be used to devise an encoding, which will allow data to
get through reliably no matter how small the signal is, provided it is not zero [10].

An example of a covert channel was illustrated by Schaefer et al. in [11]. Consider
the server and collaborator sharing a CPU. The client can signal information to the



32 2 Modern Cryptography

collaborator by the amount of time it holds the CPU. For instance, holding the CPU
for 10, 20, or 30 μs can be used to represent a 0, 1, or 2 respectively [11]. This forms
an intentional covert channel between the two cooperating processes (the client and
the collaborator). Over the years several covert channels have been discovered such
as the rate at which a program performs paging [10, 12], CPU scheduling [13], disk
scheduling [13, 14], and cache memory usage [15, 16].

Covert channels do not always have to be intentional. There can also be unin-
tentional covert channels, which results in transfer of information about a program
execution to a third party. The program is unaware of these transfers. Such uninten-
tional covert channels occur due to physical attributes of a device such as the power
consumption and electromagnetic radiation, as well as execution time. These unin-
tentional covert channels are commonly known as side channels. In 1996, Kocher
showed that a timing side channel can be used to reveal the secret key of a cipher to an
adversary [17]. Later, power consumption of the device was used for the same pur-
pose [18]. These works that came to be known as SCA (side-channel attacks), kindled
interest in the academic community and led to a new domain of cryptographic re-
search; targeting implementations of ciphers rather than just the algorithm. The next
section surveys SCA against ciphers that use unintentional covert timing channels.
This class of attacks is called timing attacks.

2.7 Formal Analysis of Side-Channel Attacks

Since Shannon’s benchmark paper in [19], there has been significant progress in the
mathematical treatment given to cryptography. Ciphers, such as the three discussed
in the previous section, underwent rigorous analysis with strong attack models such
as adversaries who know the cipher algorithm, the input, as well as the output. The
only secret being the cipher’s key. All ciphers standardized and in use today have
bounded security against these attack models.

The advent of SCA in [17] introduced a stronger (yet practical) attack model.
Here, the adversary has access to side-channel information leakage of the encrypting
device in addition to the input, output, and cipher algorithm. The mathematical
tools developed so far failed to model these attack classes. It was not until 2004
that new models were developed by Micali and Reyzin to analyze cryptography
in the presence of side-channel leakage [20]. This they called physical observable
cryptography. The new theory was enhanced by the works of Standaert [21–24] and
by Backes and Kopf [25, 26, 27] and used to provide a fair evaluation and comparison
of ciphers in the presence of side-channel leakage. This has led to the development of
a new class of cryptographic algorithms and countermeasures with provable security
in the presence of leakages (for example [28, 29, 30]). The algorithms currently
available are inefficient to implement. The hope is that the tools and models will lead
to practically realizable ciphers with provable resistance against SCA. In this section
we present briefly the formal notions in side-channel analysis.



2.8 Conclusion 33

Let Ek be a cipher having a secret key k chosen uniformly from the set K m

for some positive integer m. Let Ẽk be an implementation of Ek on a device. A q-
limited side-channel key recovery adversary is a statistical program, which can make
at-most q queries to Ẽk and monitor the leakage through channels such as power-
consumption, timing, or electromagnetic radiation of the device. To quantify leakage,
a leakage function L( · ) is defined that mathematically abstracts the characteristics of
the side channel and the measurement setup. For example, it is well-known that power
consumption can be modeled in terms of Hamming weight or Hamming distances
for CMOS devices.

The q-limited side-channel key recovery adversary follows a divide-and-conquer
strategy by splitting k into smaller parts for example k = (k1‖k2‖k3‖ · · · ‖km), where
k1, k2, · · · , km ∈ K , and each key part is targeted independently. Further, the
leakage partitions the key space K into equivalence classes such that the SCA
cannot distinguish between two keys in the same class. The goal of the adversary is
to guess a key class with nonnegligible probability. To do so, typically the attack has
two phases. An online phase in which the q side-channel leakages are collected and
an offline phase in which the leakages are analyzed using statistical distinguishers
in order to obtain a ranking of the keys in K in an order of their likelihood.

