
2Computing Exposures

An idea which can be used once is a trick. If it can be used more
than once, it becomes a method.

George Pólya

What factors affect the value of a security? That is a common, and important,
question asked by investors across all asset classes. Investors of fixed-income
securities are no exception. Security holders take risk. They must be, at least in
expectation, compensated for taking this risk. Factors that affect the value of a
security, therefore, are those factors that generate risk or, in other words, return
or loss. We typically call these risk factors. In this chapter, we will review a number
of risk factors that drive fixed-income security returns. We will particularly focus on
the exposure, or sensitivity, of a fixed-income security to these risk factors. These
sensitivities form the backbone of portfolio analytics since they permit us to quickly
understand the nature of a security’s or, more generally, a portfolio’s risk both on
an absolute or relative basis. The base unit of examination, however, is the security.
Portfolios then are merely collections of securities.

While there are many excellent sources that describe the sensitivities of
fixed-income instruments, we take the time to derive a number of key measures
in order to ensure consistent notation, a common understanding, and to permit a
self-contained discussion. Moreover, we also hope that the reader will be exposed
to a few new ideas.

2.1 A Starting Point

Terminology is useful in any profession as it permits the succinct and precise
description of complicated ideas. It can, on occasion, lead to confusion when the
underlying ideas are not fully understood or multiple definitions for a given term
exist. The concept of duration in the field of finance appears to fall into this category.
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There are many different notions of duration; MacCauley, modified, effective,
spread, and key-rate duration are a few commonly used examples. Moreover,
sometimes duration is quoted as a sensitivity and sometimes it is described as a
cash-flow weighted time to maturity of a fixed-income security. It is fair to say,
therefore, that when one evokes the term duration, not everyone immediately shares
the same understanding of what it means. Given the potential for confusion arising
from a loose use of terminology, we will work correspondingly hard to thoroughly
define all terms used in this text.

Our true starting point is the bond-price equation. The value, at time t of a generic
fixed-income security is described as,

V.t; y/ D
IX

iD1

cti ı.t; ti /; (2.1)

where the discount factor, ı.t; ti /, may be modelled as

ı.t; ti / D 1

.1 C y/ti �t
: (2.2)

This is a relatively simple, but powerful, identity. It holds that the value of a generic
fixed-income security is merely the sum of its discounted future cash-flows, fcti W
i D 1; : : : ; I g. In this case, we use the security’s yield, y, to discount each cash-
flow; as we will see in later development, this need not always be the case.1

2.2 Simple Yield Exposure

It is clear from Eq. (2.1) that the yield of the security plays an important role in the
security’s value. Should one increase y, then the present value of each cash flow
becomes smaller, leading to a reduction in the current value, V.t; y/.2 Conversely,
decreasing the yield, y, has the effect of increasing the present value of each
cash-flow and thereby increasing the security’s value. In short, there is an inverse
relationship between the value of a fixed-income security and its yield. With a bit

1In reality, market practice is almost always a bit more complicated than it appears in (2.1). There
are day-count conventions that describe each of the individual .ti � t /’s, compounding frequencies
impacting the yield and the coupon, and settlement dates. These elements are market convention.
For the purposes of this discussion, however, we will skip over many of these details unless, of
course, they become important.
2We employ the terms discounted cash flow and present value of a cash flow interchangeably.
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of calculus, we can formalize this relationship through the computation of the first
derivative of the security’s value with respect to a change in its yield,
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This expression describes the sensitivity of the value of a fixed-income security to an
infinitesimal change in its yield. The form of the expression is fairly enlightening. It
holds that the sensitivity depends on the sum of the time-weighted discounted cash-
flows, f.ti � t/cti W i D 1; : : : ; I g. If one divides both sides by the security’s value,
one arrives at,
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: (2.4)

What have we done? Recall that for a small change in y (i.e., �y D y1 � y0) that
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: (2.5)

Thus, we have that
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Percentage change in V

; (2.6)

which implies that Eq. (2.4) is, approximately at least, a function of the percentage
change in the value of our security for a small change in its yield.

The negative of this quantity has another, much more frequently used, name. It is
called the modified duration, which we will denote as DM . It is formerly defined as,

DM D 1

V.t; y/

@V.t; y/

@y
: (2.7)
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Equation (2.7) provides, in short, the analytic representation of a security’s exposure
to its yield. There is good reason that this is such a well-known and often used
measure of the risk of a fixed-income security. It summarizes, in a single number, the
percentage gain or loss for a fixed-income security associated with a small change
in its yield. Given a 25 basis-point decrease in yields, a fixed-income security with
a duration of 5 would expect to gain about 125 basis points. Conversely, a security
with a duration of 0.5 would only expect to earn a profit of 12.5 basis points. This
capacity to succinctly describe one’s risk is extremely useful.

Another, more explicit mathematical way to understand this fact is to return to the
linear approximation of the derivative in Eq. (2.6) (i.e., @V

@y
� �V

�y
) and re-arrange

the terms as follows,

DM .t; y/ D � 1

V.t; y/

@V.t; y/

@y
; (2.8)
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V.t; y C �y/ � V.t; y/

�y
;

�DM .t; y/�y � �V.t; y/

V .t; y/
D r.t; �y/:

This is another way to see the result from Eq. (2.6). In words, the product of one’s
modified duration and expected (or realized) yield change directly approximates the
percentage change in the bond’s value for a given yield movement, r.t; �y/. This is
immensely useful.

