
Chapter 2
Introduction and Fundamental Theory

In this chapter the fundamentals involved in coherent imaging with laser generated
XUV light are presented. The first Sect. 2.1 introduces high harmonic generation,
which is the process that is used throughout this thesis to generate coherentXUVlight.
In Sect. 2.2 some imaging theory and a mathematical description for the diffraction
of light by matter will be introduced. A major issue in CDI is the so-called phase
problem, which arises from the fact that one can only measure intensities with a
physical detector in an experiment. For the reconstruction of an object, however, the
phase of the light fieldmust be known. If sufficient care to somegeometric constraints,
as presented in Sect. 2.2.4, is taken, one can retrieve the phase of the light field by
means of iterative algorithms, which are introduced in Sect. 2.3. Another approach
for coherent imaging is digital in-line holography, which is a technique where the
phase of the light field is already encoded in the fringes measured in the far-field
with a detector. The fundamentals about digital in-line holography are presented in
Sect. 2.4. A chapter summary and view at other modern imaging techniques, which
are not used in this thesis, will conclude this chapter

2.1 High Harmonic Generation in Gases

In this section the basic nonlinear process to generate short wavelength light will
be introduced. Therefore, first an electro-magnetic wave impinging on a material is
considered as the interaction between light and matter is discussed. The feedback
from the material to the electric field (E(r, t))1 is expressed by a linear dependence
of the polarisation P on the electric field connected by the susceptibility χ . This
linear behavior corresponds to bound electrons moving in the Coulomb potential of
the atoms, and experiencing a small perturbation of their motion by the laser field.
This small perturbation can be treated as a small amplitude electron bouncing in a

1 Throughout this thesis vectors and vectorial quantities will be denoted by a boldface typeset,
e.g. r. The modulus of r is denoted simply as r .
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6 2 Introduction and Fundamental Theory

harmonic potential approximating the atomic or molecular potential in the vicinity
of the stationary orbit. However, this approximation is not valid for higher intensities
and thus the relation between the polarization and the electric field turns from linear
to a power series in χ [1]

P(r, t)NL ∝ χ(1)(ω)E(r, t) + χ(2)(ω)E2(r, t) + χ(3)(ω)E3(r, t) + · · · , (2.1)

whereχ(n) represents then-th order susceptibilities. For non-centrosymmetricmedia,
all even terms in this series are equal to zero. The nonlinear response of the polar-
ization results in a zoo of effects that kick in once a certain intensity, depending
on material parameters, is reached. The coefficients χ(n) can be linked to a specific
nonlinear effect, e.g. harmonic generation. More details are discussed in [2].

The most used nonlinear effect is frequency conversion, which can be anything
from multiple harmonic generation to complicated frequency mixing [1]. However,
due to absorption and usually decreasing χ(n) for increasing n for typical materials,
the generation of harmonics much beyond the third order is not efficient.

Expression 2.1 is the basis for conventional perturbative nonlinear optics. It is
obvious that the nonlinear motion of bound electrons is not able to provide harmonics
with the energy of quanta larger than the ionization potential of the atom ormolecule.
Toovercome this limitation and to enable frequency conversion to theXUVandX-ray
spectral range, a new mechanism inevitably involving the ionization of the medium
in a high intensity laser field should be proposed. Such a mechanism was proposed
in [3, 4] and is called high-order harmonic generation (HHG) in gases. This highly
nonlinear process allows to generate coherent light with photon energies up to the
kiloelectronvolt level [5, 6]. The principal structure of an HHG spectrum is depicted
in Fig. 2.1. The intensities of the lower order odd harmonics only, with any energy
of quantas up to the ionization potential of the atom, follow the perturbative regime
predicted by Eq.2.1. These lower order harmonics are followed by the so called
plateau, where the yield of the harmonics is about constant over a large wavelength
span. A cut-off at the high energetic end of the spectrum relates to the shortest
produced wavelengths.

Fig. 2.1 Schematic HHG spectrum. The intensity of the lower order harmonics follows a perturba-
tive regime, which is followed by a plateau featuring about equally intense harmonics. The cut-off
marks the highest photon energies generated
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Fig. 2.2 The three-step-model in brief: a An electron tunnels out of the parent ion due to the
Coulomb potential (dotted red line) of the atom being deformed (solid red line) by the electric field
of the laser. b The electron accelerates in the laser field and gains kinetic energy. c The electron
recombines with the parent ion and a photon with a energy hν equivalent to the electrons kinetic
energy Ekin and the ionization potential Ip of the ion is emitted

In the early 1990s Krause et al. [7] and Corkum [8] developed a simple model that
is able to describe the plateau and cut-off structure for a single-atom using a semi-
classical approach. The so-called three-step-model consists of three parts: ionization,
acceleration, and recombination of an electron, as depicted in Fig. 2.2.

2.1.1 Ionization

In order to estimate the electric field that is needed to significantly modify the
Coulomb potential of an atom, one can calculate the electric field of a bound electron
in a hydrogen atom. This is done by using Bohr’s atomic model and the Bohr radius
a0 to calculate the electric field as

Ea = e

4πε0a2
0

= 5 × 1011 V/m. (2.2)

From this one gets an estimate of the intensity of a laser field having an equivalent
electric field

Ia = 1

2
ε0cE2

a = 3.51 × 1016 W/cm2. (2.3)

Such intensities are easily reachable with modern ultrafast lasers. Using the sin-
gle active electron (SAE) approximation [9], one can write the combined potential
experienced by the single electron and the laser field as

V (r, t) = − e2

4πε0|r| + eE(t)r. (2.4)

Obviously, a significant modification of the electron motion in the atom can only
take place if the intensity of the laser field is high enough, i.e. on the order given in
Eq.2.3.
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According to Eq.2.4, the combined potential features a time-dependent barrier.
Thewidth of this barrier rB can be estimated as erB E ∼ Ip, where Ip is the ionization
potential of the atom. Using the characteristic velocity of the electron motion in the

atom va ∼
√

2Ip
me

, one can introduce a characteristic tunneling time τ ∼ rB
va

∼√
2me Ip

e2E2 . The regime of ionization is determined by the ratio of the tunneling time to
the optical cycle. A corresponding parameter, known as the Keldysh parameter, to
distinguish these regimes was introduced by Keldysh [10] and is defined as

γ = τω =
√

Ip

2Up
, (2.5)

where ω is the laser frequency and Up = e2E2
0

4meω2 is the ponderomotive potential,
which is the mean kinetic energy of a free electron oscillating in the monochromatic
laser field with an amplitude E0. When γ � 1, which corresponds to relatively
low laser intensities or short laser wavelengths, the electron does not have sufficient
time to tunnel through the potential barrier within an optical cycle. Instead, ionization
proceeds via absorption ofmultiple optical photons. This is the so-calledmultiphoton
ionization regime. It is typical for high intensity laser pulses in the visible or UV
spectral range. In the opposite case γ � 1, ionization occurs on the sub-cycle time
scale due to electron tunneling through the potential barrier. For the near-infrared
laser wavelength 800nm, as used in the experiments in this thesis, ionization occurs
in a mixed regime, since γ ∼ 1.

2.1.2 Acceleration

The generation of a free electron is followed by acceleration (Fig. 2.2b) in the laser
field E = E0 cos(ωt + φ). Since ionization occurs in the electric field of the laser
pulse, which is comparable to the characteristic atomic field (Eq.2.2), the Coulomb
attraction force from the ion on the free electron is much weaker than the electric
force of the laser pulse. That is why the influence of the ion on the electron motion
can be neglected and analysis can be done for trajectories of a free electron in the
monochromatic electric field. Hence, one can calculate the movement of the electron
that is born at a phase φ of the laser field, assuming the electron being at rest v0 = 0
after tunneling, by

v(t) =
t∫

0

− e

me
E(t)dt = − E0e

mω
{sin(ωt + φ) − sin φ}, (2.6)

x(t) =
∫ t

0
v(t)dt = E0e

meω2 {cos(ωt + φ) − cos(φ) + sin(φ)t}. (2.7)
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The kinetic energy of the electron can be calculated fromEq.2.6, which, after averag-
ing over an optical cycle, results in the ponderomotive potential introduced before.
As a consequence Up ∝ I . The electrons can either drift away or recollide with
the parent ion, which can be found by calculating the trajectory of the electrons for
different phases φ in Eq.2.7. This is discussed in full for instance in [11].

