
Chapter 2
Priority vector and consistency

The average man’s judgment is so
poor, he runs a risk every time he uses
it.

Ed Howe

It is important to reflect on the fact that in the previous chapter, almost uncon-
sciously, a number of very restrictive assumptions were imposed. Let us summarize
them within one sentence, where the assumptions are highlighted in italic.

A single decision maker is perfectly rational and can precisely express his
preferences on all pairs of independent alternatives and criteria using positive
real numbers.

Some of these assumptions had already been relaxed in Saaty’s original works,
and some others were relaxed later. In this and in the next chapter we shall present
the ways in which these assumptions have been relaxed in the literature to pro-
vide the users of the AHP with a more flexible method. Everytime one assumption
is relaxed, the previous box will be presented again and the assumption at stake
emphasized in boldface. We are now ready to depart from a normative view on the
AHP (how decisions should be made in a perfect world) to adopt a more descriptive
view (how decisions are actually made).

2.1 Priority vector

We have seen that one pivotal step in the AHP is the derivation of a priority vector
for each pairwise comparison matrix. Note that if each entry ai j of the matrix is
exactly the ratio between two weights wi and wj, then all the columns of A are pro-
portional one another and consequently the weight vector is equal to any normalized
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18 2 Priority vector and consistency

column of A (see the matrices in Chapter 1). In this case the information contained
in the matrix A can be perfectly synthesized in w and there is no loss of information.
However, we do not even bother dwelling on this case and technique to derive the
weights, since it is hardly ever the case that a decision maker is so accurate and
rational to give exactly the entries as ratios between weights. In this, and in the next
section on consistency, we shall investigate how the AHP can cope with irrational
pairwise comparisons. Let us then represent again the box with the relaxed assump-
tion now in boldface.

A single decision maker is perfectly rational and can precisely express his
preferences on all pairs of independent alternatives and criteria using positive
real numbers.

When the entries of the matrix A are not obtained exactly as ratios between
weights, there does not exist a weight vector which perfectly synthesize the infor-
mation in A. Nonetheless, since the AHP cannot make it without the weight vectors,
it is necessary to devise some smart ways of estimating a ‘good’ priority vector.
Several methods for eliciting the priority vector w = (w1, . . . ,wn)

T have been pro-
posed in the literature. Each method is just a rule for synthesizing pairwise com-
parisons into a rating, and mathematically is a function τ : Rn×n

> → R
n
>. Clearly,

different methods might lead to different priority vectors, except when the entries
of the matrix are representable as ratios between weights, in which case all methods
shall lead to the same vector w. Needless to say, in the case of perfect rationality,
the same vector w obtained with any method must be such that (wi/wj)n×n = A.

2.1.1 Eigenvector method

The most popular method to estimate a priority vector is that proposed by Saaty
himself, according to which the priority vector should be the principal eigenvector
of A. In linear algebra it is often called the Perron-Frobenius eigenvector, from
the homonymic theorem [70]. The method stems from the following observation.
Taking a matrix A whose entries are exactly obtained as ratios between weights and
multiplying it by w one obtains

Aw =

⎛

⎜

⎜

⎜

⎝

w1/w1 w1/w2 . . . w1/wn

w2/w1 w2/w2 . . . w2/wn
...

...
. . .

...
wn/w1 wn/w2 . . . wn/wn

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎝

w1
...

wn

⎞

⎟

⎠=

⎛

⎜

⎝

nw1
...

nwn

⎞

⎟

⎠= nw.

From linear algebra, we know that a formulation of the kind Aw = nw implies that
n and w are an eigenvalue and an eigenvector of A, respectively 1. Moreover, by

1 A short overview of eigenvector theory in the AHP can be found in the Appendix.
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knowing that the other eigenvalue of A is 0, and has multiplicity (n− 1), then we
know that n is the largest eigenvalue of A. Hence, if the entries of A are ratios
between weights, then the weight vector is the eigenvector of A associated with
the eigenvalue n. Saaty proposed to extend this result to all pairwise comparison
matrices by replacing n with the more generic maximum eigenvalue of A. That is,
vector w can be obtained from any pairwise comparison matrix A as the solution of
the following equation system,

{

Aw = λmaxw
wT 1 = 1

where λmax is the maximum eigenvalue of A, and 1 = (1, . . . ,1)T . Although this
problem can easily be solved by mathematical software and also spreadsheets, its
interpretation remains cumbersome for practitioners.