We can, of course, perform the same exercise using continuously compounded
interest rates—this is merely a different model of the discount factor,
ı.t; ti / D e�yc .ti �t /. The partial derivative of the bond value with respect
to the continuously compounded yield, yc , is given as,
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D �
IX

iD1

cti .ti � t/ e�yc .ti �t /;

(continued)
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whereas the modified duration has the following, relatively simple, form,

DM .t; yc/ D 1

V.t; yc/

@V .t; yc/
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; (2.10)
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One may also represent the modified duration analytically as,
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This comes directly from the formal definition of a partial derivative. It also suggests
the following possible numerical approximation,
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�
; (2.12)

for a sufficiently small and judicious choice of �.3 Often, when the duration is
numerically computed using something like Eq. (2.12), it is termed the effective
duration.4 This is particularly useful when the security value cannot be so easily
represented as indicated in Eq. (2.1); a good example would be a security with
embedded optionality such as a callable bond or a mortgage-backed security. In
such a case, a numerical computation of the sensitivity may prove more convenient.
We will, however, also see that such a numerical computation can be useful, even
for straightforward fixed-income securities, for a complex model of the discount
factor.5

It is always easier to understand an idea in the context of a concrete example.
Consider, therefore, the US Treasury bond described in Table 2.1. Our plan is to
demonstrate the application of Eq. (2.11) using this specific bond. At this point, it is
useful to indicate where market conventions become important. When discounting
cash-flows using Eq. (2.1), we arrive at what is called the dirty price. This is the
value obtained by discounting all of one’s cash-flows back to the settlement date,
without accounting for accrued interest. The clean price, of course, is the dirty price

3This is formally termed a central finite-difference approximation. See Press et al. [1] for much
more information on the numerical computation of derivatives.
4Caution should nevertheless be exercised as there is not, to the author’s knowledge, a clear
consensus in the finance universe on the definition of effective duration.
5In general, given that the numerical computation requires three full function valuations, it will
only be employed in the absence of an analytical solution.
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Table 2.1 An example bond Characteristic Data value

Issuer US Treasury

ISIN US912828NP10

Position $100

Coupon 1.75 %

Issue date 31 July 2010

Maturity date 31 July 2015

Settle date 10 August 2010

Next coupon date 31 January 2011

Tenor 4.980 years

Yield 1.524 %

Clean price $101.078

Accrued interest $0.048

Dirty price $101.126

Modified duration 4.747 years

This table outlines the key data values
for a 5-year on-the-run US Treasury
bond on 9 August 2010. This informa-
tion is used to practically demonstrate
the analytic and numeric computation of
modified duration.

Table 2.2 The analytic computation

Date Days ti � t cti ı.t; ti / cti ı.t; ti / .ti � t /cti ı.t; ti /

31 Jan 2011 173 0.473 0.875 0.9928 0.87 0.41

31 Jul 2011 355 0.973 0.875 0.9853 0.86 0.84

31 Jan 2012 539 1.473 0.875 0.9779 0.86 1.26

31 Jul 2012 721 1.973 0.875 0.9705 0.85 1.68

31 Jan 2013 905 2.473 0.875 0.9632 0.84 2.08

31 Jul 2013 1,086 2.973 0.875 0.9559 0.84 2.49

31 Jan 2014 1,270 3.473 0.875 0.9486 0.83 2.88

31 Jul 2014 1,451 3.973 0.875 0.9415 0.82 3.27

31 Jan 2015 1,635 4.473 0.875 0.9343 0.82 3.66

31 Jul 2015 1,816 4.973 100.875 0.9273 93.54 465.15

Total n/a n/a n/a n/a 101.126 483.720

This table outlines the computation of the bond price in Table 2.1 using its yield and then the
further computation of the modified duration.

adjusted for accrued interest. One must be careful, however, when taking prices
from different screens or data sources not to mix clean and dirty prices.6

6It is often the case, for example, that clean prices are returned from various software functions
and, as a consequence, a bit of caution is advised.
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All of the necessary computations are outlined in Table 2.2. We begin, in the first
column, with the actual cash-flow dates. As this bond pays a semi-annual coupon,
as of August 2010 there are ten remaining cash-flows culminating with its maturity
payment on 31 July 2015. Each of these calendar dates are transformed into the
number of days from the settlement date, 10 August 2010. Using these days, we
proceed to divide them by 365 to generate a sequence of cash-flow times. This
permits us to easily compute the sequence of discount factors,

ı.t; ti / D 1
�
1 C y

2

�2�.ti �t /
; (2.13)

to account for the semi-annual compounding associated with the bond’s cash-flows.
Observe that each of the cash-flows is discounted using the bond’s yield as the
discount rate. Taking the product of the cash-flows with the discount factor, we
obtain a sequence of discounted cash-flows, fı.t; ti /cti ; i D 1; : : : ; 10g. The sum
of this sequence is $101.126, which coincides with the clean price outlined in
Table 2.1.

The next step is the computation of the modified duration. Here we need
to compute the sum of the time-weighted discounted cash-flows. This sequence,
f.ti � t/ı.t; ti /cti ; i D 1; : : : ; 10g, is the final column in Table 2.2. The sum of this
sequence is $483.720. Thus using the analytic expression in Eq. (2.11), we should
arrive at the modified duration,
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!

483:720;

D �4:747:

This is exactly the value of 4.747 that we expected and which is provided in
Table 2.1.