2.1.3 Recombination

When an electron recollides with its parent ion, three different processes might
occur with different probability: (i) elastic rescattering of the electron on the ion;
(ii) inelastic scattering with excitation or ionization of bound electrons in the ion;
(iii) recombination of the electron with the parent ion. If recombination occurs a
photon is emitted (Fig. 2.2c), having the combined kinetic energy of the electron and
the ionization potential of the ion

�ω = Ip + Ekin. (2.8)

According to Eq.2.6 the kinetic energy of the electron depends on the time it spends
in the laser field. This obviously depends on the phase φ of the laser field at the time
when the atom was ionized. Solving the equation of motion of the electron (Eq.2.6)
with x(t) = 0 for different phases φ one gets a maximum kinetic energy for φ ≈ 18◦.
Thus Ekin = 3.17 · Up is the upper limit for the energy of the emitted photon by the
electron. Together with the ionization potential of the atom one gets the so-called
cut-off energy

�ωcutoff = Ip + 3.17Up. (2.9)

Despite the simplicity of the three-step-model and its deterministic connection of
classic and quantummechanical effects, it is able to describe the features observed in
HHG. The structure of the cut-off, the plateau behavior (Fig. 2.1), and the existence of
only odd harmonics, due to every half-cycle causing recollisions, are well explained.
Amore rigorous quantummechanical model for HHGwas developed by Lewenstein
et al. [12], which will not be discussed in depth in this thesis.

Other general properties one has to mention when dealing with HHG is that the
light produced is highly coherent and emitted in a beam having typically a smaller
divergence compared to the driving laser beam [13, 14]. The photon flux generated
with HHG is low compared to synchrotrons or free-electron lasers. Limiting for the
photon flux is the low conversion efficiency. The highest reported HHG conversion
efficiencies are in range of≈10−5 [15–17]. As with other nonlinear optical processes
phase matching, i.e. matching the phase velocity of the fundamental light with the
phase velocity of the generated harmonics, is one of themain limiting issues. Another
important issue for microscopy with high harmonics beside the flux is the bandwidth
of each harmonic. The bandwidth is getting narrower the more optical cycles con-
tribute to the signal. Thus long driving pulses generate narrowband harmonics as
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they are essential for high resolution imaging as will be shown in Sect. 2.2.4. The
pulse duration of the harmonics emitted is intrinsically shorter than the driving laser
pulse and can reach the attosecond level [18].

2.2 Coherent Diffraction Imaging Theory

After the introduction of HHG for frequency up-conversion, the topic of this section
will lead towards the application of those unique light pulses for microscopy. First,
the basic principles of diffraction of light by matter will be discussed. Then specific
problems and methods used in CDI to solve the so-called phase problem will be
introduced. At the end of this section a closer look at geometric considerations one
has to bear with when targeting the implementation of a CDI experiment in the lab
will be taken. It is worth mentioning that direct imaging with Fresnel zone plates [19]
has been done for decades at synchrotrons [20] andmore recently usingHHG sources
[21], however, the resolution is limited due to the limited resolution in electron beam
lithography for producing the zone plates. Further, the bandwidth of typical HHG
pulses is limiting the usability of Fresnel zone plates.

2.2.1 Coherence Properties of a Light Field

An importantmeasure for imaging purposes is the coherence. Coherence is a property
of the light field giving information about howwell defined the phase relation between
different parts of the electromagnetic radiation is either in space or time. These are
referred to as the spatial and temporal coherence, respectively. Spatial coherence
describes the phase relation between two separated points in a plane perpendicular
to the propagation direction [22]. Temporal coherence on the other hand describes
a defined phase relation between two points separated in time, i.e. parallel to the
propagation direction. At this stage one can already conclude that plane waves have
perfect spatial coherence, since they have the same phase at all points in planes
perpendicular to the propagation direction. In reality however, one always has a
source of light that has a finite size, i.e. it emits spherical waves which can be
approximated as plane waves only for large distances from the source. Thus, as
shown in the seminal book from Attwood [22], one can relate the spatial coherence
of a light source to its spatial size and its emission characteristics, i.e. the divergence
�θ of the radiation emitted. A measure for this is the transverse coherence length ξt

ξt = z�θ = zλ

2πd
, (2.10)

where z is the distance from the source to the plane of observation,λ is thewavelength
and d is the source size. A way to measure spatial coherence is to measure with a
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Young’s double slit with a variable distance between the slits. The wider the slits
are separated, the wider is the separation of the sampling points on the wave that
impinges on the double slit. If the separation between the slits becomes greater than ξt

one observes decreasing contrast on the fringes in the interference pattern in the far-
field behind the double slit. In a similar manner, for coherent imaging one finds that
spatial coherence is limiting the size of typical samples that can be imaged. This is
because if samples are significantly larger than ξt one cannot expect clearly resolved
fringes in the far-field and, thus, cannot resolve the phase as will be presented in
Sect. 2.2.3. What makes the estimation of the spatial coherence according to Eq.2.10
difficult in the practical application of CDI is the fact that typically the light from a
source is refocused and the sample is placed in the focus. Hence z would be zero and
one cannot use Eq.2.10, which only applies for a divergent light field. Thus a more
useful interpretation, but less measurable, is that the spatial coherence is related to
the beam quality, i.e. one should optimize for a Gaussian-shaped focal spot with an
ideally flat phase front.

Temporal coherence on the other hand is related to the bandwidth of the light field.
This can be intuitively understood again by analyzing a Young’s double slit. Since
different wavelengths are diffracted under different angles one gets more smearing
(broadening) of the fringes and therefore less contrast the larger the bandwidth of
the incoming light field becomes. The effect increases for larger diffraction angles,
i.e. larger distance from the center of the pattern. The temporal coherence can be
quantified by the longitudinal coherence length ξl

ξl = λ2

2�λ
. (2.11)

�λ denotes the full width half maximum (FWHM) bandwidth of the source.
Often temporal coherence measurements are discussed with Michelson interfer-

ometers in the way that changing the path length of one interferometer armmore than
ξl the interference is lost due to the missing phase relation between the interfering
light fields. Here temporal coherence is discussed at the far-field interference pattern
of a double slit. Comparing this to the discussion on spatial coherence one finds that
temporal coherence effects the far-field pattern of the object, i.e. the double slit, in a
similar way as spatial coherence. The only difference is that temporal coherence is
more limiting at higher diffraction angles, i.e. the achievable resolution, while spatial
coherence is limiting the field of view. Thus in a CDI experiment both coherence
measures are of special importance.

2.2.2 Diffraction of Light Waves at Matter

In this section the basic concepts of diffraction of light waves at matter will be
discussed. This field is very complex and cannot be covered in depth within this
thesis. Hence, in this work the focus will be on a few principles and a few important
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Fig. 2.3 The Huygens-Fresnel principle describes the diffraction of light as the superposition of
spherical waves that emerge from an object. In the presented case this is a simple aperture

formulas to illustrate the main effects that are relevant for CDI. A more detailed
discussion and further reading can be found for instance in the textbook of Jackson
et al. [23]. Here the notation given in [24] will be followed, hence electric fields will
be denoted by U .