There are two metrics by which the success of the attack can be measured. The
first defines the oth order success rate as the probability that the correct key is ranked
among the top o keys. For example, if G = (g1, g2, · · · go, go+1, · · · , g|K |) is the
ordered sequence of keys ranked from most likely to least likely, then the probability
that the correct value of the key is in g1, g2 · · · , go is the oth order success rate of the
attack. Alternatively, guessing entropy [31] can be used as a metric to evaluate the
success of an attack. This measures the average number of guesses that are required
before obtaining the correct key. For example, if the correct key is present in the j th
location in the ranking G then the guessing entropy is j . The second metric uses
information-theoretic metrics to determine for example H[K|L], i.e., the entropy of
the key given the leakage. This should be much less than H[K] for a strong attack.

This book shows how timing attacks can be modeled by analyzing the cipher’s
memory access patterns. The mathematical framework thus developed is used to
evaluate ciphers for their resistance against timing attacks and choose implementation
strategies for the ciphers.

2.8 Conclusion

This chapter provided an overview of various symmetric and asymmetric encryption
schemes. Classical cryptanalytic techniques were dwelt upon, and side channels and
their formal analysis were introduced. To a side-channel attacker, it is not just the
enciphering algorithm and their implementations that are important, but the system
and CPU architecture is also crucial. The next chapter provides an overview of
modern CPUs and the few components in them that have been used to develop SCA.



34 2 Modern Cryptography

References

1. Gueron S (2010) Intel Advanced Encryption Standard (AES) instructions set (Rev : 3.0)
2. Zheng Y, Matsumoto T, Imai H (1989) On the construction of block ciphers provably secure

and not relying on any unproved hypotheses. In: Brassard G (ed) CRYPTO. Lecture notes in
computer science, vol 435. Springer, Berlin, pp 461–480

3. Federal Information Processing Standards Publication 197 (2001) Announcing the Advanced
Encryption Standard (AES)

4. Stinson D (2002) Cryptography: theory and practice, 2nd edn. Chapman and Hall, London,
pp 117–154

5. Daemen J, Rijmen V (2002) The design of Rijndael: AES—theAdvanced Encryption Standard.
Springer, Berlin

6. Shirai T, Shibutani K, Akishita T, Moriai S, Iwata T (2007) The 128-bit blockcipher CLEFIA
(extended abstract). In: Biryukov A (ed) FSE Lecture notes in computer science, vol 4593.
Springer, Berlin, pp 181–195

7. Sony Corporation (2007) The 128-bit blockcipher CLEFIA : algorithm specification
8. Aoki K, Ichikawa T, Kanda M, Matsui M, Moriai S, Nakajima J, Tokita T (2000) Camellia:

A 128-bit block cipher suitable for multiple platforms—design and analysis. In: Stinson DR,
Tavares SE (eds) Selected areas in cryptography. Lecture notes in computer science, vol 2012.
Springer,Berlin, pp 39–56

9. Knudsen LR, Robshaw MJB (2011) The block cipher companion. Springer, Berlin
10. Lampson BW (1973) A note on the confinement problem. Commun ACM 16(10):613–615.

http://doi.acm.org/10.1145/362375.362389
11. Schaefer M, Gold B, Linde R, Scheid J(1977) Program confinement in KVM/370. In: Pro-

ceedings of the 1977 annual conference, ser. ACM ’77. ACM: New York, pp. 404–410.
http://doi.acm.org/10.1145/800179.1124633. Accessed Dec 2013

12. Van Vleck T (1990) Timing channels. Multics, technical report, 1990
13. Kemmerer RA (1983) Shared resource matrix methodology: an approach to iden-

tifying storage and timing channels. ACM Trans Comput Syst 1(3):256–277.
http://doi.acm.org/10.1145/357369.357374

14. Karger PA, Wray JC (1991) Storage channels in disk arm optimization. IEEE symposium on
security and privacy. IEEE, Oakland, pp 52–63

15. Wray JC (1991) An analysis of covert timing channels. In: Research in security and privacy,
1991. Proceedings, 1991 IEEE computer society symposium. May 1991, pp 2–7

16. Hu W-M (1992) Lattice scheduling and covert channels. In: Proceedings of the 1992 IEEE
symposium on security and privacy. SP ’92. IEEE Computer Society, Washington, DC, pp 52–
61