We may now turn to the numerical computation of modified duration introduced
in Eq. (2.11). This is a relatively straightforward computation; the tricky part,
however, is the appropriate selection of the parameter, �. If it is too large, then
the approximation will be poor. Conversely, if it is too small, then it can lead
to instability in the computation. To make this clearer, let us work through the
computation with � set to 0.01, which is equivalent to 100 basis points. We,
therefore, start with Eq. (2.11) and follow through with the computation as,

DM D 1

V.t; y/

�
V.t; y C �/ � V.t; y � �/

2�

�
; (2.15)
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Fig. 2.1 Numerical
computation of duration. This
figure demonstrates the
convergence of the central
finite-difference
approximation introduced in
Eq. (2.11) to the bond
described in Table 2.1.
Observe that for relatively
large values of �, the
numerical approximation is a
poor estimate for the analytic
value of 4.747. As � tends to
zero, however, it converges to
the analytically computed
value
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Observe that, for a choice of � D 0:01, we do not reproduce the modified duration
value of 4.747 in the analytic computation. The reason is that 0.01 represents a 100
basis-point movement in the bond yield, which is actually quite large. It should
be stressed, however, that even with a 100 basis-point movement, the numerical
approximation is fairly acceptable.7

Figure 2.1 takes the demonstration one step further and performs the numerical
computation of the modified duration using a sequence of �’s from 0.1 (i.e., 100
basis points) to 0.0000001 (i.e., 1000th of a basis point). Observe that for relatively
large values of �, the numerical estimate is a poor approximation for the analytic
value of 4.747. As � tends to zero, however, it converges to the analytically
computed value. Indeed, it appears that for values of � slightly less than 0.01 (ten
basis points), the numerical computation basically converges to the analytic value.

In summary, modified duration is a key fixed-income exposure to the interest-rate
risk factor and may be computed analytically or numerically. Given the simplicity of

7Note also that an increase of 100 basis points generates a $4.67 decrease in the price, while a 50
basis-point decrease leads to a $4.93 basis-point rise in the price. There are two points that should
be taken from this fact. First, a 100 basis-point movement in yields leads to relatively large price
changes. Second, the price movement is not symmetric for an equivalent upward and downward
movement in bond yields. This is due to the fact that the relationship between bond prices and
yields is not linear. More on this point will be discussed in the next section.
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the analytic approach, a numerical approximation is generally only employed when
the security has complex features that preclude the use of Eq. (2.8) on page 24.

2.3 Correcting for Our Linear Approximation

Up to this point, we have only examined the concept of modified duration—one
dimension of the security’s exposure to its yield. As we’ve established, this is
the percentage change in the value of a fixed-income security associated with a
small change in its yield. What happens, however, when the change in yield is
not so small? Indeed, the daily changes in market yields can occasionally be quite
sizeable. In Eq. (2.1), we note that the relationship between the bond’s value, V.y/,
and its yield, y, is not linear. Indeed, the bond-price equation has a polynomial
form in terms of the discount factors. Thus, we would expect some degree of non-
linearity. To understand the nature of this relationship, we have selected a specific
US Treasury bond and plotted its value across yields ranging from one basis point to
10 %. The results, summarized in Fig. 2.2, clearly indicate a non-linear relationship.
The bond examined is an on-the-run 10-year US Treasury bond—it has a 3.5 %
coupon and a 15 May 2020 maturity date giving it, as of 9 August 2010, a tenor of
about 9.8 years. The straight line passing through the current clean price represents
the predicted price movement stemming from the modified duration. For relatively
small yield changes, this linear approximation is quite reasonable; as the yield
change increases, however, the accuracy of this approximation deteriorates.

Given this non-linearity, it would seem sensible to construct a measure that
attempts to capture it. Modified duration is clearly insufficient to capture the full
exposure of a fixed-income security to the yield factor. Since locally the linear
approximation is quite good, one reasonable approach would be to try to capture
the rate of change in the linear approximation. This leads us naturally to the second

Fig. 2.2 Relationship
between price and yield. This
figure outlines the
relationship between a bond’s
yield and its price for yields
ranging from 0 to 10 %. The
bond examined is 10-year US
Treasury as of 9 August
2010—it has a 3.5 % coupon,
a 15 May 2020 maturity date,
and an ISIN number of
US912828ND89. Observe
that the relationship between
these two variables is not
linear; the modified duration
is included to demonstrate the
deviation from linearity
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derivative of the security’s value function. The second derivative of the bond-price
function with respect to yield has the form,
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Here we see the rate of change of the first derivative, which is also somewhat more
difficult to interpret. If one normalizes this quantity by its current value, V.t; y/, as
follows

1
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@2V .t; y/

@y2
D 1

V.t; y/.1 C y/2

IX

iD1

.ti � t/.ti � t C 1/cti

.1 C y/ti �t
; (2.17)

then one arrives at a second well-known quantity: the bond convexity, which we
will denote as C . The convexity measure is not as simple to apply as the modified
duration and, generally speaking, acts as a correction factor for approximations
made using modified duration. Interestingly, we have seen that for a simple risk
factor—the market yield—we may employ multiple exposures. We will see how
one applies the convexity measure in rather more detail in the next chapter.

Again, we can perform the same exercise using continuously compounded
interest rates. The second partial derivative of the bond price with respect to
y is given as,
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(continued)
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Convexity, in a continuously compounded setting, is thus defined as,

1

V.t; y/

@2V .t; y/
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cti .ti � t/2 e�y.ti �t /: (2.19)

Once again, we observe that continuous compounding gives rise to more
convenient mathematics.