An intuitive picture of diffraction is given by the Huygens-Fresnel principle
(Fig. 2.3). It states that every part of a wavefront emerging from an obstacle can
be considered as the center of a spherical wave. Thus the field at later points, after a
certain propagation, can be described by the superposition of all spherical waves that
propagated the given distance. The superposition of coherent wavefronts usually
gives rise to interference effects and hence produces a certain intensity distribu-
tion that is usually called a diffraction pattern. So the Huygens-Fresnel principle
describes the principal effects, however, the drawback is obvious, since one would
need an infinite number of waves to be propagated and interfered to determine a
diffraction pattern of an actual object. Another consequence of the Huygens-Fresnel
principle is that a diffraction pattern that one can expect behind an aperture depends
on the distance between the aperture and the plane of observation. For distances
close to the aperture (z ∼ a, where a is the aperture size), geometrical optics can
be applied to describe the field structure. Going further away the diffraction pattern
evolves quickly as a function of the distance since the interference of the spherical
waves starts to build up. This is called Fresnel diffraction. For distances far from the
object the spherical waves can be estimated as plane waves having different phases,
thus the diffraction pattern does not change but merely increases in size. This case is
called Fraunhofer diffraction. The transition from Fresnel to Fraunhofer diffraction
is not abrupt. One can estimate the distance z for which the Fresnel regime changes
into the Fraunhofer regime as

z ≈ a2

λ
, (2.12)

where a is the aperture size and λ is the wavelength.
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This is a rather qualitative view on diffraction. In next part of this section a
quantitative description of the diffraction of an arbitrary object will be derived. As
shown in [24] one can derive

U (P) = 1

4π

∫∫

S

[
U

∂

∂n

(
exp(−ikr)

r

)
− exp(−ikr)

r

∂U

∂n

]
dS (2.13)

from the Huygens-Fresnel principle, whereU is a solution of the Helmholtz equation
at a point of observation P , with n being a unit vector normal to the emitting surface
S, r being the vector from S to P and k being the wavevector. Equation2.13 is
called the Kirchhoff diffraction integral. If one now assumes to have an aperture on
an otherwise opaque screen that is illuminated from one side and the observation
plane is in the halfspace on the other side, one can derive [24] the Fresnel-Kirchhoff
diffraction formula

UK (P) = iU0

λ

∫∫

∑

exp[−ik(r + s)]
rs

[cos(n, s) − cos(n, r)]
2

dS. (2.14)

In Eq.2.14 s denotes the vector from the aperture
∑

to the source and r denotes the
vector from the aperture to the point of observation P . The integration is done over

∑
within the halfspace S enclosing P . The Fresnel-Kirchhoff diffraction formula is still
somewhat too general [24] and contains somemathematical irregularities.Rayleigh
and Sommerfeld used certain symmetries and assumptions to simplify Eq.2.14
further. Using their simplifications and introducing a Cartesian coordinate system
(Fig. 2.4) one can now calculate the light field U2 at a point P2 in the observation
plane

U2(x2, y2) = i

λ

∞∫∫

−∞
U1(x1, y1)

exp(−ikr)
r

cos(n, r)dx1dy1, (2.15)

Fig. 2.4 Definition of the coordinate system.U1 is the light field at point P1 in the diffraction plane
(x1, y1) and U2 is the light field in the observation plane (x2, y2) at point P2
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where U1 is the light field in the diffraction plane and cos(n, r) is the cosine of the
angle between the normal to the diffraction plane n and the direction of observation r.

The factor exp(−ikr)
r describes a spherical wave originating at point P1 and demon-

strates the Huygens-Fresnel principle. Provided one knows the light field within an
aperture U1 one can calculate the diffraction pattern anywhere behind the aperture
if r � λ which is one of the main assumptions when deriving Eq.2.15. For typ-
ical CDI experiments one expects a plane wave impinging on the target, thus U1
is well defined. But also in the case of Fresnel CDI [25] one can still use Eq.2.15
by assuming a spherical wavefront illuminating an aperture. Using the coordinate
system (Fig. 2.4) the distance r between P1 and P2 can be expressed in Cartesian
coordinates

r2 = z2 + (x2 − x1)
2 + (y2 − y1)

2 = z2
[
1 + (x2 − x1)2 + (y2 − y1)2

z2

]
. (2.16)

If the observer resides near the optical axis, which is the typical situation in CDI,
one can use (x2 − x1)2 + (y2 − y1)2 � z2 to simplify Eq.2.16 to

r ≈ z

[
1 + (x2 − x1)2 + (y2 − y1)2

2z2

]
. (2.17)

This paraxial approximation is called the Fresnel approximation. In this case the
cosine in Eq.2.15 becomes unity and using Eq.2.17 one can reduce Eq.2.15 to

U2(x2, y2) = i exp(−ikz)

λz
∞∫∫

−∞
U1(x1, y1) exp

[
−ik

(x2 − x1)2 + (y2 − y1)2

2z

]
dx1dy1.

(2.18)

This formula yields the diffraction pattern in the paraxial approximation, which is
also called the Fresnel diffraction pattern or the near-field. Inspecting Eq.2.18 reveals
that the phase in the observation plane has a quadratic dependence on the position.
This is the reason as towhy the Fresnel diffraction regime is complicated and difficult
to handle in imaging systems. This is particularly true if one deals numerically with
such geometries.

As mentioned earlier, a more orderly diffraction pattern is expected when the
observation plane is further away from the diffraction plane. In this case the quadratic
terms of the coordinates in the diffraction plane in Eq.2.17 can be neglected since
z2 � x21 , y21 . One only keeps the mixing terms and gets

r ≈ z

[
1 + x22 + y22

2z2
− x1x2 + y1y2

z2

]
. (2.19)
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Using this so-called Fraunhofer approximation and plugging it into the Rayleigh-
Sommerfeld diffraction formula (Eq.2.15) one gets

U2(x2, y2) = i exp(−ikz)

λz
exp

(
−ik

x22 + y22
2z

)

∞∫∫

−∞
U1(x1, y1) exp

[
ik

z
(x1x2 + y1y2)

]
dx1dy1. (2.20)

Inspecting this Fraunhofer diffraction formula one finds that a nonlinear phase vari-
ation in the observation plane is not arising. Instead one gets a steady pattern that
just expands in size over the propagation distance z. The integral essentially denotes
the Fourier transform of the source field U1.2 This is a very important result for CDI,
since using numerical implementations of the Fourier transform, e.g. Fast Fourier
Transforms (FFT), one can numerically switch between the diffraction pattern in the
far-field and the source field at an aperture. This is the basis for iteratively solving
the phase problem as will be explained in the subsequent section.

In summary the discussion startedwith the general Huygens-Fresnel principle that
essentially describes diffraction as the sum of point sources originating at the surface
of the diffracting object. Putting this into a mathematical description by integrating
over all spherical waves that leave the object, a solution that obeys the Helmholtz
equation for wave propagation was found. By restricting to one halfspace and using
paraxial and a few further assumptions the Fresnel diffraction formula was derived.
The Fresnel diffraction formula (Eq.2.18) is valid at any distance significantly larger
than the wavelength behind an illuminated aperture a. However, for even larger
distances z � a2

λ
the Fraunhofer diffraction formula (Eq.2.20) was found. It relates

the far-field and the source field by the Fourier transform. Thus the coordinates in
the far-field can be related to spatial frequencies q by

qx = x/(zλ) and qy = y/(zλ). (2.21)

In terms of interpreting diffraction as an elastic scattering of photons one can inter-
pret these spatial frequencies as the components of the momentum transfer vector
q(qx , qy, qz). The photons exiting the diffraction plane kout, which will later be
denoted as the object plane, experience a higher momentum change the more the
propagation directions differ from the incidence direction of the photons defined by
the wavevector kin of the incoming wave. Hence

q = kout − kin (2.22)

2 In literature this field is also often referred to as the exit surface wave.
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Fig. 2.5 Scattering of an incident coherent beam kin on a planar object in the object plane (dif-
fraction plane). The wavevector of the exiting photons kout ends on the Ewald sphere. Since one
measures a diffraction pattern in the detection plane, one can interpret the spatial frequencies as
the projection of the momentum transfer vector q on the corresponding axis. The object plane is
characterized by its spatial extent a and a sampling size, i.e. the object pixel size, pobj. The detec-
tion plane is likewise characterized by the detector size w and the pixel size p. Please note that one
can already see in this sketch that the Ewald sphere is projected onto the planar detector. For high
scattering angles, e. g. denoted by θmax, as they occur for high numerical aperture measurements, a
correction of this effect is necessary. Details can be found in Sect. 3.4

gives the resultingmomentum transfer vector.3 Energy conservation imposes |kout| =
|kin|. Hence, all scattering vectors, and thus the diffraction pattern, lie on a sphere,
which in crystallography is called the Ewald sphere [27]. The Ewald sphere has
thus the radius 1/λ, since k ∝ 1/λ. The scattering geometry is depicted in Fig. 2.5.
Throughout this thesis it will be assumed that the Ewald sphere has a radius 1/λ.4

The momentum transfer q = |q| for a given scattering angle θ thus becomes [28]5

q = 2

λ
sin

(
θ

2

)
. (2.23)

2.2.3 The Phase Problem

In the preceding section it was found that the object plane, i.e. the source field, and
the detection plane are Fourier conjugates in the Fraunhofer approximation, which