2.1.2 Geometric mean method

Another widely used method to estimate the priority vector is the geometric mean
method, proposed by Crawford and Williams [43]. According to this method each
component of w is obtained as the geometric mean of the elements on the respective
row divided by a normalization term so that the components of w eventually add up
to 1,

wi =

(

n

∏
j=1

ai j

) 1
n / n

∑
i=1

(

n

∏
j=1

ai j

) 1
n

︸ ︷︷ ︸

normalization term

. (2.1)

Example 2.1. Let us take into account the following matrix

A =

⎛

⎜

⎜

⎝

1 1/2 1/4 3
2 1 1/2 2
4 2 1 2

1/3 1/2 1/2 1

⎞

⎟

⎟

⎠
(2.2)

for which, by using (2.1), one obtains

w ≈ (0.119,0.208,0.454,0.219)T

2.1. Prove that, if ai j = wi/wj ∀i, j, then the geometric mean method (2.1) returns
the vector w whose ratios between components are the elements of A.

By looking at (2.1) it is apparent that the geometric mean method is very appeal-
ing for practical applications since, in contrast to the eigenvector method, the
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weights can be expressed as analytic functions of the entries of the matrix. Fur-
thermore, even the final weights of the whole hierarchy can be expressed as analytic
expressions of the entries of all the matrices in the hierarchy. This is particularly
important since it opens avenues to perform efficiently some sensitivity analysis.
Moreover, on a more mathematical note, it is interesting to note that the vector w
obtained with this method, can equivalently be obtained as the argument minimizing
the following optimization problem

minimize
(w1,...,wn)

n

∑
i=1

n

∑
j=1

(lnai j + lnwj − lnwi)
2

subject to
n

∑
i=1

wi = 1, wi > 0∀i

(2.3)

2.2. Prove that the argument optimizing (2.3) is the same vector (up to multiplication
by a suitable scalar) which could be obtained with the geometric mean method.

This optimization problem has some interpretations, the following being quite
straightforward. We know that, in the case of perfect rationality, ai j = wi/wj ∀i, j.
Indeed, it is fair to consider ∑n

i=1 ∑n
j=1 (ai j −wi/wj)

2 as a distance between A and
the matrix (wi/wj)n×n associated with the weight vector w. Another metric can be
found by using the natural logarithm ln, which is a monotone increasing function,
thus obtaining ∑n

i=1 ∑n
j=1 (lnai j − ln(wi/wj))

2. The rest is done by observing that
the logarithm of a quotient is the difference of the logarithms. Then the minimiza-
tion problem (2.3) is introduced to find a suitable priority vector associated to a
‘close’ consistent approximation (wi/wj)n×n of the matrix A.

2.1.3 Other methods and discussion �

A large number of alternative methods to compute the priority vector have been
proposed in the literature. Choo and Wedley [40] listed 18 different methods and
proposed a numerical and comparative study. Lin [82] reconsidered and simpli-
fied their framework. Another comparative study was offered by Ishizaka and Lusti
[73]. Instead, Cook and Kress [41] presented a more axiomatic analysis where some
desirable properties were stated. From all these studies it appears that, besides the
eigenvector and the geometric mean method, other two methods have gained some
popularity.
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• The so-called least squares method where the priority vector is the argument
solving the following optimization problem

minimize
(w1,...,wn)

n

∑
i=1

n

∑
j=1

(

ai j −
wi

wj

)2

subject to
n

∑
i=1

wi = 1, wi > 0∀i .

(2.4)

In spite of its elegance, this optimization problem can have local minimizers
where the optimization algorithms get trapped. For a discussion on this method
and its solutions the reader can refer to Bozóki [23].