2.4 Time Exposure

We have been careful to indicate that the value of a bond is a function of two
arguments: time and yield. Modified duration and convexity provide a basis for
understanding the exposure of our bond to changes in the yield, but these measures
are silent on the implications associated with changes in the first argument: time.
This is easily corrected. To better understand the sensitivity, or exposure, of a
bond to changes in time, we need only compute the partial derivative of our bond-
value function with respect to time. In principle, this is a straightforward exercise,
although we need to recall a simple property of logarithms to isolate the t term.
In particular, we need to remember that a function of the form .1 C y/x can be
alternatively written as ex ln.1Cy/. With that in mind, the partial derivative of our
bond-value function with respect to time is,
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If we recall that ln.1 C y/ � y for small values of y, then

@V.t; y/

@t
� yV.t; y/: (2.21)

To compute, therefore, a kind of time duration for our bond, we need only to divide
both sides by V.t; y/ arriving at,
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; (2.22)
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Eq. (2.20)

;

� y:

In simple words, therefore, the exposure of a fixed-income security to the passage
of time—also a risk factor—is well approximated by its yield. This is related to the
notion of carry.

Using the same heuristic notion of a derivative as in the previous discussion (i.e.,
@V
@t

� �V
�t

) and re-arrange the terms as follows,8
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:

This is not a terribly surprising result, but it is nonetheless encouraging that this
basic framework provides a consistent and sensible answer. Moreover, the notion of
time sensitivity is an important aspect of performance analysis and, as such, we will
making extensive use of Eq. (2.23) in the coming chapters.

8The product of the security’s yield and the time interval approximates the return associated with
the movement of time.
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2.5 Key-Rate Exposures

The notion of modified duration is quite useful, but it has some limitations. The
principal limitation is that, in a typical fixed-income portfolio, one generally holds
a collection of bonds with varying tenors. If one holds n bonds in one’s portfolio
with durations fDMi ; i D 1; : : : ; ng and market-value weights f!i ; i D 1; : : : ; ng,
we straightforwardly define the duration of the portfolio as,

DMp D
nX

iD1

!i DMi : (2.24)

Quite simply, the modified duration of the portfolio is the weighted-average
modified duration of the instruments in the portfolio.9 The duration of the portfolio
gives one an insight into the sensitivity of that portfolio to a constant change across
all yields in the portfolio. It is, however, not always the case that all yields move in
an identical manner across the entire yield curve. Quite often, 2-year yields move in
a different way compared to, say, 5-year yields or 10-year yields. Figure 2.3 provides
a graphical example of the change in the UST yield curve from 31 July 2010 to 31
August 2010. It shows an example of relatively modest yield movement in the short
end of the curve and coincident reduction and flattening of the curve beyond about
4 years.

Briefly put, yields at different tenors move in different ways. To understand the
sensitivity of our portfolio to changes in yields at different parts of the yield curve,
therefore, we require a more local measure of yield changes. Local in this context

Fig. 2.3 Typical yield-curve
movements. The underlying
graph describes the change in
the UST yield curve from 31
July 2010 to 31 August 2010.
This is a clear example of
situation where, over a given
period of time, not all yields
change in a parallel fashion
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9This computation is based on the fact that modified duration—essentially a derivative—is a linear
quantity and, as such, can be averaged.
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means restricted to a smaller sector of the yield curve. The obvious solution to
determining the exposure of one’s portfolio to changes in 2-year yields is to compute
something like the 2-year duration of the portfolio. In other words, to compute the
portfolio’s mathematical exposure to movements in the 2-year yield. Determination
of such a sensitivity should, in principle, be possible.

Exactly for which yields one should compute such an exposure is a very natural
question. Should we stop at the 2-year sector? Clearly not. There are a range of
possible points along the sovereign yield curve that may be of interest. One’s
exact choice of key yield points will depend on the needs of the user, although a
reasonable, and defensible, approach is to select key rates to coincide with areas
of market liquidity (i.e., on-the-run sovereign bonds) to permit hedging of one’s
exposure to these sectors. Very specific tenors—such as the 1-year and 9-month
yield or the 2-year and 1-month yield—are probably to be avoided.

For a more concrete perspective on the computation of bond (and portfolio)
exposures to specific tenors along the yield curve, we consider an example.
Figure 2.4 outlines the US Treasury curve as of 11 October 2010 and highlights eight
different yield points across the curve: the 6-month, 2-year, 5-year, 7-year, 10-year,
15-year, 20-year, and 30-year yields. It is important to repeat that there is nothing
magic about this specific choice of eight yields and that each analyst—hopefully
after consultation with his or her portfolio-manager colleagues—must decide on the
set of key yields across the yield curve for which exposures are required.

Having defined a set of key yield tenors, the next step is the determination of
the sensitivity of one’s fixed-income instrument to a change in this key rate. To
understand how such a sensitivity might be computed, imagine that only one of
these key yields, or rates, moves by, say, 50 basis points? Figure 2.5 highlights
just such a 50 basis-point movement in the 10-year UST rate. Observe that all of
the other key rates remain unchanged, but that the intermediate yield points are

Fig. 2.4 Selection of key
rates. This figure highlights
eight different yield points
across the US Treasury curve
on 11 October 2010
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Fig. 2.5 Perturbing a
key-rate. This figure
demonstrates the impact of a
50 basis-point movement in
the 10-year UST rate. All of
the other rates remain
unchanged, except for the
intermediate yield points
between the nearest adjacent
non-perturbed key rates and
the new perturbed value.
These values are linearly
interpolated to create a
tent-like shape around the
perturbed rate
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linearly interpreted between the nearest adjacent non-perturbed key rates and the
new perturbed value for the 10-year rate. The end result looks something like a tent.