3 One can compare Eq.2.22 with the well-known momentum transfer equation from elastic scat-
tering �p = p − p0 by multiplying both sides in Eq.2.22 with � = h/2π where h is Planck’s
constant. If one now uses the de Broglie relation p0 = �kin and p = �kout for the incident and
scattered particle, respectively, it becomes clear that �q = �kout − �kin is the momentum transfer
vector [26].
4 For the sake of being consistent with most of the literature on CDI. Hence, |k| = 1/λ is used.
5 This equation comes from an isosceles triangle, where c = 2a sin(γ /2). Comparing it to the
well-known Bragg’s law one finds that Eq.2.23 is equivalent to a volume grating being tilted about
half the diffraction angle θ .

http://dx.doi.org/10.1007/978-3-319-12388-2_3
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is almost always fulfilled for soft X-ray imaging due to the short wavelength. Thus
one could retrieve the object except for a constant phase factor by a simple Fourier
transform if one could sample the amplitude and the phase in the far-field.However, in
all experiments that will be presented throughout this thesis an XUV sensitive charge
coupled device detector (CCD, details in Chap.3) is used to measure the diffraction
patterns. Unfortunately, there are no detectors that can measure phase and amplitude
spatially resolved simultaneously; instead a CCD measures only intensities, i.e. I ∝
UU∗ = |U |2. Hence the phase information is typically lost in CDI experiments, a
predicament commonly called the phase problem.

In 1952 Sayre published a seminal article [29] where he states that in principle
the phase information can be recovered from the diffraction intensities if they are
sampled densely enough. The idea behind this is the Shannon theorem [30], which
essentially states that one can retrieve the phase of a signal if it is sampled at twice
its frequency, the so-called Nyquist frequency. As shown before, one can think of the
plane of a diffraction pattern as a plane of spatial frequencies. Thus the implication
from Sayre’s work that he continued years later [31] is that one can retrieve the
phase if the continuous X-ray diffraction pattern caused by an non-periodic object is
sampled sufficiently dense. This is called the oversampling of the diffraction pattern.
Bates discussed in [32] that the solution of this inversion problem would be almost
always unique. If one considers a sample with a diameter a one can determine the
spatial Nyquist frequency to fNyquist = a/(zλ). This would be the spatial frequency
with which one would have to sample the diffraction pattern with, in order to achieve
a direct conjugate relation between object plane and the diffraction pattern. If the
phase problem is considered as a set of equations one would have N equations in
both planes, i.e. N pixels considering a CCD. However, since every detection spot
is characterized by an amplitude and a phase one has 2N unknowns and due to the
phase problem only N , i.e. the amplitudes

√
I , knowns. To solve this system of

equations one can, however, sample the diffraction pattern with 2 fNyquist, i.e. having
two pixels per spatial Nyquist frequency in terms of a CCD, and have 2N knowns
(2N amplitudes). If one now uses that there are 2N unknowns (N amplitudes and N
phases) in the object plane, one can in principle retrieve the phase [33]. In terms of
an FFT this means that the object plane has a certain zero padding around the object,
where amplitude and phase are known to be zero. This is depicted as two-dimensional
case in Fig. 2.6.

To quantify the oversampling of a diffraction pattern one can introduce an over-
sampling ratio σ , which one can define in the object plane as

σ = region with electron density + region without electron density

region with electron density
. (2.24)

The formulation electron density comes from X-ray diffraction on atoms, where the
dipoles of the electrons in an atom are the sources of the spherical wavelets [23]. To
be consistent with most CDI literature the electron density ρ will further be used as
a substitute for the source terms U in the previous section. So even for an aperture,

http://dx.doi.org/10.1007/978-3-319-12388-2_3
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Fig. 2.6 Oversampling as condition for solving the phase problem. a An object that fills N by N
pixels in the object plane results in a N by N pixels diffraction pattern in the Fourier transform
plane. b If one, however, adds a zero-density region around the object, i.e. zero-padding, to 2N
by 2N pixels one gets the corresponding 2N by 2N diffraction pattern. This represents a twofold
oversampled diffraction pattern with 2N by 2N known amplitudes, which allow to solve the phase
problem (the amplitude in the Fourier transform plane is plotted on the right panels on a logarithmic
scale). This is because there are only N by N complex-valued unknowns in the object plane and all
other pixels in the zero-density region can be set to zero. For convenience the arrays are shown at
the same size, in reality the arrays in (b) are four times larger

where the field in the object plane can be reconstructed, one can recover the object
itself through Babinet’s princple [24].

According to Sayre σ ≥ 2 is necessary to solve the phase problem. In the detection
plane this corresponds to the number of pixels used to sample a speckle in the
diffraction pattern. In two dimensions O = √

σ the linear oversampling degree in
the detection plane can be introduced [34]

O = λz

ap
, (2.25)

with λ being the wavelength, p the width of a detector pixel, z the distance between
object and detection plane and a the largest spatial extent of the object. According
to Eq.2.21 this corresponds to the highest spatial frequency observed from an object
related to the size of a detector pixel.

In this section itwas shown that the phase problemcan in principle be solved, if suf-
ficient oversampling in the diffraction pattern ismaintained. The ambiguity that is left
and cannot be recovered is a lateral translation of the object, a complex conjugation,
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a spatial inversion and an absolute phase shift [32]. One should note that all these
considerations are only valid for the Fraunhofer regime, because the nonlinear phase
evolution in the Fresnel regime, as pointed out in Sect. 2.2, would not satisfy a linear
sampling theorem [34]. To maintain sufficient oversampling in an experiment, care-
ful considerations regarding the experimental geometry are necessary. This will be
covered in the following section.

2.2.4 Geometric Considerations

In the preceding section it was found that oversampling (Eq. 2.25) is a crucial require-
ment for CDI experiments in order to retrieve the object plane from a far-field diffrac-
tion pattern. The far-field conditionwas given in Eq.2.12. In Sect. 2.2.1 the coherence
properties of a light source were investigated. Hence it is beneficial to bring the find-
ings together and have a look at the restrictions to the experimental geometry and the
properties of the light source that arise from these findings. Spence et al. present a
comprehensive discussion [35] on the coherence requirements of a source for proper
CDI. For the transverse coherence length they found that

ξt > 2a, (2.26)

where ξt is the transverse coherence length as discussed in Sect. 2.2.1 and a is the
spatial extent of the object. The reason for this is that the autocorrelation function �

of an object o

�(r) = o(r) ⊗ o∗(−r), (2.27)

where ⊗ denotes the convolution operator, has twice the size of its spatial extent
a [28]. That means that according to [35] the transverse coherence must at least be
maintained over the size of the autocorrelation �, because the unknown phases are
compensated by collecting coherent diffraction data from a plane at least twice as
big as the sample. For higher oversampling O one can thus generalize Eq.2.26 to

ξt > Oa. (2.28)

For the temporal (longitudinal) coherence similar estimations can be made, i.e. two
light rays originating from opposite sites of the sample should still interfere on the
detector. Miao et al. empirically found [34] a relation between the bandwidth �λ of
a light beam, the achievable resolution �r and the oversampling O:

λ

�λ
≥ Oa

�r
=⇒ �r ≥ Oa�λ

λ
. (2.29)
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Hence the resolution is limited by the bandwidth,6 i.e. the fringes smear out as
was qualitatively already discussed in Sect. 2.2.1. At the same time one sees from
Eqs. 2.28 and 2.29 that for a higher oversampling O one needs a higher temporal
coherence, i.e. a smaller bandwidth �λ, and a higher transverse coherence ξt . Since
no additional resolution in the reconstruction is gained from higher oversampling, it
can be concluded from this result to aim for O � 2. If not avoidable, one can account
for partial coherence in the phase retrieval algorithm (Sect. 2.3) [36].