• The other one is the normalized columns method which requires the normaliza-
tion of all the columns of A so that the elements add up to 1 before the arithmetic
means of the rows are taken and normalized to add up to 1 to yield the weights
w1, . . . ,wn. This is the simplest method but lacks solid theoretical foundation.

Example 2.2. Consider the pairwise comparison matrix (2.2) already used to
illustrate the geometric mean method. Then, the matrix with normalized columns
and the priority vector are the following, respectively,

⎛

⎜

⎜

⎝

3/22 1/8 1/9 3/8
6/22 2/8 2/9 2/8

12/22 4/8 4/9 2/8
1/22 1/8 2/9 1/8

⎞

⎟

⎟

⎠
, w =

⎛

⎜

⎜

⎝

21/163
42/163
84/163
16/163

⎞

⎟

⎟

⎠
.

Nevertheless, in spite of the great variety of methods, it is safe to say that the eigen-
vector and the geometric mean method have been the most used and therefore it
is convenient to confine further discussions to these two. Saaty and Vargas [115]
claimed the superiority of the eigenvector method and concluded that:

In fact it is the only method that should be used when the data are not entirely consistent in
order to make the best choice of alternative.

Saaty and Hu [109] proposed a theorem claiming the necessity of the eigenvec-
tor method, and Saaty [105] also proposed ten reasons for not using other methods.
Fichtner [53] proposed some axioms and showed that the eigenvector method is the
only one satisfying them. Curiously, supporters of the geometric mean method have
used similar arguments. For instance, Barzilai at al. [11] proposed another axiomatic
framework and proved that the geometric mean method is the only one which sat-
isfies his axioms. Seemingly, the existence of two axiomatic frameworks leading to
different conclusions suggest that the choice of the method depends on what set of
properties we want the method to satisfy. Supporters of the geometric mean method
also gave precise statements on the use of this method and, to summarize one of his
papers, Barzilai [9] wrote:

We establish that the geometric mean is the only method for deriving weights from multi-
plicative pairwise comparisons which satisfies fundamental consistency requirements.
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Bana e Costa and Vansnick [7] also moved a criticism against the eigenvector
method based on what they called the condition of order preservation (COP). The
COP states that, if xi more strongly dominates x j than xk does with xl , it means
that ai j > akl , and then it is natural to expect that the priority vector be such that
wi/wj > wk/wl . Formally,

ai j > akl ⇒
wi

wj
>

wk

wl
∀i, j,k, l.

Bana e Costa and Vansnick showed some examples of cases where, given a pair-
wise comparison matrix A, the eigenvector method does not return a priority vector
satisfying the COP, although there exists a set of other vectors satisfying it.

On a similar note, a recent discovery related to what economists call Pareto effi-
ciency. The reasonable idea behind this is suggested also by (2.3) and (2.4) and is
that, having estimated the priority vector w, the matrix (wi/wj)n×n should be as
near as possible to the original preferences in A. Blanquero et al. [19] showed that,
if w is estimated by the eigenvector method, in some cases there exists a vector
v = (v1, . . . ,vn)

T �= w such that
∣

∣

∣

∣

vi

v j
− ai j

∣

∣

∣

∣
≤
∣

∣

∣

∣

wi

wj
− ai j

∣

∣

∣

∣
∀i, j.

The fact that w �= v implies that the inequality is strict for some i, j. To summarize,
this means that there can be vectors which are closer than the eigenvector to the
preferences expressed in A. At the time of writing this manuscript, it seems that in
some cases the differences between v and w can be relevant [24].

2.2 Consistency

A perfectly rational decision maker should be able to state his pairwise preferences
exactly, i.e. ai j = wi/wj ∀i, j. So, let us consider the ramifications of this condition
on the entries of the pairwise comparison matrix A. If we write ai ja jk and apply the
condition ai j = wi/wj ∀i, j, then we can derive the following

ai ja jk =
wi

wj

wj

wk
=

wi

wk
= aik.

