Chapter 2
Stochastic Invariant Manifolds:
Background and Main Contributions

The focus of this first volume is the derivation of leading-order approximations of
stochastic invariant manifolds such as stochastic center manifolds by extending, to
a stochastic context, the techniques described in [117, Chap.3] and [120, Appen-
dix A]; see Chap. 6. New properties of approximating manifolds described in terms
of pullback characterization will be reported in Volume I1[37, Sect. 4.1].! The frame-
work set up in this way allows us, furthermore, to unify the previous approximation
approaches from the literature [18, 29, 40, 103]. These features are not limited to the
stochastic setting as pointed out in Volume II [37, Sect.4.1].

In that respect and motivated by the study of stochastic bifurcations or more
general phase transitions arising in nonlinear SPDEs? [56, 127], we first revisit in
Chaps. 4 and 5 the existence and smoothness properties (Theorems 4.1,4.2 and 5.1)—
as well as the attraction properties in terms of almost sure asymptotic completeness
(Theorem 4.3)—of families of global stochastic invariant manifolds parameterized by
the noise amplitude o, and by some control parameter A. The latter is assumed here to
vary in some interval A over which a uniform decomposition of the spectrum holds;
see (3.11) below. The latter condition implies some uniform (partial)-dichotomy
estimates that are satisfied by the linearized stochastic flow about the basic state;
see (3.46).

The questions of existence and smoothness are dealt within a framework rooted
in the standard Lyapunov-Perron method [19, 109, 114, 131]. The techniques follow
those used for instance in [46, 92, 152, 153, 154], from which we propose a treatment
adapted to the random setting inspired mainly by the works of [42, 66]. The related
existence and smoothness results are essentially known, but are revisited here in
order to set up the precise framework and to provide the technical tools on which we

ISection4.1 in Volume II [37] concerns the approximating manifolds considered in this volume.
This somewhat unconventional presentation has been adopted here in order to articulate, in a unified
way, the pullback characterization of such manifolds as well as of the stochastic parameterizing
manifolds considered in [37].

Zwhich is the main purpose of [36].
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rely to establish the main results of this volume in Chaps.6 and 7 as well as those
presented in Volume II [37, Sect.4.1].

Our treatment of the asymptotic completeness problem is inspired by the work
of [46] that we adopt in the stochastic framework, and that consists of reformulat-
ing this problem as a fixed point problem under constraints; see (4.21). The latter
problem is then recast as an unconstrained fixed point problem associated with a ran-
dom integral operator (see 4.24) that is solved by means of the uniform contraction
mapping principle [44, Theorems 2.1 and 2.2]. Various types of attraction proper-
ties of random invariant manifolds have been explored in the literature mostly in
contexts where the associated SPDEs possess a stable self-adjoint linear part and a
bounded and Lipschitz nonlinearity. For instance, in [12, Theorem 3.1], both forward
and pullback exponential attractions® of the stochastic inertial manifold are estab-
lished. Asymptotic completeness in some nth-moment has been established in [51,
Theorem?2] and [57, Proposition 3.5] (with n being any integer in [51] and n = 2
in [57]) for stochastic inertial manifolds associated with certain types of SPDEs
with respectively additive and multiplicative noise. Almost sure forward asymptotic
completeness for deterministic initial data has been established in [42] for retarded
SPDEs with additive noise and a stable self-adjoint linear part, adapting also the
work of [46] to a stochastic context. Almost sure pullback asymptotic completeness
of stochastic invariant manifolds has also been investigated in [155, Theorem?2.1]
for certain type of SPDEs with nonlinearities which do not cause a loss of regularity
compared to the ambient space 7.4

For SPDEs considered in this monograph, which in particular allow for nonlin-
earities causing a loss of regularity (see Chap. 3), Theorem4.3 provides conditions
under which the stochastic invariant manifolds ensured by Corollary 4.1 are almost
surely forward and pullback asymptotically complete with respect to random tem-
pered initial data; see Definition4.3. In particular the existence of a one-parameter
family of global stochastic inertial manifolds is obtained, and it is shown that the
constitutive manifolds of this family attract exponentially the dynamics at a uniform
rate as A varies in A. The results obtained in Theorem4.3 and Corollary 4.3 are not
restricted to the case of self-adjoint linear operator and include the cases where un-
stable modes are present. The latter situation is particularly useful to establish in
Volume II [37] that stochastic inertial manifold always constitute a stochastic PM;
see [37, Theorem4.1] whose proof relies furthermore on some elements contained
in the proof of Theorem4.3.

In Chap. 5, we present a local theory of stochastic invariant manifolds associated
with the global theory described in Chap.4. The ideas are standard but the material
is detailed here again in view of the derivation of the main results regarding the ap-
proximation formulas of stochastic critical manifolds (Chap. 6) and local stochastic

3The exponential attraction used therein extends in a random context the classical one encountered
in the theory of (deterministic) inertial manifold [79].

“Namely, F: ## — 2, adopting the notations of Chap.3. Note also that the proof of [155,
Theorem2.1] provided therein is not complete.
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hyperbolic invariant manifolds (Chap.7), as well as the related pullback characteri-
zations discussed in Volume II [37, Sect.4.1].