If one now considers a diffraction experiment where the diffraction pattern is
sampled on a regular Nx by Ny grid, one can assign every sampling point, i.e. each
pixel, a corresponding sampling interval�qx and�qy . The corresponding sampling
interval of each single pixel at θ can be calculated using Eq.2.23. From this one can
deduce the field of view (FOV) in each axis to [28]

Lx = 1

�qx
, L y = 1

�qy
. (2.30)

At the same time the highest measured momentum transfer on the qx -axis qx,max
results in the smallest resolvable period �rx in the corresponding object plane axis7

�rx = 1

2qx,max
. (2.31)

The same is of course valid for the qy /y-axis and typically has the same result
in a transmission CDI experiment where the detector is centered behind the sample.
Hence, for a given detector width w and a detector sample distance z (see Fig. 2.5)
one can determine the highest recorded scattering angles θmax = tan−1[w/(2z)] and
use these to calculate the highest detectable momentum transfer as8

qmax = 2

λ
sin

(
θmax

2

)
= 2

λ
sin

[
1

2
tan−1

(
w

2z

)]
. (2.32)

6 Provided that diffraction data is measured to sufficiently high momentum transfers, such that in
principle a higher resolution could be obtained considering perfect coherence properties. See the
following pages for the fundamental resolution limit.
7 It is assumed that the zero deflection point, i.e. |q| = 0, resides in the center of the detector. The
factor 2 comes from the fact that the pattern is sampled from −[(Nx − 1)/2]�qx to [Nx/2]�qx
on the detector and that the FFT conserves the total amount of pixels, i.e. the object plane is also
sampled by Nx times Ny pixels.
8 This refers to the midpoints from the diagonal edges of the CCD. Sometimes in literature the
highest momentum transfer in the edges of the detector is mentioned. It is thus a factor of

√
2 larger,

but this yields no additional resolution because the highest momentum transfer with respect to the
x- and y-axis is still the same.
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Thus the smallest resolvable period becomes

�r = λ

4 sin
[
1
2 tan

−1( w
2z )

] . (2.33)

For small angles θmax this compares to the well-known Abbe limit (Eq.1.1), if
NA = sin[tan−1( w

2z )] is considered as the numerical aperture of the system. Using
the small angle approximation sin[tan−1(w/[2z])] ≈ w/(2z) yields

�r = zλ

w
= zλ

pN
= pobj (2.34)

if a CCD having N pixels with a pixel width p is considered. Due to the principle
of conservation of the number of pixels one can also interpret this as the pixel size
pobj in the object plane. This is also referred to as the half-pitch distance and it gives
an estimate of the smallest details in an object that can be resolved provided the
diffraction pattern can be measured with a sufficient signal to noise ratio at the edge
of the detector.

2.3 Iterative Phase Retrieval Methods

In the previous sections diffraction of light waves on a sample was investigated
and the phase problem (Sect. 2.2.3) was found, which needs to be solved in order to
reconstruct the object. As pointed out bySayre in 1952 [29], one can in principle solve
the phase problem if oversampled diffraction patterns aremeasured. However, it took
almost 20years until Gerchberg and Saxton came upwith a first algorithm [37] for the
phase retrieval in a diffraction pattern, at this time for electron microscopes. In 1978
Fienup then introduced an improved version [38] of theGerchberg-Saxton algorithm,
which is known as the error-reduction algorithm. He introduced a support constraint,
i.e. setting an area outside of the expected object to zero, and showed that this results
in a more stable phase retrieval. Moreover, he introduced a positivity constraint,
since a physical object’s complex electron density cannot have a negative amplitude.
The error-reduction algorithm, however, suffered from stagnation in local minima
during the reconstruction and thus needed further improvement, which resulted in
the hybrid input-output algorithm (HIO) [38]. In the HIO algorithm the amplitude
that is projected outside of the support is used as an error, which one tries to reduce
from iteration to iteration. The principal scheme for an iterative phase retrieval is
depicted in Fig. 2.7. For the initialization of the algorithm (Fig. 2.7a) the measured
amplitudes, i.e.

√
I (q), and random phases are used. An initial support function S

can be determined from the diffraction pattern if not otherwise known. This issue
will be tackled later in this section.

The goal of the phase retrieval is to reconstruct the complex wave function U (r),
as discussed in Sect. 2.2.2, that is exiting the object plane. This is equivalent to

http://dx.doi.org/10.1007/978-3-319-12388-2_1
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(a)

(b)

Fig. 2.7 Principal scheme for an iterative phase retrieval. a In a diffraction experiment one typically
measures the intensities of the diffraction pattern in the far-field, i.e. the Fourier transform of the
object. Since nothing is known about the phases one typically seeds the algorithm with random
phases. From the modulus of the inverse Fourier transform of the measured intensities one obtains
a function proportional to the autocorrelation, which can be used to obtain an initial support S that
encloses the object. So-called locator sets can be used to enhance this first support estimate [39].
b After having seeded the algorithm as explained in (a) one iterates between detection plane and
object plane using corresponding Fourier transforms. In the detection plane the modulus constraint
is enforced, i.e. taking the measured amplitudes and keeping the phases. Likewise, in the object
plane one enforces the support constraint by using a proper feedback function, which could for
instance be the HIO formulation. The shrink-wrap method [40] is used to enhance the support every
e.g. 100 iterations. The final reconstruction is depicted as complex-valued plane, where the hue and
brightness encode the phase and amplitude, respectively. The linear phase ramp, visualized by the
color transition in the final reconstruction, comes from a non-perfect centered diffraction pattern

reconstructing the object if one considers a coherent plane wave impinging on the
object. In the detector plane one has the complexwave Ũ (q) ∝ F[U (r)], fromwhich
one can only measure the intensity I (q) ∝ Ũ (q)Ũ∗(q). Thus the modulus constraint
(Fig. 2.7b) in the n-th iteration of the algorithm in the detector plane is defined as

Ũn+1(q) = √
I (q) exp[i arg{Ũn(q)}], (2.35)

i.e. one keeps the phases and replaces the amplitude by the square root of the mea-
sured intensities. Now one can think of the back transformation to the object plane
as a projection, i.e. the modulus constraint projection, which is denoted as Pmod.
This allows to write the modified wave function in the object plane in terms of the
projection as

Un+1(r) = PmodUn(r) = F−1[Ũn+1(q)]. (2.36)



2.3 Iterative Phase Retrieval Methods 23

Next a projection in the object plane is applied, which is called the support projection
Psup. The support S is the region inside the object, i.e. surrounded by a zero-density
region. One can write this projection as

PsupUn+1(r) =
{

Un+1(r) ∈ S
0 �∈ S

. (2.37)

The beauty of these projections is that one can use them to write down a certain
iterative algorithm in one formula. For instance the error-reduction algorithm can be
written as

Un+1(r) = PsupPmodUn(r) (2.38)

or the HIO as

Un+1(r) =
{

PmodUn(r) ∈ S
Un(r) − β PmodUn(r) �∈ S

, (2.39)

where β is a feedback parameter with typical values between 0.1 and 1. Further-
more, sometimes additional constraints are enforced on the object plane. For exam-
ple one can constrain that the object must be real-valued and positive Un+1 ∈ R

+
in case of a non-absorbing aperture. In case of a pure phase-object one can use
Un+1 = exp[i arg{Un+1}] as an additional constraint. Even though this requires
some knowledge about the object, it significantly decreases, if available, the search
space for the algorithm and consequently speeds up the convergence. Over the years
many different modifications to the HIO were introduced with each following a dif-
ferent goal. A comprehensive overview and comparison can be found in [40]. Mostly
a mixture of algorithms is used within a reconstruction run, e.g. 100 iterations of HIO
followed by a few error-reduction steps [28].

A realization of a noise-robust HIO dealing with noise9 in the recorded diffraction
pattern is presented in [41]. This realization was used for reconstructions in this
thesis apart from the unmodified HIO. Another realization that was implemented and
worked well on experimental data was Lukes relaxed averaged alternating reflection
algorithm (RAAR) [42] which can be written as

Un+1(r) = βUn(r) + 2β PsupPmodUn(r) + (1 − 2β)PmodUn(r) − β PsupUn(r).
(2.40)

For all phase retrieval algorithms a tightly fitting support S is crucial. The support,
however, is unknown in the general sense in microscopy. To get a first estimate of
the support one can use that the autocorrelation of the object o(r) is proportional to
the inverse Fourier transform of the intensity diffraction pattern [39]

�(r) = |F−1[I (q)]| ∝ o(r) ⊗ o∗(−r), (2.41)

9 Due to shot noise and electronic noise of the readout electronics.
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which essentiallymeans that one gets an outer bound for the object from themeasured
diffraction pattern. The autocorrelation can be practically thought of as translating the
object o(r) across itself in all directions and summing it up [39]. Hence the radius of
the autocorrelation is always larger than the object. Using so-called locator sets [39],
which basically use symmetries of the Fourier transform, one shifts �(r) along a set
of vectors and sums the resultant in a refined �(r), see Fig. 2.7a. Proper thresholding
of this refined �(r) results in a support estimate S which is typically close to the
actual object. Locator sets and the support determination from the autocorrelation
will be used to reconstruct all objects in this thesis without any a priori knowledge.