The next task is to transform the image in Fig. 2.5 into a concrete mathematical
expression. Naturally, this requires us to return to the bond-price equation. Once
again, we perform a slight modification of the original expression in Eq. (2.1). In
this case, instead of discounting all cash-flows at a single yield, we discount each
cash-flow with its distinct yield. This leads us to the following expression:

V.t; yt1 ; : : : ; ytn/ D
nX

iD1

cti

.1 C yti /
ti �t

: (2.25)

Formally, therefore, fyti ; i D 1; ::; ng denotes the set of individual yields associated
with each individual cash-flow. To compute the sensitivity of our bond price to a
change in the kth yield, we start, as usual, with the partial derivative with respect to
ytk for k 2 f1; : : : ; ng:

@V.t; yt1 ; : : : ; ytn/

@yk

D @

@ytk

 
nX

iD1

cti

.1 C yti /
ti �t

!
; (2.26)

D � .tk � t/ ctk

.1 C ytk /.tk�t /C1

In this case, the resulting derivative is not a sum, but rather a single term.10 This is
the equivalent of modified duration, but only for a given area of the curve.

10This is because all terms where i ¤ k are, by definition, zero. That is, they do not contribute to
the derivative.
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Dividing both sides of Eq. (2.26) by V.t; yt1 ; : : : ; ytn / transforms this derivative
into something resembling the duration concepts seen earlier in this chapter. Indeed,
the resulting expression is generally termed the key-rate duration,

Dtk D 1

V.t; yt1 ; : : : ; ytn/

@V .t; yt1 ; : : : ; ytn/

@ytk

; (2.27)

D � .tk � t/ ctk

V .t; yt1 ; : : : ; ytn/.1 C ytk /.tk�t /C1
:

We denote the key-rate duration, therefore, as Dtk representing the sensitivity of
one’s fixed-income instrument, or portfolio, to a change in ytk .

The use of the key-rate duration is conceptually identical to the use of the
modified duration.11 The following approximation, similar in spirit to Eq. (2.8),
demonstrates this point in mathematical terms,

Dtk � � 1

V.t; yt1 ; : : : ; ytn/

�

�V.t;yt1 ;:::;ytn /
‚ …„ ƒ
V.t; yt1 ; � � � ; ytk C �ytk ; � � � ; ytn/ � V.t; yt1 ; : : : ; ytn/

�ytk

; (2.28)

�Dtk �ytk � �V.t; yt1 ; : : : ; ytn/

V .t; yt1 ; : : : ; ytn/
:

The key-rate duration is basically the exposure of the bond to a small change in
the kth yield. The local nature of this measure of portfolio sensitivity makes it a very
useful supplement to the modified duration, which provides a more global view of
yield-curve sensitivity.

The careful reader has probably noticed that these analytic computations only
make sense when the security’s cash flows coincide precisely with the desired key-
rate tenors. This is quite unlikely and probably impossible for a large portfolio of
fixed-income securities. In reality, key-rate durations are determined numerically—
a description of a sensible algorithm for their computation is found in the underlying
shaded box. We will nonetheless continue to use the analytic development, because
it provides useful insight into the notion of a key-rate duration and permits easy
comparison with the other exposures developed in this chapter.

11In words, the product of the key-rate duration and an expected or realized change in the kth yield
approximates the approximate percentage change in the value of one’s fixed-income instrument.
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In practice, it is generally quite difficult and inconvenient to analytically
compute key-rate durations. Instead a numerical approximation is typically
employed. This essentially involves a base sovereign yield curve—computed
using your favourite method or a technique borrowed from Chap. 5—and
a central finite-difference approximation. This is the key input, but the
algorithm nonetheless requires a number of distinct steps. For a given key
rate tenor, k, and choice of security it involves

1. determining the cash-flows of your security from its coupon and maturity
date;

2. transforming your sovereign yield curve into a zero-coupon curve using a
simple bootstrapping technique;12

3. computing the central value of the fixed-income security from the zero-
coupon curve and the previously determined cash-flows—call this V ;

4. shocking upwards the desired key-rate, at the desired key tenor k, on your
base sovereign yield curve by a small amount, �;

5. transforming—again using a bootstrap—the shocked yield curve into a
correspondingly shocked zero coupon curve;

6. repricing your security with the shocked zero-coupon curve–call this V C;
and

7. perturbing the original sovereign curve downwards, again at the desired
key tenor, by �, determining the associated zero-coupon curve, and recom-
puting the new security value, V �.

This provides all of the required ingredients for the final computation. The
key-rate duration, for the selected key tenor, is thus approximated by the
central finite-difference technique as,

Dtk � 1

V

�
V C � V �

2�

�
: (2.29)

This is a tedious exercise and must be repeated for each security and each
key-rate tenor (i.e., k D 1; : : : ; �). Fortunately, such tedious tasks are easily
organized into a computer program and happily delegated to your computer’s
CPU.