Hence, we discovered that, if all the entries of the pairwise comparison matrix A
satisfy the condition ai j = wi/wj ∀i, j, then the following condition holds 2,

aik = ai ja jk ∀i, j,k , (2.5)

2 As we will see, the ‘if’ condition is in fact an ‘if and only if’.
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which means that each direct comparison aik is exactly confirmed by all indirect
comparisons ai ja jk ∀ j. Formally, a decision maker able to give perfectly consistent
pairwise comparisons does not contradict himself. A matrix for which this transitiv-
ity condition holds is called consistent.

Example 2.3. Consider the characteristic ‘weight’ of three stones x1,x2,x3. If the
decision maker says that x1 is three times heavier than x3 (a13 = 3), and then also
says that x1 is two times heavier than x2 (a12 = 2), and x2 is also two times heavier
than x3 (a23 = 2), then he contradicts himself, because he directly states that a13 = 3,
but indirectly states that the value of a13 should be a12a23 = 2 ·2 = 4 and not 3.

Evidently the whole reasoning can be translated into the language of pairwise com-
parison matrices.

Example 2.4. Consider this other example with the two pairwise comparison matri-
ces ⎛

⎝

1 2 4
1/2 1 2
1/4 1/2 1

⎞

⎠

⎛

⎝

1 2 1/2
1/2 1 2
2 1/2 1

⎞

⎠

for which we have the two diagrams in Figure 2.1 respectively.

(a) The matrix is consistent (b) The matrix is inconsistent

Fig. 2.1: Examples of consistent and inconsistent transitivities.

Being consistent is seldom possible because many factors can determine the emer-
gency of inconsistencies. For instance, the decision maker might be asked to use
integer numbers and their reciprocals; in this case if ai j = 3 and a jk = 1/2 it is
impossible to find a consistent value for aik. Moreover, the number of independent
transitivities (i, j,k) in a matrix of order n is equal to

(n
3

)

, thus evidencing the diffi-
culty of being fully consistent.

Example 2.5. In a matrix of order 6, there are
(6

3

)

= 20 independent transitivities;
that is the number of possible assignments of values to i, j,k such that 1 ≤ i < j <
k ≤ 6. In a matrix of order 4, there are

(4
3

)

= 4 transitivities. They are (1,2,3),
(1,2,4), (1,3,4) and (2,3,4).

In spite of the difficulty in being fully transitive, it is undeniable that consis-
tency is a desirable property. In fact, an inconsistent matrix could be a symptom
of the decision maker’s incapacity or inexperience in the field. Additionally, it is



24 2 Priority vector and consistency

A

B

C

I (A)

I (B)

I (C)

Fig. 2.2: An inconsistency index can be seen as a ‘thermometer’, which takes pair-
wise comparison matrices as inputs and evaluates how inconsistent the judgments
are.

possible to envision that violations of the condition of consistency (2.5) can be of
different extent and gravity and imagine inconsistency as a gradual notion. Hence,
on the ground that a matrix should deviate as less as possible from the condition of
transitivity, a number of inconsistency indices have been proposed in the literature
to quantify this deviation. Formally, an inconsistency index is a function mapping
pairwise comparison matrices into the real line (see Figure 2.2 for an oversimplifi-
cation).

There exist various inconsistency indices in the literature and this variety is in
part justified by the fact that the condition of consistency can be formulated in many
equivalent ways. Among them, it is the case to reckon the following four:

i) aik = ai ja jk ∀i, j,k,
ii) There exists a vector (w1, . . . ,wn)

T such that ai j = wi/wj ∀i, j,
iii) The columns of A are proportional, i.e. A has rank one,
iv) The pairwise comparison matrix A has its maximum eigenvalue, λmax, equal to

n.

In this section we explore some inconsistency indices, each inspired by one of these
equivalent consistency conditions.

2.2.1 Consistency index and consistency ratio

According to the result that given a pairwise comparison matrix A, its maximum
eigenvalue, λmax, is equal to n if and only if the matrix is consistent (and greater
than n otherwise), Saaty [99] proposed the Consistency Index

CI(A) =
λmax − n

n− 1
. (2.6)
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However, numerical studies showed that the expected value of CI of a random matrix
of size n+1 is, on average, greater than the expected value of CI of a random matrix
of order n. Consequently,CI is not fair in comparing matrices of different orders and
needs to be rescaled.