Another important technique to improve the support during the iterations was
introduced byMarchesini et al. and is known as the shrink-wrap method [43]. Shrink-
wrap essentially updates the support after a given number of iterations based upon
the current object plane reconstruction. In order to do this, one computes themodulus
of the complex electron density in the object plane and applies a Gaussian filter and
subsequently thresholds the result to determine a refined support. This method has
proved to be very effective since it allows to get a tighter fit of the support to the
actual object once the phases become more stable after a couple of iterations. It also
helps to overcome the uncertainty of the first support estimation from the autocor-
relation. Throughout this thesis shrink-wrap will be used for all reconstructions of
experimental data. It is worth mentioning that an actual implementation of shrink-
wrap introduces plenty of new parameters to the reconstruction, i.e. an amount of
Gaussian blurring and the period of application. For most reconstructions in this
thesis the Gaussian blurring is ramped down from e.g. 20 pixels standard deviation
radius down to 1 and shrink-wrap is applied at about every 100th iteration.

When starting with random phases, one often finds deviating solutions in single
HIO runs. Thus it is feasible to pick the best of the reconstructions after a certain
number of iterations and average it with every other independent run and proceed
further with the iterations. This technique is similar to genetic algorithms that are
widely used for optimization problems [44]. In CDI this technique is termed guided
hybrid input-output (GHIO) [45]. For some of the reconstructions in this thesis an
implementation of GHIO was used. It worked well, especially if data is missing in
the measured diffraction pattern, e.g. due to a beam stop that is used to block the
bright central speckle.

The progress of the phase retrieval can be monitored by an appropriate error
metric [46]. More important on the other hand is the success of the reconstruction in
relation to the achieved resolution. As explained in Sect. 2.2.4 there is a fundamental
resolution limitation set by the highest momentum transfer that can be measured.
However, typically the magnitude of the signal in the Fourier domain decays quickly
for increasing momentum transfer, thus in experiments the fringes measured at the
edge of the CCD, if measured at all, are noisy. Hence, the resolution should be
determined by the actual resolved diffraction pattern at the end of the phase retrieval,
i.e. it should be checkedwhat the highestmomentum transfer that actually contributed
to the reconstruction is. For this purposeChapman et al. introduced the phase retrieval
transfer function (PRTF) [28]
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PRTF(q) = | < Ũfinal(q) exp(iφ0) > |√
I (q)

, (2.42)

where Ũfinal(q) is the final complex-valued reconstructed field in the detector plane
without applying the modulus constraint in the last step. The angle brackets denote
averaging over several independent reconstruction runs for which one needs a multi-
plicative phase constant φ0 to adjust the phase offset between the runs to a common
level. The PRTF is then typically integrated over shells of constant |q| and plotted
over |q|. This function drops to zero if there is no relation between the averaged
reconstructed amplitudes and the measured amplitudes, hence the PRTF can be
extrapolated to zero in the drop-off region to determine the highest |q| that con-
tributed to the reconstruction.10 Using the formulas given in Sect. 2.2.4 one can then
determine the achieved resolution.

2.4 Digital In-line Holography

The phase problem (Sect. 2.2.3) is the main limitation to directly assess an object
from its diffraction pattern. Moreover, CDI as presented in the previous section
is limited to isolated objects. A way to overcome this limitation is the use of a
well-defined reference wave that causes interference fringes within the diffraction
pattern, which are related to the local phase at the detector. Thus, if sufficiently
highly sampled, one can retrieve the phase indirectly. This principle is well-known
as holography and was pioneered by Gabor in the later 1940s [47], winning him the
Nobel prize in 1971. Holography nowadays is a broad field with plenty of applica-
tions and possible geometries. A comprehensive overview is given in the book from
Toal [48]. The first holographic X-ray measurements were carried out using syn-
chrotron radiation [49, 50]. Over the years this technique was improved for instance
by using resonances in the material to achieve selective imaging [51] or ultrafast
temporally resolved holography [52]. Moreover, this technique can be used to char-
acterize the incoming X-ray field if one considers a known object [53, 54]. The first
digital in-line holography experiments with table-top HHG sources were carried out
using the divergent wavefront after a focus [13] and later using pinhole references
[55]. If the object is placed in a divergent beam, e.g. behind a focus, one can also get
a mixture between holography and CDI, which is termed Fresnel CDI [25, 56, 57].
Most of the X-ray holography experiments, however, use a separate source for the
reference wave, which is typically a small pinhole [51, 58], an array of references
[59, 60] or an extended reference [61–63]. This is somewhat limiting, because the
reference needs to be placed at a well-defined distance from the object in order to
acquire a hologram that can be directly inverted by a single Fourier transform, which
is then termed Fourier transform holography [51, 62].

10 Alternatively, one can threshold the PRTF at e.g. 0.5 or 1/e to determine the highest |q|.
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In the general case of unknown, e.g. biological samples, in-line holography allows
to assess the sample. In in-line holography the reference wave is the same as the wave
that is scattered at the object, i.e. the illumination wave, while only a part of this wave
is influenced by the object. For XUV wavelengths Gabor in-line holography was
successfully used to write the hologram into PMMA for later analysis [64]. More
practical in terms of microscopy is, however, digital in-line holography [65–67],
where a detector captures the hologram and a computer carries out the reconstruction
of an object image [68, 69]. From now on, the discussion in this thesis will be limited
to digital in-line holography (DIH) only, since this type of holography was used for
experiments in this work (Sect. 3.3).

The notation and discussion will follow an excellent overview given by Garcia-
Sucerquia et al. [70]. InCDI one considers a planewave impinging on the object caus-
ing a diffraction pattern. Since a plane wave in Gaussian optics can be attributed to
a beam having infinitely low divergence, one can, according to the Huygens-Fresnel
principle, only capture a diffraction pattern in the far-field caused by interference of
wavelets emitted from different parts of the object (Fig. 2.8a, b). In DIH however, one
expects a spherical wave, for sample illumination as well as for serving as reference,
Uref(r) = exp(ikr)/r arriving at the object. Since the spherical pinhole wavefronts
have a divergence similar to the object wavefronts, an interference pattern from the
reference wave Uref(r) and the scattered wave Uscat(r) forms in the detector plane
(Fig. 2.8c). From the field Udet(r) in the detection plane one can only record the
intensities, which can be written as

I (r) = |Udet(r)|2 = |Uref(r) + Uscat(r)|2
= [U∗

ref(r)Uscat(r) + Uref(r)U∗
scat(r)]

+ |Uscat(r)|2 + |Uref(r)|2. (2.43)

Inspecting the terms in Eq.2.43 one finds the interference between the scattered
and the reference wave in the first term (in the brackets), which gives rise to the
hologram (Fig. 2.8d). The diffraction pattern analogue to CDI can be found in the
second term. The third term is the far-field of the source, which, in case of a small
point-like source, is just a constant field that could be subtracted. Hence for DIH
it is essential that the object does not entirely block the reference wave. However,
even for apertures DIH works, but the fringe contrast is getting worse the more of
the reference is blocked by an opaque object [70]. Moreover, the geometry of DIH
is dictated by the source size, i.e. the divergence of the reference beam. If a pinhole
is used for illuminating an object care must be taken that the zeroth order of the
produced Airy pattern11 covers both the object and the detector in order to get a well
resolved hologram. Comparing Fig. 2.8b, d reveals an important advantage of in-line
holography, which is that in DIH no beam block is needed to suppress the central high
intensity maximum as it occurs in CDI.Moreover the intensity distribution across the

11 An Airy pattern or Airy disk is the diffraction pattern caused from a round aperture featuring
a bright central maximum, i.e. zeroth diffraction order, surrounded by dark and bright rings, i.e.
higher order diffraction terms.

http://dx.doi.org/10.1007/978-3-319-12388-2_3
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(a) (b)

(c) (d)

Fig. 2.8 Comparison of CDI andDIHwith aμ-shaped aperture. a In a CDI configuration the object
is illuminated with a plane wave (solid blue line), which can partly propagate through the aperture
and partly gives rise to the diffracted wave (red dotted line). Through Babinet’s principle one can
also think of a μ-shaped object in free space, where part of the impinging wave far away from the
object propagates undisturbed to the detector. Typically, a beam stop is used to suppress the bright
central speckle in order to have a better use of the limited dynamic range of the detector. b The
intensity of the diffraction pattern (logarithmic scale) caused by the object. c A pinhole is placed in
front of the object in order to illuminate it with a spherical wave. Thus one has the reference wave
(solid blue line) and the diffracted (object) wave (dotted red line) covering the detector causing
interferences across the detector. This is a typical DIH setup. d A simulated hologram one would
measure in the far-field of a 40µm large μ-shaped aperture that is illuminated with a 1µm pinhole
1.9mm away with λ = 38nm wavelength. Please note that the intensity scale in (d) is linear

detector is homogeneous compared to CDI diffraction patterns where the intensities
of the fringes typically vary by several orders ofmagnitude across the detector. This is
expressed by the logarithmic intensity scale in Fig. 2.8b and the linear intensity scale
in Fig. 2.8d. Another consequence is that noise in the measurement of a hologram
has much less effect compared to CDI, because small fluctuations contribute less to
the overall result. A much more detailed theoretical analysis of DIH can for instance
be found in the thesis from Schürmann [71].