Simultaneous use of both modified and key-rate durations would be much easier
if we could establish a link between these two measures. It turns out, in fact, that

12For more information on this technique, see Chap. 5.
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such a link does exist. If we take the sum of all n key-rate durations, we arrive at the
following expression

nX

kD1

@V .t; yt1 ; : : : ; ytn /

@ytk

D
nX

kD1

� .tk � t/ ctk

.1 C ytk /.tk�t /C1
: (2.30)

This looks slightly familiar. If we proceed to divide both sides by V.t; yt1;:::;ytk
/,

then

1

V.t; yt1;:::;ytk
/

nX

kD1

@P.t; yt1 ; : : : ; ytn /

@yk

D 1

V.t; yt1;:::;ytk
/

nX

kD1

� .tk � t/ ctk�
1 C ytk

�.tk�t /C1

„ ƒ‚ …
Sum of the

key-rate durations

;

� 1

V.t; yt1;:::;ytk
/

nX

kD1

� .tk � t/ ctk�
1 C y

�.tk�t /C1

„ ƒ‚ …
Modified
duration

:

(2.31)

The consequence is that the sum of the key rate durations is virtually identical to the
expression for modified duration derived in Eq. (2.3). The only difference is that the
individual discount factors in the sum are a sequence of values fytk ; k D 1; : : : ; ng
for the key-rate duration, but only a single value, y, for the modified duration. These
need not be equal, of course, but generally they will be quite close. Consequently,
the sum of the key-rate durations is a close approximation to the modified duration.

This relationship essentially permits us to sum the exposures from the key-rate
durations and equate it to the exposure arising from the modified duration. More
specifically, we can try to equate Eqs. (2.4) and (2.28) as,

�
nX

kD1

Dtk �ytk � �DM �y; (2.32)

nX

kD1

�V.t;yt1 ;:::;ytn /
‚ …„ ƒ
V.t; yt1 ; � � � ; ytk C �ytk ; � � � ; ytn/ � V.t; yt1 ; : : : ; ytn/

V .t; yt1 ; : : : ; ytn/

�

�V.t;y/‚ …„ ƒ
V.t; y C �y/ � V.t; y/

V .t; y/
:
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The power of the key-rate duration is that it generalizes the idea of the yield risk
factor. Using modified duration, each individual security yield is a risk factor. When
we employ key-rate durations, however, we use a generic set of key-rate risk factors
for all securities in a given portfolio and strategic benchmark. This is very powerful.

2.5.1 AWord of Caution

Some caution is nevertheless required in the use of Eq. (2.32) as there are basically
two sources of approximation. The sum of the key-durations may indeed be quite
close to the modified duration, but the individual yield changes at the key-rate
sectors need not be consistent.

To see how this might work, let’s look at another example. Imagine that we have
a UST bond with a modified duration of 5.07 years and the curve moves as described
by Fig. 2.6. Over this period, the yield of this bond happily increases by 42 basis
points. This would lead us to approximate the percentage change in the bond’s value
due to this yield movement as �5:07 � 42 D �212:9 basis points.

Figure 2.6 and Table 2.3 also handily provide us with all of the key-rate durations
and yield changes over this period. Performing the computation exactly as it appears
in Eq. (2.32) with these inputs, however, we arrive at a rather different answer.
Specifically, we predict a loss of �182:0 basis points amounting to a difference of
approximately 30 basis points with the value stemming from the modified duration
computation.

What is going on? Essentially, the changes in the yield curve were relatively
modest at the short end of the curve with an 8 and 18 basis-point widening at
the 6-month and 2-year sectors, respectively. Yields widened by 33 basis points
at the 5-year point and 56 basis points at the 7-year sector. If we compute a key-rate
weighted average of the total yield movement, therefore, it amounts to only about

Fig. 2.6 Key-rate and
modified durations. Here we
examine the change in five
key rates (i.e., 6-months,
2-years, 5-years, and 7 years)
for a given bond along with a
5.79 year maturity
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Table 2.3 Key-rate and modified-duration example

Key-rate tenor Dtk �ytk �Dtk �ytk �y �Dtk
�y

6 months 0.02 8 �0.2 42 �0:8

2 years 0.14 18 �2.5 42 �5:9

5 years 4.16 33 �137.3 42 �174:7

7 years 0.75 56 �42.0 42 �31:5

Total/weighted average 5.07 36 �182.0 42 �212:9

This table describes the key-rate durations and key-rate movements for a UST bond with a tenor
of 5.79 years. The yield changes are also graphically represented in Fig. 2.6. All yield values are
represented in basis points.

36 basis points of widening. The difference between the actual 42 basis points and
the approximated 36 basis points accounts for the 30 basis points of difference in
the approximation.

A more robust, albeit perhaps less satisfying, way to perform the computation,
would be to use the key-rate durations, but restrict the yield changes at each key-
rate point to be equal to the 42 basis-point widening experienced by the actual bond
yield. This amounts to adjusting Eq. (2.32) as follows,

�
nX

kD1

Dtk �y � �DM �y: (2.33)

This essentially distributes the total curve return—without any under- or
overstatement—across the pre-determined key tenors in the sovereign yield curve.

While this is clearly a rather extreme example, it does highlight the fact that
the change in the yield of a given bond need not be equal to the key-rate weighted
average of key-rate yield movements.13 We will return to this point again in the
following chapters when we discuss performance attribution and the estimation of
portfolio risk.