The Consistency Ratio, CR, is the rescaled version of CI. Given a matrix of order
n, CR can be obtained dividing CI by a real number RIn (Random Index) which is
nothing else but an estimation of the average CI obtained from a large enough set of
randomly generated matrices of size n. Hence,

CR(A) =
CI(A)

RIn
(2.7)

Estimated values for RIn are reported in Table 2.1. Note that the generation of ran-
dom matrices requires the definition of a bounded scale where the entries take val-
ues, for instance the interval [1/9,9]. According to Saaty [100], in practice one
should accept matrices with values CR ≤ 0.1 and reject values greater than 0.1. A
value of CR = 0.1 means that the judgments are 10% as inconsistent as if they had
been given randomly.

n 3 4 5 6 7 8 9 10
RIn 0.5247 0.8816 1.1086 1.2479 1.3417 1.4057 1.4499 1.4854

Table 2.1: Values of RIn [3].

Example 2.6. Consider the pairwise comparison matrix

A =

⎛

⎜

⎜

⎝

1 2 9 1
1/2 1 1/3 1/6
1/9 3 1 2
1 6 1/2 1

⎞

⎟

⎟

⎠
. (2.8)

It can be calculated that its maximum eigenvalue is λmax = 5.28. Using the formula
for CI, we obtain CI(A) = 0.42667. Dividing it by RI4 one obtains CR(A) ≈ 0.48
which is significantly greater than the threshold 0.1. In a decision problem it is
common practice to ask the decision maker to revise his judgments until a value of
CR smaller than 0.1 is reached.

2.2.2 Index of determinants

The index of determinants was proposed by Peláez and Lamata [93] and comes from
the following property of a matrix of order three. Expanding the determinant of a
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3×3 real matrix one obtains

det(A) =
a13

a12a23
+

a12a23

a13
−2.

If A is not consistent, then a13 �= a12a23 and det(A) > 0, because, in general,
a
b +

b
a −2 > 0 ∀a �= b, a,b > 0.

It is possible to generalize this result to matrices of order greater than three and
define this inconsistency index as the average of the determinants of all the possible
submatrices Ti jk of a given pairwise comparison matrix, constructed as follow,

Ti jk =

⎛

⎝

1 ai j aik

a ji 1 a jk

aki ak j 1

⎞

⎠ , ∀i < j < k.

The number of so constructed submatrices is
(n

3

)

= n!
3!(n−3)! . The result is an index

whose value is the average inconsistency computed for all the submatrices Ti jk (i <
j < k)

CI∗(A) =
n−2

∑
i=1

n−1

∑
j=i+1

n

∑
k= j+1

(

aik

ai ja jk
+

ai ja jk

aik
−2

)

︸ ︷︷ ︸

det(Ti jk)

/(

n
3

)

. (2.9)

Example 2.7. Consider the matrix A in (2.8). It is then possible to calculate the
average of the determinants of all the submatrices Ti j k with i < j < k.

CI∗(A) =

det

T123
︷ ︸︸ ︷
⎛

⎝

1 2 9
1/2 1 1/3
1/9 3 1

⎞

⎠+ · · ·+ det

T234
︷ ︸︸ ︷
⎛

⎝

1 1/3 1/6
3 1 2
6 1/2 1

⎞

⎠

4
=(11.5741+ 1.3333+16.0556+34.0278)/4= 15.7477.

Interestingly, CI∗ is proportional to another inconsistency index called c3 [28].
The coefficient c3 of the characteristic polynomial of a pairwise comparison matrix
was proposed to act as an inconsistency index by Shiraishi and Obata [122] and
Shiraishi et al. [123, 124]. By definition, the characteristic polynomial3 of a matrix
A has the following form

PA(λ ) = λ n + c1λ n−1 + · · ·+ cn−1λ + cn,

with c1, . . . ,cn that are real numbers and λ the unknown. Shiraishi et al. [123] proved
that, if c3 < 0, then the matrix cannot be fully consistent. In fact, this is evident
if one reckons that—in light of the Perron-Frobenius theorem—the only possible

3 See appendix on eigenvalues and eigenvectors
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