In Chap.3 the setup that was used for DIH in this work is introduced. In a nut-
shell it consists of a pinhole having a certain diameter that is placed in the focus
of a monochromatized HHG beam. This pinhole generates the spherical illumina-
tion wave, which is then diffracted at the object. The undisturbed part of this wave
propagates to the detector and further serves as reference wave. In the far-field a
CCD records the hologram. An excellent book from Poon and Banerjee [72] covers

http://dx.doi.org/10.1007/978-3-319-12388-2_3
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Fig. 2.9 Reconstruction scheme for the digital in-line holograms as used in this thesis. The convo-
lution (⊗) of the Fresnel propagator h(x, y; z)with an input fieldU (x, y)was used to propagate the
field between the planes. Starting at the pinhole plane one propagates the field to the object plane,
where the field is multiplied with an in general complex-valued transmission function of the object
Tobj(x, y). Then the field is propagated to the far-field given at an intermediate plane, see text for
detailed explanation. A coordinate transform scales the field to the detector where the phases are
kept and the measured amplitudes

√
I are enforced. After back propagation to the object plane the

object function is updated. These steps are repeated until convergence

this topic and its numerical integration in depth. Here, some of the notations given
there will be used for the reconstruction. In order to reconstruct these holograms the
following procedure is used (Fig. 2.9):

1. One starts in the pinhole plane with a field Uph(x, y) that has a flat phase and a
radial distribution.

2. According to Chap.3 in [72] one can compute the Fresnel diffraction pattern after
a distance z (see Fig. 2.4), by convoluting the input fieldUph(x, y)with the spatial
impulse response h(x, y; z)

h(x, y; z) = exp(−ikz)
ik

2π z
exp

[
−ik

(x2 + y2)

2z

]
, (2.44)

also known as the Fresnel propagator. The numerical implementation can be
done by Fourier transforming the propagator h and the field U , multiplying them
in Fourier space and Fourier transforming the result back, i.e.

U (x, y)
∣∣
z = αF−1{F[h(x, y; z)] × F[U (x, y)]}, (2.45)

where α is a constant scale factor depending on the actual implementation of
the FFT algorithm. Using this, the illumination field at the object plane can be
computed by Uillum(x, y) = Uph ⊗ h(x, y; Lph) when the pinhole plane and
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object plane are Lph apart. This is essentially an Airy pattern. The experiment
is aligned such that the zeroth order of the pattern, which contains 84% of the
energy, fits to the sample.

3. Now, in the object plane, one multiplies Uillum(x, y) with the transmission func-
tion of the object Tobj(x, y), which could e. g. be a simple step-function having
the spatial shape of the object if one considers an opaque aperture. From this one
gets the object plane exit wave Uobj(x, y) = Uillum(x, y) × Tobj(x, y).

4. Uobj(x, y) is then propagated to the far-field, which is an intermediate plane
Uint(x, y) a couple of Fresnel lengths (Eq.2.12) behind the object plane. Due to
the large divergence of the beam the field spreads quickly spatially, which would
demand a large computation grid to sufficiently sample amplitude and phase on
the full propagation distance to the detector. Thus, the wave is just propagated
a short distance L int to be safely in the far-field regime. As explained earlier in
Sect. 2.2.2 the diffraction pattern, or hologram in this case, only spreads spatially
when propagating further but does not change its shape. Hence one can use a
coordinate transformation (x → x ′, y → y′) to transform the intermediate plane
to the actual detector plane and get Udet(x ′, y′). The coordinate transform is
applied in order to have sufficient sampling at the object plane, while keeping
the computation space maintainable. This procedure is illustrated in more detail
in [67].

5. In the detector plane, methods inspired by the HIO algorithm (Sect. 2.3) are used,
i.e. keeping the phases of Udet(x ′, y′) and replace the amplitudes with the square
root of the measured intensities.

6. Then the wave is transformed back to the intermediate plane, i.e. (x ′ → x, y′ →
y), and propagated back to the object plane to get a new U ′

obj(x, y). Now a new
estimate of the object transmission T ′

obj(x, y) = U ′
obj(x, y) − Uillum(x, y) is

calculated.12

Steps 3–6 are now iteratively repeated until convergence occurs. It isworth noting that
there is some similarity to the algorithmdescribed in [67], with the differencesmainly
being that here a convolution of the Fresnel propagator is used instead of analytical
formulas. This severely speeds up the computation, because, as outlined above, the
convolution can be done by using FFTs, which in turn can be effectively parallelized.
Moreover, here the full system is computed starting from the source producing an
illumination wave. Hence, in contrast to the algorithm reported in [67], there is no
limitation to real objects, since here Tobj(x, y) could in general be complex-valued,
e.g. for partly transparent objects that would change phase and amplitude of the
illuminating wave. Further, it can be used to determine the illumination field in great
detail if a known object, e.g. a rectangular aperture, is enforced and one loops through

12 Other iterative methods reported in literature make use of the Gerchberg-Saxton algorithm [73]
or use a support constraint to retrieve the hologram [74, 75]. The important difference is that here
the full illumination field, which is well characterized by the pinhole being illuminated with a XUV
beam having good coherence properties, is used at every step, in contrast to the algorithms reported
in literature, which mostly switch between the object plane and the detector plane and disregard the
illumination field.
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all the steps. It also proved towork successfully for samples that aremostly consisting
of strongly absorbing regions to use Tobj(x, y) just as a binary function determined
by the shrink-wrap method analogous to the support function S in the HIO algorithm
and then calculate the complex-valued sample in the final iteration of the algorithm
by

Usample = Uint(x, y) ⊗ h(x, y;−L int) − Uillum. (2.46)

The idea behind this is that all hard edges caused by opaque parts of the object cause
intense fringes and likely dominate the hologram. Hence the rough structure of the
object is enforced first and the partially transparent parts are recovered in the final
step. In the results in Sect. 4.1, samples that justify this approach will be presented.

It is worth noting that the holographic procedure offers the possibility of recon-
structing the object in an arbitrary plane using one hologram. Thus in principle
three-dimensional information about the object can be retrieved to a certain extent
by refocussing to different planes [70]. Moreover, the quality of the reconstruction
can be enhanced by measuring the amplitude of the reference wave and then using
this as an illumination field instead of the numerically produced illumination field
discussed in this section.