2.6 Spread Exposure

Thus far, we have focused on bonds issued by so-called risk-free borrowers. Risk-
free, in this context, implies that these bonds are subject to no, or at least very
little, credit risk. It would be tempting to classify these risk-free borrowers as
governments, but in fact, some government bonds do have a relatively high prob-

13For a portfolio with numerous bonds across the curve, the effect is likely to be relatively
small. Nevertheless, for computations that require a high degree of accuracy, such as performance
attribution, this is likely to remain an unacceptable source of error.
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ability of default or losses associated with a deterioration of their credit quality.14

A good example would be the Eurozone, where some government issuers such as
Germany and France could be considered risk-free borrowers, while others—such as
Greece, Portugal, Ireland, or Spain at the time this document was written—could be
considered to have considerable credit risk. Simply put, there are many fixed-income
instruments including bonds issued by some governments, supranational entities,
government agencies, and corporations that are exposed to credit risk. Credit risk is
clearly a risk factor. Moreover, it is probably a collection of risk factors that might be
organized in varying degrees of granularity.15 Our analysis thus far does not permit
us to compute the exposure of a fixed-income instrument to changes in its credit
quality. In this section, we will address this shortcoming.

Determination of the exposure of a fixed-income instrument to changes in its
underlying credit quality requires the identification, within the context of our bond-
price equation, of some element that relates to credit risk. At first glance, the price of
an agency, supranational, or even a corporate bond has the same form as government
bond,

V.t; y/ D
nX

iD1

cti

.1 C y/ti �t
: (2.34)

It remains the sum of the individual cash-flows discounted by its yield. This form is
unfortunately not very helpful.

With a bit of reflection, this drawback can be resolved. The credit element is
embedded in the yield. Supranational bonds, for example, trade at a higher yield
(i.e., lower price) than a treasury security with an equivalent tenor to account for
this incremental credit risk. We can exploit this fact and decompose a security’s
yield into two distinct components:

1. the equivalent treasury yield; and
2. the credit spread.

What does this mean? The equivalent treasury yield represents the yield that a bond
subject to credit risk would have if it was issued by the risk-free issuer in that
currency. An example would be a US agency bond with a tenor of 4.76 years–its
equivalent treasury yield would be the yield of a US Treasury bond with the same
tenor of 4.76 years. To perform this computation, one requires a mathematical model
of the underlying risk-free yield curve. Such a model permits one to easily determine
the yield of a US Treasury bond with a 4.76 year bond, as it is unlikely that such a
bond would exist in the market.

14This latter situation is also termed credit migration.
15One could, for example, use categories such as sovereign, agency, supranational, or corporate. It
would also be possible to have subcategories with each of these groups or even, in the limit, focus
on individual names.
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Fig. 2.7 Decomposing the
bond yield. This figure
provides a graphical
representation of how, armed
with a risk-free yield curve,
one can decompose the yield
of a credit bond into the sum
of its equivalent treasury
yield and its credit spread
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The difference between the bond’s actual yield and this equivalent treasury yield
is particularly interesting. It is called the credit spread. This credit spread, or simply
spread, is essentially the additional yield demanded by the market—over and above
the yield required for the risk-free borrower—to compensate for the incremental
credit risk associated with that particular bond.16 Thus, the larger the credit spread
of a specific bond, the less optimistic is the market’s assessment of the general
credit quality of the underlying issuer. Changes in the spread over time consequently
represent adjustments in the overall credit quality of the underlying issuer. Should,
for example, the spread widen (narrow), then this would typically imply that the
market has downgraded (upgraded) its view of the bond’s credit quality.

Figure 2.7 demonstrates graphically how, with a yield-curve model for the
necessary risk-free yield curve, one can decompose the yield into the equivalent
treasury yield and a credit spread. Such a decomposition is quite practical as it
breaks out a bond’s yield into the risk-free component—common to all fixed-income
instruments in that market—and an idiosyncratic credit spread component. Using
this decomposition, our bond-price equation becomes,

V.t; Oy; s/ D
nX

iD1

cti

.1 C Oy C s„ƒ‚…
y

/ti �t
; (2.35)

16To be precise, the spread may also include additional yield demanded by lenders to compensate
for lower liquidity of the credit bond relative to the underlying government curve. Decomposition
of the credit and liquidity aspects of the credit spread is not trivial and we will, in our development
ignore such effects. It is nonetheless important to be aware that part of the credit spread may be
attributable to liquidity and, in some cases, its contribution can be important.
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where Oy denotes the equivalent treasury yield and s represents the associated credit
spread.17 This simple decomposition separates two risk factors—the treasury yield
curve and the credit spread—that were previously linked through the security’s
yield.

We are now in familiar territory. As with modified duration for nominal and
inflation-linked bonds and the notion of key-rate durations, it would seem that the
derivative is a good place to start to determine the sensitivity of the bond’s price to a
change in the spread. The derivative of Eq. (2.35) with respect to the credit spread,
s, is

@V.t; Oy; s/

@s
D @

@s

 
nX

iD1

cti

.1 C Oy C s/ti �t

!
; (2.36)

D � 1

.1 C Oy C s/

nX

iD1

.ti � t/ cti

.1 C Oy C s/ti �t
:

If we recall, however, that y D Oy C s we can make a number of substitutions to
simplify Eq. (2.36) as follows,

@V.t; Oy; s/

@s
D � 1

.1 C Oy C s„ƒ‚…
y

/

nX

iD1

.ti � t/ cti

.1 C Oy C s„ƒ‚…
y

/ti �t
; (2.37)

D � 1

.1 C y/

nX

iD1

.ti � t/ cti

.1 C y/ti �t
;

D @V.t; y/

@y
:

Ultimately, there is nothing different about the sensitivity of the bond price whether
the yield change comes from a movement in the equivalent treasury yield ( Oy), the
credit spread (s), or the overall yield (y). While this is hardly a surprise, given that
the terms enter additively into the bond-price equation, it is nonetheless a useful
result.