17. Kocher PC (1996) Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In: Koblitz N (ed) CRYPTO ’96: proceedings of the 16th annual international
cryptology conference on advances in cryptology. Lecture notes in computer science, vol 1109.
Springer-Verlag, London, pp 104–113

18. Kocher PC, Jaffe J, Jun B (1999) Differential power analysis. In: Wiener MJ (ed) CRYPTO.
Lecture notes in computer science, vol 1666. Springer, Berlin, pp 388–397

19. Shannon CE (1949) Communication theory of secrecy systems. Bell Syst Tech J 28:656–715
20. Micali S, Reyzin L (2004) Physically observable cryptography (extended abstract). In: Naor

M (ed) TCC. Lecture notes in computer science, vol 2951. Springer, Berlin, pp 278–296
21. Standaert F-X, Peeters E, Archambeau C, Quisquater J-J (2006) Towards security limits in

side-channel attacks. In: Goubin L, Matsui M (eds) CHES. Lecture notes in computer science,
vol 4249. Springer, Berlin, pp 30–45

22. Standaert F-X, Pereira O, Yu Y, Quisquater J-J, Yung M, Oswald E (2009c) Leakage resilient
cryptography in practice. Cryptology ePrint archive, Report 2009/341. http://eprint.iacr.org/.
Accessed June 2010



References 35

23. Standaert F-X, Malkin T, Yung M (2009b) A unified framework for the analysis of side-
channel key recovery attacks. In: JouxA (ed) EUROCRYPT. Lecture notes in computer science,
vol 5479. Springer, Berlin, pp 443–461

24. Standaert F-X, Koeune F, Schindler W (2009a) How to compare profiled side-channel attacks?
In: Abdalla M, Pointcheval D, Fouque P-A,Vergnaud D (eds)ACNS. Lecture notes in computer
science, vol 5536, pp 485–498

25. Köpf B, Basin DA (2007) An information-theoretic model for adaptive side-channel at-
tacks. In: Ning P, di Vimercati SDC, Syverson PF (eds) ACM conference on computer and
communications security. ACM, Alexandria, pp 286–296

26. Backes M, Köpf B (2008) Formally bounding the side-channel leakage in unknown-message
attacks. In: Jajodia S, ópez JL (eds) ESORICS. Lecture notes in computer science, vol 5283.
Springer, Berlin, pp 517–532

27. Backes M, Köpf B, Rybalchenko A (2009) Automatic discovery and quantification of infor-
mation leaks. In: IEEE symposium on security and privacy. IEEE Computer Society, 2009,
pp 141–153

28. Dziembowski S, Pietrzak K (2008) Leakage-resilient cryptography. In: FOCS. IEEE Computer
Society, 2008, pp 293–302

29. Naor M, Segev G (2009) Public-key cryptosystems resilient to key leakage. In: Halevi S (ed)
CRYPTO. Lecture notes in computer science, vol 5677. Springer, Berlin, pp 18–35

30. Pietrzak K (2009)A leakage-resilient mode of operation. In: JouxA (ed) EUROCRYPT. Lecture
notes in computer science, vol 5479. Springer, Berlin, pp 462–482

31. Massey J (1994) Guessing and entropy. In: Information theory, 1994. Proceedings, 1994 IEEE
international symposium, 1994, p 204



http://www.springer.com/978-3-319-12369-1


	Chapter 2 Modern Cryptography
	2.1 Types of Encryption Algorithms
	2.2 Block Ciphers: An Important Family of Symmetric-Key Ciphers
	2.2.1 AES
	2.2.1.1 Software Implementations of AES

	2.2.2 CLEFIA
	2.2.2.1 T-Table Implementation of CLEFIA

	2.2.3 CAMELLIA

	2.3 Classical Cryptanalysis
	2.3.1 Classical Cryptanalysis of Block Ciphers
	2.3.2 The Idea of Differential in Block Ciphers

	2.4 Asymmetric-Key Ciphers
	2.5 RSA: An Asymmetric-Key Algorithm
	2.5.1 Square and Multiply Algorithm to Perform Exponentiation

	2.6 Confinement Problem and Covert Channels
	2.7 Formal Analysis of Side-Channel Attacks
	2.8 Conclusion
	References