The resolution, aswasdiscussed in theprevious sections, dependson thenumerical
aperture according to Eq.1.1. For digital in-line holography using spherical waves
the NA is [70]

NA = w

2
√(

w
2

)2 + L2
det

, (2.47)

where w is the width of the detector. The NA is obviously independent of the source
size, however, as discussed earlier in this section one needs a homogeneous illumina-
tion by employing the central maximum of the Airy pattern produced by the pinhole.
The angular radius θ0 of the first dark ring of an Airy pattern is given by

sin θ0 = 1.22
λ

a
, (2.48)

where a is the diameter of the aperture. The small angle approximation sin θ0 ≈
tan θ0 is almost always justified in DIH experiments. Hence, one can calculate the
approximate diameter of the central maximum of the Airy disk on the detector placed
at Ldet

13

wAiry = 2 · 1.22λ

a
Ldet. (2.49)

Physically this means that one observes a larger central maximum for a smaller
pinhole if the detector is kept at constant distance. IfwAiry < w and if the higher order

13 More precisely it would be Ldet + Lph, however, for all experiments presented in this thesis
Ldet � Lph, hence simply Ldet is used.

http://dx.doi.org/10.1007/978-3-319-12388-2_4
http://dx.doi.org/10.1007/978-3-319-12388-2_1
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maxima of the Airy pattern are neglected one can calculate an effective numerical
aperture of the system

NAeff = 1.22λ
a Ldet√(

1.22λ
a Ldet

)2 + L2
det

= 1√
1 + 0.67 a2

λ2

, (2.50)

which now is obviously only dependent on the pinhole size and the wavelength. For
XUV DIH usually a � λ, which allows to simplify Eq.2.50 to NAeff ≈ 1.22λ

a . The
practical implication of this result is that one should match the pinhole size to the
dimensions of the detector and its anticipated distance [76]. In this case one can
compute the NA and thus the achievable resolution simply by Eq.2.47. Of course
one could argue to use a pinhole so tiny thatwAiry � w is always fulfilled. However,
in table-top HHG experiments the XUV flux is not excessive and thus best use of the
available photons should be made. Hence, it can be concluded that it is beneficial to
choose a pinhole that fits the detector and its achievable distance from the pinhole in
order to realize the best performance in terms of the photon flux and the achievable
resolution. In view of maximizing the magnification ζ

ζ = Ldet/Lph, (2.51)

which is inferred from the intercept theorem, one has to place the sample as close
to the pinhole as mechanically possible.14 On the other hand the field of view is
minimized in this case. If the distance between sample and pinhole is too large, one
cannot resolve the fringes if the Shannon-Nyquist theorem is violated. Hence, the
optimal position of the sample relative to the pinhole and the CCD is somewhere in
between and should be set such that the period of the smallest fringes is in the range
of e.g. 5–10 pixels on the CCD [77]. In that case the FOV and object space NA, and
thus the achievable resolution, are optimal.

If, however, Ldet � Lph, i.e. when the object is close to the pinhole, one could
think of a spherical particle in the object plane at approximately the distance of the
pinhole. To have a resolvable fringe one needs to have at least the first ring of the Airy
pattern produced by the particle on the detector,15 hence the discussion is exactly the
same as above for the pinhole. For example, if one thinks of a 1µm pinhole as the
reference source and a round particle of e.g. 500nm diameter in the object plane one
will not observe any fringe from that particle on the detector because the emission
cone of its partial wave is coarser than the one from the pinhole. In terms of the back
projection this means that one cannot resolve this particle. The conclusion from this
discussion is that the size of the pinhole is not just limiting the effective NA but also
the resolution itself. As a rule of thumb it can be summarized that a resolution of
approximately the size of the pinhole is achievable.

14 For typical XUVwavelengths and pinhole sizes in the order of a micron the Fraunhofer condition
(Eq.2.12) is already fulfilled a few tens of microns behind the pinhole. Hence, the Fraunhofer
condition is not limiting in XUV DIH.
15 This is analogous to the Rayleigh criterion.
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2.5 CDI State-of-the-Art and Chapter Summary

The CDI technique presented in the fundamentals chapter allows imaging of isolated
objects at the nanometer scale without the use of imaging optics. This renders those
systems very compact. In the case of table-top CDI experiments, the whole apparatus
can fit on an optical table of a few square meters. Another major benefit is that lossy
optical elements, such as Fresnel zone plates, are avoided. Moreover, the mechanical
stability of the imaging system is less important, because lateral shifts of the object
would only affect the phase in the far-field (Fourier space), which in any case cannot
be measured. This is quite astonishing if one considers achieving a few nanometers
of resolution while the mechanical stability of the system only needs to ensure that
the beam homogeneously overlaps with the object during exposure. If one would
use imaging optics instead, one would need a mechanical stability comparable to the
desired resolution, which can be very challenging if nanometer resolution is aimed
for. One major drawback of CDI, however, is that so far only isolated objects were
considered, which could be e.g. an isolated cell, a structured aperture or a sample on
a fixed support frame. It was demonstrated that digital in-line holography can be used
to solve this problem at the expense of introducing another reference wave forming
object, e.g. a pinhole. The latter will typically limit the achievable flux of the source
and dictate the geometry of the imaging system. Moreover, the mechanical stability
issue described above arises.

In recent years a technique called ptychography was developed, which overcomes
this drawback [78, 79]. Ptychography uses a set of diffraction patterns obtained from
an extended object, where the illuminated region is shifted from one exposure to the
next while each exposure region overlaps with the previous. This produces a set
of overdetermined diffraction patterns, which can then again be used to reconstruct
the whole object plane. An extension of ptychography is called keyhole diffraction
imaging [80] which is a combination of curved beam illumination at high numerical
apertures, i.e. in-line holography combined with CDI, with ptychographic scanning.
The latter technique shows quicker convergence behavior compared to pure ptychog-
raphy. It is worth noting that the drawback of these techniques is again the need for
high mechanical stability and limitations imposed by tight focusing optics, which
currently restricts the application to synchrotrons and free-electron laser sources.16

However, very recently first results on ptychography using table-top sources were
published [81, 82].

Over the last decade the general field of CDI developed rapidly at synchrotrons
and later at free-electron lasers. From its first experimental demonstration [83] it went
on to image biological specimens such as single cells [84, 85] at a resolution of a few
nanometers. An important improvement was introduced by Raines and co-workers
who found that one can even extract three-dimensional data from a single diffraction
pattern [86] if it is captured at a high numerical aperture. Other realizations of full
3D imaging combine tomographic techniques with CDI [28, 87]. The next goal

16 This is because the high flux of such sources allows extremely short exposures down to single
shot measurements which circumvents the stability problem.
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that is to be achieved with novel free-electron laser sources, such as the European
XFEL project, is atomic resolution, i.e.�r < 0.1nm. The major problem faced here
is that the photon energies necessary to achieve this resolution in principle are so
high that matter is destroyed already after one exposure [88–90]. Hence, only single
shot exposures can be used. However, for atomic resolution>1014 photons/µm2 in a
single pulsewould be necessary to get a sufficient signal in the diffraction pattern [91].
These numbers are out of reach for current FEL machines. Hence atomic resolution
is one of themajor goals for the coming years in CDI. In themeantime averaging over
diffraction patterns obtained from replicas of the same objects was proposed [92]
and demonstrated [93, 94] for proteins. Additional contrast is obtained by growing
the protein as a crystal to get a macroscopic diffraction pattern of the same protein.
Molecular reconstruction techniques are then used to fit the molecular structure
to the diffraction pattern [93]. These techniques include the full three-dimensional
reconstruction of the object.

Broad usage of CDI in all fields of science and especially for medical application
is not feasible at next-generation synchrotrons and free-electron lasers, because such
large scale facilities have limited access and are expensive to operate. An alternative
are HHG sources that offer excellent XUV beams [13, 14] in terms of coherence
allowing for table-topCDI experiments. Limiting is the flux in terms of exposure time
and the bandwidth of the harmonics (cf. Eq. 2.29), and the achievable wavelengths
in terms of resolution. Table-top CDI was first demonstrated by Sandberg et al. [95],
while first holography measurements were done by Bartels et al. [13]. Abbey et al.
demonstrated that the limitation due to bandwidth can be overcome for sufficiently
discrete structures [96]. Likewise this can be applied to the harmonics frequency
comb [97], while one has to keep in mind that this may work only for discrete
objects that generate a limited amount of fringes such that the fringes caused by
different harmonics are not overlapping. However, if this condition is fulfilled one
can take advantage of the improved overall flux. Using more powerful laser sources
even single shot HHG imaging was demonstrated [98, 99]. The flux from typical
HHG sources does not endanger the detector unlike at FELs, hence the detector
can be placed very close to the sample to achieve a high numerical aperture to take
full advantage of the short wavelength radiation. Using a high numerical aperture
in a table-top XUV experiment a resolution of 22nm was achieved using 13.5nm
wavelength [100]which equals 1.6λ. It is alsoworthmentioning thatHHGoffers very
short XUV bursts in the range of attoseconds to femtoseconds with the availability
of a time-locked infrared laser, thus offering perfect capabilities for time resolved
measurements [101, 102].
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