If we proceed to divide both sides of Eq. (2.37) by @V. Oy;s/

@s
, we arrive at the

equivalent of modified duration, but for spread movements. It is termed, quite
naturally, the spread duration and has the following form,

DS D 1

V.t; Oy; s/

@V .t; Oy; s/

@s
; (2.38)

17The explicit introduction of the credit spread into the bond price equation permits us to include
the credit risk factor into our mathematical framework.
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D � 1

V.1 C y/

nX

iD1

.ti � t/ cti

.1 C y/ti �t
;

D Dm:

We see again that spread duration and modified duration are equivalent for a plain-
vanilla bond.

The spread duration is used in practice by replacing the partial derivative in the
spread duration with its linear approximation �V

�s
as follows,

DS � � 1

V.t; Oy; s/

�V.t; Oy;s/‚ …„ ƒ
V.t; Oy; s C �s/ � V.t; Oy; s/

�s
; (2.39)

�Ds�s � �V.t; Oy; s/

�V.t; Oy; s/.t; Oy; s/
:

The spread duration, therefore, is basically the exposure of the bond to a small
change in its credit spread—or, more generally, a small change in the credit quality
of the bond issuer. It should be noted that for some fixed-income instruments, most
notably floating-rate notes, the spread and modified durations do not coincide. In
these cases, it is typical to compute the actual spread duration using an alternative
approach. Floating-rate notes are addressed in Chap. 4.

In many commercial applications, the modified and spread durations, while
close, do not usually perfectly coincide. For complex securities, the reason
is obvious. The cash flows also depend on the spread, which leads to the
following bond-price equation,

V.t; Oy; s/ D
nX

iD1

cti .s/

.1 C Oy C s„ƒ‚…
y

/ti �t
; (2.40)

Clearly, differentiating Eq. (2.40) with respect to s will not reduce to the
modified duration. For plain-vanilla instruments, the bond-price equation is
also often written as follows,

V.t; Oy; s/ D
nX

iD1

cti

.1 C z.t; ti / C sz„ ƒ‚ …
y

/ti �t
; (2.41)

(continued)
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implying that each cash flow is discounted at its own individual spot rate,
z.t; ti / for i D 1; : : : ; n. In this case, the credit spread, which is denoted as
sz, will not be the same as the s computed using our simple decomposition.
That is, sz ¤ s. In this case, when the spread duration is calculated—using
a numerical approach—the result is not equal to the modified duration. For
normal plain-vanilla instruments, however, the difference is minimal and,
for portfolio analytic purposes, we simply assume that spread duration and
modified duration are equal. In the case of complex securities, as described in
Eq. (2.40), this may be a poor assumption. In this case, it is safer to employ a
numerical approximation.

2.7 Foreign-Exchange Exposure

Fixed-income securities are not always denoted in one’s base currency. Often, they
are denominated in foreign currency. This implies that a movement in the exchange
rate between the foreign currency and your base currency—all else being equal—
leads to changes in the value of your investment. As such, the foreign-exchange rate
is a risk factor.

Since the foreign-exchange rate is a risk factor, it would be useful to understand
the exposure of a generic fixed-income security to the exchange rate. To do this, we
return as usual to the bond-price equation. Denote Et as the exchange rate between
the security and your base currency. Consequently, your security’s value may be
written as,

V.t; y; Et / D Et

IX

iD1

cti ı.t; ti /

„ ƒ‚ …
Base currency
value: V.t; y/

; (2.42)

D Et V.t; y/:

If we differentiate V with respect to Et , we have

@V.t; y; Et /

@Et

D @Et V .t; y/

@Et

; (2.43)

D V.t; y/:

The result is quite intuitive. A security’s exposure to a foreign-exchange rate is the
entire investment.18

18A possible exception would be a dual-currency bond, where the coupon and notional amounts
are denominated in different currencies. In this case, the security would need to be split into two
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Table 2.4
Summarizing exposures

Factor Exposure Definition Value

Yield Modified duration 1
V

@V
@y DM

Convexity 1
V

@2V
@y2 C

kth key-rate duration 1
V

@V
@ytk

Dtk

Time Carry 1
V

@V
@t y

Credit spread Spread duration 1
V

@V
@s Ds

FX FX exposure @V
@Et

V

This table summarizes the exposures computed to the various risk factors identified throughout the
course of this chapter

2.8 Concluding Thoughts

This has been a detailed chapter with numerous mathematical digressions. The
common thread among these computations and derivations was the determination
of the exposure of a fixed-income security to a collection of different risk factors:
yield, time, spread, key rates and foreign-exchange rates. In short, this chapter has
been about computing the exposure, or sensitivity, of a fixed-income security to
various risk factors. Table 2.4 summarizes all of the operations that we performed
on the bond-price expression in terms of factors and exposures.

These exposures provide an insight into the change in the value of a generic fixed-
income security associated with a given movement in the underlying risk factor.
Note, however, that they consider each risk factor in isolation. We naturally wish to
examine them in a joint fashion—this requires additional effort. In the next chapter,
we will make ample use of these exposures and employ them to link our set of risk
factors to the return of our fixed-income security.
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value. Each would then require a separate currency definition.
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