Chapters 6 and 7 are devoted to the main results concerning approximating man-
ifolds of local stochastic critical manifolds on the one hand (Chap.6), and local
hyperbolic ones, on the other (Chap. 7). They concern the derivation of new approx-
imation formulas of these (local) stochastic invariant manifolds. More precisely, in
Chap. 6, we consider the important case for applications where some leading modes
lose (once) their stability as A varies in A, which is formulated as the principle of
exchange of stabilities (PES); see condition (6.4). It is shown in Lemma 6.1 that the
latter implies the uniform spectrum decomposition assumed in previous sections.
This allows us in turn to establish in Proposition 6.1, the existence of a family of lo-
cal stochastic critical manifolds which are built—by relying on Chap. 5—as graphs
over some deterministic neighborhood of the origin in the subspace spanned by the
critical modes that lose their stability as A varies.’ By construction, these manifolds
carry nonlinear dynamical information associated with the loss of the linear stability
of these critical modes; see [36].

We then derive in Theorem 6.1 and Corollary 6.1, explicit random approximation
formulas to the leading order of these local stochastic critical manifolds about the
origin. These stochastic critical manifolds are built naturally as graphs over a fixed
number of critical modes, which lose their stability as A varies. More precisely,
the corresponding approximating manifolds are obtained as graphs—over some A-
independent neighborhood .4~ of zero in the subspace ¢ spanned by the critical
modes—of the following one-parameter family of random functions:

0
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where F} denotes the leading-order nonlinear terms of order &, L, the corresponding
parameterized linear part, P, the projector upon the non-critical modes, and W, (w)
the Wiener path associated with the realization w of the noise with amplitude o .

It is worth mentioning at this stage that the random approximation formulas such
as (AF), contrast with the deterministic ones proposed in [18] and [40] for certain
types of SPDEs. In particular, the nonlinearity considered in [ 18] consists of a bilinear
term, B(u, u), while it consists of power nonlinearity, u*, with k > 2 in [40]. The
error bounds for the approximation of the local random invariant manifold function
h(u, w) provided in both [18] and [40] are of the same order as ||« || and are valid with
large probability, and for sufficiently small u; see [40, Lemma4.10] and footnote 3
in [37, Chap. 4] for [18, Theorem 7].

The class of nonlinear SPDE:s of type (3.1) considered below contains the SPDEs
dealt within [18,40] as special cases. In contrast with the deterministic approximation
formulas obtained in [18, 40], the approximations derived hereafter are genuine
random polynomial functions, which approximate almost surely the local random

5See Definition 6.1 for more details.
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critical manifolds and provide (random) Taylor approximations of these manifolds
to the leading order; see Corollary 6.1. More precisely, a priori error estimates are
derived in a general setting which are of order o(||u ||’[§) if the nonlinear term, F(u),
is such that || F (u)|| = O(|lu||¥) for some integer k > 2;% see again Theorem 6.1 and
Corollary 6.1 for precise statements of these results.

Approximation formulas such as given by (AF) are then extended to the case of
stochastic hyperbolic manifolds in Chap.7, which allows for the low-dimensional
subspace #Z°¢ to contain a combination of critical modes, and modes that remain
stable as A varies in some interval A. In that respect, relaxation of the conditions
on the spectrum under which the Lyapunov-Perron integral J, exists, are identified.
In particular, when L, is self-adjoint, it is shown that J, exists if a non-resonance
condition (NR) is satisfied: For any given set of resolved modes for which their
self-interactions (through the leading-order nonlinear term Fj) do not vanish when
projected against an unresolved mode e,, it is required that some specific linear
combinations of the corresponding eigenvalues dominate the eigenvalue associated
with e,,.

We turn now to the organization of this first volume. In Chap. 3, we introduce
the class of SPDEs considered throughout this monograph and describe the main
assumptions among which a uniform decomposition of the spectrum of the linear
part constitutes a key ingredient in most of the proofs presented hereafter. We also
recall some basic concepts from RDS theory [1], and cast such SPDEs into the RDS
framework by a classical random change of variables leading to random partial differ-
ential equations (RPDEs). The existence, uniqueness, and measurability properties
of classical solutions to such RPDEs are recalled in Proposition3.1. To make the
expository as much self-contained as possible, the proof and some related results
concerning the mild solutions to these RPDEs are presented in Appendix A.

In Chap.4, we revisit the existence and attraction properties of global ran-
dom/stochastic invariant manifolds within a framework that is suitable for the deriva-
tion of certain results regarding the stochastic parameterizing manifolds introduced
in Volume II [37]; see, e.g., [37, Theorem4.1]. We first derive the existence and
smoothness of such manifolds for the transformed RPDEs in Theorems4.1 and 4.2.
The corresponding results for the original SPDEs are presented in Corollaries4.1
and 4.2. Finally, the almost sure forward-and-pullback asymptotic completeness of
these manifolds is examined in Theorem 4.3 and Corollary 4.3.

In Chap.5, we relax the global Lipschitz condition on the nonlinear term, and de-
rive accordingly the existence of local stochastic invariant manifolds for SPDEs; see
Theorem 5.1 and Corollary 5.1. Chapter 6 is devoted to the main results of this first
volume regarding the approximation formulas of local stochastic critical manifolds
for SPDEs, as summarized in Theorem6.1 and Corollary 6.1. Rigorous error esti-
mates to the leading order are in particular derived. These results are then extended
to the case of (local) stochastic hyperbolic manifolds in Chap. 7.

%Here || - ||o denotes a norm on a space of functions more regular than those of the ambient space
A, see Chap. 3.
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